SERIE EXPANSION 59 QUESTIONS

uasillatis.com Created by T. Madas

ASINALIS COM INC. MACLAU EXPANSIONS SIC MACLAURIN XPANS, 5 BASIC QUESTIONS 6 BASIC THER MADASSINATISCOM I.V.C.P. MARIASA N. C.B. Madasmanna (Madasmanna) B. Madasmanscom I.V.C.B. Madasm

asmarns.com

212.51

Question 1 (**)

 $f(x) = (1-x)^2 \ln(1-x), -1 \le x < 1.$

Find the Maclaurin expansion of f(x) up and including the term in x^3 .

 $x^3 + O(x^4)$

 $\frac{1}{2}x^2$ -

f(x) = -x +

Question 2 (**+)

5

$$f(x) = e^{-2x} \cos 4x$$

Find the Maclaurin expansion of f(x) up and including the term in x^4 .

 $= \frac{1}{2x} \cos 4x = 1 - 2x - 6x^2 + \frac{44}{3}x^3 - \frac{14}{3}x^4 + O(x^5)$

$\begin{array}{l} \underbrace{2002464342}_{2} \underbrace{2002464342}_{2} \underbrace{2002464342}_{2} \underbrace{2002464342}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246432}_{2} \underbrace{200246341}_{2} \underbrace{200246342}_{2} \underbrace{200246422}_{2} \underbrace{20024642}_{2} \underbrace{200246422}_{2} \underbrace{200246242}_{2} \underbrace{200246422}_{2} \underbrace{200246242}_{2} \underbrace{200246422}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{200246242}_{2} \underbrace{20024242}_{2} \underbrace{20024242}_{2} \underbrace{20024242}_{2} \underbrace{20024422}_{2} \underbrace{2002424242}_{2} \underbrace{2002424242}_{2} \underbrace{2002424242}_{2} \underbrace{2002424242}_{2} \underbrace{200242424242}_{2} \underbrace{200242424242}_{2} \underbrace{200242424242}_{2} \underbrace{200242424242}_{2} \underbrace{200242424242}_{2} \underbrace{200242424242}_{2} \underbrace{20024242424242}_{2} \underbrace{20024242424242}_{2} \underbrace{200244242424242}_{2} \underbrace{2002442424242442}_{2} \underbrace{20024424242442}_{2} \underbrace{20024424242442}_{2} \underbrace{200244242424242}_{2} \underbrace{20024424242442}_{2} \underbrace{20024424242442}_{2} \underbrace{20024424244242442}_{2} \underbrace{200244242442}_{2} \underbrace{200244242442}_{2} \underbrace{200244242442}_{2} \underbrace{200244242442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{2002442442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442}_{2} \underbrace{20024442$

 $\begin{array}{rcl} f(t) &=& (-\infty^2 + \frac{2t}{2} \cdot \alpha_2^2 + \frac{2t}$

Question	3	(**+)
Question	5	(T)

F.G.B.

I.C.B.

 $y = e^{2x} \sin 3x.$

- a) Use standard results to find the series expansion of y, up and including the term in x^4 .
- **b**) Hence find an approximate value for

 $e^{0.1}$ $e^{2x}\sin 3x \ dx$.

], $e^{2x} \sin 3x = 3x + 6x^2 + \frac{3}{2}x^3 - 5x^4 + O(x^5)$, ≈ 0.0170275

STANDARD EXPANSIONS b) TAPHE EURIZO (d) $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^4)$ $\int_{0}^{0.1} e^{2x} sm^{32} dx \approx \int_{0}^{0.1} 3x + 6x^2 + \frac{3}{2}x^3 - 5x^4 dx$ $1 + (2x) + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + O(x^4)$ $\approx \left[\frac{3}{2}x^2 + 2x^3 + \frac{3}{8}x^4 - x^5\right]_0^{61}$ 1+22+222+ 432+0(24) 31 + O(21) $\simeq \left(\frac{3}{200} + \frac{1}{500} + \frac{3}{80000} - \frac{1}{1000000}\right) \simeq \left(0\right)^{-1}$ $= (3\chi) - \frac{(3\chi)^3}{2\chi} + o(\chi^3)$ $\sin 3x = 3x - \frac{q}{2}x^3 + o(x^5)$ 0.0170275... $\frac{1}{3}x^{3}+O(x)\left[3x-\frac{9}{2}x^{3}+o(x^{5})\right]$ $+ o(x^{4}) + o(x^{4})$ + 0(26) $32 + 61^2 + 3x^2 - 5x^4$ + oGs

ち

I.F.G.B.

11₂₀₂

1+

Created by T. Madas

E.

(**+) **Question 4**

àsmàins.col T.Y.G.B. MARASHAHSCOM I.Y.G.B. MARASHANSCOM I.Y. Find the Maclaurin's expansion of $\ln\left[\sqrt[3]{\frac{1+2x}{1-2x}}\right]$, up and including the term in x^3 .

$$\left[\ln \left[\sqrt[3]{\frac{1+2x}{1-2x}} \right] = \frac{4}{3}x + \frac{16}{9}x^3 + O\left(x^5\right) \right]$$

N. C.			~G
		$\chi_{(1,2)} = (\chi_{2})^{-\frac{1}{2}} (\chi_{2})^{-\frac{1}{2}}$	
		$\frac{h_{\mathbf{X}}}{\left[\frac{(t,y)}{2\lambda_{t}}\right]} = \left[h\left[\left(\frac{t+2y}{1-2\lambda_{t}}\right)^{\frac{1}{2}}\right] = \frac{1}{2}h\left[\left(\frac{t+2y}{1-2\lambda_{t}}\right)\right]$ $= \left[h\left[\left(t+2\lambda_{t}\right) - h\left(t\left(-\lambda_{t}\right)\right)\right]$ $= \left[h\left(t-2\lambda_{t}\right) - h\left(t\left(-\lambda_{t}\right)\right)\right]$	ASTI ATA
Math Sho	- SN277	$= \frac{1}{4} \begin{bmatrix} \frac{1}{2}x - \frac{1}{2}x + \frac{1}{2}x^2 + C(x) \\ -\frac{1}{2}x - \frac{1}{2}x^2 + \frac{1}{2}x^2 + C(x) \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} \frac{1}{2}x - \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + C(x) \end{bmatrix}$	AL.
S.C. All		· · Co	
			7
1.1. 1.10	. I.L.	1. Ka	1. Y.
Gp 4	e Go	6.3	10
			20251721
asp alash	ASID .		asm.
alls all	h alls	narr.	120
	Con CO	7 "IS.C	2
1 In		1.1	n,
······································	p Ko	G.p.	·
	17. 58		7.
1200 ¹¹ 200	Created by T. Madas	1202	" da
1982 48M	×122	Sh.	100

Question 5 (***)

 $f(x) = \ln(1 + \sin x), \ \sin x \neq -1.$

- a) Find the Maclaurin expansion of f(x) up and including the term in x^3 .
- **b**) Hence show that

I.C.B.

I.C.p

 $\int_0^{\frac{1}{4}} \ln(1+\sin x) \ dx \approx \ 0.028809.$

лť,

$$\begin{split} \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{3} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\sin \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{4}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1}{2}\alpha_{5} + o(\alpha_{5}) \\ \mu(1+\cos \alpha) &= \alpha - \frac{1$$

I.C.A

 $= \frac{x - \frac{1}{7}x_{y}^{2} + \frac{1}{7}x_{y}^{2} + \frac{1}{7}x_{y}^{2} + \frac{1}{7}x_{y}^{2} + \frac{1}{7}x_{y}^{2}}{= x - \frac{1}{7}x_{y}^{2} + \frac{1}{7}x_{y}^{2}$

I.F.G.B.

Maga

 $\ln(1+\sin x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + O(x^4)$

1+

Question 6 (***)

Ĉ.Ŗ

C.4.

 $f(x) \equiv \frac{\mathrm{e}^x + 1}{2\mathrm{e}^{\frac{1}{2}x}}, \ x \in \mathbb{R}.$

Use standard results to determine the Maclaurin series expansion of f(x), up and including the term in x^6 .

$f(x) = 1 + \frac{1}{8}x^2$	$\frac{1}{2} + \frac{1}{384}x^4 + \frac{1}{7680}x^6 + O(x^8)$
	384 7080 (7)
AN.	STAT & SUDDO THE FRATION
20.	$\frac{1}{(0)=\frac{e^{2}+1}{2e^{2}}=\frac{e^{2}}{2e^{2}}+\frac{1}{1+e^{2}}=\frac{1}{2e^{2}}e^{4}+\frac{1}{2e^{2}}e^{4}$
- m	$= (ach(\frac{1}{2}))$ NOW $(ach u = 1 + \frac{u^2}{2t} + \frac{u^6}{4t} + o(u^6)$
dri	$f(x) = 1 + \frac{(x)^2}{21} + \frac{(x)^2}{42} + \frac{(x)^2}$
20	$\frac{f(2)}{2} \sim \frac{1}{12} \cdot \frac{2}{2} x_{2} + \frac{2}{2} \frac{1}{2} \frac{1}$
<u></u>	ALTRAMPINE CAN'S EXPLOSEMENTS • $e_{\infty}^{2} = 1 + 3 + \frac{32}{21} + \frac{32}{31} + o(3)$
C_{D} \sim	• $e^{-\lambda} = 1 - x + \frac{x^{\lambda}}{21} - \frac{x^{\lambda}}{31} + O(3^{4})$
Son .	$ \begin{array}{l} & \cdot \cdot \left\{ \begin{matrix} f(z) \\ - \frac{1}{2} + \frac{2y_1}{2} + \frac{2y_2}{2} + \frac{2y_1}{2} + \frac{2y_2}{2} + \frac{2y_1}{2} + \frac{2y_2}{2} + \frac{2y_1}{2} + 2y_1$
	$= \frac{1}{2} \left[2 + \frac{1}{2} a^2 + \frac{1}{32} a^0 + \frac{1}{2340} a^4 + o(2^0) \right]$
1.1.	$= \frac{1}{1 + \frac{1}{2}3^2 + \frac{1}{281}3^3 + \frac{1}{4695}3^4 + \frac{1}{4695}3^4 + \frac{1}{2}3^2}$
	· · (.) .
6.2	
1 V	" h
20	m gas
42	42.2 40.
	~()(S)
1210	18 N 19
	10xx "
o 10,	
Co. "	On Son
-Un	V Con
No. No.	
	Sector March 1997

i.C.B.

manası,

MACLAURIN "ANSIONS "AR asmans.com i.v. EX. 20 STANL. QUESTIONS AL Madasmalls.com I.V.C.B. Malasm adasmans com tropp i Madasmaths Com I. Y. C.B. Madag

(***+) Question 1

 $y = (1+x)^2 \cos x \, .$

Show clearly that ...

I.G.B.

I.C.B.

a) ... $\frac{d^3y}{dx^3} = (x^2 + 2x - 5)\sin x - 6(x + 1)\cos x$.

4= (1+2)20052

03

b) ogn 3/2-0

.C.

(1+3)asz - CI+3) ava

= [2-C1+2)2] COL2 - 4(C1+2) SM2 $(2 - 1 - 2x - \chi^2) \cos x - 4(1 + \chi) \sin \chi$ $= (1 - 2x - x^2)\cos x - 4C + x - 1) =$

 $\frac{d^2q}{dx^3} = \left(-6x - 6\right)_{(052)} + \left(x^4 + 2x - 5\right)_{(052)}$

 $\frac{d^3y}{dy^3} = (x^2 + 2x - 5) = 0 + 6(x + 1) (x + 2)$

했 By Jacob

b) ... $y \approx 1 + Ax + Bx^2 + Cx^3$, where A, B and C are constants to be found.

I.V.G.B.

Maga

3

6

Question 2 (***+)

7. 7.Sm	Crosted by Wades
121	Created by T. Madas
	Question 2 (***+) Find the Maclaurin expansion of $\ln(2-e^x)$, up and including the term in x^3 .
5	$\left[\ln \left(2 - e^x \right) = -x - x^2 - x^3 + O(x^4) \right]$
· .	$[m(2-e^{-})=-x-x^{-}-x^{-}+O(x^{-})]$
·	$\frac{2ccmmensumed. result. (2)}{(5-c)d = (c)^{2}} = \frac{2c}{c^{2}-c} = (5-c) + \frac{c}{c^{2}-c} = (5-c) + $
, C	$=\frac{2^{2}-2^{2}}{e^{2}-2}+\frac{2^{2}-1}{e^{2}-2}=1+2(e^{2}-2)^{2}$ $-\frac{1}{(e^{2}-2)^{2}}=-\frac{2e^{2}}{e^{2}-2}$
05	$ \begin{array}{c} $
Sh.	$\frac{46}{9} \frac{1}{9} \frac{1}{1}, \frac{1}{10} \frac{1}{9} - 2, \frac{1}{10} \frac{1}{9} - 6$ $\frac{34}{10} \frac{1}{10} \frac{1}{1$
- I	
).	Con Use Con Con
Q .	
1.1	
	Co Co Co
"a.	$\mathcal{A}_{\mathcal{A}_{\mathcal{O}}}\mathcal{O}_{\mathcal{O}_{\mathcal{O}}}}}}}}}}$
- ng	in asing and asing asing
-4	as the as the
n.	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
6	Children in the internet
	63 3 63 5
m.	Created by T. Madas
nada.	Created by T. Madas
	$\nabla D = \nabla D = \nabla D$

(***+) **Question 3** 

$$f(x) = \ln(1 + \cos 2x), \ 0 \le x < \frac{\pi}{2}$$

- **a**) Find an expression for f'(x).
- **b**) Show clearly that

F.G.B.

