SERIES
 79 EXAM
 QUESTIONS

SUMMATIONS

BY FORMULAS

17 BASIC QUESTIONS

Created by T. Madas

Question 1 (**)
Use standard results on summations to find the value of

Question 2 (**)
Use standard results on summations to show that

$$
\sum_{r=1}^{n} r(r+1)(r+5)=\frac{1}{4} n(n+a)(n+b)(n+c)
$$

where a, b, and c are positive integers to be found.

Created by T. Madas

Question 3 (**)
Use standard results on summations to show that

$$
\sum_{r=1}^{n}\left[r^{2}(r-1)\right]=\frac{1}{12} n(n-1)(n+1)(3 n+2)+m
$$

where m is an integer to be found.

Question 4 (**)
Use standard results on summations to show that

Created by T. Madas

$$
F(r) \equiv \sum_{n=1}^{r}[n(n-1)(n+2)]
$$

Use standard results on summations express $F(n)$ in fully factorized from.

Find, in fully simplified factorized form, an expression for the sum of the first n terms of the following series.

$$
(5 \times 3)+(11 \times 7)+(17 \times 11)+(23 \times 15)+\ldots
$$

\square

$$
n^{2}(8 n+7)
$$

\square

Created by T. Madas

Question $7 \quad(* *+)$
Show by using standard summation results that ...
a) $\ldots \sum_{r=1}^{n}(r+1)(r+5)=\frac{1}{6} n(n+7)(2 n+7)$.
\square , proof
b) $\ldots \sum_{r=11}^{40}(r+1)(r+5)=26495$.

,

Created by T. Madas

Question 8 (**+)
Show by using standard summation results that ...
a) $\ldots \sum_{k=1}^{n}\left(k^{2}-k-1\right)=\frac{1}{3} n(n+2)(n-2)$.

Created by T. Madas

Question $9 \quad(* *+)$

Find, in fully factorized form, an expression for the sum

Question 10 (**+)
Find, in fully factorized form, an expression for the sum

$$
\sum_{r=1}^{2 n}\left(3 r^{2}-\frac{1}{2}\right)
$$

Created by T. Madas

Created by T. Madas

Question 11 (***)
Use standard results on summations to show that

Created by T. Madas

Question 12 (***)
It is given that

$$
\sum_{r=1}^{n}[(3 r+a)(r+2)] \equiv n(n+2)(n+b)
$$

Determine the values of each of the constants a and b.
\square
, $a=1, b=3$

Procesed As fowows $\rightarrow \sum_{r=1}^{n}(3 r+a)(r+2) \equiv n(n+2)(n+b)$ $\Rightarrow 3 \sum_{r=1}^{n} r^{2}+(6+a) \sum_{r=1}^{n} r+2 a \sum_{r=1}^{n} 1 \equiv n^{3}+(2+b) n^{2}+2 b n$ $\Rightarrow 3 \times \frac{1}{6} n(3 n+1)(n+1)+(6+a) \times \frac{1}{2} n(n+1)+2 a n=n^{3}+(2+b) n^{2}+2 b n$ $\Rightarrow \frac{1}{2} n(2 n+1)(n+1)+\frac{1}{2}(6+a) n(n+1)+2 a n=n^{3}+(2+b) n^{2}+2 b n$ Expenvo THE LUS fuer $\Rightarrow n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n+\frac{1}{2}(b+a) n^{2}+\frac{1}{2}(6+a) n+2 a n \equiv n^{3}+(2+b) n^{2}+2 b n$ Cockna ar ate corffants of n^{2} \& b - $\frac{3}{2}$

Question 13 (***)
Show clearly that

$$
(1 \times 3)+(2 \times 4)+(3 \times 5)+\ldots+(n-5)(n-3)=\frac{1}{6}(n+6)(2 n+11)(n+5)
$$

80 .

Question 14 (***)
Use standard results on summations to show that

$$
\sum_{r=1}^{n}\left(3 r^{2}+r-1\right) \equiv n^{2}(n+2)
$$

\square , proof
$\stackrel{c}{3}$

Question 15 (***)
Use standard results on summations to show that

Question 16 (***)
Use standard results on summations to find the value of the following sum.
\square , 1600

Question 17 (***)
Use standard results on summations to show that

$$
\sum_{r=1}^{2 n} r^{3}-\sum_{r=1}^{n}(6 r-3)^{2} \equiv f(n)
$$

where $f(n)$ is written as a product of 4 linear factors.

