KINEMATICS

HORIZONTAL

KINEMATICS

(Basic Practice)

Created by T. Madas

Question 1 (**)

A particle passes through the point A with speed $31 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $2.5 \mathrm{~ms}^{-2}$. The particle passes through the point $B, 12 \mathrm{~s}$ after passing through A.

Determine the speed of the particle as it passes through B.

A particle passes through the point A with speed $35 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $0.8 \mathrm{~ms}^{-2}$. The particle passes through the point $B, 15 \mathrm{~s}$ after passing through A.

Find the distance $A B$.

Created by T. Madas

Question 3 (**)
A particle passes through the point A with speed $8 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration $2 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=56.25 \mathrm{~m}$.

Find the speed of the particle as it passes through B.

A particle passes through the point A with velocity $6 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B with velocity $30 \mathrm{~ms}^{-1}, 15 \mathrm{~s}$ after passing through A.

Find the distance $A B$.

Created by T. Madas

Question 5 (**)

A particle passes through the point A with velocity $V \mathrm{~ms}^{-1}, V>0$, moving along a straight horizontal path with constant acceleration $5.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B with velocity $80 \mathrm{~ms}^{-1}, 14 \mathrm{~s}$ after passing through A.

Calculate the distance $A B$.

$$
|A B|=581 \mathrm{~m}
$$

Question 6 (**)
A particle passes through the point A with velocity $23 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $0.5 \mathrm{~ms}^{-2}$

The particle passes through the point B with velocity $12 \mathrm{~ms}^{-1}$.
Calculate the time it takes the particle to travel from A to B.

Created by T. Madas

Question 7 (**)

A particle passes through the point A with speed $18 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration. The particle passes through the point B, where $A B=52 \mathrm{~m}, 4 \mathrm{~s}$ after passing through A.

Find the deceleration of the particle.

Question 8 (**)
A particle passes through the point A with velocity $28 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $2.25 \mathrm{~ms}^{-2}$.

The particle passes through the point B with velocity $19 \mathrm{~ms}^{-1}$. Find the distance $A B$.

Created by T. Madas

Question 9 (**)

A particle passes through the point A with velocity $4 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where $A B=24 \mathrm{~m}$, with velocity $20 \mathrm{~ms}^{-1}$. Calculate the time it takes the particle to travel from A to B.

Question 10 (**+)
A particle passes through the point A with velocity $U \mathrm{~ms}^{-1}, U>0$, moving along a straight horizontal path with constant deceleration.

The particle passes through the point B, where $A B=247.5 \mathrm{~m}$, with velocity $3 \mathrm{~ms}^{-1}$, 15 s after passing through A.

Calculate deceleration of the particle.

Created by T. Madas

Question 11 (**)
A particle passes through the point A with velocity $V \mathrm{~ms}^{-1}, V>0$, moving along a straight horizontal path with constant acceleration $3.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B with velocity $25 \mathrm{~ms}^{-1}, 10 \mathrm{~s}$ after passing through A.

Find the value of V.

$$
V=-10
$$

Question 12 (**)
A particle passes through the point A moving along a straight horizontal path with constant acceleration $2.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=282.75 \mathrm{~m}, 13 \mathrm{~s}$ after passing through A.

Determine the speed of the particle as it passes through A.

Created by T. Madas

Question 13 (**)

A particle passes through the point A with speed $4 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where $A B=320 \mathrm{~m}$, with speed $28 \mathrm{~ms}^{-1}$. Find the acceleration of the particle.

Question 14 (**)

A particle passes through the point A with velocity $U \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration.

The particle passes through the point B, where $A B=126 \mathrm{~m}$, with velocity $9 \mathrm{~ms}^{-1}$, 12 s after passing through A.

Find the value of U.

Created by T. Madas

Question 15 (**)
A particle passes through the point A moving along a straight horizontal path with constant acceleration $1.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=78.75 \mathrm{~m}, 9 \mathrm{~s}$ after passing through A.

Find the speed of the particle as it passes through B.

$$
v=15.5 \mathrm{~ms}^{-1}
$$

Question 16 (**)
A particle passes through the point A with velocity $5 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B with velocity $21 \mathrm{~ms}^{-1}, 5 \mathrm{~s}$ after passing through A.

