The comparison of the second s ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

Question 1 (**)

Two particles, A and B, of respective masses 2 kg and M kg are moving on a smooth horizontal surface, in the same direction along the same straight line.

The speeds of A and B are 4 ms^{-1} and 2 ms^{-1} , respectively.

Given that when A and B collide they coalesce into a single particle C, travelling with speed 3.6 ms⁻¹, determine the value of M.

Question 2 (**)

Two particles A and B, of mass 4 kg and 1 kg respectively, are moving towards each other along a straight line on a smooth horizontal plane. The particles collide directly and the magnitude of impulse exerted on A by B is 6 Ns.

Before the collision, the respective speeds of A and B are 3 ms^{-1} and 2 ms^{-1} .

Determine the speed of A and the speed of B, after the collision.

C.M	
, I	$v_A = 1.5 \text{ ms}^{-1}$, $v_B = 4 \text{ ms}^{-1}$
all.	no.
	STAT WITH + "COULID" DIAFRAM"
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	What we samware a summary to a surful
<u>)</u>	Boundary A first $-$ so inclosed $-$ so inclosed $-$ so inclosed $-$ so
6 1 2	BY CONSTRUCTION OF MONINELL
50	$ \begin{array}{l} (3x4) - (1x2) &= 4y + 1v \\ 12 &- 2 &= 4x1.5 + v \\ 10 &= 6 + v \\ v &= 4 & (ni \ The \ Directory \ MR2nb) \end{array} $
5	: _\$\$\$\$\$ OF L U 1.5 km[" q \$\$\$\$0 OF B & 4 km[]

Question 3 (**)

A rail car A of mass 3m is moving with constant speed 4U on smooth straight horizontal rails. It collides directly with another rail car B of mass 7m which is moving with constant speed 6U in the opposite direction on the same rails.

The rail cars' couples join so that immediately after the collision they move together.

The rail cars are modelled as particles.

- a) Find, in terms of U, the speed of the rail cars immediately after the collision.
- b) Determine, in terms of m and U, the magnitude of the impulse exerted on A by B in the collision.

speed = 3U, impulse = 21mU

Question 4 (**)

A particle P, of mass 0.3 kg lies at the edge of a horizontal table.

It is connected by a light inextensible string of length 1.5 m to another particle Q, of mass 1.1 kg which lies the same table.

Q is at rest 0.6 m from the table edge, so that PQ is perpendicular to the table edge.

P is slightly disturbed so that it falls off the table.

The string becomes taut before P reaches the floor.

Determine the impulse received by Q when the string gets taut.

		P
1 = 0 ms-1	$V^2 = \chi^2 + 2\alpha S$	×0-2.1 9
c = 9.8 ms ⁻²	V2= 2(9.0)(sr)	
tz l	Nº 17-64	
V = ?	$V = 4.2 \ {\rm Ms}^{-1}$	
	Q P φ + 1·(x0 = 0·3.V + 1·(1) 34661-JEEK Μουμβανι ΑΓΓΙ 1·26 = 1·44	
	BIBEF JERK MOMATION AFT.	e Hee.
Момудия	BKBEI-JERK NounDim AFTI 1-26 = 1.44V V = 0.9 w√ ³ <	e Hee.
Manghan NAWY IMPULSE at	BKBEI-JERK NounDim AFTI 1-26 = 1.44V V = 0.9 w√ ³ <	e delle.
hushminu ho 32109111 YUNAL M = I	Bibli Jetik Monalitin AFT 1.26 = 1.4V $V = 0.9 wc^{-1} < \frac{1}{2}$	e delle.
низниски но 32109411 12046 и = I и = I	26661-3628 Noundinn Afri 1.26 = 1.4√ V = 0.9 w.c ² < 1.9 0465704 Afril - NOUNSUM Bi mi - miu	e delle.

I = 0.99 Ns

Question 5 (**+)

Two particles A and B, of mass m kg and λm kg respectively, $\lambda > 0$, are moving on a smooth horizontal plane.

A and B have velocities $6\mathbf{i} - 2\mathbf{j} \text{ ms}^{-1}$ and $-3\mathbf{i} + 3\mathbf{j} \text{ ms}^{-1}$, respectively.

A and B collide and coalesce to a single particle moving with velocity $k\mathbf{i} + k\mathbf{j} \text{ ms}^{-1}$.

Determine the value of λ and the value of k.