SUMMATIONS

BY FORMULAS

15 STANDARD QUESTIONS

Created by T. Madas

Question $1 \quad\left({ }^{* * *}+\right.$)
Find the sum of the first n terms of the series

$$
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 5+3 \cdot 4 \cdot 7+4 \cdot 5 \cdot 9+\ldots
$$

Express the answer as a product of linear factors.

Question 2 (***+)
By using standard results, show that

Created by T. Madas

Question 3 (***+)
Determine the value of a and the value of b given that

Question $4 \quad\left({ }^{* * *+)}\right.$
Find, in fully factorized form, an expression for the following sum.

$$
\sum_{r=n}^{2 n}\left(r^{3}-2 r\right)
$$

$$
\square, \sum_{r=n}^{2 n}\left(r^{3}-2 r\right)=\frac{3}{4} n(5 n-4)(n+1)^{2}
$$

$=\frac{3}{4} n[n(n+1)(5+1)-4(n+1)]$
$=\frac{3}{4} n(n+n)[n(s n+1)-4]$
$=z^{3} n(n+1)\left(99^{2}+n-4\right)$
$=子^{2}(n n+1)(5 n-4)(n+1)$
$=\frac{3}{4} n(n+)^{2}(\operatorname{sn}-4)$

$=\frac{1 n}{4}\left[\operatorname{sn}(2 n+1)^{2}-(n-1)^{2}-8(2 n+1)+4(n-1)\right]$
$=\frac{1}{4}\left[6 n^{3}+16 n^{2}+4 n-n^{3}+2 x^{2}-n-66-8+4 n-4\right]$

$$
=\frac{1}{4} n\left[1 n^{3}+18 n^{2}-9 n-12\right]
$$

$$
\begin{aligned}
& =\frac{1}{4} n\left[5 n^{3}+68 n^{2}-9 n-12\right] \\
& =\frac{3}{4} n\left[5 n^{3}+6 n^{2}-3 n-4\right]
\end{aligned}
$$

bokn boe fotcors
$n=1$
$n=-1$
CONG Divide

Question 5 (***+)
It is thought that for some values of the constants p and q that

$$
\sum_{r=1}^{n} r^{2}(r+p) \equiv n(n+1)(n+2)(3 n+q)
$$

Use a detailed method to show that there exist no such values of p and q.

Created by T. Madas

Question 6 (****)
Use standard results on summations to solve the following equation.

Created by T. Madas

Question 7 (****)
It is given that

$$
\sum_{r=1}^{n}\left(A r^{3}+B r^{2}+C r\right)=n(n+1)(n+2)(4 n-5)
$$

Use a detailed method to find the value of each of the integer constants, A, B and C.
$\sum_{r=1}^{n}\left(A r^{3}+B r^{2}+C r\right)=n(n+1)(n+2)(4 n-5)$
Plocees As frumens
$f(n)=n(n+1)(n+2)((n-5)$ $f(n-1)=(n-1) n(n+1)(4(n-t)-5)=n(n-1)(n+1)(4 n-a)$ SBreatine we osithn Tite $n^{\text {Th }}$ Ttem $\rightarrow f(n)-f(n-1)=n(n+1)(n+2)(4 n-c)-n(n-1)(n+1)(4 n-4)$ $\Longrightarrow u_{n}=n(n+1)[(n+2)(4 n-5)-(n+1)(4 n-4)]$ $\rightarrow u_{y}=n(n+1)\left[4 n^{2}+3 n-10-\left(4 n^{2}-3 n+9\right)\right]$ $\Longrightarrow U_{4}=n(n+1)\left(V_{a n}+19\right)$ $\longrightarrow u_{4}=n\left(16 n^{2}-1 a_{4}+164-19\right)$ $\rightarrow u_{n}=16 n^{3}-3 n^{2}-19 n$ $\therefore A=16, B=-3, C=-19$ ATHPNANE By conptenc cosfriatos $\Rightarrow \sum_{r=1}^{n}\left(A r^{3}+B r^{2}+G\right) \equiv n(n+1)(n+2)(4 n-s)$ $\Longrightarrow A \sum_{r=1}^{n} r^{3}+B \sum_{r=1}^{n} r^{2}+C \sum_{r=1}^{n} r \equiv n(n+1)(n+2)(4 n-5)$ $\Rightarrow \frac{1}{4} A^{2}(n+1)^{2}+\frac{1}{6} 8 n(n+1)(2 n+1)+\frac{1}{2} C n(n+1)=n(n+1)(n+2)(4 n-5)$ $\Rightarrow n(n+1)\left[\frac{1}{4} A n(n+1)+\frac{1}{6} B(2 n+1)+\frac{1}{2} c\right] \equiv n(n+1)(n+2)(4 n-5)$

