The comparison of the second s ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST

Question 1 (**)

10kg--------

T N

The figure above shows a small box of mass 10 kg, pulled by a rope inclined at 30° to the horizontal, along rough horizontal ground.

The tension in the rope is T N and the box is accelerating at 0.4 ms⁻².

The box is modelled as a particle experiencing a frictional force of 12 N and a normal reaction of R N.

Determine the value of T and the value of R.

 $T \approx 18.5 \text{ N}$, $R \approx 88.8 \text{ N}$

	(\$):R + TSM30 = log (HUUBBU) (+3): TCB35-12=10a (F=ma) FRAM THE 240 (DUMTCA) TRAS-12=10 X014
109	$\begin{array}{l} \lambda i = \frac{1}{2} \frac{\overline{z} v}{2} \\ \lambda = \frac{2}{2} \\ \lambda = 1 \end{array}$
1444 R= log - Tsin30 R= 98 - 32/132×12	
R~ 88.8 N	

Question 2 (**)

, 30 N

50° 15kg-

The figure above shows a small box of mass 15 kg, pulled by a rope inclined at 50° to the horizontal, along rough horizontal ground.

The tension in the rope is 30 N and the particle is accelerating at $a \text{ ms}^{-2}$.

The box is modelled as a particle experiencing a normal reaction of R N and a constant frictional force of magnitude $\frac{1}{10}R$ N.

Determine the value of a.

ΤN

Question 3 (**)

The figure above shows a box, of mass 16 kg, on a plane inclined at an angle θ to the horizontal, where $\tan \theta = \frac{4}{3}$.

 θ

The box is pulled up the plane by a rope whose tension is T N acts in the direction of the greatest slope, causing an acceleration of 0.25 ms^{-2} .

The box is also experiencing friction of magnitude $\frac{1}{2}RN$ down the plane, where RN is the normal reaction between the box and the plane.

By modelling the box as a particle, find the value of R and the value of T.

T = 176.48 N R = 94.08 N

Question 4 (**)

200	Ν

 40°

The figure above shows a box, of mass 17 kg, on a plane inclined at an angle of 20° to the horizontal.

20°

A force of 200 N, acting at an angle of 40° to the direction of the greatest slope of the plane, is pulling the box up the plane.

The box is also experiencing friction of magnitude $\mu R N$, where R is the normal reaction between the box and the plane and μ is a constant.

The box is accelerating up the plane at 5 ms^{-2}

By modelling the box as a particle, find the value of R and the value of μ .

(1): $R + 200 \text{ suff} = \pi \frac{1}{9} \text{ and } (\text{from recover})$ (11): $200 \text{ control} = \pi R - \pi \frac{1}{9} \text{ and } (F = 3m_{\text{control}})$

THUS	R=17g60520-2005144	
	2 = 27.99526-	
	R=28.0N	
	1	
AND	2000asto - Mgs1420°-85 = 4R	
	11.22833 = Z7.99526 H	
	4 3 0.401	

Question 5 (**+)

A lift, of mass M kg, is pulled up a vertical mineshaft by a cable attached to the top of the lift. A man of mass m kg is standing inside the lift.

The lift is uniformly accelerating upwards at 0.8 ms^{-2} .

The man experiences a constant normal reaction of magnitude 901 N from the floor of the lift and there is a constant tension of 17861 N in the cable of the lift.

Determine the value of m and the value of M.

m = 85 kg,

M = 1600 kg

PN

Question 6 (***)

The figure above shows a box, of mass 10 kg, on a plane inclined at an angle of 40° to the horizontal.

40°

A force of magnitude P N, acting at an angle of 20° to the direction of the greatest slope of the plane, is pulling the box up the plane.

The box is also experiencing ground friction of magnitude $\frac{1}{3}R$ N, where R is the normal reaction between the box and the plane.

The box is accelerating up the plane at 0.5 ms⁻¹

By modelling the box as a particle, find the value of P and the value of R.

 $P \approx 88.2768...$ $R \approx 44.8798.$ (1) $R + P_{SM20} = 10$ R= 10gcos40 - PSINZO stor + topa S+100Smillo+10 8P. 2768 88.3 N R = 10g cosilo - (88.2761...) × 51420 R = 44.8798. R~44.9 N

35 N

т

12 N

The figure above shows 3 forces, which all lie on the same plane, acting on a particle of mass $m \, \text{kg}$. The particle remains in equilibrium when the magnitudes of these 3 forces and their relative directions are those shown in the figure.

