KINEMANNING STATES ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

uasillatils.com Created by T. Madas

asmaths.com

lasmans.com i v.c. HORIZONTAL KINEMA ... (Basic Practice) dasmaths.com KINEMATICS THE MARSHALLS COM THE ASSAULT T.Y.C.B. Madasmannik.Com I.Y.C.B. Madasm

Question 1 (**)

A particle passes through the point A with speed 31 ms^{-1} , moving along a straight horizontal path with constant deceleration 2.5 ms⁻². The particle passes through the point B, 12 s after passing through A.

Determine the speed of the particle as it passes through B.

A particle passes through the point A with speed 35 ms⁻¹, moving along a straight horizontal path with constant deceleration 0.8 ms^{-2} . The particle passes through the point B, 15 s after passing through A.

Find the distance *AB*

 $=1 \text{ ms}^{-1}$

Question 3 (**)

A particle passes through the point A with speed 8 ms⁻¹, moving along a straight horizontal path with constant acceleration 2 ms^{-2} .

The particle passes through the point *B*, where AB = 56.25 m.

Find the speed of the particle as it passes through B.

Question 4 (**)

A particle passes through the point A with velocity 6 ms^{-1} , moving along a straight horizontal path with constant acceleration.

The particle passes through the point *B* with velocity 30 ms⁻¹, 15 s after passing through *A*.

Find the distance AB.

|AB| = 270 m

$\beta = \underbrace{04V}_{2} \times E$ $\beta = \underbrace{6+30}_{2} \times U$		
2 ~ 0		
$s = \frac{36}{2} \times 15$ $s = 18 \times 15$		
\$ = 270 m		
	S = 18 × 15	S = 18 ×15

Question 5 (**)

A particle passes through the point A with velocity V ms⁻¹, V > 0, moving along a straight horizontal path with constant acceleration 5.5 ms⁻².

The particle passes through the point B with velocity 80 ms⁻¹, 14 s after passing through A.

Calculate the distance AB.

Question 6 (**)

A particle passes through the point A with velocity 23 ms^{-1} , moving along a straight horizontal path with constant deceleration 0.5 ms^{-2} .

The particle passes through the point B with velocity 12 ms^{-1} .

Calculate the time it takes the particle to travel from A to B

11 = 23 MUST 5	JA+N=V - JURAN
a = -05 m1-2	12=23-05t
3 -	0.5t=11
t=? \$	t=225 -
V = 12 mi-1	

Question 7 (**)

A particle passes through the point A with speed 18 ms⁻¹, moving along a straight horizontal path with constant deceleration. The particle passes through the point B, where AB = 52 m, 4 s after passing through A.

Find the deceleration of the particle.

A particle passes through the point A with velocity 28 ms⁻¹, moving along a straight horizontal path with constant deceleration 2.25 ms⁻².

The particle passes through the point *B* with velocity 19 ms⁻¹

Find the distance AB

|AB| = 94 m

a = 2.5 ms

u = 28 ms ⁻¹ Z	USING V= 4245	
a = -2.25 ws ⁻²	19=28+2(-225)\$	
8 = 3	361 = 764 - 1 SA	
t= · {	4.5\$ = 423	
V= 19 m1-1	, s = 94 m	

Question 9 (**)

A particle passes through the point A with velocity 4 ms^{-1} , moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where AB = 24 m, with velocity 20 ms⁻¹.

Calculate the time it takes the particle to travel from A to B.

Question 10 (**+)

A particle passes through the point A with velocity $U \text{ ms}^{-1}$, U > 0, moving along a straight horizontal path with constant deceleration.

The particle passes through the point *B*, where AB = 247.5 m, with velocity 3 ms⁻¹, 15 s after passing through *A*.

Calculate deceleration of the particle.

 $a = -1.8 \text{ ms}^{-2}$

= 2 s

my	entice	og
= ? - {	$\beta = VE - \frac{1}{2}at^2$ 247.5 = 3×15 - $\frac{1}{2}a \times 15^2$	\$= U+V
= 247.5 m	$247.5 = 45 - \frac{22.5}{2}a$	$247.5 = \frac{4+3}{2} \times 15$ 495 = 15(u+3)
= 155 - 3 ms=1	495 = 90 - 2259 4 5 = -2259	33 = 4 + 3
	a = -1.8 ms 2	V= 4+ at
		3 = 30 + 150
		15a = -27

Question 11 (**)

A particle passes through the point A with velocity V ms⁻¹, V > 0, moving along a straight horizontal path with constant acceleration 3.5 ms⁻².

The particle passes through the point B with velocity 25 ms⁻¹, 10 s after passing through A.

Find the value of V.

Question 12 (**)

A particle passes through the point A moving along a straight horizontal path with constant acceleration 2.5 ms^{-2} .

The particle passes through the point B, where AB = 282.75 m, 13 s after passing through A.

Determine the speed of the particle as it passes through A.

 $u = 5.5 \text{ ms}^{-1}$

V = -10

4 = ?	which sout + fort2	
a=2.5 mi=2	282.75 = Ux13 + 15×25×132	
\$ = 282.75 m	202.75 = 134 + 2.11-25	
t= 13.5	711-2 - Bu	
V=	W = 5.5 ms7	
V- annu		

Question 13 (**)

A particle passes through the point A with speed 4 ms⁻¹, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where AB = 320 m, with speed 28 ms^{-1} .

Find the acceleration of the particle.

Question 14 (**)

A particle passes through the point A with velocity $U \text{ ms}^{-1}$, moving along a straight horizontal path with constant deceleration.

The particle passes through the point *B*, where AB = 126 m, with velocity 9 ms⁻¹ 12 s after passing through *A*.

Find the value of U.

U = 12

 $a = 1.2 \text{ ms}^{-1}$

Question 15 (**)

A particle passes through the point A moving along a straight horizontal path with constant acceleration 1.5 ms^{-2} .

The particle passes through the point B, where AB = 78.75 m, 9 s after passing through A.

Find the speed of the particle as it passes through B.

Question 16 (**)

A particle passes through the point A with velocity 5 ms^{-1} , moving along a straight horizontal path with constant acceleration.

The particle passes through the point B with velocity 21 ms⁻¹, 5 s after passing through A.

Calculate acceleration of the particle.

Question 17 (**)

A particle passes through the point A with speed 10 ms⁻¹, moving along a straight horizontal path with constant acceleration 4 ms^{-2} .

The particle passes through the point *B*, where AB = 59.5 m.