Created by T. Madas

Question 8 (****)
Show by a detailed method that

Question 9 (****)
The sum, S_{n}, of the first n terms of a series whose general term is denoted by u_{n} is given by the following expression.

$$
S_{n}=n^{2}(n+1)(n+2)
$$

a) Find the first term of the series.
b) Show clearly that ...
i. $\quad \ldots u_{n}=n(n+1)(4 n-1)$
ii. $\quad \ldots \sum_{r=n+1}^{2 n} u_{r}=3 n^{2}(n+1)(5 n+2)$.
\square , $u_{1}=6$
a) Triviat we thout
$u_{1}=f_{1}=1^{2}(1+1)(1+2)=1 \times 2 \times 3=6$
b) I) VSING $S_{n}^{\prime}-S_{n-1}^{\prime}=u_{n}$
$\Rightarrow u_{4}=\eta^{2}(n+1)(n+2)-(n-1)^{2}[(n-1)+1][(n-1)+2]$
$\Rightarrow u_{n}=n^{2}(n+1)(n+2)-(n-1)^{2} n(n+1)$
$\Rightarrow u_{n}=n(n+1)\left[n(n+2)-(n-1)^{2}\right]$
$\Rightarrow u_{4}=n(n+1)\left[y^{2}+2 n-\left(x^{2}-2 n+1\right)\right]$
$\Rightarrow u_{n}=n(n+1)(4 n-1) /$ is Equiems
II) $\sum_{r=n+1}^{2 n} u_{r}=\stackrel{\rho_{2 n}}{ }-\stackrel{\Phi}{\infty}$
$=(2 n)^{2}(2 n+1)(2 n+2)-n^{2}(n+1)(n+2)$
$=43^{2}(2 n+1) \times 2(n+1)-n^{2}(n+1)(n+2)$
$=n^{2}(n+1)[8(2 n+1)-(n+2)]$
$=n^{2}(n+1)(8 n+8-n-2)$
$=n^{2}(n+1)(15 n+6)$
$=3 n^{2}(n+1)(5 n+2)$

Created by T. Madas

Question 10 (****)
Use standard summation results to prove that

Created by T. Madas

Question 11 ($* * * * *)$
Use standard results on summations to solve the following equation
\square
(2) $k=4$

Created by T. Madas

Question 12 (****)

$$
\sum_{r=1}^{n}\left(a r^{2}+b r+c\right) \equiv n^{3}+5 n^{2}+6 n
$$

where a, b and c are integer constants.

Determine the value of a, b and c.

Question 13 (****)
The variance $\operatorname{Var}(n)$ of the first n natural numbers is given by

$$
\operatorname{Var}(n)=\frac{1}{n} \sum_{r=1}^{n} r^{2}-\left[\frac{1}{n} \sum_{r=1}^{n} r\right]^{2} \text {. }
$$

Determine a simplified expression for $\operatorname{Var}(n)$ and hence evaluate $\operatorname{Var}(61)$.

$$
\operatorname{Var}(n)=\frac{1}{12}\left(n^{2}-1\right), \operatorname{Var}(61)=310
$$

Created by T. Madas

Question 14 (****)

$$
f(n)=\sum_{r=1}^{n}\left[r^{3}-r\right], \quad n \in \mathbb{N}
$$

a) Use standard summation results to find a fully factorized expression for $f(n)$.
b) Hence solve the equation

$$
\sum_{r=5}^{10}\left[r^{3}-r+6 k\right]-\sum_{r=1}^{12}\left[r^{2}+k^{2}\right]=70
$$

$\square, f(n)=\frac{1}{4} n(n-1)(n+1)(n+2), k=-12, \quad k=15$

Created by T. Madas

Question 15 (****)
The function $F(n)$ is defined as

$$
F(n)=\sum_{r=1}^{n}[r(r-1)(n-2)(r+1)] n \in \mathbb{N}
$$

Show with detailed workings that

$$
F(2 n)-F(n)=\frac{1}{2} n\left(n^{2}-1\right)\left(31 n^{2}-4\right)
$$

\square , proof

SUMMATIONS

BY FORMULAS

5 HARD QUESTIONS

Created by T. Madas

Question $1 \quad(* * * *+)$
It is given that

Question 2 (****+)

$$
\sum_{r=1}^{n}(r+a)(r+b) \equiv \frac{1}{3} n(n-1)(n+4)
$$

where a and b are integer constants.

Use a clear algebraic method to determine the value of a and the value of b.