Calculate acceleration of the particle.

$$
a=3.2 \mathrm{~ms}^{-2}
$$

Created by T. Madas

Created by T. Madas

Question 17 (**)

A particle passes through the point A with speed $10 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration $4 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=59.5 \mathrm{~m}$.

Calculate the time it takes the particle to travel from A to B.

Question 18 (**)

A particle passes through the point A with velocity $V \mathrm{~ms}^{-1}$, where $V>0$, moving along a straight horizontal path with constant deceleration $6 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=40 \mathrm{~m}$, with velocity $14 \mathrm{~ms}^{-1}$.
Find the value of V.

Created by T. Madas

Question 19 (**)

A particle passes through the point A with speed $7 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration. The particle passes through the point B, where $A B=56.8 \mathrm{~m}, 4 \mathrm{~s}$ after passing through A.

Determine the speed of the particle as it passes through B.

Question 20 (**)

A particle passes through the point A moving along a straight horizontal path with constant acceleration $1.25 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=43.5 \mathrm{~m}$, with speed $11 \mathrm{~ms}^{-1}$.
Calculate the times it takes the particle to travel from A to B.

$$
t=6 \mathrm{~s}, 11.6 \mathrm{~s}
$$

Created by T. Madas

Question 21 (**)
A particle passes through the point A with speed $7 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration $2 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=44 \mathrm{~m}$.
a) Find the speed of the particle as it passes through B.
b) Calculate the time it takes the particle to travel from A to B.

A particle passes through the point A with speed $11 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration. The particle passes through the point B, where $A B=111 \mathrm{~m}, 6 \mathrm{~s}$ after passing through A.
a) Find the acceleration of the particle.
b) Determine the speed of the particle as it passes through B.

$$
a=2.5 \mathrm{~ms}^{-2}, v=26 \mathrm{~ms}^{-1}
$$

\square

Created by T. Madas

Created by T. Madas

Question 23 (**)
A particle passes through the point A with speed $41 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $3.5 \mathrm{~ms}^{-2}$. The particle passes through the point $B, 8 \mathrm{~s}$ after passing through A.
a) Find the distance $A B$.
b) Determine the speed of the particle as it passes through B.

$$
|A B|=216 \mathrm{~m}, v=13 \mathrm{~ms}^{-1}
$$

\square

Question 24 (**)
A particle passes through the point A moving along a straight horizontal path with constant acceleration $1.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=162.25 \mathrm{~m}, 11 \mathrm{~s}$ after passing through A.
a) Determine the speed of the particle as it passes through A.
b) Find the speed of the particle as it passes through B.

Created by T. Madas

Question 25 (**)
A particle passes through the point A with velocity $32 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $1.75 \mathrm{~ms}^{-2}$.

The particle passes through the point B with velocity $18 \mathrm{~ms}^{-1}$.
a) Find the distance $A B$.
b) Calculate the time it takes the particle to travel from A to B.

$$
|A B|=200 \mathrm{~m}, t=8 \mathrm{~s}
$$

10

A particle passes through the point A with speed $9 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B, where $A B=162 \mathrm{~m}$, with speed $18 \mathrm{~ms}^{-1}$.
a) Find the acceleration of the particle.
b) Calculate the time it takes the particle to travel from A to B.

$$
a=0.75 \mathrm{~ms}^{-2}, t=12 \mathrm{~s}
$$

Created by T. Madas

Question 27 (**)
A particle passes through the point A with speed $V \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant deceleration $4 \mathrm{~ms}^{-2}$.

The particle passes through the point B, where $A B=21 \mathrm{~m}$, with speed $11 \mathrm{~ms}^{-1}$.
a) Find the value of V.
b) Calculate the time it takes the particle to travel from A to B.

A particle passes through the point A with velocity $5 \mathrm{~ms}^{-1}$, moving along a straight horizontal path with constant acceleration.

The particle passes through the point B with velocity $5.8 \mathrm{~ms}^{-1}, 2.5 \mathrm{~s}$ after passing through A.
a) Find the distance $A B$.
b) Calculate acceleration of the particle.

$$
A B \mid=13.5 \mathrm{~m}, \quad a=0.32 \mathrm{~ms}^{-2}
$$

3

Created by T. Madas

Question 29 (**)
A particle passes through the point A with velocity $U \mathrm{~ms}^{-1}, U>0$, moving along a straight horizontal path with constant deceleration.