Calculate the time it takes the particle to travel from A to B.

Question 18 (**)

A particle passes through the point A with velocity V ms⁻¹, where V > 0, moving along a straight horizontal path with constant deceleration 6 ms⁻².

The particle passes through the point B, where AB = 40 m, with velocity 14 ms⁻¹.

Find the value of V

 $= \begin{cases} AdiNG \quad V^2 = U^2 + 2Ag \\ V_1^2 = U^2 + 2Ag \\ V_1^2 = U^2 + 2C(A) \\ V_2 = U^2 \\ V_1 = U^2 \\ V_1 = U^2 \\ V_2 = U^2 \\ V_1 = U^2 \\ V_1 = U^2 \\ V_1 = U^2 \\ V_2 = U^2 \\ V_1 = U^2 \\ V_1$

= 3.5 s

V = 26

Question 19 (**)

A particle passes through the point A with speed 7 ms⁻¹, moving along a straight horizontal path with constant acceleration. The particle passes through the point B, where AB = 56.8 m, 4 s after passing through A.

Determine the speed of the particle as it passes through B.

$56.8 = (V+7) \times 2$ 28.4 = V+7	
V = 2) 4 m2-1	
The second	
	$SC \theta = (V+7) \times 2$ 28.4 * V + 7 V = 21.4 ws ⁻¹

Question 20 (**)

A particle passes through the point A moving along a straight horizontal path with constant acceleration 1.25 ms^{-2} .

The particle passes through the point B, where AB = 43.5 m, with speed 11 ms⁻¹.

Calculate the **times** it takes the particle to travel from A to B.

$\begin{aligned} & \mathcal{L} &= \underbrace{1:25 \mathrm{km}^2}_{\mathbf{X}} \\ & \mathbf{z} &= \underbrace{1:25 \mathrm{km}^2}_{\mathbf{X}} \\ & \mathbf{z} &= \underbrace{325 \mathrm{km}}_{\mathbf{X}} \\ & \mathbf{z} &= \underbrace{1:45 \mathrm{km}}_{\mathbf{X}} \\ & \mathbf{y} &= \underbrace{1:45 \mathrm{km}}_{\mathbf{X}} \end{aligned}$	$\frac{c_{\rm IIII}c_{\rm I}}{c_{\rm III}} \approx v_{\rm I} - \frac{1}{2}a_{\rm I}^{12}$ $\frac{c_{\rm III}}{c_{\rm III}} \approx v_{\rm I} - \frac{1}{2}a_{\rm III}^{12}$ $\frac{c_{\rm IIII}}{c_{\rm IIII}} \approx \frac{1}{2}a_{\rm IIII} = 0$ $\frac{c_{\rm IIIIII}}{c_{\rm IIIII}} \approx \frac{1}{2}a_{\rm IIIIIII} = 0$ $c_{\rm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{cases} \begin{array}{c} \underline{c} \underline{c} \\ \Psi V_{-}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2}) \\ _{-}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2} + 2\alpha_{+}^{2}) \\ _{-}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2}) \\ _{-}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2}) \\ _{-}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2}) \\ \Psi = u_{+} u_{+}^{2} \\ \Psi = u_{+} u_{+}^{2} \\ \hline \Psi = u_{+} u_{+}^{2} \\ _{+}^{2} = (u_{+}^{2} + 2\alpha_{+}^{2}) \\ _{+}^{2} = (u_{+}^{2}$	
		t= 11-65	

Question 21 (**)

A particle passes through the point A with speed 7 ms⁻¹, moving along a straight horizontal path with constant acceleration 2 ms^{-2} .

The particle passes through the point B, where AB = 44 m.

- **a**) Find the speed of the particle as it passes through B.
- **b**) Calculate the time it takes the particle to travel from A to B.

Question 22 (**)

A particle passes through the point A with speed 11 ms^{-1} , moving along a straight horizontal path with constant acceleration. The particle passes through the point B, where AB = 111 m, 6 s after passing through A.

a) Find the acceleration of the particle.

b) Determine the speed of the particle as it passes through B.

 $a = 2.5 \text{ ms}^{-2}$, $v = 26 \text{ ms}^{-1}$

 $v = 15 \text{ ms}^{-1}$

t = 4.8

 $\begin{array}{ccc} ac 4 & c & a \\ = 11 & a \\ = 11 & a \\ = \frac{3}{11} & a \\ = \frac{3}{11}$

Question 23 (**)

A particle passes through the point A with speed 41 ms⁻¹, moving along a straight horizontal path with constant deceleration 3.5 ms^{-2} . The particle passes through the point B, 8 s after passing through A.

- **a**) Find the distance *AB*.
- b) Determine the speed of the particle as it passes through B.

Question 24 (**)

A particle passes through the point A moving along a straight horizontal path with constant acceleration 1.5 ms^{-2} .

The particle passes through the point B, where AB = 162.25 m, 11 s after passing through A.

a) Determine the speed of the particle as it passes through A.

b) Find the speed of the particle as it passes through B.

 $u = 6.5 \text{ ms}^{-1}$ $v = 23 \text{ ms}^{-1}$

|AB| = 216 m|,

v = 13 ms

LOOKING AT AB	a s= wt + bat2	by veu+at
Su=? 2	$162S = U \times 11 + \frac{1}{2}(1:S) \times 11^{2}$	V=6:5+1:5×11
Q = 1.5 452	$162 \cdot 25 = 114 + 90 \cdot 25$	V=6.5+16:5
$\left\{ \begin{array}{c} S = 162.2 \text{ Sm} \\ t = 11 \text{ Sm} \end{array} \right\}$	$ l = 2 \cdot \Gamma $	V=23 ms-1
(v = ?)	4 = 65 ms1	
	//	/

Question 25 (**)

A particle passes through the point A with velocity 32 ms^{-1} , moving along a straight horizontal path with constant deceleration 1.75 ms⁻².

The particle passes through the point *B* with velocity 18 ms⁻¹

- a) Find the distance AB.
- **b**) Calculate the time it takes the particle to travel from A to B.

Question 26 (**)

A particle passes through the point A with speed 9 ms^{-1} , moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where AB = 162 m, with speed 18 ms⁻¹

- **a**) Find the acceleration of the particle.
 - **b**) Calculate the time it takes the particle to travel from A to B.