4, 2 and -1 (in any order)

ISNG- STMWDAED REGUTS \& THE UNIARTY OF TIE SIGMA OPGEATOR
$\Rightarrow \sum_{r=1}^{n}(r+a)(r+b) \equiv \frac{1}{3} n(n-1)(n+4)$
$\Rightarrow \sum_{r=1}^{n}\left[r^{2}+(a+b) r+a b\right] \equiv \frac{1}{3} n(n-1)(n+4)$
$\Rightarrow \sum_{r=1}^{n} r^{2}+(a+b) \sum_{r=1}^{n} r+a b \sum_{r=1}^{n} 1 \equiv \frac{1}{3} n(n-1)(n+4)$
$\Rightarrow \frac{1}{6} n(n+1)(2 n+1)+(a+b) \frac{1}{2} n(n+1)+a b \times n \equiv \frac{1}{3} n(n-1)(n+4)$
$\Rightarrow n(n+1)(2 n+1)+3(a+6) n(n+1)+5 a b=2 n(n-1)(n+4)$

$\Rightarrow(n+1)(2 n+1)+3(a+b)(n+1)+6 a b \equiv 2(n-1)(n+4)$
$\Rightarrow 2 n^{2}+3 n+1+3(a+b)(n+1)+6 a b \equiv 2 b^{2}+6 n-8$
$\Rightarrow 3(a+b)(n+1)+6 a b \equiv 3 n-9$
$\Rightarrow 3(a+b) n+3(a+b)+6 a b \equiv 3$
$3(a+b)+6 a b-9$
$a+b+2 a b=-3$
$\begin{aligned} a+b+2 a b & =-3 \\ 1+2 a b & =-3\end{aligned}$
$2 a b=-4$
$a b=-2$

Question 3 (****+)
By using an algebraic method, find the value of

$$
99^{2}-97^{2}+95^{2}-93^{2}+\ldots+3^{2}-1^{2}
$$

Question 4 (****+)
Show clearly that

Created by T. Madas

Question 5 (****+)
The positive integer functions f and g are defined as
\square , 5135
Evaluate

$$
\sum_{n=1}^{39}\left[\frac{f(n)}{g(n)}\right]
$$

SUMMATIONS

BY FORMULAS

8 ENRICHMENT QUESTIONS

Created by T. Madas

Question 1 (******)
Use standard summation results to prove that

Created by T. Madas

Question 2 (*****)
Find the sum of the first 16 terms of the following series.

Question 3 (*****)
The function f is defined for $n \in \mathbb{N}$ as

$$
f(n) \equiv 1 \times n^{2}+2(n-1)^{2}+3(n-2)^{2}+4(n-3)^{2}+\ldots+(n-1) \times 2^{2}+n \times 1^{2} .
$$

Determine a simplified expression for the sum of $f(n)$, giving the final answer in fully factorized form.

Question 4 (*****)
Use an algebraic method justifying each step, to find the greatest value of $k, k \in \mathbb{N}$, which satisfies the following inequality.

$$
\sum_{r=k+1}^{80}\left[\frac{r-1}{\log _{8^{r}}(16)}\right]>100000
$$

\square

$$
\text { , } k=48
$$

OSTHET BY MNWIPULATNG THE COSNETAHM
$\frac{1}{\log _{8} 16}=\log _{16} 8^{r}=r \log _{16} 8=r \times \frac{3}{4}$
$\left[\log _{a} b=\frac{1}{\log _{b} a}\right]$
O Souming from $r=1$ to n, to ar A cinceat experssion
$\sum_{r=1}^{n}\left[\frac{r-1}{\log _{6} 16}\right]=\sum_{r=1}^{n}\left[\frac{3}{4} r(r-1)\right]$
$=\frac{3}{4} \sum_{r=1}^{n}\left[r^{2}-r\right]$
$=\frac{3}{4}\left[\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)\right]$
$=\frac{3}{4}\left[\frac{1}{6} n(n+1)[(2 n+1)-3]\right]$
$=\frac{1}{8} n(n+1)(2 n-2)$
$=\frac{1}{4} n(n+1)(n-1)$
$=\frac{1}{4} n\left(n^{2}-1\right)$

$\Rightarrow \sum_{F=k+1}^{80}\left[\frac{r-1}{\log _{8} k}\right]>100,000$
$\Rightarrow \frac{1}{4}\left[80\left(80^{2}-1\right)\right]-\frac{1}{4} k\left(k^{2}-1\right)>100000$ \square
$\rightarrow 80\left(80^{2}-1\right)-K\left(k^{2}-1\right)>400000$
$\Rightarrow k^{3}-k-511920<-400000$
$\Rightarrow k(k+1)(k-1)<111920$ $k \in \mathbb{N}$ suT if $k \in \mathbb{R}$

O By TraAL \& fenor Noting ThAT $f(x) \approx t^{3}$
$f(40)=40 \times 4 \times 39=63960<111920$ $f(49)=49 \times 50 \times 48=117600>111920$

$$
\left.\begin{array}{l}
f(49)=49 \times 50 \times 48=17600>111920 \\
f(48)=48 \times 49 \times 47=110544<111920
\end{array}\right\} \therefore k=48
$$

Created by T. Madas

Question 5 (*****)
Use algebra to find the sum of the first 100 terms of the following sequence.

$$
7,12,19,28,39,52,67,84,103, \ldots
$$

\square

- using tiff stindaren sommation formulae in k AND Sursmitute $k=100$ AT THEEND
$\sum_{n=6}^{k}\left(n^{2}+2 n+4\right)=\sum_{n=1}^{k} h^{2}+2 \sum_{n=1}^{k} n+4 \sum_{n=1}^{k} 1$
\qquad Stoond Difceist if $u_{n}=n^{2}+a n+b$ HAT THE Cosimat
\qquad
$=\frac{1}{6} k(k+1)(2 k+1)+k(k+1)+4 k$
- Suppose the nith trom of The sppuonst/scerts was just n^{2}
$=\frac{1}{6} k(k+1)[(2 k+1)+6]+4 k$
$=\frac{1}{6} k(k+1)(3 k+7)+4 k$
- LET $k=100$ AND wE ORSTNN
$\sum_{4=1}^{100}(\eta 7+2 n+4)=\frac{1}{6} \times 100 \times 101 \times 207+4 \times 100$

Created by T. Madas

Question 6 (*****)
Evaluate the following expression

Created by T. Madas

Question 7 (*****)
Evaluate the following expression

$$
\sum_{m=1}^{19} \sum_{n=m}^{19}[2 m+n]
$$

question
You may find reversing the order of summation useful in this question
V \square , 5130

Created by T. Madas

Question 8 (*****)
The function f is defined as

$$
f(n, y) \equiv \sum_{x=1}^{n} \frac{x^{2} y^{x}}{k}, n \in \mathbb{N}, y \in \mathbb{R}
$$

where $k=\sum_{r=1}^{n} r^{2}$.

Use standard results on series to show that

$$
\left.\frac{d^{2} f}{d y^{2}}\right|_{y=1}+\left.\frac{d f}{d y}\right|_{y=1}-\left[\left.\frac{d f}{d y}\right|_{y=1}\right]^{2}=\frac{3 n^{4}+6 n^{3}-n^{2}-4 n-4}{20(2 n+1)^{2}}
$$

You may assume without proof $\sum_{r=1}^{n} r^{4}=\frac{1}{30} n(n+1)\left(6 n^{3}+9 n^{2}+n-1\right)$.

SUMMATIONS
 METHOD OF DIFFERENCES

8 BASIC QUESTIONS

Created by T. Madas

$$
f(r)=\frac{5}{(5 r-1)(5 r+4)}, r \in \mathbb{N}
$$

a) Express $f(r)$ into partial fractions
b) Hence show that

$$
f(r)=\frac{1}{5 r-1}-\frac{1}{5 r+4}
$$

Created by T. Madas

Question 2 (**)
a) Show carefully that

$$
\frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}=\frac{2 r+1}{r^{2}(r+1)^{2}}
$$

b) Hence use the method of differences to find

Created by T. Madas

Question 3 (**)
a) Show carefully that

$$
\frac{1}{r!}-\frac{1}{(r+1)!}=\frac{r}{(r+1)!}
$$

b) Hence find

Created by T. Madas

Question $4 \quad(* *+)$

$$
f(r)=\frac{1}{r(r+2)}, r \in \mathbb{N}
$$

a) Express $f(r)$ into partial fractions.
b) Hence show that

$$
f(r)=\frac{1}{2 r}-\frac{1}{2(r+2)}
$$

\square

Created by T. Madas

Created by T. Madas

Question 5 (**+)

$$
f(r)=\frac{2}{(r+1)(r+3)}, r \in \mathbb{N}
$$

a) Express $f(r)$ into partial fractions
b) Use the method of differences to find

$$
\sum_{r=1}^{n} f(r)
$$

c) Hence evaluate

$$
\sum_{r=8}^{\infty} f(r)
$$

$f(r)=\frac{1}{r+1}-\frac{1}{r+3}$,
$\sum_{r=1}^{n} f(r)=\frac{5}{6}-\frac{1}{n+2}-\frac{1}{n+3}$, ,$\sum_{r=8}^{\infty} f(r)=\frac{19}{90}$

.

(b)

Created by T. Madas

Question 6 (***)
a) Simplify $\frac{1}{r(r+1)}-\frac{1}{(r+1)(r+2)}$ into a single fraction.
b) Hence show that

Created by T. Madas

Question 7 (***)

$$
f(r) \equiv r^{2}(r+1)^{2}-(r-1)^{2} r^{2}, r \in \mathbb{N}
$$

a) Simplify $f(r)$ as far as possible.
b) Use the method of differences to show that

$$
\text { Fer }, f(r)=4 r^{3}
$$

Created by T. Madas

Question 8 (***)

$$
f(r)=\frac{1}{r(r+2)}, \quad r \in \mathbb{N}
$$

a) Express $f(r)$ in partial fractions.
b) Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} f(r)=\frac{n(A n+B)}{4(n+1)(n+2)}
$$

where A and B are constants to be found.
\square , $A=3, B=5$

Created by T. Madas

SUMMATIONS

METHOD OF DIFFERENCES

8 STANDARD QUESTIONS

Question 1 (***+)
Use the method of differences to show that

$$
\frac{1}{1 \times 2 \times 3}+\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

Created by T. Madas

Question 2 (***+)

$$
u_{r}=\frac{1}{6} r(r+1)(4 r+11), r \in \mathbb{N}
$$

a) Simplify $u_{r}-u_{r-1}$ as far as possible.
b) By using the method of differences, or otherwise, find the sum of the first 100 terms of the following series.

$$
(1 \times 5)+(2 \times 7)+(3 \times 9)+(4 \times 11)+\ldots
$$

\square
$r(2 r+3), 691850$

Created by T. Madas

Question 3 (***+)

$$
f(r)=\frac{1}{(r+1)(r-1)}, r \in \mathbb{N} \text {. }
$$

a) Express $f(r)$ into partial fractions.
b) Hence show that

$$
\sum_{r=2}^{n} \frac{1}{r^{2}-1}=\frac{3}{4}-\frac{1}{2 n}-\frac{1}{2(n+1)}
$$

c) State the value of

$$
\sum_{r=2}^{\infty} \frac{1}{r^{2}-1}
$$

$f(r)=\frac{1}{2(r-1)}-\frac{1}{2(r+1)}, \frac{3}{4}$

Created by T. Madas

Question $4 \quad\left({ }^{* * *}+\right)$

$$
f(r)=\frac{2}{r(r+1)(r+2)}, r \in \mathbb{N}
$$

a) Express $f(r)$ into partial fractions.
b) Hence show that

$$
\sum_{r=1}^{n} f(r)=\frac{1}{2}-\frac{1}{(n+1)(n+2)}
$$

c) Find the value of the convergent infinite sum

$$
\frac{1}{5 \times 6 \times 7}+\frac{1}{6 \times 7 \times 8}+\frac{1}{7 \times 8 \times 9}+\ldots
$$

\square
$f(r)=\frac{1}{r}-\frac{2}{r+1}+\frac{1}{r+2}, \frac{1}{60}$

$$
\begin{aligned}
& \rightarrow \sum_{i=1}^{\infty} \frac{1}{(\text { mina }} \text {) }=\frac{1}{\ddagger}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \sum_{i=1}^{0} \frac{1}{\operatorname{mos}(\operatorname{men})}=\frac{1}{6}
\end{aligned}
$$

Question 5 (***+)
Use the method of differences to show that

$$
\frac{1}{1 \times 2 \times 3}+\frac{4}{2 \times 3 \times 4}+\frac{7}{3 \times 4 \times 5}+\ldots+\frac{3 n-2}{n(n+1)(n+2)}=\frac{n^{2}}{(n+1)(n+2)}
$$

Created by T. Madas

Question 6 (***+)
It is given that

$$
\frac{2 k+7}{(2 k+1)(2 k+3)(2 k+5)} \equiv \frac{3}{4(2 k+1)}-\frac{1}{(2 k+3)}+\frac{1}{4(2 k+5)} .
$$

Use the method of differences to find a simplified expression for

$$
\frac{7}{1 \times 3 \times 5}+\frac{9}{3 \times 5 \times 7}+\frac{11}{5 \times 7 \times 9}+\ldots+\frac{2 n+7}{(2 n+1)(2 n+3)(2 n+5)}
$$

Give your answer in the form $\frac{2}{3}-f(n)$, where $f(n)$ is a single simplified fraction.

Created by T. Madas

Question 7 (****)
Use the method of differences to find a simplified expression for the first n terms of the following series.

$$
\frac{1}{1 \times 3}+\frac{2}{3 \times 5}+\frac{3}{5 \times 7}+\frac{4}{7 \times 9}+\ldots
$$

Give your answer in the form $\frac{1}{4}-f(n)$, where $f(n)$ is a single simplified fraction.
\square
$f(n)=\frac{(-1)^{n}}{4(2 n+1)}$

Created by T. Madas

Question 8 (****)

$$
f(r)=\frac{1}{\sqrt{r+2}+\sqrt{r}}, r \geq 0 .
$$

a) Rationalize the denominator of $f(r)$.
b) Find an expression for
c) Show clearly that

$$
\sum_{r=1}^{n} f(r) .
$$

$$
f(r)=\frac{\sqrt{r+2}-\sqrt{r}}{2}, \sum_{r=1}^{n} f(r)=\frac{1}{2}(\sqrt{n+2}+\sqrt{n+1}-\sqrt{2}-1)
$$

SUMMATIONS

METHOD OF DIFFERENCES

3 HARD QUESTIONS

Created by T. Madas

Question $1 \quad(* * * *+$)

Consider the following infinite convergent series.

$$
\frac{3}{1 \times 2}-\frac{5}{2 \times 3}+\frac{7}{3 \times 4}-\frac{9}{4 \times 5}+\frac{11}{5 \times 6}-\ldots
$$

a) Use the method of differences, to find the sum of this series.
b) Verify the answer of part (a) by using a method based on the Maclaurin expansion of $\ln (1+x)$.

Created by T. Madas

Created by T. Madas

Question 2 (****+)
Use partial fractions to sum the following series.

$$
\sum_{n=1}^{\infty} \frac{2 n+1}{n^{4}+2 n^{3}+n^{2}}
$$

Question 3 (****+)
It is given that

$$
f(r)=\frac{6 r^{4}+6 r^{3}-a r^{2}-a r+1}{r(r+1)}, \quad r \in \mathbb{N},
$$

where a is a non zero constant.

It is further given that

$$
\sum_{r=1}^{n} f(r)=\frac{n^{2}(n+2)(2 n+1)}{n+1}
$$

Determine the value of a.
\square

Comprana nowieqkers
$\frac{n^{2}(n+2)(2 n+1)}{n+1} \equiv \frac{n(n+1)^{2}(2 n+1)-a n(n+1)+n}{n+1}$
$n^{2}\left(2 n^{2}+5 n+2\right) \equiv n(2 n+1)\left(n^{2}+2 n+1\right)-a n(n+1)+n$
$n\left(2 n^{2}+5 n+2\right) \equiv(2 n+1)\left(n^{2}+2 n+1\right)-a(n+1)+1$
$2 n^{3}+5 n^{2}+2 n \equiv 2 n^{3}+4 n^{2}+2 n$
$2 n^{3}+5 n+2 n \equiv 2 n^{3}+5 n^{2}+(4-a) n+(2-a)$
$\therefore a=2$

SUMMATIONS

METHOD OF DIFFERENCES

15 ENRICHMENT QUESTIONS

Created by T. Madas

Question 1 (*****)
Determine the exact value of the following sum.

$$
\sum_{n=2}^{20}\left[\frac{n^{3}-n^{2}+1}{n^{2}-n}\right]
$$

\square
\square

Question 2 (*****)

$$
f(x, n)=\sum_{r=1}^{n}\left[\frac{1}{(x-1)^{r}}\right], x \in \mathbb{R}, n \in \mathbb{N} .
$$

By observing the simplification of

$$
\frac{1}{(x-2)(x-1)^{r}}-\frac{1}{(x-2)(x-1)^{r+1}}
$$

find a simplified expression for $f(x, n)$.

Created by T. Madas

Question 3 (*****)
Determine, in terms of k and n, a simplified expression for

$$
\sum_{r=2}^{n}\left[\frac{r(1-k)-1}{r(r-1) k^{r}}\right]
$$

\square $\frac{1}{n}\left(\frac{1}{k}\right)^{n}-\frac{1}{k}$

Question 4 (******)
Determine the value of the following infinite convergent sum.

Created by T. Madas

Created by T. Madas

Question 5 (*****)
Determine a simplified expression, in the form $\ln [f(n)]$, for the following sum.

Created by T. Madas

Question 6 (*****)
Show, by a detailed method, that

$$
\frac{48}{2 \times 3}+\frac{47}{3 \times 4}+\frac{46}{4 \times 5} \ldots+\frac{2}{48 \times 49}+\frac{1}{49 \times 50}=A+B \sum_{r=1}^{50} \frac{1}{r}
$$

where A and B are constants to be found.

Created by T. Madas

Question 7 (*****)

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\frac{9}{1^{2}+2^{2}+3^{2}+4^{2}}+\frac{11}{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}}+\ldots
$$

Show, by a detailed method, that the sum of the first 40 terms of this series shown above is $\frac{240}{41}$.

Created by T. Madas

Question 8 (*****)
By considering the simplification of

$$
\arctan (2 n+1)-\arctan (2 n-1)
$$

determine the exact value of

Question 9 (*****)

$$
S_{n}=(2 \times 1!)+(5 \times 2!)+(10 \times 3!)+(17 \times 4!)+\ldots+\left(n^{2}+1\right) n!
$$

Use an appropriate method to show that

$$
S_{n}=n(n+1)!
$$

\square , proof

STher By CuRTNG THE SFOHE WN SIGMA NUTATION $(2 \times!!)+(5 \times 2!)+(10 \times 3!)+(17 \times 4!)+\cdots+\left[\left(n^{2}+1\right) \times n!\right]=\sum_{r=1}^{n}\left[\left(r^{2}+1\right) r!\right]$
 $(r+1)!-r!=(r+1) r!-r!=r \times r!$
 $(r+2)!-r!=(r+2)(r+1) r!-r!$ $(r+2)!-r!=\left(r^{2}+3 r+2\right) r!-r!$
$(r+2)!-r!=\left(r^{2}+3 r+r!\right)$ $(r+2)!-r!=\left(r^{2}+3 r+1\right) r!$
$(r+2)!-r!=\left(r^{2}+1\right) r!+3 r \times r!$
\qquad $(r+2)!-r!=\left(r^{2}+1\right) r!+3[(r+1)!-r!]$ $(r+2)!-r!=\left(r^{2}+1\right) r^{3}+3(r+1)!-3 r!$ $(r+2)!\quad=\left(r^{2}+1\right) r!+3(r+1)!-2 r!$ $(r+2)!-3(r+1)!+2 r!=\left(r^{2}+1\right) r!$ Hanct bis HANt
$\left(r^{2}+1\right)!!\equiv(r+2)!-3(r+1)!+2 r!$

Question 10 (*****)
By considering the trigonometric identity for $\tan (A-B)$, with $A=\arctan (n+1)$ and $B=\arctan (n)$, sum the following series

$$
\sum_{n=1}^{\infty} \arctan \left(\frac{1}{n^{2}+n+1}\right)
$$

You may assume the series converges.
\square
, \square , $\frac{\pi}{4}$

COUSIDER THE COMPOWN ANGE DTNITH FOR fan (A-B)
Dewerte The sumattion norr As

Question 11 (*****)
Determine, in terms of n, a simplified expression

$$
\sum_{r=1}^{n}\left[\frac{r^{2}+9 r+19}{(r+5)!}\right]
$$

and hence, or otherwise, deduce the value of

$$
\sum_{r=1}^{\infty}\left[\frac{r^{2}+7 r+11}{(r+4)!}\right]
$$

W) $\sum_{r=1}^{n}\left[\frac{r^{2}+9 r+19}{(r+5)!}\right]=\frac{1}{6}-\frac{n+5}{(n+5)!}$

$$
\sum_{r=1}^{\infty}\left[\frac{r^{2}+7 r+11}{(r+4)!}\right]=\frac{5}{24}
$$

Question 12 (*****)
A sequence is defined as

$$
u_{r+1}=u_{r}+\frac{2 r}{r^{4}+r^{2}+1}, \quad u_{1}=0, \quad r \in \mathbb{N}
$$

Determine the exact value of u_{61}.

Created by T. Madas

Question 13 (*****)
Find the value of

Hint: Express $\sin ^{4} \theta$ in terms of $\sin ^{2} \theta$ and $\sin ^{2} 2 \theta$ only.

Question 14 (${ }^{(* * * * *)}$
Find the sum to infinity of the following convergent series.

$$
\frac{1}{4 \times 2!}+\frac{1}{5 \times 3!}+\frac{1}{6 \times 4!}+\frac{1}{7 \times 5!}+\frac{1}{8 \times 6!}+\ldots
$$

\square
\square

Wernina THE SERE IN SIGMA NETATON
$S_{\infty}=\sum_{\mathrm{r}=1}^{\infty} \frac{1}{(\mathrm{r}+3)(\mathrm{r}+1)!}$

- TVY $\frac{1}{(r+3)(r+1)!} \equiv \frac{A}{(\Gamma+3)!}+\frac{B}{(T+1)!}$
\qquad

Question 15 (*****)
Evaluate the following expression

$$
\sum_{k=1}^{\infty}\left[\sum_{r=1}^{k} r\right]^{-1}
$$

