Created by T. Madas

A uniform $\operatorname{rod} A B$ has length 5 m and weight 100 N .

The rod rests in a horizontal position on two smooth supports at P and Q, where $A P=1 \mathrm{~m}$, as shown in the figure above.

The magnitude of the reaction force on the rod at P is 40 N .
a) Determine the magnitude of the reaction force on the rod at Q.
b) Calculate the distance $A Q$.

A non uniform plank of wood $A B$ has length 8 m and mass 100 kg .

The plank is smoothly supported at its two ends A and B. A boy of mass 60 kg stands on the plank at the point C, where $A C=3 \mathrm{~m}$, as shown in the figure above.

The plank with the boy standing on the plank, remains in equilibrium with $A B$ horizontal. The plank is modelled as a non uniform rod and the boy as a particle.
a) Given that the reactions at the two supports are equal, determine the distance of the centre of mass of the plank from A.
b) Explain in the context of this problem the model of
i. ... the plank is a rod
ii. ... the boy is a particle.

Created by T. Madas

Question 3 (**)

A plank of wood $A B$ has length 4 m and mass 40 kg . The plank is smoothly supported at A and at C, where $A C=3 \mathrm{~m}$, as shown in the figure above.

A man of mass 80 kg stands on the plank at a distance $d \mathrm{~m}$ from A.

The plank, with the man standing on it, remains in equilibrium with $A B$ horizontal, and the reactions on the plank at A and at C equal.

The plank is modelled as a uniform rod and the man as a particle.
Determine the value of d.

Created by T. Madas

Question 4 (**)

A uniform iron girder $A B$ has length 8 m and weight $W \mathrm{~N}$. A load of 250 N is attached to the girder at A and a load of 400 N is attached to the girder at B.

The loaded girder is suspended by two light vertical cables attached to the girder at points C and D, where $A C=1 \mathrm{~m}$ and $D B=3 \mathrm{~m}$. When the loaded girder rests undisturbed in a horizontal position, the tension in the cable at D is four times the tension at the cable at C.

The girder is modelled as a uniform rod and the two loads as particles.
a) Determine magnitude of the tension on the girder at C.
b) Find the value of W.

Question 5 (**)
A uniform rod $A B$ has length 6 m and weight 40 kg .

The rod rests in a horizontal position on two smooth supports at P and Q, where $A P=1 \mathrm{~m}$ and $A Q=d \mathrm{~m}$.

The magnitude of the reaction force on the rod at Q is 3 times as large as that at P.

Created by T. Madas

Question 6 (**+)

A box of mass 76 kg is attached by a string to one end B of a uniform $\operatorname{rod} A B$ of length 5 m and mass 24 kg .

The rod is held horizontally in equilibrium by two smooth cylindrical pegs, one at A and one at C, where $|A C|=2 \mathrm{~m}$, as shown in the figure above.

Calculate the magnitude of the forces exerted by each of the pegs onto the rod.

Created by T. Madas

Question 7 (***)
A beam $A B$ has length 5.5 m and mass 20 kg .

The beam is smoothly supported at the point P, where $A P=2 \mathrm{~m}$.
A man of mass 70 kg stands on the beam at A and another man stands on the beam at a distance of 2.5 m from B.

The beam is modelled as a non-uniform rod and the men are modelled as particles.
The beam is in equilibrium in a horizontal position with the reaction on the beam at P having a magnitude of 1960 N .

Calculate the distance of the centre of mass of the beam from A.

Created by T. Madas

Question 8 (***)

The figure above shows a uniform wooden beam $A B$, of length $x \mathrm{~m}$ and weight 80 N . The beam is smoothly hinged at A and rests in a horizontal position on a smooth support at C, where $A C=3 \mathrm{~m}$.

When a rock of weight 70 N is placed on the beam at B the magnitude of the reaction force on the beam at C is 165 N .

The beam is modelled as a uniform rod and the rock as a particle.
a) Calculate the value of x.
b) Explain briefly the model .
i. ... the beam is a uniform rod.
ii. ... the rock is a particle.

The rock is next moved to a new position D on the beam, so that the beam with the rock at D remains in equilibrium in a horizontal position. The magnitude of reaction force at the support at C is now twenty times as large as the reaction force at the hinge at A.
c) Calculate the distance $A D$.
$, x=4.5 \mathrm{~m},|A D| \approx 3.55 \mathrm{~m}$ or $\approx 420 \mathrm{~m}$

Question 9 (***)

Created by T. Madas

Question 10
(***)

The figure above shows a uniform rod $A B$ of length 1.8 m and mass 3 kg , held in a horizontal position by two small smooth pegs C and D.

A particle of mass 12 kg , is placed at B.

Given that $|A C|=0.3 \mathrm{~m}$ and $|C D|=0.4 \mathrm{~m}$, determine the magnitude of each of the forces exerted on the rod by the pegs.

Created by T. Madas

Question 11 (***)

A non uniform plank of wood $A B$ has length 8.5 m and mass 20 kg . The centre of mass of the plank is 3.75 m from B. The plank is smoothly supported at C and D, where $A C=0.5 \mathrm{~m}$ and $D B=2 \mathrm{~m}$, as shown in the figure above.

A boy of mass 40 kg stands on the plank at the point M, where M is the midpoint of $C D$. The plank with the boy standing on the plank, remains in equilibrium with $A B$ horizontal.

The plank is modelled as a non uniform rod and the boy as a particle.
a) Calculate the magnitude of each of the reaction forces acting on the rod at C and D.