AB = 200 m

 $t = 8 \, {\rm s}$

$ \begin{array}{c} \log(\log_{1-2} \pi + a) \\ (a = q_{-n^{-1}}) \\ (a = q_{-n^{-1}}) \\ (b = q_{-1} + 2a) \\ (b = q_{-1} + 2a) \\ (c = q_{-1} + 2a) \\$
--

Question 27 (**)

A particle passes through the point A with speed V ms⁻¹, moving along a straight horizontal path with constant deceleration 4 ms^{-2} .

The particle passes through the point B, where AB = 21 m, with speed 11 ms⁻¹.

- **a)** Find the value of V.
- **b**) Calculate the time it takes the particle to travel from A to B.

V = 17, t = 1.5 s

Question 28 (**)

A particle passes through the point A with velocity 5 ms^{-1} , moving along a straight horizontal path with constant acceleration.

The particle passes through the point B with velocity 5.8 ms⁻¹, 2.5 s after passing through A.

- **a**) Find the distance *AB*.
- **b**) Calculate acceleration of the particle.

LOOKING AT AB Su= Smst S	(a) \$= 4+V +E	(b) v=u+a+
Sa = ?	$s_{1} = \frac{1}{2+2.8} \times 52$	$2.8 = 2.40 \times 5.2$
<pre></pre>	\$= 5.4×2.5	0.8 = 5.2d
Y V = SRWSI S	\$ = 13.5 m	a = 0.32 ms 2
ma		

Question 29 (**)

A particle passes through the point A with velocity $U \text{ ms}^{-1}$, U > 0, moving along a straight horizontal path with constant deceleration.

The particle passes through the point *B*, where AB = 27 m, with velocity 9.6 ms⁻¹. 2.5 s after passing through *A*.

- a) Find the value of U.
- **b**) Calculate deceleration of the particle.

Question 30 (**)

A particle passes through the point A with velocity $V \text{ ms}^{-1}$, V > 0, moving along a straight horizontal path with constant acceleration 3.5 ms⁻².

The particle passes through the point B with velocity 37 ms⁻¹, 10 s after passing through A.

- **a)** Find the value of V.
- **b**) Calculate the distance *AB*.

 $a = -0.96 \text{ ms}^{-1}$

=12

s = ? t = 10s } u=2 us 7 s = 195	+37 ×10
$a = 3.5 ms^2$	5 = 2
S = 7	291 = 2
$u = 2 ms^3$	1

asmaths.c Created by T. Madas asmaths.com

asmains.co

1.4.6.6

3SM3/hs.com

13.SM2

1. V.C.B. HORIZONTAL **KINEMATICS** (Standard Problems) , I.Y.C.B. Madasman

I.Y.G.B. Madasmaths.com I.Y.G.B. Madasm alasmaths.com

Question 1 (**)

A car of mass 1300 kg is travelling at a speed of 30 ms⁻¹ along a straight horizontal motorway when the driver sees a traffic jam ahead, and applies the brakes for 15 s. The car covers a distance of 270 m while the driver is braking.

The car is modelled as a particle, further assuming that the braking force is the only **constant** force acting on the car for those 15 s.

- a) Find the speed of the car at the end of the 15 s braking interval.
- **b**) Determine the magnitude of the braking force.

Question 2 (**)

A car of mass 1200 kg is travelling at a speed of 28 ms⁻¹ along a straight horizontal road when the driver applies the brakes and a constant braking force of 2100 N acts on the car until it comes to rest.

The car is modelled as a particle without any other external forces acting on it.

- a) Find the time taken to bring the car to rest.
- **b**) Determine the distance the car covers from the instant the brakes were first applied until the car is brought to rest.

P)	STARTING WITH DANAMICS C"F=	ma") TO FIND THE ACCELERATION
	$\Rightarrow {}^{\circ}F = ma''$ $\Rightarrow -2i00 = 1200a$ $\Rightarrow a = -(.75 ma)^2$	2000 1111111100 111111100
	NOW KNOWNATICS, ACON THE WORTH	THE BRITHE AR ARUHD VIITL
	$a = -1.75 \text{ ms}^{-2}$	V= u+at 0~30-1.75t 1.75t = 30 t= 165
	sainso title "quitivitites from discor	
		$ \begin{split} & f = \frac{(44)}{2} \times t - \frac{26}{2} + \frac{1}{2} \frac{1}{4} + \frac{2}{2} \frac{1}{4} + \frac{1}{2} \frac$

Question 3 (**+)

The points A, B and C lie on a straight horizontal road with B between A and C, so that |AB| = 300 m and |BC| = 200 m.

A car travelling with constant acceleration $a \text{ ms}^{-2}$ passes A with speed 5 ms⁻¹ and travels directly to C in 20 seconds.

- a) Find the value of *a*.
- **b**) Calculate ...
 - i. ... the speed of the car at B.

ii. ... the time it takes the car to travel from A to B.

2			
a)	WOOKING AT THE	JOURNEY A 70 C	
	$\begin{array}{l} (l = 5 m s^{-1}) \\ a = ? \\ S = 5 co m \\ t = 20 s \\ V = - \end{array}$	$\beta = ut + \frac{1}{2}at^2$ $5ac = 5x20 + \frac{1}{2}xax2o^2$ 5ac = 1ac + 2ccca 4cc = 2cca $a = 2 - uc^{2}$	
6)	LOOKING AT THE	JOUGNEY FROM A TO B , W	177f a=2
	$\begin{array}{c} l_{1} = 5 \ ms^{-1} \\ d_{2} = 2 \ ms^{-2} \\ s_{2} = 300 \ m \\ t_{2} = ? \\ V_{2} = .? \end{array}$	$\sum_{k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\k=1\\$	I) v = u + at $3s = s + 2t$ $3s = 2t$ $t = 15s$

t = 15 s

 $|a=2|, v=35 \text{ ms}^{-1}$

Question 4 (***)

A car is travelling along a straight horizontal road with constant acceleration $a \text{ ms}^{-2}$

The points A, B and C lie in that order on this road.

The car is passing through A with speed 11 ms^{-1} , through B with speed 17 ms^{-1} and through C with speed 29 ms⁻¹.

The distance AB = 28 m.

By modelling the car as a particle calculate in any order ...

a) ... the distance *AC*

b) ... the time it takes the car to travel from A to C.