When the 35 N force is suddenly removed the particle begins to move with constant acceleration of magnitude 14 ms^{-2} .

Determine the value of m.

126 kN

The figure above shows a ship, of mass 800 tonnes, being pulled by two tugs using horizontal cables, so that the ship is moving in a straight line L.

One tug exerts a force of 126 kN , at an angle of 30° to L.

The other tug exerts a force at an angle of 15° to L.

The ship is accelerating along L at 0.05 ms⁻

Determine the magnitude of the resistance opposing the motion of the ship.

], $R = 304238.4018... \approx 304000 \text{ N}$

RET MH A DIARDAU W OBSETS BEENG FORCES

 $\frac{\sqrt{1}}{1} \frac{\sqrt{1}}{1} \frac{\sqrt{1}}{1$

(1) $R = \frac{1}{2} = \frac{1}{2$

WE BY SUBSTITUTION)

- $T_{*} = \frac{126000 \leq N_{3}0}{\leq m_{1}s^{\circ}} = 63000 \left(\sqrt{s} + \sqrt{s}\right) \approx 24343 \cdot 3012 \cdot .$ $\Rightarrow (30000030^{\circ} + Twists^{\circ} 800000 \vee 0 \cdot 00 = R$
- $\Rightarrow 63000630 + 16214 800000 \times 0.05 = K$ $\Rightarrow 6300053 + 63000(66+67)(\frac{\sqrt{6}+67}{4}) - 400000 = R$
- ⇒ R = 304238,4018
- ⇒ R~ 304000 N (3 s.f).

A particle of mass 80 kg is accelerating in the direction AB.

Four **horizontal** forces of different magnitudes are acting on the particle.

The magnitude and direction of these four forces, together with other important information is shown in the figure above.

Find the acceleration of the particle.

A particle P slides with constant acceleration down the line of greatest slope of a rough plane inclined at 40° to the horizontal.

22 m

40°

The particle covers a distance AB, where |AB| = 22 m, in 4 s.

- a) Given the speed of P at A is 3 ms^{-1} , calculate ...
 - i. ... the speed of P at B.
 - **ii.** ... the acceleration of P.
- b) Hence find the coefficient of friction between the particle and the plane.

Question 11 (***+)

12 N

A box *B* of mass 1.25 kg is pulled along rough horizontal ground by a force of magnitude 12 N inclined at 30° to the horizontal, as shown in the figure above. The box is modelled as a particle moving on a rough horizontal plane where coefficient of friction between the particle and the plane is 0.25.

a) Determine the acceleration of the box.

The pulling force is suddenly removed when the box has a speed of 7.35 ms^{-1}

b) Find the time it takes the box to come to rest from the instant the pulling force was removed.

5	
A ZUMATING WOULL & DETAIL	WASHIE CH
	12 → a
Eliza inter	
READMING ONSTICATION CH	NUBLION) & HORIZON/ALLY ("F=mu)
(A): R+125M30=125	g (→): 1260530-μ2 = ma
£+6=12.25	$15 \times \frac{5}{12} - 0 \times (e \cdot \chi) = 1.52 d$
K = P.72 N	643' - 1.5625 = 1.250
	a = 1.063843876
	<u>a ~ 7.06 wit</u>
6) RECHLIZIATE THE ACCELL	RATION IN THE ABSENCE OF PULL
<u>P</u> P' P' 4	$\begin{array}{l} (\ref{eq: constraint}): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
English trag	=), -4 (1+25g) = 1+25ga' ⇒ <u>a'=-2:45 ma⁻²</u>
FINALLY KINGUATTICS	
$u = 7.35 mc^{-1}$ $a = -2.45 mc^{-2}$ $s = -2.45 mc^{-2}$ $s = -2.45 mc^{-2}$	$V = u + at \implies 0 = 7.35 + (-2u5)t$ $\implies 2 \cdot 85t = 7.35$ $\implies t = 35.$
Vico	

 $a \approx 7.06 \text{ ms}^{-2}$

t = 3 s

Question 12 (***+)

70 N

A box *B* of weight 147 N is pulled at **constant** speed on rough horizontal ground by a pulling force of magnitude 70 N inclined at 30° to the horizontal, as shown in the figure above. The box is modelled as a particle moving on a rough horizontal plane where the coefficient of friction between the particle and the plane is μ .

a) Determine the value of μ .