 $\lambda = \frac{4}{3}$

 $k = \frac{6}{7}$

Question 6 (**+)

Tom, of mass 50 kg, is initially standing still on a stationary skateboard, on level horizontal ground.

He jumps off the skateboard and initially moves with a horizontal speed 1.2 ms^{-1} . The skateboard moves with a speed of 15 ms^{-1} in a direction opposite to that of Tom.

William then stands still on the same skateboard. He jumps off the skateboard and initially moves with a horizontal speed 1 ms^{-1} while the skateboard moves with a speed of 14 ms^{-1} in a direction opposite to that of William.

Find the mass of William.

STARTWOOH & BIROCE/AFTIRE DIA	teiram - le	⊤ии &е п н е	LIMM 2 DEPOSITIONS
0			
M+50	[<u>w</u>]	(> POSITIVE
	SPACEBONED GAFT		
(BEFORE)	CHIL	rnc)	
BY CONSIDUATION OF MONIFLUM			
(m+20)×0 = -(o×1·2)	
0 = -0			
WL = 4	ky		
SILLIARDY WITH WOLLAW - LET	M BE THE W	use of will	AM
->0	14		
M+4	4	M 2	POSITILE
WILLIAM ON SCATEBOARD SC	Atteoneo I	COLLAN.	
(BEFORE)	(-AFthe)		
BY GORIANOU TO GOUTAWARD A	(CHIN)		
(M+4)X0 = -(14×4	+ (M×L)		
0 = -56 +	м		2.
02 = M			

Question 7 (***)

Two particles A and B, of mass 3 kg and m kg respectively, are moving towards each other along a straight line on a smooth horizontal plane.

A and B collide directly.

Before the collision, the respective speeds of A and B are 6 ms^{-1} and 4 ms^{-1} .

- a) If the magnitude of impulse exerted on A by B is 30 Ns, determine the speed of A after the collision.
- b) Given instead that that the speed of B after the collision is 2 ms^{-1} , find the possible values of m.

 $|v_A| = 4 \text{ ms}^{-1}$

a) TRETING WITH & DIMERAN
G t u v
INPULSE ON & HAS MARY TUDE 30
HOMMONY OF 4 AFTRE - MOMMONY OF A BREAR: = - 30
30 - 6x3 = -30
3u - 19 = -30
$\exists u = -12$
a = -4 (DNUGTON) OPPOZITIUM TO THAT MARLEED)
- Step 15 4.45
b) USING $u = -4$ & two creation $v = \pm 2$
38/ Constrauttion of Louisour
• IF V=2 • IF V=-2
$(6x_3) - (4w_1) = 3(-4) + 2w_1$ $(6x_3) - (4w_1) = 3(-4) - 2w_1$ $(6 - 4w_1 = -12 + 2w_1$ $(8 - 4w_1 = -12 - 2w_1$
30 0
30 = 2m $M = 5ky$ $M = 15ky$

m = 5 kg or 15 kg

Question 8 (***)

Three smooth particles, A, B and C, of respective masses 0.5 kg, 1 kg and 2 kg, are moving in the same straight line and in the same direction. The motion takes place on a smooth horizontal surface.

The speeds of A, B and C are 4 ms^{-1} , 3 ms^{-1} and 2 ms^{-1} , respectively.

Initially there is a direct collision between A and B, followed by another direct collision between B and C.

As a result of the second collision, *B* and *C* coalesce into a single particle moving with speed of 2.5 ms⁻¹.

Determine the magnitude of the impulse received by A during the first collision.

ł	TH	E IMPLISE ON - A CAN BE FOUND
	=	Othinge in momentum
	14	m U _ m(4)
	e	4×2.0 - E ×2.0
	1	-0.5 NS

 $||I| = 0.5 \text{ Ns}^-$

E MARITOR OF OS NS "EXCENTEDS"

Question 9 (***)

A large nail of mass 0.05 kg is partly driven horizontally into a bock of wood and it is to be driven further into the block.

The nail is stuck by a hammer of mass 0.4 kg. The hammer moves horizontally and impacts the nail, delivering 1.8 Ns of linear momentum. After the impact the nail and hammer move together as one object.

a) Calculate the speed of the nail after the impact.

The wood provides a constant resistance to the motion of the nail of 120 N. After the impact the nail moves for T s advancing a further distance D m into the block.

 $v = 4 \text{ ms}^{-1}$

b) Determine the value of T and the value of D.

	1
a) BY A DIAGRAM	
RAYL HOWAR WALL HOWAR (BHORE) (AFTH)	
Matrix of the 2006 1 wants of functions of function $W = 4 wants W = 4$	ΨŚW
b) IMPUSE = EXTRAMPL FORCE X TIME ACTING	
$4 \times 0.45 = 120 \times T$ 1.8 = 120T T = 0.0154	
C) ASING KINGMATICS	
$\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	

|T = 0.015 s|, |D = 0.03 m|

Question 10 (***)

Two particles P and Q of respective masses 2 kg and 3 kg move on a smooth horizontal surface in the same direction along a straight line.

The speeds of P and Q are 4 ms⁻¹ and 2.5 ms⁻¹, respectively.

a) Given that when P and Q collide they coalesce into a single particle R, determine the speed of R after the collision.

After the collision R continues in a straight line and collides directly with a third particle S of mass 15 kg which was initially at rest. After their collision R and S move in opposite directions with equal speeds.

b) Find the distance between R and S, 3.6 s after their collision.

Question 11 (***+)

Two smooth spheres of equal radius, A and B, of mass 3 kg and m kg respectively, are moving in the same direction, along a straight line on a smooth horizontal plane.

The spheres collide and the magnitude of impulse exerted on B by A is 15 Ns.

Before the collision, the respective speeds of A and B are 8 ms⁻¹ and 2 ms⁻¹

After the collision *B* is moving with speed 2 ms^{-1} relative to *A*.

Determine the value of m and the speed of B, after the collision.

m = 5 kg $v_B = 5 \text{ ms}^-$

 ∂ 3 √ A B (Befold) 	4 <u>4+2</u> 3 (m) → B (AFTH2)	POSITIVE
● <u>By Cause(U) Attal of Mar</u> (3x8) + (2xm) = 3u (3x8) + (2xm) = 3u 34 + 2m ² = 3u + 1n <u>Inu + 3u</u> = 24	+ m(u+2)	$\frac{BY}{MRUSCON \cdot B}$ $\frac{M(u+2)}{M(u+2)} - \frac{M(x)}{M(u+2)} = 15$ $\frac{M(u+2)}{M(u+2)} - \frac{M(x)}{M(u+2)} = 15$
e 1:	S+ 3u = 24 3u = 9 <u>u = 3</u> :. M= 5 kg	= 5 m ²

Question 12 (***+)

Two smooth particles, A and B of respective masses 2m kg and 5m kg, are moving in the same straight line and in opposite directions.

The motion takes place on a smooth horizontal surface.

The speeds of A and B are 8 ms^{-1} and 3 ms^{-1} , respectively.

There is a direct collision between A and B.

If, after the collision, the speed of one particle is twice as large as the speed of the other particle determine the possible values of he speed of B, after the collision.

	4211	• .		212	
USING & STANDAR	D COLLISION DIAGRAM	। 	HTNU, OKKTE	A THE PASTIST	
8 3 (24) (54)	(24) (56) POSITIVE	24 24 (24)	(Jm)	→ -4mu + Smu = → wu = W	щ
4 B (ŝtices)	* 8 (AFTRE)	*	B	≪⇒ 4=1	
FIRST LET US NOTE	<u>πηματ Β ήμας το μουε το πημε "βιοητ"</u> μεε = (6μ - 15μ = ∔m)			∴ SHEED OF B = [Wy7	
	THE RUDDING CHEES	т. 	E ROSSABLE STR	ERDS OF B ARE 0.167, 0.25,1	
24 (A ₁) (S ₁₀)	⇒ 2mu + lownu = m ⇒ 12mu = m				
	\implies $l_{l} = \frac{l}{l^2}$			· · · · · · · · · · · · · · · · · · ·	
W, aucoso HTOE	: SP(6) of $B = 2x \frac{1}{5} = \frac{1}{5} = 0.167 \text{ ms}^{-1}$				
<u>→</u> 24					
	$\Rightarrow -2m_{H} + 10m_{U} = M$	6			
(241) (544) A B					

Question 13 (***+)

Two particles, A and B, of respective masses 2 kg and 13 kg are moving on a smooth horizontal surface in the same direction along the same straight line.

The speeds of A and B are 6 ms^{-1} and 2 ms^{-1} , respectively.

The two particles collide at the point P and **after** this collision B is moving with a speed of 3 ms^{-1} .

After the collision at P, B hits a fixed smooth vertical wall, which is perpendicular to the direction of its motion.

The wall is at a distance of 3 m from P.

If B rebounds off the wall with speed 1 ms^{-1} and collides again with A at the point Q, find the time that elapses between the collision at P and the collision at Q.

t = 8

Question 14 (****)

A particle is at rest on a horizontal surface when it explodes into two particle parts, A and B, of respective masses 0.4 kg and 0.6 kg.

a) Given that the speed of A immediately after the explosion is 12 ms^{-1} , determine the speed of B.

In the subsequent motion, A experiences no resistance or ground friction but B experiences **constant** ground friction.

2.55 m⁻

The explosion takes place 2.55 m away from a smooth vertical wall which is perpendicular to the direction of motion of A.

A has a perfectly elastic collision with the wall, it rebounds and collides directly with B, 0.75 s after the explosion.

All collisions are instantaneous.

b) Show that the speed of B just before the two particles collide is 2.4 ms⁻¹

c) Calculate the coefficient of friction between the ground and B.

 $\frac{16}{24} \approx 0.762$ $V_B = 8 \text{ ms}^{-1}$ II =

A, B

Question 15 (****)

Three particles A, B and C, of respective masses 4 kg, 3 kg and 1 kg, are moving along the same straight line, on a smooth horizontal plane.

The figure above, shows the particles at a certain instant when \overline{A} and \overline{B} are moving towards each other with respective speeds $u \text{ ms}^{-1}$ and 7 ms^{-1} , and C is moving in the same direction as \overline{B} with speed 3 ms^{-1} .

An initial collision take place between A and B, followed by a second collision between B and C. It is not known whether more collisions take place.

Immediately after the second collision, *B* is at rest and the speeds of *A* and *C* are 1 ms^{-1} and 6 ms^{-1} , respectively.

Determine the possible values of u.

 $u = 6.5 \text{ ms}^{-1} \cup u = 8.5 \text{ ms}^{-1}$

Question 16 (****)

Two particles, A and B, of respective mass 3 kg and 2 kg are moving in the same direction in the same straight line on a smooth surface.

The particles collide.

Before the collision the speed of A is 7 ms⁻¹ and the speed of B is 5 ms⁻¹

The distance between the two particles 3 s after the collision is 2.7 m.

Determine the speed of A and the speed of B after the collision.

 $V_A = 5.84 \,\mathrm{ms}^{-1}$, $V_B = 6.74 \,\mathrm{ms}^{-1}$

オネズ	ž
3 2 3	2 Seconder
Trees AF	Re
BY CONSELUCTION OF MONTHING	THEY ARE SEPARATING AT THE RATE
⇒ (3x7) + (2x5)= 3X + 2Y	OF Y-X PRE SECOND
-9 21+10 = 3x+2y	⇒ (×-×)+3 = 2.7
$\Rightarrow 3x + 2y = 31$	⇒ Y-× ≈ ••9
	⇒ >= ×+0.4
SOLULING SIMULTANGOUSLY	
→ 3×+2(×+0.9) = 31	
$\Rightarrow 3x + 2x + 1.8 = 31$	
⇒ Sx = 24.2	
⇒ x = 5.84	
-> Y= 6.74	
	1. Va = 5.84 4 Ya=6.74
NOTE THAT IF WE NODEL WITH >	< BACKWARDS (IE A EABOUNDS)~~
21+10=-3x+27 3a	NOW (X+Y)×3 = 2.7
31= -3x + 2Y	X + Y = 0.9
R= -3(07-7)127	- x- on y
3l = -27 + 34 + 24	the first sector of the sector of the sector sector of the

Question 17 (****)

Two small smooth spheres of equal radii, A and B, are moving on the same straight line and in the same direction.

A has mass 5 kg and speed 4 ms⁻¹ and B has mass 2 kg and speed 3.5 ms^{-1} .

The spheres collide directly and after the impact the direction of their motion remains unchanged, with the speed of B twice as large as the speed of A.

After the collision between A and B, B collides with a smooth vertical wall which is perpendicular to the direction AB. The wall is 3 m away from the point where the two spheres first collided.

After the impact with the wall the speed of B is $\frac{1}{4}$ of its speed before the impact.

Calculate the time that elapses between the first collision and the second collision of the two spheres.

≈ 0.833 s

SP40 is $(\frac{1}{2} \circ \epsilon 6)$ "B" Journey to the WAU "A" J Spece <u>Dividue</u> Div THAT Div = $\frac{3}{t}$ $6 - \frac{3}{t}$	тан так шал ано енболос шту ылган так шал алган адаган алган адаган алган адаган
$\begin{array}{c} (Sreb \vdash (2x35) = 3x_{1} \vdash 4x_{2} \\ 37 = 9x_{1} \\ u = 3 \\ 38 + 180 + 0.5 + 50 \\ 38 + 180 + 0.5 + 50 \\ 38 + 0.5 + 50 \\ 38 + 0.5$	тан так шал ано енболос шту ылган так шал алган адаган алган адаган алган адаган
$\begin{array}{c} \underline{SW0} \ 1 \leq \ (\frac{1}{2} \leftrightarrow G) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	сыджу то ПНС ' ВСЦТ' ХПАКТ = СИНДАТИН d = И X O-S
$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	579467 = 68682×7647 d = и x 0.5
$SNS = \frac{bVNAC}{TIRH} $ So $Q_{11} = \frac{1}{2}$ $C_{1} = \frac{1}{2}$ t = e.C. Tirkey AFTO & FLEOURS.	579467 = 68682×7647 d = и x 0.5
$2u = \frac{3}{4}$ $h = \frac{3}{4}$ $h = \frac{3}{4}$ $t = 0.5$ $h = \frac{1}{2}$ $h = \frac{1}{2}$ $h = \frac{1}{2}$	d= uxo:s
$2u = \frac{3}{4}$ $h = \frac{3}{4}$ $h = \frac{3}{4}$ $t = 0.5$ $h = \frac{1}{2}$ $h = \frac{1}{2}$ $h = \frac{1}{2}$	
$h - \frac{3}{4}$ $\pm 2 = 0.5$ <u>finally After & resources</u>	
	d = 3×05
THOMA AFTINE B DEBOUNDS	ch = 1-5
0	CI.E HALFWAY)
0	
0	14_1
	\bigcirc
ADDING THE SPEEDS 12+3=45	
$Trup = \frac{2i(\pi_0)(t)}{spinor} = \frac{1\cdot S}{4\cdot S} =$	
	L
$\frac{1}{2}$ $\frac{1}{2}$ $+\frac{1}{3} = \frac{5}{5}$	

Question 18 (****+)

A block A of mass 4 kg is released from rest from a point P which is at a height of 6 m above soft horizontal ground.

The falling block strikes another block B of mass 1 kg which is on the ground vertically below P.

Immediately after the impact the two blocks coalesce into a single block and move downwards coming to rest after sinking a vertical distance of 20 cm into the ground.

By modelling the blocks as particles, find the magnitude of the **constant** resistance offered by the ground.

	1000
STARTING 1004 STANDARD KINEMATICS	
$\begin{array}{c} \begin{array}{c} 0 & 1 \\ \frac{4}{\sqrt{2}} & 2\sqrt{2} \\ \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} & \frac{4}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} & 4$	t m ² 1
BY CONSERVATION OF UNHAR MOMERIUM	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117-6'
BETURN TO KINAWATICS AGAIN TO CANWLATE THE	Diceleration)
$\begin{array}{c} \begin{array}{c} \displaystyle u_{i} = \frac{u_{i}}{2} \sqrt{u_{i}} \frac{v_{i}}{c^{T}} w_{i}^{T} \\ \displaystyle a_{i} = \frac{v_{i}}{2} \\ \displaystyle S = -\frac{v_{i}}{2} \frac{v_{i}}{c^{T}} \\ \displaystyle t_{i} \\ \displaystyle v_{i} = 0 \end{array} \qquad \qquad$	176 + 2a×02 4 + 04a
	S mus 2

2	fively by the equation of without	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

R = 989.8 N

Question 19 (****+)

5 ms⁻¹

Three small spheres A, B and C, all of equal radius, have respective masses 0.9 kg, 0.6 kg an 0.1 kg. The three spheres are placed on a smooth incline plane as shown in the diagram. Sphere A is projected from the foot of the plane up the plane with speed 5 ms^{-1} while spheres B and C are released from rest at the same time as A was projected. The plane's inclination is such so that any of the spheres moving freely on it, experiences an acceleration of 2.5 ms^{-2} down the plane. Any collisions that take place are instantaneous.

- a) Given that A and B collide 0.4 s after A was projected and they coalesce when into a single particle P, determine the **velocity** of P after the collision.
- **b**) Given that P and C collide 0.6 s after A and B collided and they coalesce into a single particle Q, determine the **velocity** of Q after the collision.

c) Find the distance from the foot of the plane that Q first comes to rest.

= 2 ms⁻¹, up the plane, $v_0 = 0.3125$ ms⁻¹, up the plane, $d \approx 2.57 \,\mathrm{m}$ 4 COLUSION -DIAGRAM FOR LONDRE THE MO TOR ATB = P 2 -2.5 x0.4 0.5 m a=-25 5 - 2.5 x0.4 0+2.5×1 V= 4 45+ t=0.6 V=05 = 2.5 2.5 ME \$= = = (5+4) x0.1 \$= = = (2+0.5) x0 \$= 0.75 $v^2 = u^2 + 2as$ 0=(0-3125)+2(-25) 55 = 25 NOVAD CONSECUTION \$ = 256 → (4x0.9) - (1x0.6) = 1.5> (1.0x2.5) - (2.1x2.0) 1.5 8 - 3 1.6Y = 3289 든 ~ 2.57 m

Four particles A, B, C and D, of respective masses 8 kg, 2 kg, 3 kg and 1 kg are constrained to move on a smooth path along the x axis.

All four particles are initially at rest, separated from each other and in the order A, B, C and D, as shown in the figure above.

At a given instant, impulses are given to A, B and C so these three particles begin to move with respective velocities 7 ms^{-1} , -3 ms^{-1} and 4 ms^{-1} .

As result of these impulses, there are **exactly three** collisions between the particles.

The first collision is between A and B.

After this collision A has velocity 4 ms

The second collision is between C and D.

After this collision C and D coalesce into a single particle E.

The final collision is between B and E.

Determine the range of values for the velocity of E after the third and final collision.

[solution overleaf]

< V

	asinary.	Created by T. Madas	asinari.	asinath,
		$\begin{array}{c} \label{eq:states} SMCTING: WITHIN THE FIGT: (SUBLED) THETHAGE A \in \mathbb{R} \\ \hline 0 & 2 & -2 & -2 & -2 & -2 & -2 & -2 & -$	$\begin{array}{rcl} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \\ \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	
I.V.C.p	· C	$\begin{array}{c} \underline{s} & \underline{s} \\ $	$\frac{2 < A^{6} < \pi}{2 < A < \pi}$ $\Rightarrow A > 2$ $\Rightarrow A > 2$ $\Rightarrow A > 2$ $\Rightarrow A > 2 < 2$ $\Rightarrow A > 2$	1. K.C.
	120282	$s \in s \in \frac{4.700}{10}$ to so unit assas $\times > v_n - t$	-U3SM2-	
The second		Con Consec		
I.V.C.	1. Y.C.		. I.J. 	1.1.6
			1202	
			madasman Com	
	1.1.		. I.F.	
nadasn	Inadasm.	Created by T. Madas	p D	nadasm.
-428x	asp.	- CD2-	- asn	SD.

Question 21 (*****)

Two particles, A and B, of respective masses 2 kg and 13 kg are moving on a smooth horizontal surface in the same direction along the same straight line.

The speeds of A and B are 6 ms^{-1} and 2 ms^{-1} , respectively.

The two particles collide at the point P and after this collision A and B are moving in opposite directions.

After the collision at P, B hits a fixed smooth vertical wall, which is perpendicular to the direction of its motion. The wall is at a distance of 3 m from P.

The two particles collide again at the point Q.

If *B* rebounds off the wall with a speed of 1 ms^{-1} and the time that elapses between the collision at *P* and the collision at *Q* is 8 s, determine the speed of *A* and the speed of *B* after their collision at *P*.

3+ 3× BY

TRIOUGH BY 40- 134 & Y-114 = (BY-3) (40-13) 1044²-394-3204+120+454 15TY +3=0 THE SPEEDS DEPUIRED ARE V = 0.5 m2.0 = V

 $V_B = 3 \text{ ms}$

 $V_A = 0.5 \text{ ms}^{-1}$

(*****) Question 22

A bullet of mass m is fired onto a rectangular piece of foam board of mass M.

The foam board has constant thickness and a bullet is fired at right angles to one of its two rectangular faces.

On the first occasion the foam board is fixed.

The bullet hits the board with speed u and emerges from behind with speed $\frac{1}{2}u$.

On the second occasion the foam board is free to move. The bullet hits the board with speed u and emerges from behind with speed $\frac{1}{4}u$ relative to the board.

proof

POSITIVE

BEFORE

Show that M = 4m.