4	PUTTING THE INFORM	VATION INFO + DUARDAM	1.111	
	A 28m	8	ç	-**
	11 wg-1		24 w.1-1	
	LOOKING AT THE JO	OURNEY AB		
	$0 = 11 \text{ m}^{-1}$	V2=U2+2as		
	$(l = 11 mc^{2})$ a = 2 S = 20 m t	$17^2 = 11^2 + 20 \times 28$		
	t V = 17 ms1	289-121 +56g 169= 56g		
		$a \approx 3 m r^2$		
	NOW WORKNO AT A			
	(1=11 m ⁻¹) a=3 m ⁻²	$V^2 = U^2 + 205$ $2e^2 = 11^2 + 2x3x5$		
	\$ =	841 = 121 + 6,5		
	t = v = 23m5	720 = 65		
		\$ = 120 M		
Р)	USING THE INFORMA	FTION FAOU ABOUT		
		V= u+at		
		29 = 11 + 3t 19 = 3t		
		10 = 3t t= 6s		

|AC| = 120 m, t = 6 s

Question 5 (***)

The points A, B and C lie in that order on a road, where the distance AB = 476 m and the distance BC = 855 m.

The car passes through A with speed 24 ms⁻¹ decelerating uniformly until it passes through B with speed 10 ms⁻¹.

- **a**) Find the deceleration of the car as it travels from A to B.
- **b**) Calculate the time it took the car to travel from A to B.

As the car passes through B it begins to accelerate uniformly until it passes through C, 45 s after passing through B.

- c) Find the acceleration of the car as it travels from B to C.
- d) Determine the speed of the car as it passes through C.

e) Find the average speed for the journey from A to C.

t = 28 s, $|a| = 0.5 \text{ ms}^{-2}$, $a = 0.4 \text{ ms}^{-2}$, $v = 28 \text{ ms}^{-1}$, $v \approx 18.23 \text{ ms}^{-1}$

Question 6 (***+)

A car is travelling along a straight horizontal road with constant acceleration.

The car passes a point A with speed $u \text{ ms}^{-1}$, where u < 18 and 12 seconds later passes a point B with speed 18 ms⁻¹.

The distance AB is 180 m.

- **a**) Find the value of *u*.
- b) Calculate, correct to two decimal places, the time taken for the car to move from A to the midpoint of AB.

	1912
a) LOOKING AT THE JO	Never A TO B
U = ? A = 180m t = (2 V = 18 us ⁻¹	$\begin{array}{l} \cos(n)\mathcal{L}, x^{l}=\frac{1}{2}(u,v)\frac{1}{L}\\ (80\pm\frac{1}{2}(u,v)\frac{1}{L})\\ (80\pm6(u+e)\\ 30\pm4+18\\ u=12, w_{i}r^{1} \end{array}$
b) THATY HAD THE A V=4+at 18=12+a×12 6=12a a=0.5 mo-2	CCFLQCATTON ROM PACE (0)
$\frac{1000}{4} \frac{112}{10} \frac{112}{10$	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$

 $, u = 12 , t \approx 6.59 s$

Aadas

Question 7 (***+)

A particle is travelling along a straight line with constant acceleration $a \text{ ms}^{-2}$

The points A, O and B lie in that order on this straight line, as shown in the figure above. The distance AO is 3 m and the distance OB is 6 m.

The particle is initially observed passing through O with speed $u \text{ ms}^{-1}$ and 4 s later is observed to be passing through B with speed 7 ms⁻¹, in the direction OB.

- **a**) Find in any order the value of a and the value of u.
- **b**) Prove that the particle never passes through *A*.

Question 8 (****)

A car is travelling along a straight horizontal road with constant acceleration a ms⁻⁷

The points A, B and C lie in that order on this road.

The car is passing through A with speed $u \text{ ms}^{-1}$ and 4 s later is passing through B.

The car finally passes through C, 2 s after passing through B.

The distance AB = 68 m and the distance BC = 49 m.

By modelling the car as a particle find in any order the value of a and the value of u.

	416
UTTING THE INFORMATIO	N IND & DIAFRAM
4 68m P	44 6
4 68m P	a
tez te	4 t=6
LOODING AT A TO B	LOOKING AT 4 TO C
14= 1	1u= ?
a = 2	a = ?
a = 2 s = 68m t = 4s	μ= ? α= ? 5 = 117 m t = 6
+ = 4s	t= 6 N= 2
	10= 1
S= ut + Sate	S = ut + 5at2
68 = 44 + fax 42	$117 = 64 + \frac{1}{2}a \times 6^2$
68 = 44 + 8a	117 = 64 + 18a
17 = U + 2a	39 = 2u + 6a
and an and	
SOWING SIMULTANHOU	ley
UI 20 = 17 7	
u+2a = 17 2 2u + 6a = 39 3) u = 17 - 24
	ų.
	2(17-2.) + Ga = 39
	34 - 4a + 6a = 34
	2a = 5
	$q = 2.5 \text{ ms}^{-2}$
	q u= 17-2×25
	4= 12 ms-1

u = 12

a = 2.5

Question 9 (****)

A particle is travelling along a straight line with constant acceleration $a \text{ ms}^{-2}$

The points A, B and C lie in that order on this straight line.

The particle is initially observed passing through A with speed $u \text{ ms}^{-1}$ and 7 s later is observed to be passing through B with speed 24 ms⁻¹, in the direction AB.

Finally the particle is passing through C, 10 s after passing through A.

Given that the distance AC = 180 m, determine in any order the value of a and the value of u.

Question 10 (****)

The points A and B lie on a straight line, 240 m apart.

At time t = 0, a particle passes through A with speed 4 ms⁻¹ heading towards B with constant acceleration 0.75 ms⁻².

At time t = 0, another particle passes through *B* heading towards *A* with constant speed 5 ms⁻¹.

The particles meet at point C.

- a) Determine the distance AC.
- **b**) On a set of suitable axes, draw a detailed displacement time graph for both particles, using A as the origin.

Question 11 (****)

A car is travelling along a straight horizontal road with constant acceleration $a \text{ ms}^{-2}$

The points A, B and C lie in that order on this road.

The car is passing through A with speed $u \text{ ms}^{-1}$ and 5 s later is passing through B.

The car finally passes through C, 2 s after passing through B.

The distance AB = 80 m and the speed of the car at C is 25 ms⁻¹.

By modelling the car as a particle find in any order the value of a and the value of u.