The particle passes through the point B, where $A B=27 \mathrm{~m}$, with velocity $9.6 \mathrm{~ms}^{-1}$, 2.5 s after passing through A.
a) Find the value of U.
b) Calculate deceleration of the particle.

$$
U=12, a=-0.96 \mathrm{~ms}^{-2}
$$

Question 30 (**)
A particle passes through the point A with velocity $V \mathrm{~ms}^{-1}, V>0$, moving along a straight horizontal path with constant acceleration $3.5 \mathrm{~ms}^{-2}$.

The particle passes through the point B with velocity $37 \mathrm{~ms}^{-1}, 10 \mathrm{~s}$ after passing through A.
a) Find the value of V.
b) Calculate the distance $A B$.

HORIZONTAL

 KINEMATICS
(Standard Problems)

Created by T. Madas

Question 1 (**)
A car of mass 1300 kg is travelling at a speed of $30 \mathrm{~ms}^{-1}$ along a straight horizontal motorway when the driver sees a traffic jam ahead, and applies the brakes for 15 s . The car covers a distance of 270 m while the driver is braking.

The car is modelled as a particle, further assuming that the braking force is the only constant force acting on the car for those 15 s .
a) Find the speed of the car at the end of the 15 s braking interval.
b) Determine the magnitude of the braking force.

$$
v=6 \mathrm{~ms}^{-1}, \quad F=2080 \mathrm{~N}
$$

Created by T. Madas

Question 2 (**)
A car of mass 1200 kg is travelling at a speed of $28 \mathrm{~ms}^{-1}$ along a straight horizontal road when the driver applies the brakes and a constant braking force of 2100 N acts on the car until it comes to rest.

The car is modelled as a particle without any other external forces acting on it.
a) Find the time taken to bring the car to rest.
b) Determine the distance the car covers from the instant the brakes were first applied until the car is brought to rest.

$$
t=16 \mathrm{~s}, s=224 \mathrm{~m}
$$

\square

Created by T. Madas

Question 3 (** $^{\left({ }^{*}\right)}$
The points A, B and C lie on a straight horizontal road with B between A and C, so that $|A B|=300 \mathrm{~m}$ and $|B C|=200 \mathrm{~m}$.

A car travelling with constant acceleration $a \mathrm{~ms}^{-2}$ passes A with speed $5 \mathrm{~ms}^{-1}$ and travels directly to C in 20 seconds.
a) Find the value of a.
b) Calculate ...
i. ... the speed of the car at B.
ii. ... the time it takes the car to travel from A to B.

Created by T. Madas

Question 4 (***)
A car is travelling along a straight horizontal road with constant acceleration $a \mathrm{~ms}^{-2}$.

The points A, B and C lie in that order on this road.

The car is passing through A with speed $11 \mathrm{~ms}^{-1}$, through B with speed $17 \mathrm{~ms}^{-1}$, and through C with speed $29 \mathrm{~ms}^{-1}$.

The distance $A B=28 \mathrm{~m}$.

By modelling the car as a particle calculate in any order.
a) \ldots the distance $A C$
b) ... the time it takes the car to travel from A to C.

Created by T. Madas

Question 5 (***)
The points A, B and C lie in that order on a road, where the distance $A B=476 \mathrm{~m}$ and the distance $B C=855 \mathrm{~m}$.

The car passes through A with speed $24 \mathrm{~ms}^{-1}$ decelerating uniformly until it passes through B with speed $10 \mathrm{~ms}^{-1}$.
a) Find the deceleration of the car as it travels from A to B.
b) Calculate the time it took the car to travel from A to B.

As the car passes through B it begins to accelerate uniformly until it passes through $C, 45 \mathrm{~s}$ after passing through B.
c) Find the acceleration of the car as it travels from B to C.
d) Determine the speed of the car as it passes through C.
e) Find the average speed for the journey from A to C.

Question 6 (***+)
A car is travelling along a straight horizontal road with constant acceleration.

The car passes a point A with speed $u \mathrm{~ms}^{-1}$, where $u<18$ and 12 seconds later passes a point B with speed $18 \mathrm{~ms}^{-1}$.

The distance $A B$ is 180 m .
a) Find the value of u.
b) Calculate, correct to two decimal places, the time taken for the car to move from A to the midpoint of $A B$.

Created by T. Madas

Question 7 (***+)
A particle is travelling along a straight line with constant acceleration $a \mathrm{~ms}^{-2}$.