 $f''(x) = -2 - \frac{1}{2} (f'(x))^2.$ 

c) Show further that the series expansion of the first three non zero terms of f(x)is given by

 $\ln 2 - x^2$ 

 $-f(x) = \ln(1 + \cos 2x)$  $f(x) = \frac{1}{1+\cos 2x} \times (-25h/2x)$  $f(\alpha) = -\frac{2s_M2x}{1+\log 2}$ b) MATTINPULATE ABOUT FROST  $\left\{ f(x) = -\frac{2(26W_{2}(nx))}{1 + (260(2-1))} = \frac{-45W(100)}{260(2)} = -2\tan x \right\}$ NOW WE HAVE

 $\Rightarrow f(x) = -2sec_x = -2(1+bu_{2x})$   $\Rightarrow f(x) = -2 - 2tu_{1x}t_{2x}$   $\Rightarrow 2f(y) = -4 - 4tu_{2x}$  $\Rightarrow 2f(x) = -4 - (-2bwa)^2$  $\Rightarrow 2f(x) = -4 - (f(x))^2$ 

 $\Rightarrow f'(x) = -2 - \frac{1}{2} \left(f(x)\right)^2 / A = E_{1} \left(f(x)\right)^2 / A = E_{$ 

ULING PART (b)  $\begin{array}{l} f''(\alpha) = & \circ & -\left(f(\alpha)\right) \times f''(\alpha) = & -f(\alpha) f'(\alpha) \\ f''(\alpha) = & -f'(\alpha) f(\alpha) - f(\alpha) f''(\alpha) \\ f''(\alpha) = & -f'(\alpha) f(\alpha) - f(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f'(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array} \right) \xrightarrow{\begin{subarray}{c} f(\alpha) & f(\alpha) \\ f''(\alpha) = & -f'(\alpha) f''(\alpha) \\ \end{array}$ 

 $f''(0) = -2 - \frac{1}{2} (f'(0))^2 = -2$  $f_{(0)}^{(0)} = -f_{(0)}(0)f_{(0)}^{(0)} = 0$  $\begin{pmatrix} d_{0} \\ (b) \end{pmatrix} = - \begin{pmatrix} d_{0} \\ (c) \end{pmatrix} \begin{pmatrix} d_{0} \\ (c) \end{pmatrix} - \begin{pmatrix} d_{0} \\ (c) \end{pmatrix} \begin{pmatrix} d_{0} \\ (c) \end{pmatrix} = - \begin{pmatrix} -2 \\ (c) \end{pmatrix} \begin{pmatrix} -2 \\ (c) \end{pmatrix} - 0 = - \Downarrow$ FINALLY WE HAVE  $\frac{1}{2}(x) = -\frac{1}{2}(x) + x + \frac{1}{2}(x) + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{3!} + \frac{x^4}{4!} + \frac{x^6}{6!} + O(x)$ 

f'(x) =

 $f'(o) = \eta(1+coso) = \eta(0)$ 4(0) - - > tano - 0

 $2\sin 2x$ 

 $1 + \cos 2x$ 

$$\begin{split} & h((t+\cos 2) = h(2 + 0 + \frac{1}{2}x^2(z) + 0 + \frac{3^4}{24}(-4) + O(x^4) \\ & h_1(t+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_2(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(2 - x^2 - \frac{1}{2}x^4 + O(x^4) \\ & h_3(1+\cos 2) = h(1+\cos 2) \\ & h_3(1+\cos 2) \\ & h_3(1+\cos 2) = h(1+\cos 2) \\ & h_3(1+\cos 2) \\$$

 $\ln(1+$ 

### **Question 4** (***+)

Find the Maclaurin expansion of  $\ln(1 + \sinh x)$  up and including the term in  $x^3$ .

$\sinh x) = x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + O(x^4)$
10 m
$\begin{array}{l} (che^{-1}t) v^{l} = \{c_{1}^{\frac{1}{2}} \otimes c_{2}^{\frac{1}{2}} \otimes c_$
$ \begin{split} & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \frac{3\alpha \partial_{10} - (\alpha \partial_{11} x \partial_{10} h)}{(3\alpha \partial_{1} + 1)^{3}} \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = 0 \\ & \begin{pmatrix} \eta^{(0)} \\ \eta \end{pmatrix} = \begin{pmatrix} \eta^{(0)} \\ \eta^{(0)} \end{pmatrix} = \begin{pmatrix} $
$\left(\frac{1}{1}\right)^{(n)} = \frac{3-0}{(n+1)^3} = 3$

Question 5 (***+)

 $f(x) \equiv \ln(2e^x - 1), x \in \mathbb{R}.$ 

Find the Maclaurin expansion of f(x), up and including the term in  $x^3$ .

 $f(x) \equiv 2x - x^2 + \overline{x^3 + O(x^4)}$ 

 $f(a) = b_{\mu}(ae^{\lambda} - 1)$ 

- $\int_{\frac{2e^{\lambda}}{2e^{\lambda}-1}}^{\frac{2e^{\lambda}-1}{2e^{\lambda}-1}} \frac{2e^{\lambda}(2e^{\lambda})-2e^{\lambda}(2e^{\lambda})}{(2e^{\lambda}-1)^{2}} = \frac{4e^{\lambda}-2e^{\lambda}-4e^{\lambda}}{(2e^{\lambda}-1)^{2}} = -\frac{2e^{\lambda}}{(2e^{\lambda}-1)^{2}}$
- $\frac{\sqrt{2}}{(2e^{X}-1)^{2}(2e^{X})-2e^{X}+2(2e^{X}-1)(2e^{X})}{(2e^{X}-1)^{4}}=\frac{-2e^{2}(2e^{X}-1)+8e^{2X}}{(2e^{X}-1)^{3}}$

= 0 = 0  $= 10^{-3} (10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3} + 10^{-3$ 

Question 6 (***+)

1.1.61

I.V.G.B. ma

I.C.p

20

 $y = e^{\tan x}, x \in \mathbb{R}.$ 

a) Show clearly that

I.C.B.

I.F.G.B.

1721

$$\frac{d^2 y}{dx^2} = (1 + \tan x)^2 \frac{dy}{dx}$$

**b**) Find a series expansion for  $e^{\tan x}$ , up and including the term in  $x^3$ .



27

C.B.

T.G.B.

2017

4.60

11.5

### **Question 7** (***+)

F.G.B.

i C.B.

 $y = \tanh x$ ,  $x \in \mathbb{R}$ .

By expressing the derivatives of  $\tanh x$  in terms of y, or otherwise find the first 2 non zero terms of a series expansion for  $\tanh x$ .

11.20(2.SI



 $y \approx x$ 

 $x^{3} + O(x^{5})$ 

1+

202.8m

11202

C.I.

Created by T. Madas

2.4.

### **Question 8** (***+)

By using results for series expansions of standard functions, find the series expansion of  $\ln(1-x-2x^2)$  up and including the term in  $x^4$ .



### Question 9 (***+)

By using results for series expansions of standard functions, or otherwise, find the series expansion of  $\ln(x^2+4x+4)$  up and including the term in  $x^4$ .

V,  $\ln(x^2 + 4x + 4) = 2\ln 2 + x - \frac{1}{4}x^2 + \frac{1}{12}x^3 - \frac{1}{32}x^4 + O(x^5)$ 

Wa KS Follows				
$\left(\partial_{x}^{2} + 4\dot{a} + \phi\right) =$	$\ln[Q(r_2)^2] =$	2  n(2+2) =	2/n(2+2)	
=	$2\ln\left[2\left(1+\frac{1}{2}x\right)\right]$	]		
0	2 lm 2 + 21h(14	² 2)		
CALLINTS JULY	2001201/978 B			

$$\begin{split} & h_{1}(x_{n+1}^{2}) = -\frac{2}{2}x_{n}^{2}x_{n}^{2} + \frac{2}{2}x_{n} + \frac{1}{2}x_{n}^{2} +$$

 $= 2h_2 + x - \frac{1}{2}x^2 + \frac{1}{12}x^3 - \frac{1}{12}x^4 + 0(x^4)$ 

Question 10 (***+)

 $f(x) \equiv \cos x + \cosh x \,, \ x \in \mathbb{R}$ 

Use the first 3 non zero terms of the Maclaurin expansion of f(x) to approximate the solutions of the equation

f(x) = 2.1.

$x \approx \pm 1.046$
ACT BY DIFFICANTIATION OR STANDARD EXPANSIONS
$\log_{1} \ge 1 - \frac{3^{2}}{2!} + \frac{3^{2}}{4!} - \frac{3^{4}}{6!} + \frac{3^{6}}{8!} + O(2^{6})$
$(a_{2}b_{12} = 1 + \frac{3^{2}}{2!} + \frac{3^{4}}{4!} + \frac{3^{4}}{6!} + \frac{3^{4}}{2!} + \frac{3^{6}}{2!} + O(2^{6})$
$f(t) = 2 + \frac{2t_{\mu}}{4i} + \frac{8t_{\mu}}{2t_{\mu}} + o(t_{\mu})$
WATELING AND SOMME
$\Rightarrow -(\alpha) = 2i$
$\implies 2 + \frac{1}{12}\chi^{\mu} + \frac{1}{20160}\chi^{\mu} = 2 \cdot 1$
$= 20160 x^{0} + \frac{1}{12} x^{0} - \frac{1}{10} = 0$
$\implies \mathfrak{A}^{\mathbb{S}} + \mathfrak{l}_{\mathbb{K}} \mathfrak{l}_{\mathbb{K}} \mathfrak{a}^{\mathbb{K}} - \mathfrak{2}\mathfrak{o}\mathfrak{l}_{\mathbb{K}} = \mathfrak{o}$
PAS IS A QUARDATIC IN 2
$\Rightarrow \chi^{4} = \frac{-1680 \pm \sqrt{1680^{2} + 10(1 \times (-2016))}}{2}$
$\implies 3^{4}_{4} = \frac{-1680 \pm 72 \sqrt{5467}}{2} = -840 \pm 36 \sqrt{5467}$
⇒ 2 ⁴ = -840 + 36√ <u>546</u> ⁴ [-вко-з6√ <u>546</u> ² < 0]
$\implies x = \pm (840 \pm 36\sqrt{546'})$
→ <u>3. ≈ ± 1-046</u>

100

**Question 11** (****)

 $f(x) \equiv \sin \left[ \ln (1+x) \right], \quad x \in \mathbb{R}, \quad x > -1.$ 

**a**) Show that

 $(1+x)^2 f''(x) + (1+x)f'(x) + f(x) = 0$ 

**b**) Hence find first 3 non zero terms of the Maclaurin expansion of f(x)

c) Use the result of part (b) to find first 2 non zero terms of the Maclaurin expansion of  $\sin \left[ \ln (1+x) \right]$ .

 $\sin[\ln(1+x)] \approx x - \frac{1}{2}x^2 + \frac{1}{6}x^3$ ,



 $\begin{array}{l} \int_{-\infty}^{\infty} (0) \ + \ 3 \int_{-\infty}^{\infty} (1) \ + \ 2 \int_{-\infty}^{\infty} (0) \ = \ 0 \\ \int_{-\infty}^{\infty} (0) \ + \ 3 (-1) \ + \ 2 \times (1 - 0) \\ \int_{-\infty}^{\infty} (0) \ = \ (1 - 1) \end{array}$ 

•  $f_{(0)}^{(m)} + 5x_1 + 5(-1) = 0$ <u>Here we have</u>  $f_{(0)} - f_{(0)} + x_1 f_{(0)} + \frac{3x}{21} f_{(0)} + \frac{3x}{21} f_{(0)}^{(0)} + 0 C_{(2)}^{(2)}$ 

 $\left|\cos\right| \ln(1+x) \approx 1-$ 

$$\begin{split} & \mathcal{D}\left[\mu(p)\right] = x - \frac{1}{2} x_z + \frac{1}{2} y_y + \frac{1}{2} y_y \\ & \mathcal{D}\left[\mu(p)\right] = o + x - \frac{1}{2} x_y + \frac{1}{2} x_y + \frac{1}{2} x_y + o + o(x_z) \end{split}$$

e or testiler find contained us

$$\begin{split} & g_{0} \left[ h_{0}(y_{0}) \right] = \chi - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} \left[ g_{0} \left[ h_{0}(z_{0}) \right] = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} \left[ g_{0} \left[ h_{0}(z_{0}) \right] = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} \left[ g_{0} \left[ \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}\chi^{2} + \dots \\ & \frac{1}{2} - \frac{1}{2}\chi^{2} + \frac{1}{2}$$

 $\cos\left[\ln(1+x)\right] = 1 - \frac{1}{2}x^2 + \cdots$ 

### Question 12 (****)

1.C.B.

I.C.B.

By using results for series expansions of standard functions, or otherwise, find the series expansion of  $\ln(x^2+2x+1)-(x-2)(e^x-2)$  up and including the term in  $x^3$ .

### $\ln \left( x^2 + 2x + 1 \right) - (x - 2) \left( e^x - 2 \right) = -2 + 5x - x^2 + \frac{1}{2} x^3 + O \left( x^4 \right)$

·G.p

 $\ln(n^2+n^2+1) - (n-2)(n^2-2)$  $\ln(n^2+n^2+(n-2)(n^2-2))$  $2\ln(1+n^2) + (2-n)(n^2-2)(2-n)$ 

> $+\frac{2}{5}x^2 + O(x^4)$  $-\frac{1}{5}x^2 + O(x^4)$

 $-2 + 51 - x^2 + \frac{1}{2}x^3 + 0(x^4)$ 

+22

277

I.C.B.

17202

$$\begin{split} & 2 \left[ 2 - \frac{1}{2} \chi^2 + \frac{1}{2} \chi^4 + 0 \langle \mathfrak{M} \rangle \right] + \langle 2 - \lambda \rangle \left[ 1 + 2 + \frac{1}{2} \chi^2 + \frac{1}{2} \chi^2 + 0 \langle \mathfrak{M} \rangle \right] - 4 + 2 \lambda \\ & 2 \chi - \chi^2 + \frac{3}{2} \chi^2 + 0 \langle \mathfrak{M} \rangle + 2 + 2 \chi + \chi^2 \sqrt{\frac{1}{2}} \chi^2 + 0 \langle \mathfrak{M} \rangle \\ & - \chi - \chi^2 - \frac{1}{2} \chi^2 + 0 \langle \mathfrak{M} \rangle \\ & 2 \chi - \chi^2 + \frac{3}{2} \chi^2 + 0 \langle \mathfrak{M} \rangle + 2 + \chi - \frac{1}{2} \chi^2 + 0 \langle \mathfrak{M} \rangle - 4 + 2 \lambda \end{split}$$

1+

Question 13 (****)

$$f(x) = e^x \cos x, \ x \in \mathbb{R}.$$

a) Show clearly that

$$f''(x) = f'(x) - f(x) - e^x \sin x$$
.

**b**) Find a series expansion for f(x), up and including the term in  $x^5$ .

c) Hence find a series expansion for  $e^x \sin x$ , up and including the term in  $x^4$  showing further that the coefficient of  $x^4$  is zero.

### $f(x) = 1 + x + \frac{1}{3}x^3 - \frac{1}{6}x^4 - \frac{1}{30}x^5 + O(x^6), \quad e^x \sin x = x + x^2 + \frac{1}{3}x^3 + O(x^5)$

- $f(x) = e^{2x}x_{2} e^{2x}x_{3} = f(x) e^{2x}x$
- (b)  $f_{\alpha}^{W} = f_{\alpha}^{W} \cdot f_{\alpha}^{A} e^{2} \sin \alpha e^{2} \cos \alpha = f_{\alpha}^{W} f_{\alpha}^{A} e^{2} \sin \alpha$ 
  - $f_{(\infty)}^{(m)} = f_{(0)}^{(m)} \sim f_{(0)}^{(n)} f_{(0)} f_{(0)} f_{(0)} e_{\infty}$
  - $$\begin{split} & \begin{pmatrix} \psi_{(\alpha)}^{(0)} = f_{(\alpha)}^{(0)} f_{(\alpha)}^{(\alpha)} f_{(\alpha)}^{(\alpha)} f_{(\alpha)}^{(\alpha)} e^{2}\tau_{\text{true}} \\ & \\ & \forall_{\alpha} = f_{(\alpha)}^{(0)} = f_{(\alpha)} + f_{(\alpha)} + f_{(\alpha)} + f_{(\alpha)} = f_{(\alpha)} + f_{(\alpha)}$$
  - $\begin{cases} \sqrt{6} & = -4 \\ \frac{1}{2} & -\sqrt{3} & = \frac{1}{2} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} & \sqrt{$
  - $e_{j}^{2}(x) = 1 + 3 \frac{3}{2}x_{j}^{2} \frac{1}{6}x_{j}^{2} \frac{3}{16}x_{k}^{2} + O(J_{1})$
  - $$\begin{split} & Dimber met \, w \in \mathcal{A} \\ & \overline{v}_{1}^{(2)} = 2 + z_{1}^{(2)} + \overline{v}_{2}^{(2)} + \overline{v}_{2$$

### Question 14 (****)

The functions f and g are given below.

$$f(x) = \arctan\left(\frac{2}{3}x\right), x \in \mathbb{R}$$

 $g(y) = \frac{1}{1+y}, y \in \mathbb{R}, -1 < y < 1.$ 

a) Expand g(y) as a binomial series, up and including the term in  $y^3$ .