· (D)
PUTTING THE INSPEMATION WAS -A DIABETIM
4 → 0 → 4 3 4 → 0 → 4 → 4 → 4 → 4 → 4 → 4 → 4 → 4 →
$\begin{array}{c} \text{locks} & \text{AT TH- locks} & \text{AT H- locks} & AT$
$\begin{array}{rcl} \Longrightarrow & \delta^{2\nu} dt^{2} & & & & & & \\ \Longrightarrow & \delta^{2\nu} dt^{2} & & & & & & \\ & \longrightarrow & \delta^{2\nu} \deltat^{2} & & & & & \\ \end{array} & \begin{array}{rcl} \Longrightarrow & \delta^{2\nu} \deltat^{2} & & & & \\ \end{array} & \begin{array}{rcl} \Longrightarrow & \delta^{2\nu} \deltat^{2} & & & \\ \end{array} & \begin{array}{rcl} \Longrightarrow & \delta^{2\nu} \deltat^{2} & & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \longmapsto & \delta^{2\nu} \deltat^{2} & & \\ \end{array} & \begin{array}{rcl} \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \begin{array}{rcl} \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \end{array} & \end{array} & \begin{array}{rcl} \end{array} & \begin{array}{rcl} \end{array} & \end{array} $
$\frac{347947046}{34 + 54 - 322} \xrightarrow{3} 9_{2} = 16$ $\Rightarrow \frac{34 + 54 - 322}{34 + 144 = 30} \xrightarrow{3} 9_{2} = 16$
$\begin{array}{c} q & u + (a = 25) \\ u + (u = 35) \\ \underline{u = 11} \\ \underline{u = 17} \end{array}$

u = 11, a = 2

Question 12 (****)

A particle is moving in a straight line with constant acceleration, and it is first observed passing a point A.

The particle is next passing through the point B 8 s later with speed 12 ms⁻¹.

Given that the distance AB is 112 m, determine the times it takes the particle to travel from A to the midpoint of AB.

Question 13 (****)

Two cars are moving on a straight road with constant speed of 18 ms^{-1} , one being 14.5 m ahead of the other.

The driver of the car in front sees a hazard and applies the brakes, which produce a constant deceleration of 6 ms^{-2} .

The driver of the other car takes 0.5 s to react and also applies his brakes, which produce a constant deceleration of 4 ms^{-2} .

The driver of the car in front sees a hazard and applies the brakes, which produce a constant deceleration of 6 ms^{-2} .

By modelling the two cars as particles, find the speed of each of the cars when a collision between them take place.

(t+2)(t-3)

Question 14 (****+)

A cyclist is travelling along a straight horizontal road at constant speed 12 ms⁻¹ as it passes past a set of traffic lights at time t = 0, where t is measured in seconds.

The cyclist continues its journey at that constant speed.

When t = 6 a car passes past the same set of traffic lights with speed 30 ms⁻¹, decelerating uniformly at 2 ms⁻².

In the consequent motion, the car overtakes the cyclist at some point A and at a later time the cyclist overtakes the car again at some point B.

Find the value of t at A and at B.

LET THE "\$2102" BE THE TRAFF SINCE THE CYCULT DESIGN THE	tic Clashes , that that is Municosed
$\begin{array}{l} \hline & U &= & 12 & u_{\rm M}^{-1} \\ U &= & 12 & u_{\rm M}^{-1} \\ A &= & 0 & u_{\rm M}^{-1} \\ S &= & S \\ S &= & S \\ t &= & T \\ V &= & - \end{array}$	$\frac{6L \text{ THe CRE}}{4z 30 \text{war}^{-1}}$ $az -2 \text{war}^{-1}$ $\beta = S_{OR}$ $t = T-6$ $V =$
$\frac{3}{5} = u + \frac{1}{2} u + $	of them ylengs
South C. SIMUTH DEDUCY $\Rightarrow 12T = 30(T-6) - (1)^{-3}$ $\Rightarrow 12T = 30T - 180 - (1)^{-3}$ $\Rightarrow 12T = 30T - 180 - 1^{-3}$ $\Rightarrow 12T - 30T - 180 - 1^{-3}$	$(7-6)^2$ = 12(7+36) + 12(7-36)

Question 15 (****+)

Two cars, A and B, are travelling in the same direction along a straight road.

At a certain instant, A has speed 28 ms⁻¹, accelerating uniformly at 0.1 ms^{-2} .

At the same instant, B is 240 m behind A, travelling with speed 24 ms⁻¹ accelerating uniformly at 0.2 ms⁻².

Find the speed of B the instant it overtakes A.

Question 16 (****+)

Kodjo and Modjo are two horses running a race.

Kodjo is 250 m from the finish line and running at constant speed of 16 ms^{-1}

At that instant Modjo is 20 m behind Kodjo and running at 15 ms⁻¹, when his jockey demands of the horse to speed up with constant acceleration $a \text{ ms}^{-2}$, until it crosses the finish line with speed $v \text{ ms}^{-1}$.

a) If Modjo finishes 10 m ahead of Kodjo determine the value of a.

b) If instead there is a "dead heat" in the race between Kodjo and Modjo find the value of v.

a = 0.4, v = 19.56

"\$= ±(u+v)t" 270 = ±(15+v)×15.625

 $540 \in (V+15) \times \frac{864}{25} = V+15$ V = 19.56 m

a = NM \$ = 2704 t = 15-625

VERTICAL TATICS VERTICA. KINEMATICS ASSINGUISCOM I. Y.C.B. MARIASSINGUISCOM I.Y.C.B. MARIASON

Question 1 (**)

A particle is projected vertically upwards with speed $U \text{ ms}^{-1}$, from level horizontal ground. The particle is moving freely under gravity and returns to its starting position 5 s later.

- **a**) Determine the value of U.
- **b**) Calculate the greatest height the particle reaches above the ground.

U, U =	$= 24.5$, $H_{\rm max} = 30.625$ m
	6. 9
	4 THE WOTON OP 8 5M2 Down, IS "THE SHUMTTERA" (ONSIDE THE WOTON OP TO THE HEATER POINT
	$ \begin{array}{ c c c c c } \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1 + u_1^{-1} & \textbf{b}) \neq = \frac{u_1 + v}{\lambda} \times t \\ \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1 + u_1^{-1} & \textbf{b}) \neq = \frac{u_1 + v}{\lambda} \times t \\ \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1 + u_1^{-1} & \textbf{b}) \neq = \frac{u_1 + v_1}{\lambda} \times t \\ \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1 + u_1^{-1} & \textbf{b}) \neq = \frac{u_1 + v_1}{\lambda} \times t \\ \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1^{-1} & \textbf{b}) \neq = \frac{u_1 + v_1}{\lambda} \times t \\ \hline (u_1 = \overline{U} & u_{u_1}^{-1} & \textbf{a} \end{array} & (v_1 + u_1^{-1} & \textbf{a} \end{array} $
	$S = ?_{m}$ $0 = D - 24 - S$ $t = 2 - S g$ $D = 24 - S m s^{-1}$ $S = - 3 m 6 2 S m$
Jac.	