The pulling force is suddenly removed and the box decelerates uniformly coming to rest after covering a further 12.25 m.

b) Find the speed of the box at the instant when the pulling force was removed.

Question 13 (***+)

A box of mass 2 kg, is pushed up a rough plane inclined at an angle θ to the horizontal, where $\tan \theta = \frac{3}{4}$, by a horizontal force X N, as shown in the above figure.

The force acts in a vertical plane, which contains the box and a line of greatest slope of the plane. The coefficient of friction between the box and the plane is $\frac{1}{2}$.

The box is accelerating up the plane at 1.45 ms^{-2} .

By modelling the box as a particle, find the value of X.

X N

θ

STARTING WITH A DIAGRAM AND DRAWING THE ADDITION FORCE IS
4 HOURDE FORTE
bu0= ³ / ₄
ender 3 1000 = 4
Browning Prephildroune of Preasure to the RANGE
(⊥): R=×sun0+2gicato (Equilibrium) (Ⅱ) Xicato-pR-2gican0 = 2a ("F=ma")
BY SUBSTITUTING 2=" IND THE SHOULD EQUATION
→ Xueb-h (Xeinb+59000)-59enD-50
$\implies \frac{\pi}{2} X - \frac{\pi}{2} \left(\frac{\pi}{3} X + \frac{\pi}{3} \times \frac{\pi}{2} \right) - \frac{\pi}{3} \times \frac{\pi}{2} = 5 \times 1.12$
=> = = x - = = x - = = = = = 29
$\Rightarrow \frac{1}{2} \times - 2g = 2.9$
\Rightarrow $\times - 4g = 5.8$
- X - deal -

= 45

Question 14 (***+)

A lift, of mass 400 kg, is being lowered into a vertical mineshaft by a cable attached to the top of the lift. A load of mass 80 kg is sitting firm on the floor inside the lift. The lift is lowered with constant downward acceleration.

There is a constant resistance of magnitude F N opposing the motion of the lift.

The load experiences a constant normal reaction of magnitude 768 N $\,$ from the floor of the lift and there is a constant tension of 4500 N in the cable of the lift.

Determine the value of F.

30 N

α

Question 15 (***

A small box, modelled as a particle of mass 2 kg, is pushed up a rough plane inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$, by a horizontal force 30 N, as shown in the above figure.

The force acts in a vertical plane, which contains the box and a line of greatest slope of the plane. The box starts from rest and accelerates a distance of 5.5 m up the plane, in 2 seconds.

Determine the value of the coefficient of friction between the box and the plane.

 $\mu \approx 0.200$

R at a	1 20 { ana 2
x 2	Lasa = 4
$f = \frac{1}{2} + $	$\label{eq:constraints} \begin{split} &\frac{\mathbf{A}_{\mathbf{a}}\mathbf{A}_{\mathbf{b}}A$
= 2-75 W15-2	$f^{\mu} = \frac{3006}{20000 + 34000 - 5.5}$ $f^{\mu} = \frac{24 - 11.76 - 1.5}{81 + 15.68} = 6.74$ $f^{\mu} = 0.200$

Question 16 (***+)

A particle of mass 0.5 kg, is projected with speed of 7 ms^{-1} up the line of greatest slope of a rough plane inclined at an angle 30° to the horizontal. The particle experiences no other resistance except ground friction. The coefficient of friction between the particle and the plane is 0.3.

- a) Given the particle comes to instantaneous rest before it reaches the end of the plane, find the distance it moves up the plane.
- **b**) Determine the time it takes the particle to return from its highest position on the plane to its original starting position.

 $d \approx 3.29 \text{ m}$

 $t \approx 1.67$ s

Question 17 (***+)

When a particle is gently placed on a rough plane inclined at an angle of 30° to the horizontal, it is at the point of slipping down a line of greatest slope of the plane.