The points A, O and B lie in that order on this straight line, as shown in the figure above. The distance $A O$ is 3 m and the distance $O B$ is 6 m .

The particle is initially observed passing through O with speed $u \mathrm{~ms}^{-1}$ and 4 s later is observed to be passing through B with speed $7 \mathrm{~ms}^{-1}$, in the direction $O B$.
a) Find in any order the value of a and the value of u.
b) Prove that the particle never passes through A.
\square $, u=-4, \quad a=2.75$

Question 8 (****)
A car is travelling along a straight horizontal road with constant acceleration $a \mathrm{~ms}^{-2}$. The points A, B and C lie in that order on this road.

The car is passing through A with speed $u \mathrm{~ms}^{-1}$ and 4 s later is passing through B.

The car finally passes through $C, 2 \mathrm{~s}$ after passing through B.

The distance $A B=68 \mathrm{~m}$ and the distance $B C=49 \mathrm{~m}$.

By modelling the car as a particle find in any order the value of a and the value of u.
\square
$\square, u=12, a=2.5$

PUTTING THE INTOLMATON IND A PIAGPAM	
$\stackrel{4}{1} \quad 68 \mathrm{~m} \quad \&$	4 mm ¢ \rightarrow c
\vec{u} 仡	$\rightarrow \quad$
$t=2 \quad t=4$	$t=6$
lookich at A	lookink AT + TS C
$\left\|\begin{array}{l} u=? \\ d=? \\ s=68 \mathrm{~m} \\ t=4 s \\ v= \end{array}\right\|$	$\left\|\begin{array}{l}u=? \\ a=? \\ s=17 \mathrm{~m} \\ s=6 \\ t=? \\ v=?\end{array}\right\|$
$\delta=u t+\frac{1}{2} a t^{2}$	$s=u t+\frac{1}{2} \alpha^{t} t^{2}$
$68=4 u+\frac{1}{2} a \times u^{2}$	$117=6 u+\frac{1}{2} a \times 6^{2}$
$68=4 u+8 a$	$117=6 u+18 a$
$17=u+2 a$	$39=2 u+6 a$
Sowing simultintaricy	
$\left.\begin{array}{r} u+2 a=17 \\ 2 u+6 a=39 \end{array}\right\} \Rightarrow$	$u=17-2 u$ \Downarrow $\begin{aligned} 2(17-2 a)+6 a & =39 \\ 34-4 a+6 a & =39 \\ 2 a & =5 \\ a & =2.5 \mathrm{~ms}^{-2} \end{aligned}$ q $\begin{aligned} & u=17-2 \times 2.5 \\ & u=12 \mathrm{~ms}^{-1} \end{aligned}$

Question 9 (****)
A particle is travelling along a straight line with constant acceleration $a \mathrm{~ms}^{-2}$.

The points A, B and C lie in that order on this straight line.

The particle is initially observed passing through A with speed $u \mathrm{~ms}^{-1}$ and 7 s later is observed to be passing through B with speed $24 \mathrm{~ms}^{-1}$, in the direction $A B$.

Finally the particle is passing through $C, 10 \mathrm{~s}$ after passing through A.

Given that the distance $A C=180 \mathrm{~m}$, determine in any order the value of a and the value of u.

Question 10 (****)
The points A and B lie on a straight line, 240 m apart.

At time $t=0$, a particle passes through A with speed $4 \mathrm{~ms}^{-1}$ heading towards B with constant acceleration $0.75 \mathrm{~ms}^{-2}$.

At time $t=0$, another particle passes through B heading towards A with constant speed $5 \mathrm{~ms}^{-1}$.

The particles meet at point C.
a) Determine the distance $A C$.
b) On a set of suitable axes, draw a detailed displacement time graph for both particles, using A as the origin.
\square
,$|A C|=160 \mathrm{~m}$

Question 11 (****)
A car is travelling along a straight horizontal road with constant acceleration $a \mathrm{~ms}^{-2}$. The points A, B and C lie in that order on this road.

The car is passing through A with speed $u \mathrm{~ms}^{-1}$ and 5 s later is passing through B.

The car finally passes through $C, 2 \mathrm{~s}$ after passing through B.

The distance $A B=80 \mathrm{~m}$ and the speed of the car at C is $25 \mathrm{~ms}^{-1}$.

By modelling the car as a particle find in any order the value of a and the value of u.