Question 2 (**+)

A particle is projected vertically downwards from a great height.

It hits the ground with speed 28 ms^{-1} .

Determine the time it took the particle to cover the last 15 m of its motion.

	, <u>[</u>	≈ 0.598 s
2012DINUS THE GI	VON FOR THE PHOREDM - (ooking at ac
$\begin{array}{l} l = V A \\ c = Q w S^{-1} \\ c = S w S^{-1} \\ c = S \\ c = S \\ c = S \\ c = S w S^{-1} \\ c = S w S^{$	$\begin{array}{l} g' = V t - \frac{1}{2} dt^{2} \\ I 5 = 2 g t - \frac{1}{2} \left(10 \right) t^{2} \\ I 5 = 2 g t - \frac{1}{2} \left(10 \right) t^{2} \\ I 5 = 2 g t - \frac{1}{2} \left(10 \right) t^{2} \\ 4 g t^{2} - 2 g t + 1 (5 - 5) \\ 4 g t^{2} - 2 g t + 1 (5 - 5) \\ - 4 g t^{2} - 2 g t + 1 (5 - 5) \\ - 5 - 1 (5 - 5$	*3 Bar *3 Bar 15 24 C cont of these Assures
	$\frac{34}{1000000000000000000000000000000000000$	$\frac{v \approx u + at}{28 - av}$ $\frac{v \approx u + at}{48}$ $t \approx \frac{28 - 7v}{7}$ $t \approx \frac{28 - 7v}{7}$ $t \approx 0.598$

Question 3 (**+)

A particle is projected vertically upwards from a balcony which is 2.48 m above level horizontal ground.

The particle is moving freely under gravity, takes 2.45 s to reach the highest point in its path, before it strikes the ground with speed $v \text{ ms}^{-1}$.

Calculate the value of v.

2	12. 4
$\frac{\text{coothNG AT THe downey of } (0,5,4)}{u = ?} \bullet v = u = t$	2039 WILLOWER & OF A MORT PLASUOD THE THE OUTDOU
$a = -9.8 w_1^2$ $0 = (1 - 9.8 v_1^2)$ $5^2 = (1 - 24.01 w_1^2)$ t = 2.45.5 V = 0 B	$a = 9.6 u_0^{-2}$ S = 24.4125 + 2.46 = 31.91225 t = 1.525 V = 1.525
THE PARTICLE ON ITS WAY BOOW WILL IMPLY THE START SPACE , $O(CC) = O(CC) = O($	$\frac{SD}{V^2} = \lambda^2 + 2\alpha \beta $ $V^2 = 2 \times 9.8 \times 31.89225 $
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 ² = 65.0681 1 ¹ = 65.0681 (1/2 ≥ 5.0 μr ¹ - 4. βθαξ
AUTRONATINE/UNRUGITION	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

 $v \approx 25.0$

Question 4 (***)

A particle is projected vertically upwards with speed 29 ms⁻¹, from a balcony which is *h* m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 6 s later with speed $v \text{ ms}^{-1}$.

- **a**) Calculate the value of h.
- **b**) Determine the value of v.

h = 2.4, v = 29.8

Question 5 (***)

I.F.G.B.

A particle is projected vertically upwards from level ground with a speed of 14 ms⁻¹

- a) Determine the speed of the particle and the distance of the particle from the ground, 0.5 s after projection.
- **b**) Calculate the total distance travelled by the particle during the first 2 s of its motion.

Sm21

madası,

Question 6 (***+)

A raindrop falls freely from rest, from the top of a cliff. After it has fallen a distance of 40 m another raindrop falls freely from rest from the top of the same cliff. The height of the cliff is 80 m.

Calculate, correct to three significant figures, the distance between the two raindrops at the instant the first raindrop has reached the ground.

	, ≈ 73.1
LOOKING AT THE JOURNAY O	
· FIRIT 40 MHTRH	· FATIRE JOURNEY OF BO METRES
14=0 1	u = 0
9 = 9.8	a = 9.8
S = 40	5 - 80
t = ?	t · 3
V = (V 2
S=yt+1 ta+2	\$= 4t+ = a+2
40= 4(9.8)+2	$8_0 = \frac{1}{2}(9.8) + 2$
$t^{\mathbf{z}} = \frac{40}{4n}$	t ² = 80 49
+ /	
t = 20 7	t= 2012
Thus the 2 ND Ethilded W	ILL THANK FOR 2017- 29 1 BY THE THE THE
FIEST ONE ELAPOHEL THE G	20010
4 = 0	s= of+ fat2
a = 4.8 s = 7 $t = \frac{2062}{2} - \frac{10}{2}$	
+ - 2012 10	$\beta = \frac{1}{2} \left(\Re \right) \left[\frac{2\sigma (2-2\sigma)}{7} \right]^2$
V~	≓ = C.8629
	in DISTIGUE BETWEEN THEM
	80-68629 ~ 73.1m

Question 7 (***+)

A particle is projected vertically upwards with speed 24 ms^{-1} , from a balcony which is located 2.5 m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground T s later with speed $v \text{ ms}^{-1}$.

- **a**) Calculate the value of T.
- **b**) Determine the value of v.

, T=5, v=25

Question 8 (***+)

A particle is projected vertically upwards with speed 18 ms⁻¹, from a balcony which is *h* m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground T s later with speed 21.2 ms⁻¹.

- **a**) Calculate the value of h.
- **b**) Determine the value of T.

h = 6.4, T = 4

Question 9 (***+)

At time t = 0 s, two particles A and B are projected vertically upwards with speeds 13 ms⁻¹ and 3 ms⁻¹, respectively.

The projection of A is from a point on level horizontal ground while the projection of B is from a point which is 20 m vertically above the projection point of A.

When t = T s, both particles are at a height H m above ground.