The boy next moves and stands at the point E on the plank, so that the plank is at the point of tilting about D.
b) Determine the distance $D E$.

$$
\left|\left|R_{C}\right| \approx 253.16 \ldots \mathrm{~N},\left|R_{D}\right| \approx 334.83 \ldots \mathrm{~N},|D E|=0.875 \mathrm{~m}\right.
$$

Created by T. Madas

Created by T. Madas

Question 12 (***)

The figure above shoes a uniform rod $A B$ of length 4 m and mass 100 kg .

The rod rests in equilibrium in a horizontal position, on two supports at C and D, where $A C=0.5 \mathrm{~m}$ and $D B=x \mathrm{~m}$.
a) Given that the reaction force at the support at D is three times as large as the reaction force at the support at C, determine the value of x.

The support at D is next moved to a new position E, where $E B=0.75 \mathrm{~m}$ and an additional mass of $m \mathrm{~kg}$ is placed at B. The rod remains in equilibrium in a horizontal position and the reaction force at the support at E is now twice as large as the reaction force at the support at C.
b) Calculate the value of m.
\square $, x=1.5, m=20$

Question $13 \quad(* * *+)$

A non uniform rod $A B$ has length 7 m and weight 300 N . The centre of mass of the rod is $x \mathrm{~m}$ from A.

The rod is placed on two smooth supports at C and D, where $A C=2.5 \mathrm{~m}$ and $D B=2 \mathrm{~m}$. The supports at C and D are at the same horizontal level, as shown in the figure above.

When a particle of weight $W \mathrm{~N}$ is placed on the rod at A the reaction force on the rod at C is 200 N . The rod and the particle rest in equilibrium, with $A B$ in a horizontal position.
a) Show clearly that

$$
200=60 x-W
$$

The particle is then removed from A and placed on the rod at B. The rod and the particle remain in equilibrium, with $A B$ in a horizontal position and the reaction force on the rod at C is now 80 N .
b) Calculate the value of W and the value of x.

Question $14 \quad(* * *+)$

A uniform $\operatorname{rod} A B$ has length 5 m and weight 300 N .

The rod rests in a horizontal position on two smooth supports at C and D, where $A C=1 \mathrm{~m}$ and $D B=2 \mathrm{~m}$, as shown in the figure above.

A particle of weight $W \mathrm{~N}$ is placed on the rod at the point E, where $A E=x \mathrm{~m}$,

The magnitude of the reaction on the rod at C is twice the magnitude of the reaction on the rod at D.
a) Show clearly that

$$
W=\frac{750}{5-3 x}
$$

b) Determine the range of possible values of x.
\square , $0<x<\frac{5}{3}$
$\%$

Created by T. Madas

Created by T. Madas

Question 15 (****)

A thin rigid non uniform beam $A B$ of length 6 m and weight 800 N has its centre of mass at G, where $A G=4 \mathrm{~m}$. An additional weight of 100 N is fixed at A.

The beam lies in a horizontal position supported by a rough peg at C, where $A C=1 \mathrm{~m}$, and a light inextensible wire attached at B.

When the wire is inclined at angle θ to the horizontal, where $\sin \theta=0.8$, the beam remains horizontal, in limiting equilibrium.

Calculate the tension in the wire and the value of the coefficient of friction between the peg and the beam.

Created by T. Madas

Question 16 (****)

A rod $A B$ has mass $m \mathrm{~kg}$ and length 4 m .

The rod is hanging in equilibrium in a horizontal position by two vertical strings attached to the rod. The rod is uniform and the strings are light and inextensible. One string is attached to A and the other string is attached to the point C on the rod as shown in the figure above.

The tension in the string attached at C is twice as large as the tension in the string attached at A.

Then a particle of mass $\lambda m \mathrm{~kg}$ is attached to the rod at B.

The rod remains in equilibrium in a horizontal position. The tension in the string attached at C is now four times as large as the tension in the string attached at A.

Determine the value of λ.

Created by T. Madas

Question 17 (****)

The standard unit vectors \mathbf{i} and \mathbf{j} are oriented in the positive x direction and positive y direction, respectively.

Three forces $\mathbf{F}_{1}=4 \mathbf{i}+b \mathbf{j}, \mathbf{F}_{2}=3 a \mathbf{i}+2 b \mathbf{j}$ and $\mathbf{F}_{3}=10 b \mathbf{i}+3 \mathbf{j}$, where a and b are scalar constants, are acting at the points $A(1,2), B(4,-2)$ and $C(-3,-5)$, respectively.
a) Given that the resultant of the three forces is zero, determine the magnitude and direction of the total moment of these three forces about O.
b) Find, by direct calculation, the magnitude and direction of the total moment of these three forces about C.
\qquad ,$\left|\mathbf{G}_{O}\right|=64 \mathrm{Nm}$, clockwise,$\left|\mathbf{G}_{C}\right|=64 \mathrm{Nm}$, clockwise

Created by T. Madas

Question 18 (****)

A non uniform plank $A B$ has length 12 m and mass $M \mathrm{~kg}$.

A smooth support is placed under the plank at the point C, where $|A C|=3 \mathrm{~m}$. When a child of mass 30 kg stands at A, the plank rest horizontally in equilibrium.

The smooth support is next placed under the plank at the point D, where $|B D|=5 \mathrm{~m}$. When the same child stands at B, the plank again rest horizontally in equilibrium.

The plank is modelled as a non uniform rod whose centre of mass is at the point G, and the child is modelled as a particle.
a) Determine the value of M.
b) Calculate the distance $A G$.

Two smooth supports are next placed under the plank at the points C and D, and when the same child stands at E, the plank rest horizontally in equilibrium with the reactions at the two supports being equal.
c) Find the distance $A E$.

Created by T. Madas

Question 19 (*****)