Created by T. Madas

Question 12 (****)
A particle is moving in a straight line with constant acceleration, and it is first observed passing a point A.

The particle is next passing through the point $B 8 \mathrm{~s}$ later with speed $12 \mathrm{~ms}^{-1}$.
Given that the distance $A B$ is 112 m , determine the times it takes the particle to travel from A to the midpoint of $A B$.

Created by T. Madas

Question 13 (****)

Two cars are moving on a straight road with constant speed of $18 \mathrm{~ms}^{-1}$, one being 14.5 m ahead of the other.

The driver of the car in front sees a hazard and applies the brakes, which produce a constant deceleration of $6 \mathrm{~ms}^{-2}$.

The driver of the other car takes 0.5 s to react and also applies his brakes, which produce a constant deceleration of $4 \mathrm{~ms}^{-2}$.

The driver of the car in front sees a hazard and applies the brakes, which produce a constant deceleration of $6 \mathrm{~ms}^{-2}$.

By modelling the two cars as particles, find the speed of each of the cars when a collision between them take place.

Question 14 (****+)
A cyclist is travelling along a straight horizontal road at constant speed $12 \mathrm{~ms}^{-1}$ as it passes past a set of traffic lights at time $t=0$, where t is measured in seconds.

The cyclist continues its journey at that constant speed.

When $t=6$ a car passes past the same set of traffic lights with speed $30 \mathrm{~ms}^{-1}$, decelerating uniformly at $2 \mathrm{~ms}^{-2}$.

In the consequent motion, the car overtakes the cyclist at some point A and at a later time the cyclist overtakes the car again at some point B.

Find the value of t at A and at B.

\square , $t_{A}=12, t_{B}=18$

Created by T. Madas

Question 15 (****+)
Two cars, A and B, are travelling in the same direction along a straight road.

At a certain instant, A has speed $28 \mathrm{~ms}^{-1}$, accelerating uniformly at $0.1 \mathrm{~ms}^{-2}$.

At the same instant, B is 240 m behind A, travelling with speed $24 \mathrm{~ms}^{-1}$, accelerating uniformly at $0.2 \mathrm{~ms}^{-2}$.

Find the speed of B the instant it overtakes A.
veviveve $v=48 \mathrm{~ms}^{-1}$

Created by T. Madas

Question $16 \quad(* * * *+)$

Kodjo and Modjo are two horses running a race.

Kodjo is 250 m from the finish line and running at constant speed of $16 \mathrm{~ms}^{-1}$.

At that instant Modjo is 20 m behind Kodjo and running at $15 \mathrm{~ms}^{-1}$, when his jockey demands of the horse to speed up with constant acceleration $a \mathrm{~ms}^{-2}$, until it crosses the finish line with speed $v \mathrm{~ms}^{-1}$.
a) If Modjo finishes 10 m ahead of Kodjo determine the value of a.
b) If instead there is a "dead heat" in the race between Kodjo and Modjo find the value of v.

Created by T. Madas

Question 1 (**)
A particle is projected vertically upwards with speed $U \mathrm{~ms}^{-1}$, from level horizontal ground. The particle is moving freely under gravity and returns to its starting position 5 s later.
a) Determine the value of U.
b) Calculate the greatest height the particle reaches above the ground.

A particle is projected vertically downwards from a great height.

It hits the ground with speed $28 \mathrm{~ms}^{-1}$.

Determine the time it took the particle to cover the last 15 m of its motion.
\square ,$t \approx 0.598 \mathrm{~s}$

Created by T. Madas

Question 3 (**+)
A particle is projected vertically upwards from a balcony which is 2.48 m above level horizontal ground.

Created by T. Madas

Question 4 (***)
A particle is projected vertically upwards with speed $29 \mathrm{~ms}^{-1}$, from a balcony which is $h \mathrm{~m}$ above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 6 s later with speed $v \mathrm{~ms}^{-1}$.
a) Calculate the value of h.
b) Determine the value of v.

Question 5 (***)
A particle is projected vertically upwards from level ground with a speed of $14 \mathrm{~ms}^{-1}$.
a) Determine the speed of the particle and the distance of the particle from the ground, 0.5 s after projection.
b) Calculate the total distance travelled by the particle during the first 2 s of its motion.

$$
\square, v=9.1 \mathrm{~ms}^{-1}, d_{0.5}=5.775 \mathrm{~m}, d_{2}=11.6 \mathrm{~m}
$$

b) Metpo A
 $a=14$
$a=-0$
$a=?$ $a=14$
$a=-9.8$ $t=?$
$t=?$
$v=0$
$\cdot v=u+a t \quad v^{2}=u^{2}+2 a s$ $\Rightarrow 0=14-4.8 t \rightarrow 0=14^{2}+2(48) s$ \Rightarrow to $\frac{10}{2} \Rightarrow \dot{\varepsilon}=10$

$u=0 m_{1}^{-1}$
$a=+9: 8 \mathrm{ma}^{-2}$

Merfoc
 $u=14 m^{5}$
$a=-7.9 r^{2}$
$s=$ $\begin{aligned} \bullet v & =a+a t \\ \Rightarrow 0 & =14-9.9 t\end{aligned}$ $\Rightarrow 98 t=14$
$\Rightarrow t=\frac{10}{7}$

\qquad

$=10+1.6$
$=11.6 \mathrm{~m}$

Created by T. Madas

Question 6 (***+)

A raindrop falls freely from rest, from the top of a cliff. After it has fallen a distance of 40 m another raindrop falls freely from rest from the top of the same cliff. The height of the cliff is 80 m .

Calculate, correct to three significant figures, the distance between the two raindrops at the instant the first raindrop has reached the ground.

Created by T. Madas

Question 7 (***+)
A particle is projected vertically upwards with speed $24 \mathrm{~ms}^{-1}$, from a balcony which is located 2.5 m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground $T \mathrm{~s}$ later with speed $v \mathrm{~ms}^{-1}$.
a) Calculate the value of T.
b) Determine the value of v.

Created by T. Madas

Question 8 (***+)
A particle is projected vertically upwards with speed $18 \mathrm{~ms}^{-1}$, from a balcony which is $h \mathrm{~m}$ above level horizontal ground.

The particle is moving freely under gravity and strikes the ground $T \mathrm{~s}$ later with speed $21.2 \mathrm{~ms}^{-1}$.
a) Calculate the value of h.
b) Determine the value of T.

Question 9 (***+)
At time $t=0 \mathrm{~s}$, two particles A and B are projected vertically upwards with speeds $13 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$, respectively.

The projection of A is from a point on level horizontal ground while the projection of B is from a point which is 20 m vertically above the projection point of A.

When $t=T \mathrm{~s}$, both particles are at a height $H \mathrm{~m}$ above ground.
a) Calculate the value of T.
b) Determine the value of H.
\square
$\square, T=2, \quad H=6.4$

a) Lookina at THE DJAREAM, TAlLIN THH GROUND ts THE ZKno LNEL For Dispracartst	
	9,
	教
-5t-49t ${ }^{\text {a }}$	+t
$f_{3}=20,13 t \cdot \frac{1}{2}(-1+1)+t^{2}$	
$B t-49 T^{2}=20+3 t-43 T^{2}$$10 t=20$	
$S_{1}=13 x_{2}-4,3 x^{2}$	
$\begin{aligned} & s_{4}=26-196 \\ & \delta=6.49 . \end{aligned}$	
	46.4

Created by T. Madas

Created by T. Madas

Question $10 \quad\left({ }^{* * *}+\right.$)

A firework is launched from rest at ground level, and moves vertically upwards.

It rises with constant acceleration of $15 \mathrm{~ms}^{-2}$ for 4 s . At that instant the firework has burned out and it continues to rise freely under gravity, eventually returning to the ground

The firework is modelled as a particle moving in a vertical direction.

Calculate the total flight time of the firework, from the moment of its launch until its return to the ground.

Question 11 (***+)
A particle A is released from rest from a point $h \mathrm{~m}$ above level horizontal ground.

One second later, another particle B is projected vertically downwards with speed $19.6 \mathrm{~ms}^{-1}$ from the same point, A was released.

Given that the particles reach the ground at the same time, determine the value of h.
$\square, h \approx 11.0$

Question 12 (***+)
A particle P is projected vertically upwards with speed $17.5 \mathrm{~ms}^{-1}$ from a point A, which is $H \mathrm{~m}$ above level horizontal ground.
P moves freely under gravity until it hits the ground 5 s later, with speed $V \mathrm{~ms}^{-1}$.
a) Determine the value of H.

A second particle Q is thrown vertically upwards with speed $U \mathrm{~ms}^{-1}$ from A and moves freely under gravity until it hits the ground.
b) Given that Q hits the ground with speed $\frac{6}{7} V \mathrm{~ms}^{-1}$, find the value of U.
\square , $H=35, U=\sqrt{43} \approx 6.56$

Question 13 (***+)
A particle A is released from rest from a point $h \mathrm{~m}$ above level horizontal ground.

One second later, another particle B is projected vertically downwards with speed $10.78 \mathrm{~ms}^{-1}$ from the same point, A was released.

Given that the particles reach the ground at the same time, determine the value of h.

$$
h=176.4
$$

Question 14 (****)
A boy projects a small ball vertically upwards, with speed $7.35 \mathrm{~ms}^{-1}$, from a point P which is located 50 m above level horizontal ground.

Another boy releases a second small ball from $P, T \mathrm{~s}$ after the first ball was projected upwards.

Given that the two balls collide 1 m above the ground, determine the value of T.

$$
T=4-\sqrt{10} \approx 0.838
$$

\square

Created by T. Madas

Question 15 (****)
A particle is released from rest from a point $H \mathrm{~m}$ above level horizontal ground.

The particle covers in the last second of the flight, $\frac{7}{16}$ of the total distance.

Determine the value of H.

Created by T. Madas

Question 16 (****)
A particle is projected vertically upwards with speed $u \mathrm{~ms}^{-1}$, from a balcony which lies 6.4 m above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 4 s later with speed $v \mathrm{~ms}^{-1}$.

Calculate in any order the value of u and the value of v.

Created by T. Madas

Question 17 (****)
A particle is projected vertically upwards with speed $u \mathrm{~ms}^{-1}$, from a balcony which lies $h \mathrm{~m}$ above level horizontal ground.

The particle is moving freely under gravity and strikes the ground 8 s later with speed $39.4 \mathrm{~ms}^{-1}$.

Calculate in any order the value of u and the value of h.

Created by T. Madas

Question 18 (****)
A particle A, is projected vertically upwards with speed $30 \mathrm{~ms}^{-1}$ from level horizontal ground.

One second later, another particle B, is projected vertically upwards with speed $10 \mathrm{~ms}^{-1}$ from a height of 65.9 m above the same horizontal ground

Eventually both particles the same height $H \mathrm{~m}$ above ground.

Determine the value of H.

Question 19 (****)
A particle is projected vertically upwards, with speed $20 \mathrm{~ms}^{-1}$, from a point O on level horizontal ground.

In the subsequent motion, the particle travels above a certain height $H \mathrm{~m}$ for $\frac{4}{49} \mathrm{~s}$.

Determine the value of H.
\square $H=20.4$

METHPD B

- usin $1-2 t+\frac{1}{2}$
- owis waw
ow is Wray Daven $4=20\left(1+\frac{4}{44}\right)+\frac{1}{2}(-9.8)\left(T+\frac{4}{44}\right)^{2}$
Gownc- PoL T
$20 T-4.9 T^{2}=20\left(T+\frac{y}{44}\right)-4.9\left(T+\frac{4}{44}\right)^{2}$
 $\frac{4}{5} T=\frac{8}{5}$

Created by T. Madas

Question 20 (****)
At time $t=0 \mathrm{~s}$, a small ball is thrown vertically upwards from a point A, with a speed $U \mathrm{~ms}^{-1}$.

Simultaneously, another small ball is released from rest from a point B, which is 98 m vertically above A. The two balls meet $T \mathrm{~s}$ later, at a distance D, above A.
a) Given that $U=24.5, \ldots$
i. ... determine the value of T and the value of D.
ii. ... find the speed and direction of the two balls as they meet.
b) Given instead that $D=0$, show that $U=\frac{49}{\sqrt{3}}$.
$T=4, D=19.6, V_{A}=14.7 \mathrm{~ms}^{-1}$, downwards,$V_{B}=39.2 \mathrm{~ms}^{-1}$, downwards

Created by T. Madas

Question 21 ($* * * *+$)
At time $t=0$, a particle is projected vertically upwards with speed U from a point A. The particle moves freely under gravity.

The point A is at height $8 H$ above the ground, where H is the greatest height reached by the particle above A.

Find, in terms of U and g, the total time from the instant of projection to the instant when the particle hits the ground.