 $4\sqrt{3}$ N

30°

When a horizontal force of magnitude $4\sqrt{3}$ N is acting on the same particle and on the same incline plane, as shown in the above figure, the particle is accelerating up a line of greatest slope of the plane with constant acceleration 0.2 ms^{-2} .

This horizontal force acts in a vertical plane, which contains the box and a line of greatest slope of the plane.

Determine the mass of the particle.

 $m = 0.4 \, \text{kg}$

Question 18 (****)

A child of mass m kg, is sitting over the shoulders of his father whose mass is 80 kg. The father, with the child over his shoulders, is standing in a lift of mass 800 kg. When the tension in the cable of the lift is 9050 N, the lift and its occupants is accelerating, with the shoulders of the father exerting a force of 250 N on the child.

Determine the value of m.

Question 19 (****)

A particle is projected from a point A, **down** the line of greatest slope of a smooth incline plane and moves along a straight line with constant acceleration of 7.84 ms⁻².

The particle experiences a constant normal reaction force of magnitude 29.4 N, throughout its motion.

a) Determine the mass of the particle.

The particle reaches the point B, 2.5 s after being projected and the point C, 1.5 s after passing through B.

b) Given further that the distance AC is 100 m greater than the distance AB, find the projection speed and the distance AB.

m = 5 kg

 $u = 10.6 \text{ ms}^{-1}$

||AB| = 51 m

Question 20 (****+)

A particle is projected **down** the line of greatest slope of a rough incline plane and moves along a straight line with constant acceleration $a \text{ ms}^{-2}$.

The particle achieves a speed of 24 ms^{-1} , 7 s after projection and covers 180 m in the first 10 seconds of its motion.

a) Assuming that the above described motion takes place entirely on the slope of the plane, determine the value of *a*.

The plane is inclined at $\arctan \frac{4}{3}$ to the horizontal.

b) Calculate the coefficient of friction between the particle and the plane.

a = 3

≈ 0.823

Question 21 (****+)

A box of weight 735 N is pulled up a line of greatest slope of a smooth incline plane by a constant force F, of magnitude 708 N, which acts in a direction parallel to the line of greatest slope which the box is moving on.

The plane is inclined at $\arcsin\frac{4}{5}$ to the horizontal.

The box starts from rest from point A on the plane and when it achieves a speed of 8 ms^{-1} , F is removed.

Show that the box returns to A, approximately $3\frac{1}{2}$ seconds after F is removed.

SM0= + $B_{S,SM}\theta = 7Sa$ 759

 $\begin{array}{l} \begin{array}{c} (u = 8 \ w_{1}^{2}) \\ (u = 8 \$

Question 22 (****+)

A puck is struck and given an initial speed of 14 ms^{-1} along an ice rink.

The puck travels in a straight line for 50 m until it hits the padding at the end of the rink, rebounding at half the speed with which it had before the impact with the padding.

After rebounding the puck travels in a straight line coming to a stop at the exact point at which it had originally been struck from.

Be modelling the puck as a particle and ignoring air resistance, determine the coefficient of friction between the puck and the rink.

$\mu = 0.04$
ZXIMANYA HATW ZMATSATE
$\frac{v_{\pm}}{r_{\pm}} \stackrel{e}{\longrightarrow} a \longrightarrow \stackrel{e}{\rightarrow} \stackrel{e}{\rightarrow} e^{\mu} e^{-\mu} a$
$ \begin{array}{c c} u_{1} = U_{1} & V_{1}^{*} = U_{1}^{*} + V_{2} + V_{2} \\ u_{2} = U_{2} & V_{2}^{*} = U_{1}^{*} + V_{2} + V_{2} \\ S_{1} = S_{2} & V_{2}^{*} = U_{1}^{*} + V_{2} - V_{2} \\ S_{2} = S_{2} & V_{2}^{*} = U_{2}^{*} - V_{2} \\ v_{2}^{*} = V_{2}^{*} + V_{2} \\ v_{2}^{*} = V_{2} \\ v_{2}^{*} + V_{2} \\ v_{2}^{*} = V_{2} \\ $
DEBEDONOS WITH HANF THE SPEED) IL \$ X 196-980H
HE ACCELLERTION (AUCH, SHEELLERTION) I THE SHAFE

E MOTEGERATION (MOULT SECTIONING) I THE PLANE
$\begin{array}{c c} u = \frac{1}{2\sqrt{14k} - \frac{960\mu}{4}} & \eta q^{2} - u^{2} + \eta q^{2} - u^{2} + \eta q^{2} + u^{2} + u^{2} + \eta q^{2} + u^{2} + $

Question 23 (*****)

A child is sitting over the shoulders of his father whose mass is 100 kg.