**b**) Use f'(x) and the answer to part (a) to show clearly that

 $\arctan\left(\frac{2}{3}x\right) \approx \frac{2}{3}x - \frac{8}{81}x^3 + \frac{32}{1215}x^5 - \frac{128}{15309}x^7.$ 

 $g(y) = 1 - y + y^2 - y^3 + O(y^4)$ 

 $\begin{array}{ll} (1+y)^{-l} = 1 + \frac{-l}{1+(y)} + \frac{-l(s_2)}{1+s_2} (y)^2 + \frac{-l(s_2)(s_2)}{1+s_2} (y)^{2} + o(y^{q}) \\ (1+y)^{-l} = 1 - y + y^2 - y^3 + o(y^{q}) \end{array}$ 

(b)  $f(x) = \arctan\left(\frac{2}{3}x\right)$ 

- $$\begin{split} & \begin{pmatrix} \beta_{1} \\ \beta_{2} \end{pmatrix} = -\frac{\frac{2}{3}}{(1+\left(\frac{2}{3}\sqrt{3}\right)^{2}} = -\frac{\frac{2}{3}}{(1+\frac{2}{3}\sqrt{3})^{2}} = -\frac{4}{3} \\ & \text{NGW} \quad \frac{1}{3} \begin{pmatrix} \beta_{2} \\ \beta_{2} \end{pmatrix} = -\frac{2}{3} \begin{pmatrix} \beta_{1} \\ \beta_{2} \end{pmatrix} \begin{pmatrix} \beta_{2} \end{pmatrix} \begin{pmatrix} \beta_{2} \\ \beta_{2} \end{pmatrix} \begin{pmatrix} \beta_{2} \\ \beta_{2} \end{pmatrix} \begin{pmatrix} \beta_{2} \end{pmatrix} \begin{pmatrix} \beta_{2} \\ \beta_{2} \end{pmatrix} \begin{pmatrix} \beta$$
- $\begin{array}{rcl} & \underbrace{\downarrow} & \longmapsto & \frac{1}{2} \chi^{2} & \text{in } \forall \text{Perc } (\omega) \\ \hline \begin{pmatrix} \langle \alpha \rangle & = & \frac{1}{2} \left[ 1 \left(\frac{1}{2} \chi^{2}\right) + \left(\frac{1}{2} \chi^{2}\right)^{2} \left(\frac{1}{2} \chi^{2}\right)^{2} + O(\chi^{0}) \right] \\ & \underbrace{\downarrow} & \begin{pmatrix} \langle \alpha \rangle & = & \frac{1}{2} \left[ 1 \frac{1}{2} \chi^{2} + \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + O(\chi^{0}) \right] \\ & \underbrace{\downarrow} & \begin{pmatrix} \langle \alpha \rangle & = & \frac{1}{2} \chi^{2} \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + O(\chi^{0}) \\ & \begin{pmatrix} \langle \alpha \rangle & = & \frac{1}{2} \chi^{2} \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + \frac{U}{2} \chi^{2} + O(\chi^{0}) \\ & \end{pmatrix} \end{array}$



alasmaths.com

I.V.C.B. Madasm

Smaths Com I. K. C. B.

I.C.B

 $y = \sqrt{9 + 2\sin 3x} \; .$ 

 $y \approx 3 + x - \frac{1}{6}x^2 - \frac{13}{9}x^3$ 

**a**) Find a simplified expression for  $y \frac{dy}{dx}$ .

madasmaths.com

**b**) Hence show that if *x* is numerically small

 $3\cos 3x$ 

Ths.com

I.Y.G.B.

 $y \frac{dy}{dx} = 3\cos 3a(q)$ y dy = 36053

(g')2+ yg" = - 95M3

244 + 44 + 44" = -270

 $3 + 2 - \frac{1}{2}a^2 - \frac{13}{8}a^3 + O(a^6)$ 

nadasmaths com

I.V.C.B. Madash

ths.co

1.G.D.

1+

Created by T. Madas

P.C.P.

I.V.C.B. Madasman

Question 16

(****)  

$$f(x) = \operatorname{arsinh}(x+1), x \in \mathbb{R}.$$

Show clearly that ...

ISMATHS COM INC.

I.C.B

**a**) ... 
$$f''(x) + (x+1)[f'(x)]^3 = 0$$

a) ...  $f^{-}(x_{j})_{\infty}$ b) ...  $\operatorname{arsinh}(x+1) \approx \ln(1+\sqrt{2}) + \frac{\sqrt{2}}{2}x - \frac{1}{2}$ ARSTRATISCOM I.Y.C.B. MARINESCOM

proof

SMaths.com

1.4.6

1.6

Ths.com

- $\frac{1}{\sqrt{(2+1)^2+1}} = \frac{1}{\sqrt{(2^2+2x+2^2)}} = (2^2+2x+2)^{-\frac{1}{2}}$
- $\begin{array}{c} \displaystyle \int_{-\frac{1}{2}}^{\sqrt{2}} (\chi_{1}^{2} + \chi_{1}^{2} + 2) \frac{1}{2} \frac{\chi}{\chi} (\chi_{1}^{2} + 2) = -(\chi_{1}^{2}) (\chi_{1}^{2} + \chi_{1}^{2} + 2) \frac{1}{2} = -\frac{\chi_{1}^{2}}{(\chi_{1}^{2} + \chi_{1}^{2} + 2)} \\ \end{array}$

 $\sum_{i=1}^{n} \frac{1}{2} \left( \frac{1}{2^{i} x_{i} x_{i} x_{j}^{i} x_{j}^{i}} \right)^{2} \left( (i + x) + \frac{1}{2} \frac{1}{2^{i} x_{i} x_{i}^{i} x_{j}^{i}} \right) = \sum_{i=1}^{n} \frac{1}{2^{i} x_{i}^{i} x_{i}^{i} x_{i}^{i}} = \sum_{i=1}^{n} \frac{1}{2^{i} x_{i}^{i} x_{i}^{i}} = \sum_{i=1}^{n} \frac{1}{2^{i} x_{i}^{i} x_{i}^{i}} = \sum_{i=1}^{n} \frac{1}{2^{i} x_{i}^{i} x_{i}^{i} x_{i}^{i}} = \sum_{i=1}^{n} \frac{1}{2^{i} x_{i}^{i}}$ 

 $= -\frac{\alpha+1}{(2^2+2\lambda+2)^{\frac{3}{2}}} + \frac{\alpha+1}{(2^2+2\lambda+2)^{\frac{3}{2}}}$ to Echnicto

I.V.G.B.

 $f_{(X)}^{(\prime\prime)} = -\left[f_{(X)}^{\prime\prime}\right] - 3(x+1)\left[f_{(X)}^{\prime\prime}\right]_{\times}^{\times} f_{(X)}^{\prime\prime}$ 

 $f(0) = \alpha (\sin h) = h(1 + \sqrt{13}) - h(1 + \sqrt{2})$ 

 $f(y) = f(y) + y f'(y) + \frac{y_2}{2!} f'(y) + \frac{y_3}{3!} f'(y) + c(y_4)$  $D(x_{1}) = h(1)(x_{2}) + \frac{\sqrt{2}}{2}\chi - \frac{\sqrt{2}4}{2!}\chi^{2} - \frac{\sqrt{2}6}{3!}\chi^{1} + O(\chi^{3})$  $(+1) = b_1(1+\sqrt{2}) + \frac{1}{2}\sqrt{2}a - \frac{1}{6}\sqrt{2}a - \frac{1}{6}\sqrt{2}a^2 + O(2^4)$ 

### Created by T. Madas

I.F.G.B.

Question 17 (****)

ŀ.G.B.

I.C.p

$$y = \tan x$$
,  $0 \le x < \frac{\pi}{2}$ .

**a**) Show clearly that ...

**i.** ... 
$$\frac{d^2 y}{dx^2} = 2y \frac{dy}{dx}$$

**ii.** ... 
$$\frac{d^5 y}{dx^5} = 6 \left(\frac{d^2 y}{dx^2}\right)^2 + 8 \frac{dy}{dx} \frac{d^3 y}{dx^3} + 2y \frac{d^4 y}{dx^4}$$

**b**) Use these results to find the first 3 non zero terms of a series expansion for y.



nn

6

F.G.B.

ŀG.p.

madasn.

Question 18 (****)

I.C.B.

I.C.B.

$$y = \ln(4+3x), x > -\frac{4}{3}.$$

**a**) Find simplified expressions for  $\frac{dy}{dx}$ ,  $\frac{d^2y}{dx^2}$  and  $\frac{d^3y}{dx^3}$ 

**b**) Hence, find the first 4 terms in the Maclaurin expansion of  $y = \ln(4+3x)$ .

c) State the range of values of x for which the expansion is valid.

**d**) Show that for small values of x,

I.C.

 $\ln\left(\frac{4+3x}{4-3x}\right) \approx \frac{3}{2}x + \frac{9}{32}x^3.$ 

 $\frac{54}{\left(3x+4\right)^2},$  $\frac{dy}{dx} = \frac{3}{3x+4}, \quad \frac{d^2y}{dx^2}$  $\frac{9}{\left(3x+4\right)^2}$  $-\frac{4}{3} < x \le \frac{4}{3}$  $dx^3$  $\ln(4+3x) = \ln 4 + \frac{3}{4}x - \frac{9}{32}x^2 + \frac{9}{64}x^3 + O(x^4)$ 

 $\frac{du}{dx} = \frac{3}{4+3x} = 3(4+3x)^{-1}$  $\frac{d^2 y}{d \eta^2} = -q(4+3q)^2 = -\frac{q}{(4+3q)^2}$  $\frac{52}{5+4} = (x+4)42 =$ 신= 90 + 340 + 700 + 3 400 + 621 = 34  $\frac{dg}{dx^2}\Big|_{x=0} = -\frac{q}{14}$   $\Rightarrow$   $\ln(4+3x) = \ln 4 + \frac{3}{4}x - \frac{q}{32}x^2 +$ 12 = 0 = 21 033 2=0 = 32  $\text{Lockall AT} \quad \Im(4+3\pi)^{-1} = \Im \times \overset{-1}{4} \times \left(1 + \frac{3}{4} \tilde{x}\right)^{1} \quad \text{ MUD FOR } \quad \left| \frac{3}{4} \pi \right| < 1$ d)  $\ln(4-3\lambda) = \ln 4 - \frac{3}{4} x - \frac{q}{32} x^2 - \frac{q}{64} x^3 + O(x^4)$  $\ln\left[\frac{4+3x}{4-3x}\right] = \ln(4+3x) - \ln(4-3x) = \ln\frac{4}{4} + \frac{3}{4} + \frac{$ 

 $=\frac{5}{3}2 + \frac{7}{3}2_3 + O(2_1)$ - $\frac{1}{901} + \frac{4}{3}2 + \frac{2}{3}2_3 + O(2_1)$ 

2017

### Question 19 (****)

If *m* and *n* are non zero constants, then the first non zero term in the Maclaurin expansion of  $e^{mx} - (1+4x)^n$  is  $-4x^2$ .

Find the coefficient of  $x^3$  in this expansion.

You may NOT use standard series expansions in this question.

2 01 90 ac	
$y = e^{wx} - C_{1+4x}$	Yo= (−1=0
$\frac{y}{m} = m e_{mx} - q^{s} (1 t)_{m-1}$	dy lo - Ko-Ko
$\frac{2}{\Omega^2} = w_1^2 e^{w_1} - i \epsilon_{H(n-1)} \zeta_{1} + \varphi_{1} \Big)^{h-2}$	$\frac{d^2 q}{d\lambda^2}\Big _0 = W_1^2 - (6t(q-1))$
$\int_{a}^{b} = \mu \int_{a}^{b} \int_{WY}^{a} = 0$ (4 $\mu (r - 1)(1 - 5)(1 + 4r)$	$\frac{d^3 u}{d \lambda^3} \Big _q = u_1^3 \dots d d_1 (t-1) (t-1)$
HCUNURIN THFORM	
$g = g_{0} + xy_{0}' + \frac{2^{2}}{2!}g_{0}'' + \frac{3^{3}}{3!}g_{0}'''$	$+ o(x^{*})$
u = 0 to $u = 0$ the $u = 1$	-++ [w-++()(]]

quettino coefficients for 2 q a ²
$\begin{array}{c} u_{n-i}(\mu)=0\\ \frac{1}{2}\left[ \left[ h_{1}^{n}-i(h_{1}(\eta_{-1})\right] =-\psi \end{array} \right]  \qquad \qquad$
-> 1/2 [[64]2-16W(4-1)]=-4
$\implies \frac{1}{5} \frac{1}{7} - \frac{1}{5} \frac{1}{7} + \frac{1}{5} \frac{1}{7} = -8$
> 16y 6
$\rightarrow 2$ $h = -\frac{1}{2}$ $\bar{a}$ $h = -2$
THA THE CONFILINT OF 23 WULL BE
$\frac{1}{6}\left[\left(-2\right)^{k}-64\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\right]=\frac{1}{6}\left[\left(-6-664\left(\frac{1}{2}\left(-\frac{1}{2}\right)\right)\left(-\frac{1}{2}-2\right)\right)\right]$

### **Question 20** (****)

I.V.G.B.

alasmaths.

I.V.G.B. ma

I.V.G.B.

00

Determine the first 3 no zero terms in the Maclaurin expansion of

200

I.G.B.

I.G.B.

I.Y.C.B

 $y = e^{\sin^2 x}$ 

### $y = 1 + x^2 + \frac{1}{2}x^4 + O(x^6)$

E.

6

Madasm.



- $\frac{d_{32}}{du^2} = \frac{d_{42}}{dt} \sin 2x + 240623$
- $\frac{di}{di_3} = \frac{\beta_3}{di_2} \sin 2\alpha + 2\frac{di}{di_3} (\cos 2\alpha + 2\frac{di}{di_3} \cos 2\alpha 4y \sin 2\alpha)$
- $= \frac{1}{2} \frac{$
- $\frac{d_{11}}{d_{11}} = \frac{d_{11}}{d_{12}} e_{11} e_{21} e_{22} e_$
- Window 2 miles Contraction Contraction

madasn

2017

ŀ.G.p.

he.

I.V.C.B. Madasa

Created by T. Madas

madasmaths,

0

# MACLAURIN NACLAURIN NPANSIONS RD - SNS The res U. Madasmaths Com I.Y.G.B. Madas J. Uasinalis.com I.V.C.B. Madasin

Question 1 (****+)

 $y = \ln(1 + \sin x), \ \sin x \neq -1.$ 

a) Show clearly that

 $\frac{dy}{dx} = f(y),$ 

where f(y) is a function to be found.

**b**) Hence show further that

I.C.P.

I.Y.C.

Y.C.B. Mada

COM

I.F.G.B.

 $\ln(1+\sin x) \approx x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \frac{1}{24}x^5$ 

(c)	$y = (nC(t \le mx))$
	$\frac{dy}{dx} = \frac{\cos x}{1 + \sin x}$
	$\frac{x_{\text{for}}^2 - x_{\text{full}}^2 - x_{\text{full}}^2 - \frac{(x_{\text{full}}^2 - x_{\text{full}}^2 - x_{\text{full}}^2)}{x_{\text{full}}^2 - \frac{(x_{\text{full}}^2 - x_{\text{full}}^2)}{x_{\text{full}}^2} = \frac{\beta_{\text{full}}^2}{\epsilon_{\text{full}}^2}$
	$= \frac{-Sh_{2}-(u_{2}^{2}+s_{1}^{2})}{((1+s_{1}^{2})^{2}} = \frac{(1-s_{1}^{2}-u_{1}^{2})}{(1+s_{1}^{2})^{2}} = -\frac{(1+s_{1}^{2}-u_{1}^{2})}{(1+s_{1}^{2}-u_{1}^{2})^{2}}$
	$= -\frac{1}{1+SM2}$
	BUT Ey = In Citsma)
	$\frac{d^2y}{dy^2} = -\frac{1}{e^2} = -\frac{e^2y}{e^2}$
	$\frac{dy_2}{dy_2} = -\frac{e^y}{e^y} = -\frac{e^y}{e^y}$ If $f(y) = -e^y$
(4)	$\frac{d^3y}{dJ^2} = -\overline{e}^9$
	$\frac{d^3y}{d^3y} = e^{-y}\frac{dy}{dy} = -\frac{dy}{dy}\frac{dy}{dy}$
	$\frac{d^{2}_{M}}{d\omega} = -\frac{d^{2}_{M}}{d\omega}\frac{du}{d\omega} = -\frac{d^{2}_{M}}{d\omega^{2}}\frac{du}{d\omega^{2}}$
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	$N\alpha\omega \left\{ \begin{array}{c} y_{0}=b_{1}1=0 \\ T_{1}b_{2} \end{array} \right. \begin{array}{c} y_{0}=y_{0}+\alpha y_{0}^{*}+\frac{2^{2}}{2^{2}}y_{0}^{*}+\frac{2^{2}}{3!}y_{0}^{*}+\alpha (\alpha^{2}) \end{array} \right. \label{eq:2.1.1}$
	$ \begin{array}{c} U_0^{\ell=1} \\ U_0^{\ell=-1} $
	$\begin{array}{c} \left\{\begin{array}{c} y_{0}^{w}=-\left(r\right)\left(y\right)=1\\ y_{0}^{w}=-\left(r\right)\left(-r\right)^{2}r-2\end{array}\right\} \implies \underbrace{y}=x-\frac{1}{2}x^{2}+\frac{1}{2}x^{2}-\frac{1}{2}x^{2}+\frac{1}{2}x^{2}+\cdots\right.$
	$\int_{0}^{\infty} = -(-2)(1) - 3x(x(-1)) = 5$

hs.com

 $y = -e^{-y}$ 

ŀ.G.p

Mada

Inadasm

100

1+

I.C.B.

Question 2 (****+)

17

20

Smaths,

I.C.B.

I.F.G.p

na,

2011

$$y = \tan\left(x + \frac{\pi}{4}\right), \ -\frac{3\pi}{4} < x < \frac{\pi}{4}.$$

Use the Maclaurin theorem to show that

$$y = \tan\left(x + \frac{\pi}{4}\right) \approx 1 + 2x + 2x^2 + \frac{8}{3}x^3 + \frac{10}{3}x^4 + \frac{64}{15}x^5$$

Mada

1212

·C,

proof

E.

1.4

COM

$$\begin{split} & \int_{\mathbb{R}^{2}} (y_{1} - y_{1}) = (1 + 2x_{1} + 2x_{1}^{2} + y_{1}^{2}) + \frac{2x_{1}^{2}}{2} y_{1}^{2} + C(x^{2}) \\ & + \omega_{1}(x_{1} - x_{1}) = (1 + 2x_{1} + 2x_{1}^{2} + y_{1}^{2} + y_{1}^{2} + x_{2}^{2} + y_{1}^{2} + \frac{2x_{1}^{2}}{2} + y_{2}^{2} + \frac{2x_{1}^{2}}{2} + \frac{2x_{1}^{$$

27

ø

200

Madasn,

I.F.C.B.

 $e^{\sin 2x} = 1 + x + 2x^2 - 2x^4 + O(x^5)$ 

•  $SMQ = Q - \frac{\chi^3}{3!} + O(\chi^5)$ 

*  $Sw(2x = 2x = \frac{4}{3}a^3 + O(x^5)$ 

 $\overset{\circ}{\bullet} \overset{\circ}{\sqcup} = \overset{\vee}{e}^{\mathsf{q}} \qquad \text{wither} \quad \mathfrak{q} = 2\mathfrak{x} - \overset{\mathsf{q}}{3}\mathfrak{x}^3 + o(\mathfrak{z}^3)$ 

 $\implies \psi = 1 + u + \frac{1}{2}u^{2} + \frac{1}{6}u^{3} + \frac{1}{24}u + o(u^{5})$ 

 $\Rightarrow y = 1 + 2x + 2x^2 - 2x^4 + o(a^5)$ 

C.P.

23

I.C.B.

 $= 1 + \left[2\alpha - \frac{6}{3}\alpha^2 + o(2\beta)\right] + \frac{1}{2}\left[2\alpha - \frac{6}{3}\alpha^2 + o(2\beta)\right]^2 + \frac{1}{6}\left[2\alpha - \frac{6}{3}\alpha^2 + o(2\beta)\right]^3$ 

 $+ \frac{1}{24} \left[ 2 \lambda - \frac{4}{3} \lambda^3 + O(\lambda^5) \right]^4 + O\left[ \left( 2 \lambda - \frac{4}{3} \lambda^3 + O(\lambda^5) \right)^5 \right]$ EXMME THE REPORT

 $= 1 + \left[2z - \frac{4}{3}z^{2}\right] + \frac{1}{2}\left[4z^{2} - \frac{16}{3}z^{4}\right] + \frac{1}{4}\left[6z^{2}\right] + \frac{1}{4}\left[6z^{2}\right]$ 

 $\Rightarrow y = 1 + 2i - \frac{4}{3}x^{3} + 2i^{2} - \frac{4}{3}x^{4} + \frac{4}{3}x^{4} + \frac{2}{3}x^{4} + o(x^{5})$ 

6

nadasn.

17₂₀₂₈₁

### Question 3 (****+)

I.V.G.B.

maths,

I.G.B.

I.C.B.

っ

Find the Maclaurin expansion, up and including the term in  $x^4$ , for  $y = e^{\sin 2x}$ .

 $(y = e^{SM2x})$   $(y_0 = e^e = 1)$ 

 $\left(\frac{y_{o}'=2y_{o}=2}{2}\right)$ 

 $g_{o}'' = 2g_{o}' = 4$ 

⇒ Y"= 2y'6s22 - 4ys11/22

=) Y^W= 29¹00521 - 49¹511122 - 49¹511122 - 8900522

⇒ y^W= (2y^W-8y')10522 - 2(2y^C-8y)51M2X - 8y^K51M2X - 16y'aa22.

 $\begin{array}{l} \vdots \quad \underbrace{y}_{i} = \underbrace{y}_{i}^{f} + \underbrace{xy}_{i}^{f} + \underbrace{z^{2}}_{2} \underbrace{y}_{i}^{f} + \underbrace{z^{2}}_{3} \underbrace{y}_{i}^{g} + \underbrace{z^{2}}_{4} \underbrace{y}_{i}^{g} + o(x^{4}) \\ \in \underbrace{\mathbb{P}^{N(X)}_{i}}_{i} = (1 + 2x_{i} + 2x^{2} + ox^{2} - 2x^{4} + o(x^{4}) \\ e^{\underbrace{Sp(X)}_{i}}_{i} = (1 + 2x_{i} + 2x^{2} - 2x^{4} + o(x^{4}) \\ \end{array}$ 

 $y_0'' = 2y_0' - 8y_0 = 8 - 8 = 0$ 

=) y'' = (2y'- 8y) 6022x - 8y'sin 22

Y° = -8x2 -16x2 = -48

= e^{SM22}(2682x) =

2400520

### Question 4 (****+)

I.C.P.

Consider the following infinite convergent series.

 $\frac{3}{1\times 2} - \frac{5}{2\times 3} + \frac{7}{3\times 4} - \frac{9}{4\times 5} + \frac{11}{5\times 6} - \frac{9}{3\times 4} - \frac{9}{3\times 4} + \frac{11}{3\times 6} - \frac{9}{3\times 6} + \frac{11}{3\times 6} - \frac{$ 

- a) Use the method of differences, to find the sum of this series.
- b) Verify the answer of part (a) by using a method based on the Maclaurin expansion of  $\ln(1+x)$ .



V

F.C.B.

2

(****+) Question 5

 $y = \ln(2 - e^x), \ x < \ln 2.$ 

Show clearly that

I.F.G.B.

I.G.p  $e^{y}\left[\frac{d^{3}y}{dx^{3}}+3\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}+\left(\frac{dy}{dx}\right)^{3}\right]+e^{x}=0,$ 

and hence find the first 3 non zero terms in the Maclaurin expansion of

 $y = \ln\left(2 - e^x\right), \quad x < \ln 2 \ .$ 

Cn.	V.P	~~~~	<b>2</b>
-00	START THE DIE	FREASTINATION AFTLE RELIQUING THE LOGS	
~//		$n(2 - e^{2})$	
	$\implies e^{\underline{b}} =$		
	$\rightarrow e^{2} \frac{dx}{dx}$		
1. 4	$\rightarrow e^{\frac{1}{2}} \frac{dy}{dy}$		
/. / . · · · · ·			
		<u>VE IN THE EXPRESSION MORE COMPACILY AND</u> IN]	
Y.	$\rightarrow e^{2}y'$ +	€ ≈0	
- (x ) A	$\Rightarrow \frac{d}{dt} (e^{2}y')$		
510		$+e^{y}y'+e^{2}=0$	
		$+ y''$ ] $+ e^{x} = 0$	
. · · · · · · · · · · · · · · · · · · ·	DIPTERATIONCE	NOLE with RESPECT to $x$ $1^{2}+y^{4}] + e^{4}[2yy^{4} + y^{44}] + e^{2} = 0$	
	= e ^y (y')	$^{8} + 3u'u'' + y''' + c^{2} = 0$	
	ے م ^ی ( (غ	$\frac{ \mathbf{x}_{1} ^{2}}{ \mathbf{x}_{1} ^{2}} + \frac{1}{2} \frac{1}{ \mathbf{x}_{1} ^$	
		As upues	
	ila.	- / / / ·	
19.	02	10.	
911	100	dr	
- CD_	010	· (D.	
	Ch.		γ.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	· · · · · · · · · · · · · · · · · · ·	Í
~// h)	٤.,
10	- C j	2.	1
		<i>m</i>	
-			
· · · · · · · · · · · · · · · · · · ·	J F.	- X	
1 h.	10 Jr		
5 L			
	- "(\`A		٩.
	510	100	Γ.
510		S	
	· · · · · · · · · · · · · · · · · · ·	x 2	7
		1993 - Carlo Ca	٠.

NOW EVALUATE THESE AT $x=0$	
• $y_0 = h(z - e^0) = h(z = 0)$	2 <u>y</u> =0
· ey+ e=0	
$e^{i\theta}y'_0 + e^{\theta} = 0$ $1 \times y'_0 + 1 = 0$:- 9%=-1
 e^y[(y')²+ y'] + e²=0 	<u></u>
$e^{\frac{y_{*}}{2}}\left[\left(\frac{y_{*}}{2}\right)^{2}+\frac{y_{*}}{2}\right]+e^{2}=0$	
$\left[\left[\left(-1 \right)^{2} + \left(\frac{1}{2} \right)^{\alpha} \right] + 1 = 0$ $1 + \left(\frac{1}{2} \right)^{\alpha} + 1 = 0$:. y.= -2
· e [(y') + 3y'y" + y"] + e ==	
$e^{\frac{y_{0}}{2}}\left[\left(\frac{y_{0}}{2}\right)^{3}+3\left(\frac{y_{0}}{2}\right)\left(\frac{y_{0}}{2}\right)+\frac{y_{0}^{2}}{2}+\frac{y_{0}$	
-1+6+9%+1=0	y"==6
FINALLY WE-HAVE	<u>J</u>
$y = y_0 + xy'_0 + \frac{x^2}{2!}y''_0 + \frac{x^3}{3!}$	¹ y° + 0(x4)
$\ln(2-\chi) = 0 - 1(\chi) + \frac{(-2)}{2!}\chi^2 + \frac{-2}{3!}$	$\frac{c}{2i}q^3 + o(x^4)$
$\underline{h(2-x)} = -x - x^2 - x^3 + 00$	(x4)

っ

COM

 $y = \ln(2 - e^x) = -x - x^2 - x^3 + O(x^4)$

The Com

New State

Created by T. Madas

(****+)Question 6

Find the Maclaurin expansion, up and including the term in x^4 , for $y = \sin(\cos x)$.

- ET BY DIRECT DIFFERENTIATION -WE NEED PERIVATIVES UP TO 25 JOTE THE FLUCTION IS EVEN -> y= ln(1+costra) => dy = sinhar dy = 1+ cosha $-\frac{d^2y}{dt^2} = \frac{(1+i\alpha ka)ca}{(1+i\alpha ka)}$ $\frac{-\sinh_{x}(\sinh x)}{x^{p}} = \frac{\cosh x + \cosh x - \sinh^{2} x}{(1 + \cosh x)^{2}}$ $\frac{\cosh x + 1}{(1 + \cosh x)^2} \approx \frac{1}{1 + \cosh x}$ thining 4 More Delivations Differry is different to be MAY PROCEED AS FOLLOWS $\mathcal{G} = \mu (1 + \log h \alpha) = - \mu (\frac{1}{1 + \log h \alpha}) = - \ln (\frac{d^2 y}{d \alpha^2})$ $\Rightarrow -y = \ln \left(\frac{dy_2}{dy_2} \right)$ $e^{-y} = \frac{d^2y}{d\chi^2}$ $\frac{d^2y}{dt^2} = e^{-y}$
- 🧶 CONSTINUE THE DIARCENSTATIONS W. R. F. D. $\Rightarrow \frac{d^3y}{dx} = -\frac{e^3}{e^3} \frac{dy}{dx}$
- $\Rightarrow \frac{d^3g}{dx^4} = e^{-y} \left(\frac{dg}{dx} \right)^2 e^{-y} \frac{d^3g}{dx^2} = e^{-y} \left(\frac{dg}{dx} \right)^2 e^{-2y}$ $=) \frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}} = -e^{-\frac{1}{2}} \left(\frac{dy}{dx} \right)^{\frac{1}{2}} + 2e^{\frac{1}{2}} \frac{dy}{dx} \frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}} + 2e^{\frac{1}{2}} \frac{dy}{dx}$
- $= \frac{dS_{y}}{dh^{2}} = -\overline{e}^{\frac{h}{2}} \left(\frac{du}{dt} \right)^{3} + 2\overline{e}^{\frac{2h}{2}} \left(\frac{du}{dt} \right) + 2\overline{e}^{\frac{2h}{2}} \left(\frac{du}{dt} \right)$ $\Rightarrow \frac{d^{2}y}{dt^{2}} = 4e^{2y}\frac{dy}{dt} - e^{y}\left(\frac{dy}{dt}\right)^{3}$ $\implies \frac{\partial \mathcal{L}_{q}}{\partial \mathcal{I}_{q}} = -8e^{-\frac{2q}{2}\left(\frac{\partial}{\partial \mathcal{I}}\right)^{2}} + 4e^{-\frac{2q}{2}\frac{\partial}{\partial \mathcal{I}_{q}}} + e^{-\frac{q}{2}\left(\frac{\partial}{\partial \mathcal{I}}\right)^{2}} - 3e^{-\frac{2q}{2}\frac{\partial}{\partial \mathcal{I}}} \frac{\partial^{2}}{\partial \mathcal{I}_{q}^{2}}$ $\implies \frac{d^{4}g}{d\chi^{6}} = -8e^{-2g}\left(\frac{dy}{d\chi}\right)^{2} + 4e^{-\frac{3g}{2}} + e^{-\frac{2g}{2}}\left(\frac{dy}{d\chi}\right)^{4} - 3e^{-2g}\left(\frac{dy}{d\chi}\right)^{2}$ $\Rightarrow \frac{d^4y}{dr_4} = 4e^{-3y} + e^{y} \left(\frac{dy}{dt}\right)^4 - 11e^{-2y} \left(\frac{dy}{dt}\right)^2$ O=C TA SHUTAULSED SENT DURAWAN $\bigcup_{0} = \underbrace{\left| h_{2}^{2} \right|}_{\chi_{p_{0}}} \underbrace{\frac{du}{dt}}_{\chi_{p_{0}}} = 0, \quad \underbrace{\frac{d^{2}u}{dt^{2}}}_{\chi_{p_{0}}} \underbrace{\frac{d^{2}u}{dt^{2}}}_{\chi_{p_{0}}} = \underbrace{e^{-\ln 2}}_{2} = \underbrace{\frac{1}{2}}_{2}$ $) \left. \frac{d^3g}{d\lambda^3} \right|_{\lambda=0} = 0 \quad) \quad \frac{d^4g}{d\lambda^4} \Big|_{\lambda=0} = -e^{-\frac{2|N2}{2}} - \frac{1}{4}$ $\frac{\left.\frac{d^3 h}{d \lambda^3}\right|_{\lambda = 0} = 0 \ , \ \frac{d^3 g}{d \lambda^3} \right|_{\lambda = 0} = 4 \ e^{\frac{3}{2} h 2} = \left(\frac{1}{2}\right)$ HAVE WE CAN CRAMMITHE MICLORIN, IGNORING ODD THRUG

TOY BEFORE THE FINAL DIFFERENTIATION

 $y = y_{0} + \frac{x_{1}^{2}}{2!} y_{0}^{\prime} + \frac{x_{1}^{2}}{4!} y_{0}^{\prime} + \frac{x_{1}^{2}}{6!} y_{0}^{\prime} + O(x^{2})$ $\mathcal{Y} = \ln 2 + \frac{1}{4}a^2 + (\frac{1}{4})(\frac{1}{24})a^4 + \frac{1}{2}\times \frac{1}{26}a^6 + O(a^8)$ $y = \frac{1}{2} + \frac{1}{4}x^2 - \frac{1}{96}x^4 + \frac{1}{146}x^6 + o(x^8)$

ASSINGUNG IN I.Y.C. fatas MACLAURIN "ANSIONS "FNT EXF. 9 ENRICH. QUESTIONS ALASINATING THE TREE TO A THE TO A THE TREE C. TRADASTRATINS COM I. Y. C.B. Marian J. IASINATISCOM I.Y. C.B. MARIAN

Question 1 (*****)

The curve with equation y = f(x) is the solution of the differential equation

$$f(x) \equiv \ln\left(\frac{1-x+x^2}{1+x+x^2}\right)$$

Determine, in its simplest form, the coefficient of x^{6n-3} , $n \in \mathbb{N}$, in the Maclaurin series expansion of f(x).

- $\ln\left(\frac{(-3,+\lambda^2)}{(+3,+\lambda^2)}\right) + \ln\left(\frac{(+3,-\lambda)}{(-\lambda)}\right) = \ln\left[\frac{((-3,+\lambda^2)(+\lambda)}{((+3,+\lambda^2)(-\lambda)}\right]$
- $$\begin{split} &\frac{1}{Db_{ij}^{2}}\log\frac{1}{\sqrt{(1+2i)}} & = \sqrt{(1+2i)} \\ &\frac{1}{Db_{ij}^{2}}\log\frac{1}{\sqrt{(1-2i)}} & + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} + \sqrt{(1+2i)} \\ & = \sqrt{(1+2i)} + \sqrt{(1+2i)$$
- $= 2\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3}\lambda^{2} + \frac{2}{3\lambda^{-1}}\lambda^{2n}$ New linkuk- Fiel the $\lambda^{(n,2)}$ there in he(1,n) h((1,n) h(1-n))
- $\begin{array}{c} -\frac{2}{3}x^2+\dots+\frac{2}{3}x^2+\dots+\frac{2}{3}x^2+\dots+\frac{2}{3}x^{2}\dots+\frac{2}{3}x^{2}\dots+\frac{2}{3}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}x^{2}\dots+\frac{2}{3}x^{2}\dots+\frac{2}$

 $\begin{array}{c} \vdots & \text{Conff of } 2^{Q_{n-1}} \text{ With } \overline{Bc} = \frac{2}{2c_{n-1}} - \frac{2}{2c_{n-2}} = \frac{D_{n-1} - b_{n+2}}{(C_{n-1})(2c_{n-1})} = \frac{b_{n-1}}{(C_{n-1})(2c_{n-1})} = \frac{d_{n-1}}{d_{n-2}} \end{array}$

(*****) Question 2

Find the Maclaurin expansion of $\arctan x$, and use it to show that

Question 3 (*****)

a) Use an appropriate integration method to evaluate the following integral.

 $x^3 \arctan x \, dx$.

b) Obtain an infinite series expansion for $\arctan x$ and use this series expansion to verify the answer obtained for the above integral in part (a).

 $\frac{1}{6}$

[you may assume that integration and summation commute]

Question 4 (****)

It is given that

•
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{1}{4}\pi$$

• $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots = \frac{1}{12}\pi^2$
• $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2$

Assuming the following integral converges find its exact value.

 $\int_0^1 (\ln x) (\arctan x) \, dx \, .$

[you may assume that integration and summation commute]

	$, \boxed{\frac{1}{48} \left[\pi^2 - 12\pi + 24 \ln 2 \right]}$
IT IS WILLEY THE INFRAL HAR 4 CEED RUL IN YOUL OF CURYJAPY FRATIOLS IN ADDIVITE FRAM_USE SPRING NOTAD	$\frac{\int_{0}^{1} (\alpha d \alpha \omega) [b\alpha] \partial \alpha}{\int_{0}^{1} (\alpha d \alpha \omega) [b\alpha]} \partial \alpha = \sum_{n=1}^{\infty} \frac{\left[\frac{(\alpha + 1)^{n+1}}{(\alpha + 1)^{n+1}} \right]}{\left[\frac{(\alpha + 1)^{n+1}}{(\alpha + 1)^{n+1}} \right]} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{\left[\frac{(\alpha + 1)^{n+1}}{(\alpha + 1)^{n+1}} \right]}{\left[\frac{(\alpha + 1)^{n+1}}{(\alpha + 1)^{n+1}} \right]}$
$\begin{aligned} \frac{d}{dx} \left(\frac{\partial (r_{1} + v_{1})}{\partial r_{1}} - \frac{1}{r_{1}} \frac{1}{r_{1}} - \frac{1}{r_{1}} $	$\begin{array}{c} (21)_{k-1} (201)_{k-1} (210)_{k-1} $
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{split} & \int_{0}^{1} (\operatorname{sectab}(L)(U_{\mathcal{R}})) ds = - \frac{1}{2} \sum_{k=0}^{\infty} \frac{\left[\frac{(c_{k})}{(c_{k})} + \frac{c_{k}}{(c_{k})} + \frac{(c_{k})}{(c_{k})} + \frac{c_{k}}{(c_{k})} \right] \\ & = + \frac{1}{2} \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \pm \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} - \frac{c_{k}}{(c_{k})} \frac{(c_{k})}{(c_{k})} \\ \frac{(c_{k})}{(c_{k})} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} - \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})}{(c_{k})} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} - \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})}{(c_{k})} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} - \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})}{(c_{k})} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} - \sum_{k=0}^{\infty} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})}{(c_{k})} \frac{(c_{k})}{(c_{k})} + \frac{1}{2} \\ \frac{(c_{k})$
$ \begin{split} & \underbrace{\left \begin{array}{c} \underline{h}_{1} \\ \underline{h}_{2} \\ \underline{h}_$	$ \begin{array}{c} \left \begin{array}{c} \begin{array}{c} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left($

1.1

(*****) Question 5

, I.I.G.B.

Show with detailed workings that

 $\sum_{r=1}^{\infty} \left[\frac{2r+3}{(r+1)3^r} \right] = 3\ln\left(\frac{3}{2}\right).$

asillatils.Col

I.V.C.

naths.com

(*****) Question 6

120

Smaths.com

I.G.B.

I.V.G.B.

alasmaths.c.

By considering the series expansions of $\ln(1-x^2)$ and $\ln(\frac{1+x}{1-x})$, or otherwise, find the exact value of the following series.

 $\frac{1}{2} \times \frac{1}{2^6} + \frac{1}{4} \times \frac{1}{2^4} + \frac{1}{6} \times \frac{1}{2^4} + \frac{1}{8} \times \frac{1}{2^6} + \cdots$ $+\frac{1}{3} \times \frac{1}{2^{n}} + \frac{1}{5} \times \frac{1}{2^{n}} + \frac{1}{7} \times \frac{1}{2^{n}} + \frac{1}{7} \times \frac{1}{2^{n}} + \frac{1}{7} \times \frac{1}{2^{n}} + \cdots \quad d \quad \text{locks like } \ln \left(\frac{1+3}{1-3}\right)$ 49 3HT TA JUNIOU ZHOUGE (4

```
-\frac{1}{2} \int_{M} (1 - x_{f}) = \frac{1}{2} x_{5} + \frac{1}{2} x_{f}^{2} + \frac{1}{2} x_{c}^{2} + \frac{1}{2} x_{g}^{3} +
-\frac{1}{2}\ln\left[1-\left(\frac{1}{2}\right)^{2}\right] = \frac{1}{2}x\frac{1}{2^{4}} + \frac{1}{4}x\frac{1}{2^{4}} + \frac{1}{6}x\frac{1}{2^{6}} + \frac{1}{8}x\frac{1}{2^{6}}
   - としい(多) = シャント+キャシャ + セッシャ + も、ショ
```

 $\implies \frac{1}{2\lambda} \ln \left(\frac{1+\lambda}{1-\lambda} \right) = 1 + \frac{1}{3} \chi^{2} + \frac{1}{3} \chi^{4} + \frac{1}{7} \chi^{6} + \frac{1}{9} \chi^{8}$ $= \frac{1}{2x_{2}^{2}} \ln\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = 1 + \frac{1}{3}\frac{1}{2^{2}} + \frac{1}{3}\frac{1}{2^{4}} + \frac{1}{7}\frac{1}{2^{4}} + \frac{1}{7}\frac{1}{7}\frac{1}{7} + \frac{1}{7}\frac{1}{7}\frac{1}{7} + \frac{1}{7}\frac{1}{7}\frac{1}{7}\frac{1}{7} + \frac{1}{7}$ -) (n (3) -1 = " OUR SERIES" OUR -MRIES"

 $-1 + \frac{1}{2} \ln 12$

60

1+

1202SM

aths.com

I.V.C.B. Madası

nn

- $\begin{pmatrix} \frac{1}{2}+\frac{1}{3} \end{pmatrix} \frac{1}{2^2} + \begin{pmatrix} \frac{1}{4}+\frac{1}{3} \end{pmatrix} \frac{1}{2^4} + \begin{pmatrix} \frac{1}{6}+\frac{1}{7} \end{pmatrix} \frac{1}{2^6} + \begin{pmatrix} \frac{1}{6}+\frac{1}{7} \end{pmatrix} \frac{1}{2^6} + \cdots = -\frac{1}{2} \ln \begin{pmatrix} \frac{3}{4} \end{pmatrix} + \ln 3 \ln 3 + \ln 3 \ln 3 + \ln$ $\sum_{\mu_{n}}^{\infty} \left[\left(\frac{1}{2^{\mu}} + \frac{1}{2^{\mu} \mu} \right) \left(\frac{1}{2^{\mu}} \right)^{-1} \right] = \frac{1}{2} \left[2^{\lfloor \eta \rfloor} 3 - \lfloor \eta \lfloor \frac{2}{4} \rfloor - 1 \right]$
- $\sum_{\infty} \left[\left(\frac{3k}{T} + \frac{3k}{T} \right) \left(\frac{k}{T} \right)_k^L \right] = \frac{2}{T} \left[\left[\mu \delta + \mu \frac{2}{T} \right] 1$
- $\sum_{p=1}^{\infty} \left[\left(\frac{1}{2p} + \frac{1}{2p} \right) \left(\frac{1}{2} \right)^{p} \right] = \frac{1}{2} \ln 2 1$

Created by T. Madas

I.Y.C.B.

(*****) Question 7

ĈŖ.

ŀ.C.B.

Find the sum to infinity of the following series.

1 1 1 1 1 1+4 1+4+9 1+4+9+16 1+4+9+16+25

, $6(\pi - 3)$

 $= C + \alpha - \frac{4}{3}\alpha_{z} + \frac{4}{3}\alpha_{z} - \frac{4}{7}\alpha_{z} + \cdots$ ut ano - cro

= $4\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$

 $-24\sum_{n=1}^{10}\frac{(-1)^{n+1}}{2n+1}$

FGB.

na,

S (-1)*H H=1 24-1

 $a_{-\frac{1}{2}}a_{+}^{2} + \frac{1}{2}a_{+}^{2} - \frac{1}{2}a_{+}^{7} + \dots = \sum_{k=1}^{\infty} \left[\frac{(c_{-1})^{k+1}}{2k_{+}} a_{-}^{2k_{+}} \right]$

You may find the series expansion of arctan *x* useful in this question.

the seeks in "Courand" in Zatation USIDAR TA $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(^{2}+2^{2}+3^{2}+\ldots+N^{2}}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\frac{1}{6} \mathcal{H}(n+1)(2n+1)}$ 1+32 $\implies \int \frac{1}{1+x^2} dt = x - \frac{1}{3}x^3 + \frac{1}{4}x^5 - \frac{1}{7}x^7 + \dots + C$ t-C-1) THEM & SPUT THE EVER INTO PHETIAL REACTIONS BY INSPECTION $\frac{1}{N(N+1)(2n+1)} \geq \frac{\frac{1}{4}}{n} + \frac{\frac{1}{(1/4)}}{N+1} + \frac{\frac{1}{(2N+1)}}{2n+1} = \frac{1}{2n+1} + \frac{1}{2n+1} - \frac{2}{2n+1}$ $=\sum_{i=1}^{\infty}\left[\left(\left(-i\right) ^{k+i}\left[-\frac{1}{k}+\frac{1}{k+i}-\frac{k}{2n+i}\right] \right] \right.$ $\frac{\infty}{\frac{5}{2n-1}} = \frac{(-1)^{n+1}}{2n-1}$ $4\sum_{k=0}^{\infty} \frac{(-1)^{N+2}}{2k+1}$ $= 6 \sum_{n=1}^{\infty} \frac{C_{-1}}{n}^{n+1} + 6 \sum_{n=1}^{\infty} \frac{C_{-1}}{n+1}^{n+1} - 24 \sum_{n=1}^{\infty} \frac{C_{-1}}{2n+1}^{n+1}$ 24 2 (-1)" $= 24 \left[1 + \sum_{h=1}^{\infty} \frac{G(t)^{h}}{2h+1} \right]$ • $6\sum_{n=1}^{2} \frac{1}{n!} = 6\left[1 - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} - \frac{1}{7} + \frac{1}{7} - \frac{1}{7} + \frac$ $67 = 24 + 24 \sum_{k=1}^{90} \frac{(-1)^k}{2k+1}$ • $C \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^n} = C \left[\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{6} - \frac{1}{7} + \cdots \right]$ $24\sum_{k=1}^{\infty}\frac{(-1)^{N}}{2n+1} = 6\pi$ $= -6 \left[-\frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2} - \frac{1}{6} + \frac{1}{7} - \cdots \right]$ LICTING- $= - C \left[- \frac{1}{4} + \left[-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} + \frac{1}{7} \cdots \right] \right]$ « 6 - 6 [1-1+3-4+1-t++···] $\sum_{k=1}^{\infty} \frac{C_{-1}}{N} + C \sum_{k=1}^{\infty} \frac{N+1}{N+1}$ = 6 - 642 Ghz + (6 - Hz) + (67 - 24) 6(π-

(*****) Question 8

Find the sum to infinity of the following series.

f the following series. $1 + \frac{1}{3 \times 4} + \frac{1}{5 \times 4^2} + \frac{1}{7 \times 4^3} + \frac{1}{9 \times 4^4} + \dots$

	1.15
METIOD A - UTING SHELK EXPANSIONS	
$\begin{split} & n(i+2) = \mathcal{I} - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{7}x^4 + \mathcal{O}(x^4) \\ & h(i+2) = -x - \frac{1}{2}x^2 - \frac{1}{7}x^3 - \frac{1}{7}x^4 + \mathcal{O}(2^3) \end{split}$	
SUBTRACTING THE BEPARENOUS WE OSTADA)	
$ h(l+x) - h(l-x) = 2\alpha + \frac{2}{3}\alpha^{2} + \frac{2}{3}x^{2} + \frac{1}{3}x^{2} + \frac{1}{3}x$	
$ \begin{split} & \left h \left(\frac{1+\chi}{1-\chi} \right) = -2 \left[-\chi + \frac{2J}{3} + \frac{2J}{3} + \frac{\chi}{7} + \frac{\chi}{7} \right] \\ & \left h \left(\frac{1+\chi}{1-\chi} \right) = -2 \left[-\chi + \frac{2J}{3} + \frac{2J}{3} + \frac{\chi}{7} \right] \end{split} $	FOR
NOW WITHIN THE EAKLY of CONVERBANCE, LET	x= 2
$l_{\eta}\left(\frac{i+\frac{1}{2}}{1-\frac{1}{2}}\right) = 2\sum_{k=0}^{\infty} \frac{(\frac{1}{2})^{2k+1}}{2k+1}$	
$\left \eta\left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)\right = 2 \sum_{k=0}^{\infty} \left[\frac{1}{(2k+1)2^{2k+1}}\right]$	
$[n3] = \sum_{k=0}^{20} \frac{2}{(2kH)2^{2kH}}$	
$\sum_{k=0}^{\infty} \frac{1}{(2k+1)2^{2k}} = \ln 3$	
$\sum_{k=1}^{\infty} \frac{1}{(2k+1)\mu^{k}} = M_{3}$	

· Ka	· C .	· Gr	, <u>ln3</u>	S.C.
6.3		$\begin{array}{l} \sum_{q=1}^{n} (1+q) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} $	$\frac{\text{Mitter B} - 400 \text{Autor History}}{(\sqrt{2} \alpha^{2} \alpha^{2})^{2}} = \frac{1}{(2\pi i)^{2}} \left[\frac{1}{(2\pi i)^{2}} \alpha^{2\pi i} \right]^{2} = \frac{1}{(2\pi i)^{2}} \left[\frac{1}{(2\pi i)^{2}} \alpha^{2\pi i} \right]^{2}$	
	an	$\begin{array}{l} \left[c(\mathbf{r}_{12}^{(0)} \circ - \mathbf{i}_{12} \sum_{\mathbf{r}_{12}} \mathbf{i}_{12} \sum_{\mathbf{r}_{12}$	$\begin{split} \underbrace{\begin{array}{l} \underbrace{\underbrace{} \underbrace{ \underbrace{ \underbrace{ $	2500
asnath.	asm	$\begin{split} & \underset{(\lambda_1)}{\text{ID}(M_{\lambda_1})} & \underset{(\lambda_2)}{\text{Tr}} & \underset{(\lambda_1)}{\text{Tr}} & \underset{(\lambda_2)}{\text{Tr}} & \underset{(\lambda_1)}{\text{Tr}} & \underset{(\lambda_2)}{\text{Tr}} & \underset{(\lambda_2)}{\text{Tr}}$	$= 2 \times \frac{1}{2} \sum_{k=0}^{\infty} \left[\frac{1}{(2k+1)q^k} \right] = 2 \sum_{k=0}^{\infty} \left[\frac{1}{(2k+1)q^k} \right] = 2 \sum_{k=0}^{\infty} \left[\frac{1}{2} \frac{1}{2k} d_k \right]$ $\underbrace{\text{Interplace summary } q \text{ interplace}}_{\dots = 2} \int_{0}^{2} \left[\sum_{k=0}^{\infty} \frac{1}{2k} d_k \right] = 2 \int_{0}^{2} \left[1 + x^2 + x^6 + x^6 + \dots \right] d_k$	1211
S.Co		$\sum_{k=0}^{\infty} \frac{1}{(2\alpha_k)^2} = \frac{\ln 3}{\ln 3}$ $\sum_{k=0}^{\infty} \frac{1}{(2\alpha_k)^4} = \frac{\ln 3}{\ln 3}$	$= \int_{0}^{\infty} \frac{1}{1-\lambda^{2}} d\lambda = \int_{0}^{\infty} \frac{1}{1-\lambda^{2}} d\lambda = \int_{0}^{\infty} \frac{1}{1-\lambda^{2}} d\lambda$ $= \int_{0}^{\infty} \frac{1}{1+\lambda^{2}} + \frac{1}{\lambda-\lambda} d\lambda = \left[\ln 1+\lambda - \ln 1-\lambda \right]_{0}^{\frac{1}{2}}$ $= \left(\ln \frac{1}{2} - \ln \frac{1}{2} \right) - \left(\ln \frac{1}{2} - \ln \frac{1}{2} \right) = \ln \frac{3\lambda}{2}$	· 0,
		$\frac{1}{2} + \frac{1}{3x\psi} + \frac{1}{5x\psi^2} + \frac{1}{7x\psi^4} + \frac{1}{7x\psi^6} + \dots = \frac{1}{100}$		7
1.1	N.K.	1.1	· Kon	· Kr
6.3	50			<u> </u>
202	Dani	1202	no. a	201
Mary	asm	"Snar	and as the second secon	asno.
			Co 431/0	
		· COM		200
1.1	· K	. 1.1.	· Ko	× 1.
· G.J.		8. ×.C	p CP	
Da.	na.	Created by T. Mada	no.	1201
A 1282	All Sp	Created by 1. Mada	- Cash	asn.

Ths.com

ths.co

1.60

Question 9 (*****)

Given that p and q are positive, show that the natural logarithm of their arithmetic mean exceeds the arithmetic mean of their natural logarithms by

$$\sum_{r=1}^{\infty} \left[\frac{2}{2r-1} \left(\frac{\sqrt{p} - \sqrt{q}}{\sqrt{p} + \sqrt{q}} \right)^{4r-2} \right]$$

You may find the series expansion of $\operatorname{artanh}(x^2)$ useful in this question.

proof STREAM AN A MANTAP TO COURCEMENT STATE SHIT WOR CUITING TO ALL THE RESULTS TOGETHER $\sum_{l=1}^{\infty} \left[\frac{\chi^{ll-2}}{2r-l} \right] = \frac{1}{2} \ln \left[\frac{1+\chi^2}{l-\chi^2} \right]$ $arbanh.x > \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = \frac{1}{2} \left[\ln (1+x) - \ln (1-x) \right]$ $\frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^3}{5} - \frac{x^6}{5} + \frac{x^7}{5}$ $\sum_{n=1}^{\infty} \left[\frac{1}{2n-1} \left(\frac{\sqrt{p^2} - \sqrt{q^2}}{\sqrt{p^2} - \sqrt{q^2}} \right)^{4n-2} \right] = \frac{1}{2} \ln \left(\frac{p+q}{2\sqrt{pq^2}} \right)$ $\left(\underline{x} - \frac{\underline{x}^2}{2} - \frac{\underline{x}^3}{3} - \frac{\underline{x}^4}{4} - \frac{\underline{x}^4}{5} - \frac{\underline{x}^4}{6} - \frac{\underline{x}^7}{7} - \cdots\right)\right]$ $artah2 = \frac{1}{2} \left[2x + \frac{2}{3}x^{2} + \frac{2}{3}x^{5} + \frac{2}{3}x^{7} + \dots \right]$ $2\sum_{p=1}^{\infty} \left[\frac{1}{2r-1} \left(\frac{\sqrt{p^2 - \sqrt{q^2}}}{\sqrt{q^2 + \sqrt{q^2}}} \right)^{\frac{1}{2}} = \ln \left[\frac{p+q}{2\sqrt{q^2}} \right]$ $a + \frac{1}{2}a^3 + \frac{1}{2}a^5 + \frac{1}{2}a^7 + \dots$ $\sum_{n=1}^{\infty} \left[\frac{2}{2r-1} \left(\frac{\sqrt{p} - \sqrt{q}}{\sqrt{p} + \sqrt{q}} \right)^{4r_2} \right] \implies \ln \left(\frac{p+q}{2} \right) = \ln \sqrt{pq^{T}}$ $artanh(x^2) = x^2 + \frac{1}{3}x^6 + \frac{1}{3}x^b + \frac{1}{7}x^{th} + \cdots$ $\sum_{k=1}^{\infty} \left[\frac{2}{2k-1} \left(\frac{(\overline{p} - \sqrt{q})}{\sqrt{p} + \sqrt{q}} \right)^{\frac{q}{2}+2} \right] = \ln \left(\frac{p+q}{2} \right) - \frac{1}{2} \ln(pq)$ $\therefore \operatorname{artauh}(\chi^{t}) = \sum_{r=1}^{\infty} \left[\frac{\chi^{4r\cdot 2}}{2r \cdot 1} \right] = \frac{1}{2} \ln \left(\frac{1+\chi^{2}}{1-\chi^{2}} \right)$ This we FINALLY HAVE THE DESTREP PUBLIC NON LET a = JP'- Ja' IN THE ARGUMPT OF THE LOS ABOUT $\ln\left(\frac{p+q}{2}\right) - \frac{\ln p + \ln q}{2} = \sum_{r=1}^{\infty} \left[\frac{2}{2r-1} \left(\frac{rr}{(r^r-1q)}\right)^{4r-2}\right]$ $1 + \left[\frac{17^2 - 49^2}{49^2 + 49^2}\right]$ $I = \left[\frac{\sqrt{p_1} - \sqrt{q_1}}{\sqrt{p_1} + \sqrt{q_1}} \right]$ $\frac{(\sqrt{p_1}+\sqrt{q_1})^2+(\sqrt{p_1}-\sqrt{q_1})^2}{(\sqrt{p_1}+\sqrt{q_1})^2-(\sqrt{p_1}-\sqrt{q_1})^2}$ $\frac{1+2^2}{1-x^2} = \frac{\frac{1}{2} + 2\sqrt{pq^2} + q}{\frac{1}{2} + 2\sqrt{pq^2} + q} + \frac{1}{2\sqrt{pq^2} + q} + \frac{1}{2\sqrt{pq^2} + q}$ $\frac{1+\chi^2}{1-\chi^2} = \frac{2p+2q}{4\sqrt{pq'}} = \frac{p+q}{2\sqrt{pq}}$

TAYLOR RIES N ESTRETISCOR IN INCOMINATION IN THE INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENTATION OF THE INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENTATION OF THE INCOMENT. INCOMENTATION OF THE INCOMENT. INCOMENTA S. EXPAN. 4 BASIC QUESTIONS Adasmans Com in Com N Mathsonn I.Y.C.B. Madasm TRACING IN INCOM

Question 1 (***)

 $y = \frac{1}{\sqrt{x}}, \ x > 0$

- **a**) Find the first four terms in the Taylor expansion of y about x = 1.
- **b**) Use the first **three** terms of the expansion found in part (a), with $x = \frac{8}{9}$ to show
 - that $\sqrt{2} \approx \frac{229}{162}$.

 $y = 1 - \frac{1}{2}(x - 1) + \frac{3}{8}(x - 1)^2 - \frac{5}{16}(x - 1)^3 + O((x - 1)^4)$

1210
a) OBTING THE FIRST THESE DECLARITY IS OF $g = a^{-\frac{1}{2}}$
$y' = -\frac{1}{2}a^{\frac{3}{2}}$, $y'' = \frac{3}{4}a^{\frac{1}{2}}$, $y''' = -\frac{5}{8}a^{\frac{7}{2}}$
SHADATE AT $\mathbf{Q}=1$ $\mathbf{U}_{1}=(-)$ $\mathbf{U}_{1}^{\prime}=-\frac{1}{2}$ $\mathbf{U}_{1}^{\prime}=\frac{1}{2}$ $\mathbf{U}_{2}^{\prime}=-\frac{1}{2}$
by THE TAYLOR GRAVIA
$y = y_{h} + (a-a)y_{h}' + \frac{(a-a)^{2}}{2!}y_{0}'' + \frac{(a-a)^{2}}{3!}y_{0}''' + o[(a-a)^{4}]$
$\frac{1}{\sqrt{\alpha}} = 1 - \frac{1}{2}(2-i) + \frac{1}{2}(2-i)_{\lambda}\left(\frac{1}{2}\right) + \frac{1}{2}(2-i)_{\lambda}\left(\frac{1}{2}\right) + \frac{1}{2}\left(2-i\right)^{2}$
$\frac{1}{\left\{\Omega^{2}\right\}} = 1 - \frac{1}{2}\left(\Omega - 1\right) + \frac{3}{6}\left(\Omega - 1\right)^{2} + \frac{5}{16}\left(\Omega - 1\right)^{4} + \left[\nabla\left[\Omega - 1\right]^{4}\right]$
by NOW USING THE FIRST TRAFT HEAT WITH I = 3
$ \implies \frac{1}{\sqrt{\frac{2}{3}}} = 1 - \frac{1}{2} \times \left(\frac{9}{3} - 1\right) + \frac{3}{8} \left(\frac{9}{3} - 1\right)^2 + \cdots $
$\rightarrow \frac{3}{(\mathbf{g}^{*})} = 1 = \frac{1}{2} \left(-\frac{1}{2} \right) + \frac{2}{\mathbf{g}} \left(\frac{1}{\mathbf{g}_{1}} \right) + \cdots$
$\Rightarrow \frac{3\sqrt{2}}{(6)2} \approx 1 + \frac{1}{18} + \frac{1}{216} + \cdots$
$\Rightarrow \frac{3}{4}\sqrt{2} = \frac{234}{162} + \cdots$
$\implies \sqrt{2} = \frac{224}{162} + \cdots \qquad \therefore \sqrt{2} \approx \frac{224}{162}$

Question 2 (***)

 $f(x) = x^2 \ln x, \ x > 0$

- a) Find the first three non zero terms in the Taylor expansion of f(x), in powers of (x-1).
- **b**) Use the first three terms of the expansion to show $ln1.1 \approx 0.095$.

f(x) = (x)

-1)

$\frac{3}{2}(x-$	$1)^{2} + \frac{1}{3}(x-1)^{3} + O((x-1)^{4})$
	·420.
	$\begin{array}{c} (D) \underbrace{ \text{STATE WAY BY DEVINED DATION OF BY THE BANG AT LET (D, D) = 0 \\ \underline{AT } = (D, D) = 0 \\ \underline{AT } = (D, D) = 0 \\ \underline{AT } = (D, D) \\ \underline{AT } = (D,$
>	• $f(\alpha) = 2 \alpha \ln \alpha + \alpha^2 (\frac{1}{2}) = 2 \alpha \ln \alpha + \alpha$ $\underline{f(\alpha)} = 2 \alpha \ln \alpha + \alpha + 1 = 1$
C	• $f(x) = 2hx + 2x(\frac{1}{2}) + 1 = 2hx + 2 + 1 = 2hx + 3$ $\frac{f(x)}{1} = 2hT + 3 = 3$
-0	
	HAVE WE CAN OBTAIN AN OXPANSION
	$ \implies -f(x) = -f(1) + (x-1)f(0) + \frac{(x-1)^2}{2!}f(1) + \frac{(x-1)^3}{3!}f(1) + \dots $ $ \implies x^2 \ln 2 = 0 + (2-1)x + \frac{(2-1)^2}{2}x + \frac{(x-1)^3}{2}x + \dots $
	$= \frac{\chi^2 h_X = (\chi - 1) + \frac{3}{2} (\chi - 1)^2 + \frac{1}{2} (\chi - 1)^3 + \cdots}{2}$
	b) LEF = 1.1 IN THE ABOUE EXPANSION GIVES
	$\Rightarrow (1,1)^{2} \ln(1,1) \approx (0,1) + \frac{1}{2} (0,1)^{2} + \frac{1}{3} (0,1)^{3}$
N. 1	$\implies 1 \cdot 21 \ln(1 \cdot 1) \approx \frac{173}{1500}$
100	=> ln(1.1) = 173 = 0.095

ろ

F.C.B.

Mana,

1+

Question 3 (***)

I.G.B.

I.C.B.

200

 $f(x) = \cos 2x.$

a) Find the first three non zero terms in the Taylor expansion of f(x), in powers

of $\left(x - \frac{\pi}{4}\right)$

b) Use the first three terms of the expansion to show $\cos 2 \approx -0.416$.

 $f(x) = -2\left(x - \frac{\pi}{4}\right) + \frac{4}{3}\left(x - \frac{\pi}$

e . ",		
$\left(-\frac{\pi}{4}\right)^3$	$\frac{4}{15}\left(x-\frac{\pi}{4}\right)^5 +$	$O\left(\left(x-\frac{\pi}{4}\right)^{7}\right)$
_	Sh	
_	a) DIFFFOGRATIATE & Graw	MTT_DREWARDES AT a=F
× 1	$x22\infty = (x)$	-(C%) = 0
5	f(x) = -2sm2x	f(理) =-2
0	$f''_{(x)} = -4\cos 2 x$	$f'(\mathbf{F}) = 0$
20	$f(x) = \mathcal{B}_{Sim}2x$	€ [#] (¥) = 8
°C2	f(2) = 1600522.	f(#) = 0
-0	(°a) = -32.5m2.	$f_{(x)}^{(0)} = -32$
-	USING DAYLOR THORAM	
	$-f(x) = f(\mathbf{F}) + \frac{(x-m_{\mathbf{H}})}{m_{\mathbf{H}}}f(\mathbf{F}) +$	$\frac{(2-\overline{4})^2}{(\overline{4})} + \frac{(2-\overline{4})^2}{(\overline{4})} + \cdots$
		$(-\overline{x})^3 - \frac{3^2}{3^2} (2 - \overline{x})^5 + O((2 - \overline{x})^2)$
		₹) ³ - 告(2-₹) ⁵ +0[(2-₹) ²]
	b) LETTING X=1 IN THE ABOOM	t BRANGLON WE OBJAN
-	⇒ 682 ~ -2(1-\$) + \$([1-革] ³ ー 告(1-王) ⁵
· ·	-) 0052~ -0.41614736	76
N A	-7 0052 - 0.416	

nn

21/1s.Com

Madası,

I.F.G.B.

6

Question 4 (***)

I.C.P.

I.C.B.

 $f(x) = \cos x \, .$

a) Find the first four terms in the Taylor expansion of f(x), in ascending powers

- of $\left(x-\frac{\pi}{6}\right)$.
- **b**) Use the expansion of part (**a**) to show that

Y.C.

 $\cos\frac{\pi}{4} \approx \frac{\sqrt{3}}{2} - \frac{\pi}{24} - \frac{\sqrt{3}\pi^2}{576} - \frac{\pi^3}{20736}.$ $f(x) = \frac{\sqrt{3}}{2} - \frac{1}{2} \left(x - \frac{\pi}{6} \right) - \frac{\sqrt{3}}{4} \left(x - \frac{\pi}{6} \right)^2 + \frac{1}{12} \left(x - \frac{\pi}{6} \right)^3 + O\left(\left(x - \frac{\pi}{6} \right)^4 \right)$

I.C.p

TAYLOR RIES N ASINATINS COM INC. The Balassina in the second se **EXPANSIONS 3 STANDARD** STANDA. STANDA. QUESTIONS Nathsonn I.Y.C.B. Madasn

Marine Com I.V.C.B. May

Question 1 (***+)

Ĉ.B.

 $f(x) \equiv \sin 2x, \quad x \in \mathbb{R}.$

- a) Determine, in exact simplified form, the first 3 non zero terms, in the Taylor expansion of f(x), centred at $x = \frac{1}{4}\pi$.
- **b**) Write the **entire** expansion of f(x), as a simplified expression in Σ notation.

START BY DIFFRENTIATION & GUAWAT	10N AT X=774 -{{\$F}=1
$f(\alpha) = 24052a$	f(开)=0
fa) = - 49WIX	+(⊈)≈_+
	((4)=-+ {*(4)=0
$f_{(a)}^{(b)} = -80052a$	
(⁴¹ Ci) = 1651192	(st) = R
$\begin{aligned} &f(3) = f(\Xi) + (3-\Xi)f(\Xi) + 6\\ &SN2 = 1 - \frac{d}{2!}(3-\Xi)^2 + \frac{W}{4!}(3-\Xi)^2 + \frac{W}{4!}(3-\Xi)^2 + \frac{W}{2}(3-\Xi)^2 + \frac{W}{2}(3$	(x-¥) ⁴ +···
LOOKING AT THE PATTAD of THE J	CHTAWARD FOUR ZEWITAWARD
1,0,-4,0,16,0,-64 x(4) x(4) x(4)	10 3 256 ×(+)
$\therefore SM2k = \sum_{r=0}^{\infty} \left[\frac{(-q)^{r}}{(2r)!} (x) \right]$	-\mathbf{F}) ²⁶]

FGB.

 $y = \tan x$.

a) Show that

$$\frac{d^3y}{dx^3} = 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2$$

b) Determine the first four terms in the Taylor expansion of $\tan x$, in ascending

powers of $\left(x - \frac{\pi}{4}\right)$

c) Hence deduce that

Ĝ.

ŀ.G.p.

$$\tan\frac{5\pi}{18} \approx 1 + \frac{\pi}{18} + \frac{\pi^2}{648} + \frac{\pi^3}{17496}.$$

$$\tan \frac{5\pi}{18} \approx 1 + \frac{\pi}{18} + \frac{\pi^2}{648} + \frac{\pi^3}{17496}.$$

$$= 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3 + O\left(\left(x - \frac{\pi}{4}\right)^4\right)$$

		_
۵	NOTING THAT $1 + b_{2}^{2}\theta \equiv sec^{2}\theta$ we have	
	y= tana	
	da = Seĉa	
	44 = 1 + taña	
	$\frac{dg}{dx} = 1 + g^2$	
	DIFFERENTIATE 4FAM) WITH RESPECT TO OL	
	$\frac{d}{dt}\left(\frac{du}{d\lambda}\right) = \frac{d}{dt}\left(1+y^2\right)$	
	$\frac{\partial^2 y}{\partial x^2} = 0 + 2y \frac{\partial y}{\partial x}$	

 $\frac{d}{dx}\left(\frac{d^2g}{dD^2}\right) = \frac{d}{dx}\left(2y\frac{dy}{dx}\right) \leftarrow PeoDUOT RULE$ $\frac{d^3}{dx^3} = -\frac{2y}{2y} \times \frac{d}{dx} \left(\frac{dy}{dx} \right) + \frac{d}{dx} \left(\frac{2y}{2y} \right) \times \frac{dy}{dx}$ $\frac{d^3 y}{d\lambda^3} = 2y \frac{d^3 y}{d\lambda^2} + 2 \frac{dy}{d\lambda} \times \frac{dy}{d\lambda}$ $\frac{d_{2}}{du} = 2y \frac{d_{2}}{du} + 2 \left(\frac{dy}{du}\right)^{2}$

STATE WITH RESPECT TO 2 ONCE MORE

SAWATE AT 2==== y= lan]= 1 $\frac{dy}{dt} = 1 + y^2 = 1 \pm 1 < 2$ $\frac{d_{ij}^2}{da_i} = \frac{2y}{di} \frac{du}{di} = 2 \times 1 \times 2 = 4$ $\frac{d^3 y}{d p^2} = \frac{2 y}{J} \frac{d^3 y}{d p^2} + 2 \left(\frac{d y}{d x} \right)^2 = 2 \times 1 \times 9 + 2 \times 2^2 = 8 + 8 = 16$

HENCE WE NOW HENCE

 $f(a) = f(a) + (2-a)f(a) + \frac{(2-a)^2}{2!}f'(a) + \frac{(2-a)^2}{2!}f'(a) + \cdots$ $t_{M,\lambda} \in 1 + (\chi - \frac{m}{4}) \times \chi + (\Delta - \frac{m}{2})^2 \times \mu + (\Delta - \frac{m}{4})^4 \times \kappa + \cdots$ $\tan x = (+2(x-\frac{\pi}{2}) + 2(x-\frac{\pi}{2})^2 + \frac{\pi}{5}(x-\frac{\pi}{2})^5 + \cdots$

1+

CFI I > 500 HI (N T\$\$ < I) 印灯 誓-草 苤

 $\frac{1}{10} \log \frac{57}{10} \approx 1 + 2x \frac{T}{5x} + 2x \left(\frac{11}{36}\right)^2 + \frac{11}{3} \left(\frac{11}{36}\right)^2$ $\int_{10\pi} \frac{57}{10} \approx 1 + \frac{T}{10} + \frac{T^2}{646} + \frac{T^2}{100}$

É.B.

11202

Question 3 (****)

 $y = \tan^2 x$.

a) Show that

1211s.

ŀ.G.p.

I.C.P.

$$\frac{d^4y}{dx^4} = 120\sec^6 x - 120\sec^4 x + 16\sec^2 x$$

b) Determine the first 5 terms in the Taylor expansion of $\tan^2 x$, in ascending powers of $\left(x - \frac{\pi}{3}\right)$.

$$y = 3 + 8\sqrt{3}\left(x - \frac{\pi}{3}\right) + 40\left(x - \frac{\pi}{3}\right)^2 + \frac{176}{3}\left(x - \frac{\pi}{3}\right)^3 + \frac{728}{3}\left(x - \frac{\pi}{3}\right)^4 + O\left(\left(x - \frac{\pi}{3}\right)^5\right)^4$$

$$\begin{split} & \frac{dJ}{dM} + \frac{dM}{dM} \times \frac{dM}{dM} \times$$

F.G.B. Mada

V

COM

Created by T. Madas

E.

O.D.E. VYLO asmans.com i v.c.p. ASINATINS COM INC. **TAYLOR SERIES** EXPANS 3 BASIC QUESTIONS COMPANY COMPA Nathsonn I.Y.C.B. Madash

Maths.com I.V.C.B. May

Question 1 (**+)

A curve has equation y = f(x) which satisfies the differential equation

 $\frac{dy}{dx} = x^2 - y^2,$

subject to the condition x = 0, y = 2.

Determine the first 4 terms in the infinite series expansion of y = f(x) in ascending powers of x.

y = 2 - 2

$-4x+8x^2-\frac{4}{3}$	$\frac{7}{3}x^3 + O\left(x^4\right)$
0	<u>n .</u>
DIFFICIENTIATE THE O.D.G IN . DECEMPTIVES AT 2=0	succession that entwate the
DIFRENTIATIONS	EVALUATIONS
	y = 2 (GNM)
y'= x2-y2	$y_{0}^{\prime} = 2_{0}^{2} - y_{0}^{2}$ $y_{0}^{\prime} = 0^{2} - 2^{4}$
y" = 2x - 244'	y'. = -4- y'' = 2x -2y y.
0 . 00	y = 2x0 - 2x2x(-4)

AM	ING AS A POI	we seeks	
y =	y. + 2.y. +	22 y" + 2	3 y" + 0(x+)
4 =	2 + X(-4) +	$\frac{x^2}{2}(16) + \frac{1}{2}$	$x^{3}(-94) + O(x^{4})$

2 - 2(-4)2- 2x2×16

Question 2 (***)

R

A curve has an equation y = f(x) that satisfies the differential equation

$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + xy = 0,$$

subject to the conditions x = 0, y = 1, $\frac{dy}{dx} = 1$.

By using the first four terms in the expansion of y = f(x) in ascending powers of x show that $y \approx 1.08$ at $x = \frac{1}{12}$.

91%	
WEITT RECATIONSTOP IN COMPACT NOTATION	
@ 99" + (y')" + 2y =0 9.31 9.51	
$\mathcal{Y}_{\circ}\mathcal{Y}_{\circ}^{''} + \left(\mathcal{Y}_{\circ}^{'}\right)^{2} + \mathcal{O}_{\times}\mathcal{Y}_{\circ} = 0$	
$\frac{1\times y_{o}^{e}+1^{2}-o}{\left[y_{o}^{e}=-1\right]}$	
· DIFFERENTIATE O.D.E wirt a	
y'y'' + yy''' + 2y'y'' + y + ay' = 0 $y_{0}y''_{0} + y_{0}y'''_{0} + 2y_{0}y''_{0} + y_{0} + 0 \times y'_{0} = 0$	
$1 \times (-1) + 1 \times 10^{-0} + 2 \times 1(-1) + 1 = 0$	
-1+0% -2 +1=0	
4 = 2	

i G.B.

proof

11+

Question 3 (***)

A curve has an equation y = f(x) that satisfies the differential equation

$$x\frac{dy}{dx} - y^2 = 3, \ x \neq 0,$$

subject to the condition y = 2 at x = 1.

Find the first four terms in the expansion of y = f(x) as powers of (x-1).

	0.		201
y = 2 - 7	$(x-1)+\frac{21}{2}(x-1)^2+$	$\frac{70}{3}(x-1)^3 O((x-1)^4)$	282
TS)		Sh.	1
	There with no confluer nontrient $\left(\begin{array}{c} \alpha_{1}-1\\ y_{1}^{2}-y_{1}^{2}=3\\ \alpha_{1}y_{1}^{2}-y_{1}^{2}=3\\ y_{1}^{2}-y_{1}^{2}=3\\ y_{1}^{2}-4=3\\ (y_{1}^{2}=7\end{array}\right)$	$ \begin{array}{l} \tau_{0}(x), \\ y' = y_{1} + (x-y_{1})' + \frac{\partial_{z}(y)}{2z} y_{1}^{2} + (\frac{(x-y)^{2}}{x} y_{1}^{2} + (\frac{(x-y)^{2}}{x} y_{1}^{2} + \dots) \\ y = 2 + 7(x-y) + \frac{\partial_{z}}{2z} (x-y)^{2} + \frac{\tau_{0}}{2z} (x-y)^{2} + \dots . \end{array} $	
	• $y'_{1} + 2y'_{2} = 2y'_{2} = 0$ $y'_{1} + 2'_{1}y'_{1} - 2y_{1}y'_{2} = 0$ $7 + y'_{1} = 2xx^{7} = 0$ $y'_{1} = x^{7} + 2y'_{2} = 0$		3
2	• $y_{1}^{0} + y_{1}^{0} + ay_{1}^{0} - 2y_{1}y_{1}^{0} - ay_{2}y_{1}^{0} = 0$ $= y_{1}^{0} + y_{1}^{0} + ay_{1}^{0} - 2y_{1}y_{1}^{0} - 2y_{2}y_{1}^{0} - 0$ $= 21 + 21 + y_{1}^{0} - 2x_{1}x_{1}^{0} - 2x_{2}x_{2}^{0} = 0$ $= 42 + y_{1}^{0} - 18 - 62 - 6$ $= y_{1}^{0} = 140$		

manasn

ŀ.C.p.

200

1+

asmarns.com

21/2.51

ASIMATINS COM I K.C.P. Smaths.com I.K. O.D.E. **TAYLOR SERIES EXPANSIONS** I.V.C.B. Madasman 3 STANDARD Adasmanan in the original is a second s Nadasmaths.com QUESTIONS

13/hs.com L.Y.C.B. Created by T. Madas

Question 1 (***+)

 $\frac{dy}{dx} = \frac{3x + y^2}{x}, \quad x \neq 0.$

Given that y=1 at x=1, find a series solution for the above differential equation in ascending powers of (x-1), up and including the terms in $(x-1)^3$.

Question 2 (***+)

i.G.B.

A curve has an equation y = f(x) that satisfies the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx}\sin 2x + 4y\cos 2x = 0,$$

subject to the conditions y = 3, $\frac{dy}{dx} = 0$ at x = 0.

Find a series solution for f(x) up and including the term in x^4

y = 3 - 6x	$^2 + 8x^4 + O\left(x^6\right)$
72. 2	215
$ \begin{array}{l} \text{ were } \circ 0.5 \in i \land (untrac \in NTATICAl \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} + 4y_{i} \otimes z_{i} z_{i} = 0 \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y_{i}) \otimes y_{i} & z_{i} \\ & \bigcup_{i=1}^{n} (y_{i} \otimes y$	$\begin{cases} \underline{TMS} \\ (\underline{q}) = (\underline{q}_{q} + 2\underline{q}_{q}' + \frac{2\underline{q}_{q}'}{2\underline{l}})\underline{q}_{q}' + \frac{2\underline{q}_{q}'}{2\underline{l}}\underline{q}_{q}'' + \frac{2\underline{q}_{q}''}{2\underline{l}}\underline{q}_{q}'' + \frac{2\underline{q}_{q}'''}{2\underline{l}}\underline{q}_{q}'' + \frac{2\underline{q}_{q}''''}{2\underline{l}}\underline{q}_{q}'' + \frac{2\underline{q}_{q}'''''''''''''''''''''''''''''''''$
• They up filter $y_1^0 + 2y_1^0 \sin 2x_1 + By_1^0 (\sin 2x_1 - By_1 \sin 1x_2 = 0)$ $y_1^0 + 2y_1^0 \sin 2x_1 + 3y_1^0 (2 \sin 2x_1) + By_1^0 (-2 \sin 2x_1) - By_1^0 (-2$	ZurZZ) ≈ 0 5-5WZz= Byz(ZurZZz) = 0

200

E.P.

20

I.C.B.

.y."	 48	 96	-	48	
.14					

Question 3 (***+)

A curve has an equation y = f(x) that satisfies the differential equation

$$e^{-x}\frac{d^2y}{dx^2} = 2y\frac{dy}{dx} + y^2 + 1$$

with y=1, $\frac{dy}{dx}=2$ at x=0.

a) Show clearly that

I.C.B. ma

I.C.p

hat

$$e^{-x} \frac{d^3 y}{dx^3} = (2y + e^{-x}) \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} \left(y + \frac{dy}{dx} \right).$$

b) Find a series solution for f(x), up and including the term in x^3

q	DIFFEDIMENT THE GRAMON WITH 255HET TO a
	→ 숢 [⁶ ᇏ] = 욾 [² 3號] + ᠷ [³ ² H] ⇒ - ² 號 + ² ᇏ = 2 號 k + 3 號 + 3 號 ⇒ ² : 號 + ² : 號 + 2 ؿ 號 + 3 號 → ² : 號 = (² +) : 號 + 2 號 <u>k</u> + 3 號
Ы	SUAWATH AT Q=0
	$\begin{array}{cccc} 3 = 0 & \begin{array}{c} dy = 1 \\ dx = 2 \\ dx = 2 \\ dx = 6 \end{array} & \begin{array}{c} e^{2} \frac{d^{2}y}{dx} = 2 \\ dx = 1 \\ dx = 3 \end{array} & \begin{array}{c} e^{2} \frac{d^{2}y}{dx} = 2 \\ dx =$
	Anou we those
	$\begin{split} \underline{A} &= (y_0 + \alpha y_0' + \frac{2}{21} (y_0' + \frac{2}{31} (y_0'' + \mathcal{O}_{3}^{-1}) \\ \underline{y} &= 1 + 2a + \frac{2^2 k_0}{2} k_0 + \frac{2^2 k_0}{2} k_0 + 0(2^2) \\ \underline{y} &= 1 + 2a + 3a^2 + 5a^3 + 0(2^3) \end{split}$

F.G.B.

na

 $y = 1 + 2x + 3x^2 + 5x^3 + O(x^4)$

I.G.B.

11+

madasm

Created by T. Madas

I.V.C.

MIXED FRIE FRIETHER COM INCOME IN THE REAL PROPERTY OF THE PROPERTY OF TH MIXED SERIES EXPANSIONS 3 QUESTIONS

Question 1 (***+)

 $f(x) = \frac{\cos 3x}{\sqrt{1-x^2}}, |x| < 1.$

Show clearly that

$$f(x) \approx 1 - 4x^2 + \frac{3}{2}x^4$$
.

$$\begin{split} \hat{\lambda} &= \frac{1}{\sqrt{1-x^2}} = \frac{\cos 2x}{(x^2+x^2)^{-\frac{1}{2}}} = \frac{\cos 2x}{(x^2+x^2)^{-\frac{1}{2}}} = \frac{1}{(x^2+x^2)^{-\frac{1}{2}}} = \frac{1}{(x^2+$$

proof

Question 2 (***+)

- a) Find the first four terms in the series expansion of $\left(1-\frac{1}{2}y\right)^2$
- **b**) By considering the first two non zero terms in the expansion of $\sin 3x$ and the answer from part (a), show that

$$\sqrt{1 - \frac{1}{2}\sin 3x} \approx 1 - \frac{3}{4}x - \frac{9}{32}x^2 + \frac{117}{128}x^3$$

$$1 - \frac{1}{4}y - \frac{1}{32}y^2 - \frac{1}{128}y^3 + O(y^4)$$

 $\begin{array}{l} \mathbf{q} \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ -\frac{1}{2} + \frac{1}{2} \\ + \frac{1}{2}$

b) $\sqrt{\left(-\frac{1}{2}S^{2}\eta^{2}_{3\chi}\right)} = \left[1 - \frac{1}{2}\left(\frac{(2\eta)}{2\eta} - \frac{(2\eta)^{2}}{2\eta}\right)^{\frac{1}{2}} = \left[1 - \frac{1}{2}\left(\frac{(2\eta-\frac{3}{2})^{2}}{2\eta}\right)^{\frac{1}{2}}$

- $= (1 \frac{1}{4} \left(3x \frac{q}{2} \lambda^2 \right) \frac{1}{32} \left(3x \frac{q}{2} \lambda^2 \right)^2 \frac{1}{100} \left(3x \frac{q}{2} \lambda^2 \right)^2 + \cdots$
 - $= l \frac{3}{4}\chi + \frac{9}{6}\chi^3 \frac{1}{32}(9\chi^2 + \dots) \frac{1}{26}(21\chi^3 + \dots)$ $= l - \frac{3}{4}\chi + \frac{9}{6}\chi^3 - \frac{1}{22}\chi^2 - \frac{27}{126}\chi^3$
- $= 1 \frac{3}{4}\chi \frac{4}{32}\chi^2 \frac{117}{128}\chi^3$ = 1 - $\frac{3}{4}\chi - \frac{4}{32}\chi^2 - \frac{117}{128}\chi^3$ (3)

(*****) Question 3

I.V.G.B.

I.F.G.B.

By considering a suitable binomial expansion, show that

I.V.G.B.

Com I.F. G.B.

 $\arcsin x = \sum_{r=0}^{\infty} \left[\binom{2r}{r} \frac{2}{2r+1} \left(\frac{x}{2} \right)^{2r+1} \right],$ V.C.B. Madas

proof

N.G.D.

1+

-

 $\frac{1}{2} = 1 + \frac{-\frac{1}{2}}{2}(-x^2) + \frac{-\frac{1}{2}(-\frac{3}{2})}{2}(-x^3) + \frac{-\frac{1}{2}(-\frac{1}{2})(-x^3)}{2}(-x^3) + o(x^3)$ $\frac{1}{2}x_{2}^{\frac{1}{2}} \overset{d}{x}^{4} + \frac{1}{2}(\frac{1}{2})(\frac{1}{2})x_{1}^{4} + \frac{1}{2}(\frac{1}{2})(\frac{1}{2})x_{1}^{6} + O(2^{16})$

 $1 \quad + \frac{1\times2}{1!\times2} \frac{3^2}{2} \quad + \frac{1\times2\times4}{2!\times1\times4} \frac{4^6}{4} \quad + \frac{1\times2\times3\times4\times5\times6}{3!\times2\times4\times6} \frac{3^6}{6} \quad + \frac{1\times2\times3\times4\times5\times6\times7\times6}{4!\times2\times4\times6} \frac{3^6}{6} + 0(3^6)$ $\frac{1}{\sqrt{1-\lambda^2}} = 1 + \frac{2!}{1!x^2x_1}\frac{x^2}{2} + \frac{4!}{2!x^2(x_2)}\frac{3^4}{4} + \frac{6!}{3!x^2x(x_2)}\frac{3^4}{3^6} + \frac{8!}{4!x^2x(x_2)x_3}\frac{3^6}{16} + 0(x^4)$ $\frac{1}{\sqrt{1-2^{2^{2}}}} = \frac{1+\frac{2!}{||x||,|x|^{2}}}{\frac{2!}{2}} + \frac{4!}{2!x2!} \times \frac{2^{\frac{3}{2}}}{4} + \frac{6!}{3!5!} \times \frac{3^{\frac{5}{2}}}{8} + \frac{6!}{4!\frac{2!}{4!\frac{2!}{4}} \times \frac{3^{\frac{5}{2}}}{16}} + 6(3^{\frac{5}{2}})$ $\frac{1}{\sqrt{1-\chi^{k_{1}}}}= 1+\frac{2!}{(!!)^{k_{1}}}\frac{\chi^{k_{1}}}{2^{k_{1}}}+\frac{4!}{(2!)^{k_{1}}}\frac{\chi^{k_{1}}}{2^{k_{1}}}+\frac{6!}{(3!)^{k_{1}}}\frac{\chi^{k_{1}}}{2^{k_{1}}}+\frac{4!}{(3!)^{k_{1}}}\frac{\chi^{k_{1}}}{2^{k_{1}}}+O(\chi^{k_{1}})$ $\sum_{n=0}^{L^{2}(n)} \left[\frac{(z_{n})_{T}}{(L_{n}^{2})_{T}} \left(\frac{T}{2} \right)_{T} \right]$ $\frac{1}{\sqrt{1-x^2}} =$

 $\int \frac{1}{1-x_n} \, \mathrm{d} x = \int \sum_{n=0}^{\infty} \left[\frac{(2n)!}{(n!)^2} \frac{x^n}{x^n} \right] \, \mathrm{d} x$
$$\begin{split} & \mathfrak{g}(\Sigma_{\mathbf{R}}^{\mathbf{A}}) \mathcal{Q}_{-} = \sum_{\mathbf{f} \in \mathcal{D}}^{\mathbf{D}} \left[\frac{(2r)!}{(\mathbf{f}^{-})^{2}} \cdot \frac{\mathbf{X}^{\mathbf{X} + \mathbf{i}}}{2r+\mathbf{i}} \times \frac{1}{2^{\mathbf{X} + \mathbf{i}}} \right] + \mathcal{D} \\ & \mathfrak{g}(\Sigma_{\mathbf{R}}^{\mathbf{A}}) \mathcal{Q}_{-} = \sum_{\mathbf{f} \in \mathcal{D}}^{\mathbf{D}} \left[\left(\frac{2r}{r} \right) - \frac{\mathbf{X}^{\mathbf{X} + \mathbf{i}}}{2r+\mathbf{i}} \times \frac{2}{2^{\mathbf{X} + \mathbf{i}}} \right] \end{split}$$
I.V.G.B. $\sum_{r=0}^{\infty} \left[\binom{2r}{r} \frac{2}{2r+1} \left(\frac{2}{s} \right)^{2r+1} \right]$ At Bloch

17.202SA

2017

21/18

COM

Created by T. Madas

I.C.B.

madasmaths,

0