- **a**) Calculate the value of T.
- **b**) Determine the value of H.

a)	LOOKING AT THE DIAGRAM, TAKING THE GROUND AS THE ZERO LIVEL
	TOR DERCHGANTST
	USING "S=ut+ $\frac{1}{2}at^2$ "
	S ₁ = B±+2+(-98)t ² 11 €8
	SA= Bt-49t2 34 11 H
	SAME HEIRIT ABOUT GROUND - Sha = Sha
	$Bt = 49t^{2} = 20 + 3t = -49t^{2}$ lot = 20 t = 2
	(+ T=2
Ь)	11116 5 = 13t-4.9t?
	5 = 13x2 - 4.9x22 -
	Sq = 26 - 19.6
	\$ = e.4 w
	14 4-6.4

Question 10 (***+)

A firework is launched from rest at ground level, and moves vertically upwards.

It rises with constant acceleration of 15 ms^{-2} for 4 s. At that instant the firework has burned out and it continues to rise freely under gravity, eventually returning to the ground

The firework is modelled as a particle moving in a vertical direction.

Calculate the total flight time of the firework, from the moment of its launch until its return to the ground.

≈18.0

. TOTAL FUELT TIME IS APPEDRIMITELY 18 SECONDS

Question 11 (***+)

A particle A is released from rest from a point h m above level horizontal ground.

One second later, another particle B is projected vertically downwards with speed 19.6 ms⁻¹ from the same point, A was released.

Given that the particles reach the ground at the same time, determine the value of h.

	$, h \approx 11.0$
1	STATE WITH A DEFINITION DIARGAM
	$ \begin{array}{c} for A \\ U = 0 \\ S = \frac{1}{2} \frac{1}{4} $
l	$\begin{array}{ccc} \underline{AUNC} & \leq ut + \frac{1}{2} \frac{d^2}{dt^2} & \underline{Bs} & \underline{Bsnt} \\ \hline \\ \underline{A}^{*} & \underline{C}^{*} & \underline{u}^{\dagger} + \frac{1}{2} \frac{d^2}{dt^2} & \underline{Bs} & \underline{Z}^{*} = ut + \frac{1}{2} \frac{d^2}{dt^2} \\ \hline \\ & \underline{h}^{*} = O(t) + \frac{1}{2} (tR) T^{2} & \underline{h}^{*} = (R + C(T_{1}) + \frac{1}{2} (tR) (T_{1}))^{2} \\ \hline \\ & \underline{h}^{*} = 49 T^{2} & \underline{h}^{*} = R + 49 (T^{-1})^{2} \end{array}$
	$\begin{array}{cccc} \underbrace{8' & \text{Signiturnal}}_{-\to} & 4.51^2 = 19.47 - 19.4 + 4.9 (\tau - 1)^2 \\ & \to & \tau^2 = 47 - 4 + (\tau - 1)^2 \\ & \to & \tau^{p^2} = 47 - 4 + (\tau^2 - 27 + 1) \\ & \to & 3 = 27 \\ & \to & \tau = \frac{3}{2} \end{array}$
	$\begin{array}{l} \frac{F_{12,MeC}}{h} = 4.9 \ T^{2} \\ h = 4.9 \ T^{2} \\ h = 11.025 \\ h \simeq 11.0 \ m \end{array}$

Question 12 (***+)

A particle P is projected vertically upwards with speed 17.5 ms⁻¹ from a point A, which is H m above level horizontal ground.

P moves freely under gravity until it hits the ground 5 s later, with speed V ms⁻¹.

a) Determine the value of H.

A second particle Q is thrown vertically upwards with speed $U \text{ ms}^{-1}$ from A and moves freely under gravity until it hits the ground.

b) Given that Q hits the ground with speed $\frac{6}{7}V$ ms⁻¹, find the value of U.

], H = 35, $U = \sqrt{43} \approx 6.56$

Question 13 (***+)

.....

A particle A is released from rest from a point h m above level horizontal ground.

One second later, another particle *B* is projected vertically downwards with speed 10.78 ms^{-1} from the same point, *A* was released.

Given that the particles reach the ground at the same time, determine the value of h.

Madası,

Question 14 (****)

A boy projects a small ball vertically upwards, with speed 7.35 ms⁻¹, from a point *P* which is located 50 m above level horizontal ground.

Another boy releases a second small ball from P, T s after the first ball was projected upwards.

Given that the two balls collide 1 m above the ground, determine the value of T.

2	TIME	DIFFECTIVE	4 -16	č,	0.836

 $T = 4 - \sqrt{10} \approx 0.838$

Question 15 (****)

A particle is released from rest from a point H m above level horizontal ground.

The particle covers in the last second of the flight, $\frac{7}{16}$ of the total distance.

nadasm.

Determine the value of H.

adasmaths

I.C.B.

R.

N.C.B. Madasman

COM

I.F.G.B.

ths.com

t=o	LOOKING AT THE	W8047 4B
4 ₩ x <u>B</u> t+T-1	0 = 0 0 = 0 0 = 0	x=4++++++++++++++++++++++++++++++++++++
2-4	LOOKUNG AT THE JO	URNEY AC
*/// ¹ C-// ^t -T	4=0 a=g \$=H ±=T V=N/A	\$=147+2at2 H= 2g72
SOLVING STULL MANGOUS	LY WE OBTRING THE FUG	TTME, T
$ \implies \frac{\vartheta}{\sqrt[4]{T-1}^2} = \frac{(T-1)^2}{T^2} = (T-$	9	
	<-34 -34 <\$T -4T	
$\Rightarrow \begin{cases} \frac{1}{4}T = 1 \\ \frac{7}{4}T = 1 \end{cases}$	$\rightarrow T = < \frac{4}{2}$	
· H - 1 -+	2 1 12 7	i. /

H = 78.4

COM

Madasn

I.F.G.B.

2

Created by T. Madas

Y.C.P.

Smaths,

nn

Question 16 (****)

A particle is projected vertically upwards with speed $u \text{ ms}^{-1}$, from a balcony which lies 6.4 m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 4 s later with speed $v \text{ ms}^{-1}$.

Calculate in any order the value of u and the value of v.

Question 17 (****)

A particle is projected vertically upwards with speed $u \text{ ms}^{-1}$, from a balcony which lies h m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 8 s later with speed 39.4 ms^{-1} .

Calculate in any order the value of u and the value of h.

Question 18 (****)

A particle A, is projected vertically upwards with speed 30 ms⁻¹ from level horizontal ground.

One second later, another particle B, is projected vertically upwards with speed 10 ms^{-1} from a height of 65.9 m above the same horizontal ground

Eventually both particles the same height H m above ground.

Determine the value of H.

H = 27.5

ND "TIME ORIGIN" THE TIME OF PARTURE A + 30t + + (-9.8)+2 9 + 10(t-1) + 1/2 (-98)(t-1) (AP 54=58 -4.9t2 = 65.9 + 10(t-1) -4.9t2 = 65.9 + 10t -10 -4.9(t-1)² _4.9 (t²-2t+1) = 55.9 + 10t - 4-9/2+9.8t - 4-9 H= 30×5-4.9×5² = 27.5 m

Question 19 (****)

A particle is projected vertically upwards, with speed 20 ms^{-1} , from a point O on level horizontal ground.

In the subsequent motion, the particle travels above a certain height H m for $\frac{4}{49}$ s.

Determine the value of H.

	r point	LOOKING. AT THE	JOURNAY AB
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	\$3	<u> Яюн Цеюнт Ц</u> _ <u>102</u> - 2	 N= u+at 0=20-98t 98t=20 49 49 50 5
SO THE PARTICL JOURNEY	t TAKLE 2	succesion to refinely	4 - LOOKING AT THIS
$\begin{array}{c} u = 20\\ a = -9.8\\ s = ?\\ t = 2\\ V\end{array}$	\$ = 2: \$ = 4	t++±a+2 2x2+±(-4.8)×22 20.4	
			= 20.4m /

$\begin{split} & (\text{if } T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{split} & THS \stackrel{TT+}{\Rightarrow} \stackrel{T}{x} succes the the the theta the addition eclassics is on use the part is successful to the the theta the second term in the theta the second term is successful to the theta term is a second term in the second term is successful to the theta term is successful to the term is succes$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{split} & \cos\nu(\underline{z}, \tau v_{AY}, \underline{z}_{OOA}) \\ & & \mathcal{O}(n, \overline{z}, \overline{z}_{A}) + \underline{\xi}_{A} + \underline{\xi}_{A}$
$ \begin{array}{l} (a) & \text{ITE WAY UP} \left\{ \begin{array}{l} \frac{1}{2} & 20T + \frac{1}{2} \left(-\frac{1}{2} + 0 \right) T^2 \\ \hline 0^{4} & \text{ILE WAY DOWN} \left[\frac{1}{4} - 20 \left(T + \frac{1}{2} \right) + \frac{1}{2} \left(-\frac{1}{2} + 0 \right) \left(T + \frac{1}{2} \right)^{-1} \\ \hline 30T & -4 + T^2 & = 20 \left(T + \frac{1}{2} \right) - 4 + 9 \left(T + \frac{1}{2} \right)^{-1} \\ \hline 3T & -4 + T^2 & = 20T + \frac{10}{2} - 4 + 9 \left(T^2 + \frac{10}{2} + \frac{1}{2} + \frac{1}{2} \right) \\ \hline 3T & -4 + T^2 & = 20T + \frac{10}{2} - 4 + 9 \left(T^2 + \frac{10}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \\ \hline 3T & -4 + T^2 & = 20T + \frac{10}{2} - 4 + 9 \left(T^2 + \frac{10}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \\ \hline 3T & -4 + T^2 & = 20T + \frac{10}{2} - 4 + 9 \left(T^2 + \frac{10}{2} + \frac{1}{2} + \frac{10}{2} $	$\begin{array}{c} \text{ON ITE WAY UP} & \begin{array}{l} & \begin{array}{l} H = 20T + \frac{1}{2} (-3.8) T^2 \\ \end{array} \\ & \begin{array}{l} \text{OP} & \text{ILE WAY DOWN} & \begin{array}{l} H \sim 20 (1 + \frac{1}{24}) + \frac{1}{2} (-3.6) (T + \frac{1}{24}) \end{array} \end{array} \\ \end{array} \\ & \begin{array}{l} \text{SOUNDE FOR } T \end{array}$
$\begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} $	∞ UI WAY DONN 4~ 20(7+数)+±(-756)(7+数)*1 201011C A2 T
$\begin{array}{l} \hline Source be T \\ \hline \Delta \sigma &= -4 \cdot \Re^{1/2} = -2 \sigma (T + \frac{1}{42}) - 4 \cdot \Re (T + \frac{1}{42})^{1/2} \\ \hline \Delta T &= -4 \cdot \Re T + \frac{1}{42} - 4 \cdot \Re (T + \frac{1}{42} T + \frac{1}{44})^{1/2} \\ \hline \Delta T &= -4 \cdot \Re T + \frac{1}{42} - 4 \cdot \Re (T + \frac{1}{42} T + \frac{1}{44})^{1/2} \\ \hline \frac{1}{42} T = \frac{1}{42} \\ \hline \frac{1}{42} T = \frac{1}{42} \end{array}$	SOUNCE DE T
$\begin{array}{rcl} 20T & - 4^{4}T^{2} & = & 2m(T+\frac{4}{34}) - 4^{4}(T+\frac{6}{44})^{2} \\ 20T & - 4^{4}T^{2} & = & 20T + \frac{90}{44} - 4^{4}(T+\frac{6}{34}T+\frac{6}{344}) \\ 20T & - 4^{4}T^{2} & = & 20T + \frac{90}{44} - 4^{4}T^{2} - \frac{4}{34}T - \frac{6}{34} \\ \frac{6}{3}T & = \frac{6}{34} \end{array}$	
	$207 - 4.9T^{2} = 207 + \frac{80}{49} - 4.9(T^{2} + \frac{87}{49} + \frac{10}{200})$ $297 - 4.9T^{2} = 297 + \frac{80}{49} - 4.9T^{2} - \frac{4}{37} - \frac{9}{49}$

H = 20.4

Question 20 (****)

At time t = 0 s, a small ball is thrown vertically upwards from a point A, with a speed U ms⁻¹.

Simultaneously, another small ball is released from rest from a point B, which is 98 m vertically above A. The two balls meet T s later, at a distance D, above A.

- **a**) Given that U = 24.5, ...
 - i. ... determine the value of T and the value of D.

ii. ... find the speed and direction of the two balls as they meet.

b) Given instead that D = 0, show that $U = \frac{49}{\sqrt{3}}$.

[T=4], [D=19.6], $V_A = 14.7 \text{ ms}^{-1}$, downwards, $V_B = 39.2 \text{ ms}^{-1}$, downwards

Question 21 (****+)

At time t = 0, a particle is projected vertically upwards with speed U from a point A.

The particle moves freely under gravity.

The point A is at height 8H above the ground, where H is the greatest height reached by the particle above A.

Find, in terms of U and g, the total time from the instant of projection to the instant when the particle hits the ground.

g

 $t = \frac{4\overline{U}}{4}$