The father, with the child over his shoulders, is standing in a lift of mass 900 kg.

When the tension in the cable of the lift is 10200 N, the lift and its occupants is accelerating, with the child exerting a force of 200 N on the shoulders of his father.

Find the magnitude of the force exerted by floor of the lift to the feet of the father.

R = 1200 N

Question 24 (*****)

A particle of mass 6 kg, is pulled by a light inextensible string along a rough horizontal surface, where the coefficient of friction between the particle and the surface is 0.75.

The string is inclined at an acute angle to the horizontal.

If the tension in the string remains constant at 60 N, but the angle in the string can vary, determine the greatest magnitude of the acceleration of the particle.

(9): R+60am0=6g (6punuBRuum (→): 60cas0-pR=ma) ' µR	R	4 7 ⁶⁰
⇒ 6a = 606000-3.R	-	Ţ	,
— 6a = 60200 = 2		Gg	(h=0.52)
$(\theta mzol - g) = 0 \cos 0 = 0 = 0 = 0$			
$= a = 100000 + \frac{15}{2} \text{sm}\theta - \frac{3}{48}$	\$		
=) 20 = -102ml0 + 20020			
Soming the stro yithos			
$\frac{20001}{2000} = \frac{10000}{2000} = \frac{10000}{2000}$ $\frac{20001}{2} = 600201$ $\frac{10000}{2} = 600000$			
$2a_{2} + 4meJi = -152$ $2a_{2} + 6meJi = -152$ $2a_{2} + 2meJi = -1520$ $2a_{2} + 2meZi$ 4me = -5 = -6meZi	= <u>3</u> or	$\cos\theta = \frac{4}{3}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	= <u>3</u> or	cosθ = <u>4</u>	
$\frac{\partial G}{\partial t} = -10000 + \frac{1}{2}000$	<u>- 3</u> or	$\cos\theta = \frac{U}{2}$	

 $a_{\rm max} = 5.15 \ {\rm ms}$

A particle of mass 2 kg is released from rest from a point A on an incline plane and begins to move down a line of greatest slope of the plane.

The plane has a different coefficient of friction at different sections so the resistance to the motion of the particle has different values at different sections of the plane, as the particle slides down.

The particle accelerates uniformly to a speed of 9 ms⁻¹ in 6 s as it reaches point B.

The coefficient of friction increases at B so the particle continues to slide down with constant deceleration for 10 s achieving a speed of 5 ms^{-1} as it reaches point C.

At C the particle is instantaneously projected with speed U ms⁻¹, up a line of greatest slope of the plane, coming to rest at B.

If the **normal** reaction between the plane and the particle has a magnitude of 15.68 N , determine the value of U, correct to 2 decimal places.

 $=\sqrt{1702.4} \approx 41.26$

[solution overleaf]

"asm	1
Created by T. Mada	S

asm asm	Created by T. Madas
Alls Alls	(N) THE QUERTIAL IT THER + WHILE TO SEE MAT COMMANDIAL ARE ALIGNET? (N) THE QUERTIAL IT THER + WHILE TO SERVICE (NO SERVICE) (NOR) THE MODIFY BALL OF RULE O
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
I.K. I.C.	$a_{1} \frac{\Delta z}{\Delta z} = \frac{s_{-4}}{u-c} = \frac{1}{tb} = 0.4$ $a_{1} \frac{\Delta z}{u-c} = \frac{1}{tb} $
	$\frac{\text{Mext loobus AT THE SEED THE GRAd}}{\text{Minter 145}} \times 10$ $\frac{9}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$
asin 1202	
The Man	is the the
1.K. 1.C.	BILL PROPERTY
	na p n
	the alle alle all
· Kon · K	Co Ko Ko IV
n B	Created by T. Madas
adas adash	

STRATISCORT F.Y.G.B. TRACESTRATISCORT F.Y.G.B. TRACESTRATIS

T. T. C.B. IN2023 IN2018 COM I. Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST