SERIES

EXPANSIONS 59 QUESTIONS

MACLAURIN EXPANSIONS

6 BASIC
 QUESTIONS

Created by T. Madas

Question 1 (**)

$$
f(x)=(1-x)^{2} \ln (1-x),-1 \leq x<1 .
$$

Find the Maclaurin expansion of $f(x)$ up and including the term in x^{3}.

Find the Maclaurin expansion of $f(x)$ up and including the term in x^{4}.

$$
\text { ?) } \square, \mathrm{e}^{-2 x} \cos 4 x=1-2 x-6 x^{2}+\frac{44}{3} x^{3}-\frac{14}{3} x^{4}+O\left(x^{5}\right)
$$

USING STANDARS EXPANSIONS

- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+O\left(x^{5}\right)$ $e^{-2 x}=1+(-2 x)+\frac{(-2 x)^{2}}{2!}+\frac{(-2 x)^{3}}{3!}+\frac{(-2)^{4}}{4!}+0\left(x^{5}\right)$ $e^{-2 x}=1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+0\left(x^{3}\right)$
- $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+o\left(x^{6}\right)$ $\cos 4 x=1-\frac{(4)^{2}}{2!}+\frac{(4)^{4}}{4!}+O(x)$ $\cos 2 x=1-8 x^{2}+\frac{32}{3} x^{2}+0\left(x^{6}\right)$ COMBININE THEE RESOCTS $f(x)=e^{-2 x} \cos 4 x=(\cos 4 x)\left(e^{-2 x}\right)$ $f(a)=\left[1-8 x^{2}+\frac{3 x}{3} x^{4}+0\left(x^{6}\right)\right]\left[1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2 x^{4}}{3}+0\left(x^{5}\right)\right]$ $f(x)=1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+0\left(x^{5}\right)$ $\begin{aligned}-16 x^{2}+16 x^{2} & +0(x) \\ & +3 x^{+}+0\left(x^{2}\right)\end{aligned}$ $+\frac{32}{3} x^{4}+0\left(x^{5}\right)$ $f(x)=1-2 x-6 x^{2}+\frac{44}{3} x^{3}-\frac{14}{3} x^{4}+C\left(x^{3}\right)$ Created by T. Madas

Question $3 \quad(* *+)$

$$
y=\mathrm{e}^{2 x} \sin 3 x
$$

a) Use standard results to find the series expansion of y, up and including the term in x^{4}.
b) Hence find an approximate value for

$$
\int_{0}^{0.1} \mathrm{e}^{2 x} \sin 3 x d x
$$

\square $, \mathrm{e}^{2 x} \sin 3 x=3 x+6 x^{2}+\frac{3}{2} x^{3}-5 x^{4}+O\left(x^{5}\right), \approx 0.0170275$ -10

b) OSING PART (a)
$\int_{0}^{0.1} e^{2 x} \sin 3 x d x \approx$
\square $=\left[\frac{3}{2} x^{2}+2 x^{3}+\frac{3}{8} x^{4}-x^{5}\right]_{0}^{0}$
$\simeq\left(\frac{3}{200}+\frac{1}{500}+\frac{3}{80000}-\frac{1}{100000}\right)-(0)-$
$=0.0170275$

Question 4 (**+)
Find the Maclaurin's expansion of $\ln \left[\sqrt[3]{\frac{1+2 x}{1-2 x}}\right]$, up and including the term in x^{3}.

Created by T. Madas

Question 5 (***)

$$
f(x)=\ln (1+\sin x), \sin x \neq-1 .
$$

a) Find the Maclaurin expansion of $f(x)$ up and including the term in x^{3}.
b) Hence show that

$$
\begin{aligned}
\int_{0}^{\frac{1}{4}} \ln (1+\sin x) d x & \approx 0.028809 \\
& \\
& \ln (1+\sin x)=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+O\left(x^{4}\right)
\end{aligned}
$$

Created by T. Madas

Question 6 (***)

$$
f(x) \equiv \frac{\mathrm{e}^{x}+1}{2 \mathrm{e}^{\frac{1}{2} x}}, x \in \mathbb{R}
$$

Use standard results to determine the Maclaurin series expansion of $f(x)$, up and including the term in x^{6}.

MACLAURIN

 EXPANSIONS 20 STANDARD
QUESTIONS

Question 1 (***+)

$$
y=(1+x)^{2} \cos x
$$

Show clearly that ...
a) $\ldots \frac{d^{3} y}{d x^{3}}=\left(x^{2}+2 x-5\right) \sin x-6(x+1) \cos x$.
b) $\ldots y \approx 1+A x+B x^{2}+C x^{3}$, where A, B and C are constants to be found.
\square proof

- $y=(1+x)^{2} \cos x$
- $\frac{d y}{d x}=2(1+x) \cos a-(1+x)^{2} a n x$
- $\frac{d y}{d x^{2}}=2 \cos x-2(1+x) \sin x-2(1+x) \sin x-(1+x)^{2} \cos x$
$=\left[2-(1+2)^{2}\right] \cos 2-4(1+x) \sin x$
$=\left(2-1-2 x-x^{2}\right) \cos x-4(1+x) \sin x$
$=\left(1-2 x-x^{2}\right) \cos x-4(1+x) \sin x$
- $\frac{d y}{d x}=(-2-2 x) \cos x-\left(1-2 x-x^{2}\right) \sin x-4 \sin x-4(1+x) \cos x$
$\frac{d^{3} y}{d x^{2}}=(-2-2 x-4-4 x) \cos x+\left(-1+2 x+x^{2}-4\right) \sin x$
$\frac{\frac{3^{3}}{d 3}}{d^{3}}=(-6 x-6) \cos x+\left(x^{2}+2 x-5\right) \sin x$
$\frac{d^{3} y}{d x^{3}}=\left(x^{2}+2 x-5\right) \cos x-6(x+1) \cos x$ As $x+0$
b)

By THe MACAMEIN THfertm
$y=y_{0}+x y_{0}^{\prime}+\frac{x^{2}}{2!} y_{0}^{\prime \prime}+\frac{x^{3}}{3!} y_{0}^{\prime \prime}+o\left(x^{\prime}\right)$
$(1+x)^{2} \cos x=1+x \times 2+\frac{x^{2}}{2} \times 1+\frac{x^{3}}{6} \times(-6)+o\left(x^{4}\right)$
$(l+x)^{2} \cos x=1+2 x+\frac{1}{2} x^{2}-x^{3}+0(x 4)$

Question 2 (***+)
Find the Maclaurin expansion of $\ln \left(2-\mathrm{e}^{x}\right)$, up and including the term in x^{3}.

Created by T. Madas

Question 3 (***+)

$$
f(x)=\ln (1+\cos 2 x), 0 \leq x<\frac{\pi}{2}
$$

a) Find an expression for $f^{\prime}(x)$.
b) Show clearly that

$$
f^{\prime \prime}(x)=-2-\frac{1}{2}\left(f^{\prime}(x)\right)^{2}
$$

c) Show further that the series expansion of the first three non zero terms of $f(x)$ is given by

$$
\ln 2-x^{2}-\frac{1}{6} x^{4}
$$

\square

$$
f^{\prime}(x)=-\frac{2 \sin 2 x}{1+\cos 2 x}
$$

Question 4 (***+)
Find the Maclaurin expansion of $\ln (1+\sinh x)$ up and including the term in x^{3}.

Find the Maclaurin expansion of $f(x)$, up and including the term in x^{3}.

$$
f(x) \equiv 2 x-x^{2}+x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Created by T. Madas

Question 6 (***+)
a) Show clearly that

$$
\frac{d^{2} y}{d x^{2}}=(1+\tan x)^{2} \frac{d y}{d x}
$$

b) Find a series expansion for $\mathrm{e}^{\tan x}$, up and including the term in x^{3}.

$$
\mathrm{e}^{\tan x}=1+x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+O\left(x^{4}\right)
$$

$\frac{d y}{d x}=e^{\tan x} \sec ^{2} x=y \sec ^{2} x$
$\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x} \sec ^{2} x+2 y \operatorname{stc}^{2} x \tan x=\frac{d y}{d x} \operatorname{stc}^{2} x+2 \frac{d y}{d x} \tan x$
$=\frac{d y}{d x}\left[\operatorname{stx}^{2} x+2 \tan x\right]=\frac{d y}{d x}\left[1+\tan ^{2} x+2 \tan x\right]$
$\therefore \frac{d^{2} y}{d x^{2}}=(1+\tan x)^{2} \frac{d y}{d x} /$ As Reviero
(b) $\frac{d^{3} y}{d x^{3}}=2(1+\tan x) \operatorname{sta} x \frac{d y}{d x}+(1+\tan x)^{2} \frac{d^{2} y}{d x^{2}}$

AT $x=0, y=1, \frac{d y}{d x}=1, \frac{d^{2} y}{d x^{2}}=1, \frac{d^{3} y}{d x^{3}}=2+1=3$
$\begin{aligned} \therefore & y=y_{0}+x y_{0}^{\prime}+\frac{x^{2}}{2!} y_{0}^{\prime \prime}+\frac{x^{3}}{3!} y_{0}^{\prime \prime}+o\left(x^{*}\right) \\ & \tan x\end{aligned}$
$e^{\tan x}=1+x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+o(x)$

Question 7 (***+)

$$
y=\tanh x, x \in \mathbb{R} .
$$

By expressing the derivatives of $\tanh x$ in terms of y, or otherwise find the first 2 non zero terms of a series expansion for $\tanh x$.

$$
y \approx x-\frac{1}{3} x^{3}+O\left(x^{5}\right)
$$

Created by T. Madas

Question 8 (***+)

By using results for series expansions of standard functions, find the series expansion of $\ln \left(1-x-2 x^{2}\right)$ up and including the term in x^{4}.

By using results for series expansions of standard functions, or otherwise, find the series expansion of $\ln \left(x^{2}+4 x+4\right)$ up and including the term in x^{4}.
$\mathrm{V}, \square, \ln \left(x^{2}+4 x+4\right)=2 \ln 2+x-\frac{1}{4} x^{2}+\frac{1}{12} x^{3}-\frac{1}{32} x^{4}+O\left(x^{5}\right)$
Question 9 (***+)

Created by T. Madas

Question 10

$$
f(x) \equiv \cos x+\cosh x, x \in \mathbb{R} .
$$

Use the first 3 non zero terms of the Maclaurin expansion of $f(x)$ to approximate the solutions of the equation

$$
f(x)=2.1
$$

\square , $x \approx \pm 1.046$

Question 11 (****)

$$
f(x) \equiv \sin [\ln (1+x)], \quad x \in \mathbb{R}, \quad x>-1
$$

a) Show that

$$
(1+x)^{2} f^{\prime \prime}(x)+(1+x) f^{\prime}(x)+f(x)=0
$$

b) Hence find first 3 non zero terms of the Maclaurin expansion of $f(x)$.
c) Use the result of part (b) to find first 2 non zero terms of the Maclaurin expansion of $\sin [\ln (1+x)]$.
$, \sin [\ln (1+x)] \approx x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}, \cos [\ln (1+x)] \approx 1-\frac{1}{2} x^{2}$

- $\begin{aligned} & f^{\prime \prime}(0)+3 f^{\prime \prime}(0)+2 f^{\prime}(0)=0 \\ & f(0)+3(-1)+2 \times 1=0 \\ & f^{\prime \prime}(0)-1\end{aligned}$
$f^{\prime \prime \prime}(0)=1$
$f^{\prime \prime \prime}(0)+5 \times 1+5(-1)=0$
Haxct We HANE
$f(x)-f(0)+x f^{\prime}(0)+\frac{x^{2}}{2} f^{\prime \prime}(0)+\frac{23}{33}+(x)+0(x)$ $\sin [\ln (1+x)]=0+x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+0+o\left(x^{5}\right)$ $\sin [\ln (1+x)]=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\ldots /$

By Differforianow with Prateer to 2
$\sin [\ln (1+x)]=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+$
$\frac{d}{d x}\left[\sin [\ln (1+x)]=\frac{d}{d x}\left[x-\frac{1}{2} 2^{2}+\frac{1}{x^{3}}+\cdots\right]\right.$
$\cos [\ln (+x)] \times \frac{1}{1+x}=1-x+\frac{1}{2} x^{2}+\cdots$
$\cos [\ln (1+x)]=(1+x)\left(1-x+\frac{1}{2} x^{2}+\ldots\right)$
$\cos [\ln (1+x)]=\begin{array}{r}1-x+\frac{1}{2} x^{2}+\cdots \\ x-x^{2}+\cdots\end{array}$
$\cos [\ln (1+x)]=1-\frac{1}{2} x^{2}+\cdots$

Created by T. Madas

Question 12 (****)
By using results for series expansions of standard functions, or otherwise, find the series expansion of $\ln \left(x^{2}+2 x+1\right)-(x-2)\left(\mathrm{e}^{x}-2\right)$ up and including the term in x^{3}.

Question 13 (****)
a) Show clearly that

$$
f(x)=\mathrm{e}^{x} \cos x, x \in \mathbb{R} .
$$

$$
f^{\prime \prime}(x)=f^{\prime}(x)-f(x)-\mathrm{e}^{x} \sin x
$$

b) Find a series expansion for $f(x)$, up and including the term in x^{5}.
c) Hence find a series expansion for $\mathrm{e}^{x} \sin x$, up and including the term in x^{4}, showing further that the coefficient of x^{4} is zero.

$$
f(x)=1+x+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}-\frac{1}{30} x^{5}+O\left(x^{6}\right), \mathrm{e}^{x} \sin x=x+x^{2}+\frac{1}{3} x^{3}+O\left(x^{5}\right)
$$

Question 14 (****)
The functions f and g are given below.

$$
\begin{gathered}
f(x)=\arctan \left(\frac{2}{3} x\right), x \in \mathbb{R} . \\
g(y)=\frac{1}{1+y}, y \in \mathbb{R},-1<y<1 .
\end{gathered}
$$

a) Expand $g(y)$ as a binomial series, up and including the term in y^{3}.
b) Use $f^{\prime}(x)$ and the answer to part (a) to show clearly that

$$
g(y)=1-y+y^{2}-y^{3}+O\left(y^{4}\right)
$$

(a) $(1+y)^{-1}=1+\frac{-1}{1}(y)+\frac{-1(-2)}{1 \times 2}(y)^{2}+\frac{(-1)(-2)(-3)}{1 \times 2 \times 3}(y)^{3}+o\left(y^{4}\right)$ $(1+y)^{-1}=1-y+y^{2}-y^{3}+o\left(y^{4}\right)$
(b) $f(a)=\operatorname{arctg}\left(\frac{2}{3}-x\right)$
$f^{\prime}(G)=\frac{\frac{2}{3}}{1+\left(\frac{3}{3} x\right)^{2}}=\frac{\frac{2}{3}}{1+\frac{4}{4} x^{2}}=\frac{6}{9+4 x^{2}}$ Now $f^{\prime}(x)=\frac{2}{3}\left(1+\frac{4}{9} x^{2}\right)^{-}$
$f^{\prime}(a)=\frac{2}{3}\left[1-\left(\frac{4}{9} x^{2}\right)+\left(\frac{4}{9} x^{2}\right)^{2}-\left(\frac{4}{9} x^{2}\right)^{3}+O\left(x^{8}\right)\right]$
$f^{\prime}(x)=\frac{2}{3}\left[1-\frac{4}{4} x^{2}+\frac{16}{81} x^{4}-\frac{64}{729} x^{6}+0\left(x^{8}\right)\right]^{-1}$
$f^{\prime}(x)=\frac{2}{3}-\frac{8}{27} x^{2}+\frac{32}{243} x^{4}-\frac{128}{2197} x^{6}+o\left(x^{8}\right)$
$\therefore f(x)=\int \frac{2}{3}-\frac{8}{27} x^{2}+\frac{32}{243} x^{4}-\frac{12 \theta}{2197} x^{6}+0\left(x^{8}\right) d x$ $\arctan \left(\frac{2}{3} x\right)=\frac{2}{3} x-\frac{8}{9} x^{3}+\frac{32}{1215} x^{5}-\frac{128}{153 c x^{7}}+0\left(x^{9}\right)+C$ wher $x=0 \Rightarrow 0=C$

Created by T. Madas

Question 15 (****)

$$
y=\sqrt{9+2 \sin 3 x}
$$

a) Find a simplified expression for $y \frac{d y}{d x}$.
b) Hence show that if x is numerically small
\square

Created by T. Madas

Created by T. Madas

Question 16 (****)

$$
f(x)=\operatorname{arsinh}(x+1), x \in \mathbb{R} .
$$

Show clearly that ...
a) $\ldots f^{\prime \prime}(x)+(x+1)\left[f^{\prime}(x)\right]^{3}=0$.
b) $\ldots \operatorname{arsinh}(x+1) \approx \ln (1+\sqrt{2})+\frac{\sqrt{2}}{2} x-\frac{\sqrt{2}}{8} x^{2}+\frac{\sqrt{2}}{48} x^{3}$.

Created by T. Madas

Question 17 (****)
a) Show clearly that ...

$$
y=\tan x, 0 \leq x<\frac{\pi}{2}
$$

i. $\quad \cdots \frac{d^{2} y}{d x^{2}}=2 y \frac{d y}{d x}$.
ii. $\ldots \frac{d^{5} y}{d x^{5}}=6\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+8 \frac{d y}{d x} \frac{d^{3} y}{d x^{3}}+2 y \frac{d^{4} y}{d x^{4}}$.
b) Use these results to find the first 3 non zero terms of a series expansion for y.

$$
y \approx x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}
$$

Created by T. Madas

Question 18 (****)

$$
y=\ln (4+3 x), x>-\frac{4}{3} .
$$

a) Find simplified expressions for $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$.
b) Hence, find the first 4 terms in the Maclaurin expansion of $y=\ln (4+3 x)$.
c) State the range of values of x for which the expansion is valid.
d) Show that for small values of x,

$$
\ln \left(\frac{4+3 x}{4-3 x}\right) \approx \frac{3}{2} x+\frac{9}{32} x^{3}
$$

$\frac{d y}{d x}=\frac{3}{3 x+4}$
$\frac{d^{2} y}{d x^{2}}=-\frac{9}{(3 x+4)^{2}}, \frac{d^{3} y}{d x^{3}}=\frac{54}{(3 x+4)^{2}},-\frac{4}{3}<x \leq \frac{4}{3}$,
$\ln (4+3 x)=\ln 4+\frac{3}{4} x-\frac{9}{32} x^{2}+\frac{9}{64} x^{3}+O\left(x^{4}\right)$

Created by T. Madas

Question 19 (****)
If m and n are non zero constants, then the first non zero term in the Maclaurin expansion of $\mathrm{e}^{m x}-(1+4 x)^{n}$ is $-4 x^{2}$.

Find the coefficient of x^{3} in this expansion.

You may NOT use standard series expansions in this question.
\square ,$\left[x^{3}\right]=\frac{56}{3}$

Sarw of $x^{3} z^{2}$	
	$y=-1=0$
by netueen Therem	
Sumase coferase bee $9+x^{2}$	
	$\frac{\frac{5}{3}}{}$

Created by T. Madas

Question 20 (****)
Determine the first 3 no zero terms in the Maclaurin expansion of

MACLAURIN

EXPANSIONS

7 HARD QUESTIONS

Created by T. Madas

Question 1 (****+)
a) Show clearly that

$$
y=\ln (1+\sin x), \sin x \neq-1 .
$$

where $f(y)$ is a function to be found.
b) Hence show further that

$$
y=-\mathrm{e}^{-y}
$$

$$
\ln (1+\sin x) \approx x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}
$$

(a) $y=\ln (1+\sin x)$
$\frac{d y}{d x}=\frac{\cos x}{1+\sin x}$
$\frac{d^{2} y}{d x^{2}}=\frac{(1+\sin x)(-\sin x)-\cos x(\cos x)}{(1+\sin x)^{2}}=\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}$
\qquad $=-1$ $1+\sin x$
But $\{y=\ln (1+\sin x)\}$
$\therefore \frac{d^{2} y}{d x^{2}}=-\frac{1}{e^{y}}=-e^{-y} \quad$ 1t $\quad f(y)=-e^{-y}$
(4) $\frac{d^{2} y}{d 2^{2}}=-e^{-9}$
$\frac{d^{3} y}{d x^{2}}=e^{-y} \frac{d y}{d x}=-\frac{x^{2} y}{d x} \frac{d y}{d x}$
$\frac{d^{4} y}{d x^{4}}=-\frac{d^{2} y d y}{d x^{2} d x}-\frac{d^{2} y}{d x^{2}} \frac{d^{2} y}{d x^{2}}$
$\frac{d^{4} y}{d x^{3}}=-\frac{d^{2} y}{d x} \frac{d y}{d x}-\frac{d^{3} y}{d x^{2} y} d x^{2}-\frac{d^{2} y}{d x^{2}} \frac{d y}{d x^{2}} d x^{2}-\frac{d y}{d x^{2}} \frac{d y}{d x^{3}}=-\frac{d y d y}{d x+}+3 \frac{d x}{d x^{3}} \frac{d y}{d x^{2}}$
Now $\left\{y_{0}=|\eta|=0 \quad\right.$ Thus $y=y_{0}+x y_{0}^{\prime}+\frac{x^{2}}{2!} y_{0}^{\prime \prime}+\frac{x^{3}}{3!} y_{0}^{\prime \prime \prime}+0\left(x^{\prime}\right)$
$\left.\left\{\begin{array}{l}y_{0}^{\prime}=1 \\ y_{0}^{0}=-1 \\ y_{0}^{\prime \prime}=-(-1)(0)=1\end{array}\right\} \quad \Rightarrow y=0+1 x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3} \times 1+\frac{1}{24} x^{4}(-2) \right\rvert\, 子 1+\frac{1}{120} x^{3}(5)+$.

Created by T. Madas

Question 2 (****+)

$$
y=\tan \left(x+\frac{\pi}{4}\right),-\frac{3 \pi}{4}<x<\frac{\pi}{4}
$$

Use the Maclaurin theorem to show that

$$
y=\tan \left(x+\frac{\pi}{4}\right) \approx 1+2 x+2 x^{2}+\frac{8}{3} x^{3}+\frac{10}{3} x^{4}+\frac{64}{15} x^{5} .
$$

Question 3 (****+)
Find the Maclaurin expansion, up and including the term in x^{4}, for $y=\mathrm{e}^{\sin 2 x}$.

$$
\mathrm{e}^{\sin 2 x}=1+x+2 x^{2}-2 x^{4}+O\left(x^{5}\right)
$$

 $Z y=e^{\sin 2 x}$

- $\sin x=x-\frac{x^{3}}{3!}+o\left(x^{5}\right)$
- $\sin x=2 x-\frac{4}{3} x^{3}+D(x)$
\therefore an $y=e^{4}$ wittet $u=2 x-\frac{4}{3} x^{3}+0(2,5)$
$\Longrightarrow y=1+u+\frac{1}{2} u^{2}+\frac{1}{6} u^{3}+\frac{1}{24} u+o\left(u^{3}\right)$
$\Rightarrow y=1+\left[2 x-\frac{4}{3} x^{3}+0\left(x^{3}\right)\right]+\frac{1}{2}\left[2 x-\frac{4}{3} x^{3}+0\left(x^{3}\right)\right]^{2}+\frac{1}{6}\left[2 x-\frac{6}{3} x^{2}+0\left(x^{3}\right)\right]^{3}$
$+\frac{1}{24}\left[2 x-\frac{4}{3} 3^{3}+O\left[\left[^{5}\right)\right]^{4}+O\left[\left(2 x-\frac{4}{3} x^{3}+O(x)\right)^{5}\right]\right.$
$\Rightarrow y=1+\left[2 x-\frac{4}{3} x^{3}\right]+\frac{1}{2}\left[4 x^{2}-\frac{16}{3} x^{4}\right]+\frac{1}{2}\left[8 x^{3}\right]+\frac{1}{24}\left[16 x^{4}\right]+0\left(x^{5}\right)$
$\Rightarrow y=1+2 x-\frac{4}{3} x^{3}+x^{2}-\frac{8}{3} x^{4}+\frac{4}{3} x^{4}+\frac{2}{3} x^{4}+0\left(x^{5}\right)$ $y=1+2 x+2 x^{2}-2 x^{4}+0\left(x^{5}\right)$

Created by T. Madas

Question $4 \quad(* * * *+)$

Consider the following infinite convergent series.

$$
\frac{3}{1 \times 2}-\frac{5}{2 \times 3}+\frac{7}{3 \times 4}-\frac{9}{4 \times 5}+\frac{11}{5 \times 6}-\ldots
$$

a) Use the method of differences, to find the sum of this series.
b) Verify the answer of part (a) by using a method based on the Maclaurin expansion of $\ln (1+x)$.

Question 5 (****+)

$$
y=\ln \left(2-\mathrm{e}^{x}\right), x<\ln 2 .
$$

Show clearly that

$$
\mathrm{e}^{y}\left[\frac{d^{3} y}{d x^{3}}+3 \frac{d y}{d x} \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right]+\mathrm{e}^{x}=0
$$

and hence find the first 3 non zero terms in the Maclaurin expansion of

$$
y=\ln \left(2-\mathrm{e}^{x}\right), \quad x<\ln 2 .
$$

\square

$$
y=\ln \left(2-\mathrm{e}^{x}\right)=-x-x^{2}-x^{3}+O\left(x^{4}\right)
$$

\square

Question $6 \quad(* * * *+)$
Find the Maclaurin expansion, up and including the term in x^{4}, for $y=\sin (\cos x)$.

Find the first four non zero terms in the Maclaurin expansion of

$$
\begin{gathered}
y=\ln (1+\cosh x) . \\
\square, \ln (1+\cosh x)=\ln 2+\frac{1}{4} x^{2}-\frac{1}{96} x^{4}+\frac{1}{1440} x^{6}+O\left(x^{8}\right)
\end{gathered}
$$

MACLAURIN

EXPANSIONS
9 ENRICHMENT

QUESTIONS

Created by T. Madas

Question 1 (*****)
The curve with equation $y=f(x)$ is the solution of the differential equation

$$
f(x) \equiv \ln \left(\frac{1-x+x^{2}}{1+x+x^{2}}\right)
$$

Determine, in its simplest form, the coefficient of $x^{6 n-3}, n \in \mathbb{N}$, in the Maclaurin series expansion of $f(x)$.

Created by T. Madas

Question 2 (*****)
Find the Maclaurin expansion of $\arctan x$, and use it to show that

Question 3 (*****)
a) Use an appropriate integration method to evaluate the following integral.

$$
\int_{0}^{1} x^{3} \arctan x d x
$$

b) Obtain an infinite series expansion for $\arctan x$ and use this series expansion to verify the answer obtained for the above integral in part (a).
[you may assume that integration and summation commute]
\square

$$
\frac{1}{6}
$$

\square

NtfD To SUM THLS SARES BY PARTIAL fRatricols
\cdots

\square

Question 4 (*****)
It is given that

- $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots=\frac{1}{4} \pi$
- $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\ldots=\frac{1}{12} \pi^{2}$
- $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots=\ln 2$

Assuming the following integral converges find its exact value.

$$
\int_{0}^{1}(\ln x)(\arctan x) d x
$$

[you may assume that integration and summation commute]

$$
\square, \frac{1}{48}\left[\pi^{2}-12 \pi+24 \ln 2\right]
$$

Created by T. Madas

Question 5 (*****)
Show with detailed workings that

V \square proof

SThRE By MARMPLATMA THE SUMMAND
$\frac{2 r+3}{3^{r}(r+1)}=\frac{2(r+1)+1}{r+1} \times\left(\frac{1}{3}\right)^{r}=2\left(\frac{1}{3}\right)^{r}+\frac{1}{r+1}\left(\frac{1}{3}\right)^{r}$

of THE G.e.
$\sum_{r=1}^{\infty}\left[\frac{2 r+3}{r r(i)}\right]=\sum_{r=1}^{\infty}\left[2\left(\frac{1}{2}\right)^{r}\right]+\sum_{r=1}^{\infty}\left[\frac{1}{r+1}\left(\frac{1}{2}\right)^{r}\right]$ $\left.\begin{array}{c}\text { A. } \\ \text { G.P. wirt } a=2 / 3 \\ r=1 / 3\end{array}\right\} \rightarrow f_{f-\infty}=\frac{2 / 3}{1-1 / 3}=1$

FOX THE Stcons Phet of The sou cansinge $\ln (1-x)$ is 4 Powhe SGUEJ (Note That $\ln (1+x)$ HAS ACTGNATNG TFONS)
$\ln (1-x)=-2-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{5} x^{5}-$ $-\frac{1}{x} \ln (1-7)=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x+\frac{1}{5} x^{4}$ $-\frac{1}{x} \ln (1-x)=1+\sum_{i=1}^{\infty}\left[\frac{1}{r+1} x^{n}\right]$

 Fintay Me that

Question 6 (*****)
By considering the series expansions of $\ln \left(1-x^{2}\right)$ and $\ln \left(\frac{1+x}{1-x}\right)$, or otherwise, find the exact value of the following series.

$$
\square,-1+\frac{1}{2} \ln 12
$$

START MTH SUGGESTION Gutw
$\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{5} x^{3}-\frac{1}{4} x^{4}+\cdots \quad\|x\|<1$
$\ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\ldots \quad\|x\|<1$
$\ln \left(1-x^{2}\right)=-x^{2}-\frac{1}{2} x^{4}-\frac{1}{4} x^{5}-\frac{1}{4} x^{3}-\cdots$
$\ln (1+x)=\ln (1+x)-\ln (1-x)$
$\begin{aligned} = & x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{1}{2} x^{4}+\cdots \\ & 2+\frac{1}{2} x^{2}+\frac{1}{3} x^{2}+\frac{1}{4} x^{4}+\cdots \end{aligned}$
$\ln \left(\frac{1}{1-x} 1\right)=2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\frac{2}{7} x^{7}+\cdots$
Now woklay AT THf fiet Pen thens of ore serles
$\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{4}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{66}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\left(\frac{1}{64}\right)+\left(\frac{1}{6}+\frac{1}{9}\right)\left(\frac{1}{256}\right)+\cdots$
$=\frac{1}{2} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{4^{2}}+\frac{1}{6} \times \frac{1}{4^{3}}+\frac{1}{8} \times \frac{1}{4^{4}}+$ $+\frac{1}{3} \times \frac{1}{4^{1}}+\frac{1}{5} \times \frac{1}{4^{2}}+\frac{1}{7} \times \frac{1}{4^{3}}+\frac{1}{9} \times \frac{1}{4^{4}}+$
$\begin{aligned} & =\frac{1}{2} \times \frac{1}{2^{2}}+\frac{1}{4} \times \frac{1}{2+}+\frac{1}{6} \times \frac{1}{2^{6}}+\frac{1}{8} \times \frac{1}{8^{2}}+\cdots \text { \& Doss uke } \ln \left(1-x^{2}\right) \\ & +\frac{1}{3} \times \frac{1}{2^{2}}+\frac{1}{5^{2}} \times \frac{1}{2 x}+\frac{1}{7^{2}} \times \frac{1}{2^{2}}+\frac{1}{3} \times \frac{1}{2^{2}}+\cdots \text { \& look ukE } \ln \left(\frac{1+x}{1-x}\right) \end{aligned}$
$-\frac{1}{2} \ln \left(1-x^{2}\right)=\frac{1}{2} 2^{2}+\frac{1}{4} x^{2}+\frac{1}{6} x^{2}+\frac{1}{8} x^{8}+\cdots \cdots$
$-\frac{1}{2} \ln \left[1-\left(\frac{1}{2}\right)^{2}\right]=\frac{1}{2} \times \frac{1}{2^{2}}+\frac{1}{4} \times \frac{1}{27}+\frac{1}{6} \times \frac{1}{26}+\frac{1}{80} \times \frac{1}{2^{9}}+\cdots$
$-\frac{1}{2} \ln \left(\frac{3}{7}\right)=\frac{1}{2} \times \frac{1}{2}+\frac{1}{4} \times \frac{1}{27}+\frac{1}{6} \times \frac{1}{2^{6}}+\frac{1}{8} \times \frac{1}{2^{8}}$

\square

$\Rightarrow \frac{1}{22} \ln \left(\frac{1+x}{1-x}\right)=1+\frac{1}{3} x^{2}+\frac{1}{5} x^{4}+\frac{1}{7} 2^{6}+\frac{1}{9} x^{8}$
$\Rightarrow \frac{1}{2 \times \frac{1}{2}} \ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)=1+\underbrace{\frac{1}{3} \frac{1}{2^{5}}+\frac{1}{5} \frac{1}{2 t}+\frac{1}{7} \frac{1}{2^{6}}+\frac{1}{9} x^{9}}$
$\Rightarrow \ln (3)-1=$ "ove sseles" "one seetes" Louctina Thf lessurs

- $\frac{1}{2} \times \frac{1}{2^{2}}+\frac{1}{4} \times \frac{1}{2^{4}}+\frac{1}{6^{6}} \frac{1}{2^{6}}+\frac{1}{8^{2}} \times \frac{1}{2^{8}}+\cdots=-\frac{1}{2} \ln \frac{2}{4}$
$\left(\frac{1}{2}+\frac{1}{3}\right) \frac{1}{2^{2}}+\left(\frac{1}{4}+\frac{1}{5}\right) \frac{1}{2^{2}}+\left(\frac{1}{6}+\frac{1}{7}\right) \frac{1}{z^{2}}+\left(\frac{1}{8}+\frac{1}{5}\right) \frac{1}{2^{8}}+\cdots=-\frac{1}{2} \ln \left(\frac{3}{7}\right)+\ln ^{3}-1$
$\sum_{r=1}^{\infty}\left[\left(\frac{1}{2 r}+\frac{1}{2 n+1}\right)\left(\frac{1}{2 r}\right)\right]=\frac{1}{2}\left[2 \ln 3-\ln \frac{3}{4}\right]-1$ $\sum_{r=1}^{\infty}\left[\left(\frac{1}{2 r}+\frac{1}{2 r+1}\right)(4)^{r}\right]=\frac{1}{2}\left[\ln q+\ln \frac{4}{3}\right]-1$ $\sum_{i=1}^{\infty}\left[\left(\frac{1}{4}+\frac{1}{2 x+1}\right)\left(\frac{1}{4}\right)^{r}\right]=\frac{1}{2} \ln 12-1$

Question 7 (*****)
Find the sum to infinity of the following series.

$$
\frac{1}{1}-\frac{1}{1+4}+\frac{1}{1+4+9}-\frac{1}{1+4+9+16}+\frac{1}{1+4+9+16+25}+\ldots
$$

You may find the series expansion of arctan x useful in this question.
\square , $6(\pi-3)$

Question 8 (*****)
Find the sum to infinity of the following series.

$$
1+\frac{1}{3 \times 4}+\frac{1}{5 \times 4^{2}}+\frac{1}{7 \times 4^{3}}+\frac{1}{9 \times 4^{4}}+\ldots
$$

WHTTPD B - Alchatalut reataqus
$\frac{\text { Conkarere }}{\int^{5}}$
$\int_{0}^{\frac{1}{5}} x^{2 k} d x=\left[\frac{1}{2 x+1} x^{2 x+1}\right]_{0}^{\frac{1}{2}}=\frac{1}{2 k+1}\left[\left(\frac{1}{2}\right)^{x+1}-0\right]=\frac{1}{(x+1))^{2 x+1}}$

$$
=\frac{1}{(2 x+1) 2^{-2} \times 2}=\frac{1}{2} \frac{1}{(x+1) \times 4^{k}}
$$

Now canane iffe infinite soll Goutes

$=2 \times \frac{1}{2} \sum_{k=0}^{\infty}\left[\frac{1}{(x+1) 4^{k}}\right]=2 \sum_{k=0}^{\infty}\left[\frac{1}{2} \frac{1}{(2 k+1) \times 4^{k}}\right]=2 \sum_{k=0}^{\infty}\left[\int_{0}^{\frac{1}{2}} x^{k} d x\right]$

$\cdots=2 \int_{0}^{\frac{1}{2}}\left[\sum_{k=0}^{\infty} x^{2 k}\right] d x=2 \int_{0}^{\frac{1}{2}}\left[1+x^{2}+x^{4}+x^{6}+\cdots\right] d x$
$=2 \int_{0}^{\frac{1}{2}} \frac{1}{1-x^{2}} d x=\int_{0}^{\frac{1}{2}} \frac{2}{(1-x)(1+x)} d x$
$\left.=\int_{0}^{\frac{1}{1}} \frac{1}{1+2}+\frac{1}{2 x-2} d=[\ln +1+1-h n+2]\right]_{0}^{\frac{1}{2}}$
$=\left(\ln \frac{3}{2}-\ln \frac{1}{2}\right)-(\ln 1-\ln 1)=\ln \frac{3 / 2}{1 / 2}=\ln 3 /$

Created by T. Madas

Question 9 (*****)

Given that p and q are positive, show that the natural logarithm of their arithmetic mean exceeds the arithmetic mean of their natural logarithms by

$$
\sum_{r=1}^{\infty}\left[\frac{2}{2 r-1}\left(\frac{\sqrt{p}-\sqrt{q}}{\sqrt{p}+\sqrt{q}}\right)^{4 r-2}\right]
$$

You may find the series expansion of $\operatorname{artanh}\left(x^{2}\right)$ useful in this question.

proof

TAYLOR SERIES

EXPANSIONS

4 BASIC

QUESTIONS

Question 1 (***)

$$
y=\frac{1}{\sqrt{x}}, x>0
$$

a) Find the first four terms in the Taylor expansion of y about $x=1$.
b) Use the first three terms of the expansion found in part (a), with $x=\frac{8}{9}$ to show that $\sqrt{2} \approx \frac{229}{162}$.

$$
y=1-\frac{1}{2}(x-1)+\frac{3}{8}(x-1)^{2}-\frac{5}{16}(x-1)^{3}+O\left((x-1)^{4}\right)
$$

a) Obithin Thf fier Theer Delewatites of $y=x^{-\frac{1}{2}}$
$y^{\prime}=-\frac{1}{2} x^{-\frac{3}{2}}, \quad y^{\prime \prime}=\frac{3}{4} x^{-\frac{1}{2}}, \quad y^{\prime \prime}=-\frac{15}{8} x^{-\frac{7}{2}}$
GinWate at $x=1$
by THf taycar bemila
$y=y_{a}+(a-a) y_{a}^{\prime}+\frac{(x-a)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(x-a)^{3}}{3!} y_{a}^{\prime \prime \prime}+0\left[(a-a)^{4}\right]$ $\frac{1}{\sqrt{x}}=1-\frac{1}{2}(x-1)+\frac{1}{2}\left(x-n^{2} \times\left(\frac{3}{4}\right)+\frac{1}{6}(x-)^{3} \times\left(-\frac{1}{8}\right)+\sigma\left[(x-1)^{4}\right]\right.$ $\frac{1}{\sqrt{2}}=1-\frac{1}{2}(a-1)+\frac{3}{8}(a-1)^{2}-\frac{5}{16}(x-1)^{3}+0\left[(a-1)^{4}\right]$
b) Now wing The Firat thele theods with $x=\frac{n}{2}$
$\rightarrow \frac{1}{\sqrt{\frac{9}{9}}}=1-\frac{1}{2} \times\left(\frac{8}{4}-1\right)+\frac{3}{8}\left(\frac{8}{9}-1\right)^{2}+\cdots \cdot$
$\Rightarrow \frac{3}{\sqrt{8}}-1-\frac{1}{2}\left(-\frac{1}{9}\right)+\frac{3}{8}\left(\frac{1}{81}\right)+\cdots$
$\Rightarrow \frac{3 \sqrt{2}}{18 \sqrt{2}}=1+\frac{1}{18}+\frac{1}{216}+\cdots$
$\Rightarrow \frac{3}{4} \sqrt{2}=\frac{29}{162}+$

Created by T. Madas

Question 2 (***)

$$
f(x)=x^{2} \ln x, x>0
$$

a) Find the first three non zero terms in the Taylor expansion of $f(x)$, in powers of $(x-1)$.
b) Use the first three terms of the expansion to show $\ln 1.1 \approx 0.095$.

$$
f(x)=(x-1)+\frac{3}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+O\left((x-1)^{4}\right)
$$

Question 3 (***)

$$
f(x)=\cos 2 x
$$

a) Find the first three non zero terms in the Taylor expansion of $f(x)$, in powers of $\left(x-\frac{\pi}{4}\right)$.
b) Use the first three terms of the expansion to show $\cos 2 \approx-0.416$.
$f(x)=-2\left(x-\frac{\pi}{4}\right)+\frac{4}{3}\left(x-\frac{\pi}{4}\right)^{3}-\frac{4}{15}\left(x-\frac{\pi}{4}\right)^{5}+O\left(\left(x-\frac{\pi}{4}\right)^{7}\right)$

Question 4 (***)

$$
f(x)=\cos x
$$

a) Find the first four terms in the Taylor expansion of $f(x)$, in ascending powers of $\left(x-\frac{\pi}{6}\right)$.
b) Use the expansion of part (a) to show that

$$
\cos \frac{\pi}{4} \approx \frac{\sqrt{3}}{2}-\frac{\pi}{24}-\frac{\sqrt{3} \pi^{2}}{576}-\frac{\pi^{3}}{20736}
$$

$$
f(x)=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(x-\frac{\pi}{6}\right)-\frac{\sqrt{3}}{4}\left(x-\frac{\pi}{6}\right)^{2}+\frac{1}{12}\left(x-\frac{\pi}{6}\right)^{3}+O\left(\left(x-\frac{\pi}{6}\right)^{4}\right)
$$

TAYLOR SERIES

EXPANSIONS

3 STANDARD

QUESTIONS

Question 1 (***+)

$$
f(x) \equiv \sin 2 x, \quad x \in \mathbb{R} .
$$

a) Determine, in exact simplified form, the first 3 non zero terms, in the Taylor expansion of $f(x)$, centred at $x=\frac{1}{4} \pi$.
b) Write the entire expansion of $f(x)$, as a simplified expression in Σ notation.
\square
$f(x)=\sum_{r=0}^{\infty}\left[\frac{(-4)^{r}}{(2 r)!}\left(x-\frac{1}{4} \pi\right)^{2 r}\right]$

a) Stice	
	$f(T)=1$ $f^{\prime \prime}()=0$ $f^{\prime \prime}(f)=6$
	sart sumpury

Created by T. Madas

Created by T. Madas

Question 2 (****)
a) Show that

$$
\frac{d^{3} y}{d x^{3}}=2 y \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}
$$

b) Determine the first four terms in the Taylor expansion of $\tan x$, in ascending powers of $\left(x-\frac{\pi}{4}\right)$.
c) Hence deduce that

$$
\tan \frac{5 \pi}{18} \approx 1+\frac{\pi}{18}+\frac{\pi^{2}}{648}+\frac{\pi^{3}}{17496}
$$

$y=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}+O\left(\left(x-\frac{\pi}{4}\right)^{4}\right)$

Question 3 (****)
a) Show that

$$
\frac{d^{4} y}{d x^{4}}=120 \sec ^{6} x-120 \sec ^{4} x+16 \sec ^{2} x
$$

b) Determine the first 5 terms in the Taylor expansion of $\tan ^{2} x$, in ascending powers of $\left(x-\frac{\pi}{3}\right)$.
\square
$y=3+8 \sqrt{3}\left(x-\frac{\pi}{3}\right)+40\left(x-\frac{\pi}{3}\right)^{2}+\frac{176}{3}\left(x-\frac{\pi}{3}\right)^{3}+\frac{728}{3}\left(x-\frac{\pi}{3}\right)^{4}+O\left(\left(x-\frac{\pi}{3}\right)^{5}\right)$

STRUT With Diffeewintows $2 y=\tan =\sec ^{2} x-1$ - $\frac{d u}{d x}=2 \sec x(\sin +\tan x)-2 x^{2} x \tan x$ $\sim_{2}^{2(x+x)=\text { statan } 3}$ $=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x$ $=4 \sec ^{2} 3\left(\sec ^{2} 2-1\right)+2 \sec ^{4} 2 x$ $=45 t^{4} 2-4 s^{2} c^{2} x+25 c^{4} x$ $=6 \sec ^{4} x-4 \sec ^{2} x$ $-\frac{d^{3} y}{d x^{3}}=\sin \operatorname{sic}^{3}[\sec (\cos x)-\cos x[\cos x+\cos x)$ $248 c^{4}+\tan x-85 s^{2} 2+x$ $25 \operatorname{cec}^{4} x \tan ^{2} x+24 \sec =168$ $=120 \operatorname{sic} x^{5}-112 \operatorname{ces}^{4} x+16 \sec ^{2} x$ is axeuses $=24 \times 16 \sqrt{3}-8 \times 4 \sqrt{1}$ $=381 \sqrt{3}-32 \sqrt{3}$ $=32 \sqrt{3}$	- $\frac{d u}{d x 4}=120 \times 2^{6}-120 \times 2^{4}+16 \times 2$ $7880-1920+64$ $=5824$

O.D.E.

TAYLOR SERIES
 EXPANSIONS

3 BASIC

QUESTIONS

Question $1 \quad\left(^{* *}+\right.$)
A curve has equation $y=f(x)$ which satisfies the differential equation

$$
\frac{d y}{d x}=x^{2}-y^{2}
$$

subject to the condition $x=0, y=2$.

Determine the first 4 terms in the infinite series expansion of $y=f(x)$ in ascending powers of x.

Created by T. Madas

Question 2 (***)
A curve has an equation $y=f(x)$ that satisfies the differential equation

$$
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+x y=0
$$

subject to the conditions $x=0, y=1, \frac{d y}{d x}=1$.

By using the first four terms in the expansion of $y=f(x)$ in ascending powers of x, show that $y \approx 1.08$ at $x=\frac{1}{12}$.

Created by T. Madas

Question 3 (***)
A curve has an equation $y=f(x)$ that satisfies the differential equation

$$
x \frac{d y}{d x}-y^{2}=3, x \neq 0
$$

subject to the condition $y=2$ at $x=1$.

Find the first four terms in the expansion of $y=f(x)$ as powers of $(x-1)$.

$$
y=2-7(x-1)+\frac{21}{2}(x-1)^{2}+\frac{70}{3}(x-1)^{3} O\left((x-1)^{4}\right)
$$

O.D.E.

TAYLOR SERIES

EXPANSIONS

3 STANDARD

QUESTIONS

Created by T. Madas

Question 1 (***+)

$$
\frac{d y}{d x}=\frac{3 x+y^{2}}{x}, \quad x \neq 0 .
$$

Given that $y=1$ at $x=1$, find a series solution for the above differential equation in ascending powers of $(x-1)$, up and including the terms in $(x-1)^{3}$.

$$
y=1+4(x-1)+\frac{7}{2}(x-1)^{2}+\frac{16}{3}(x-1)^{3}+O\left[(x-1)^{4}\right]
$$

Created by T. Madas

Question 2 (***+)
A curve has an equation $y=f(x)$ that satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x} \sin 2 x+4 y \cos 2 x=0
$$

subject to the conditions $y=3, \frac{d y}{d x}=0$ at $x=0$.

Find a series solution for $f(x)$ up and including the term in x^{4}.

$$
y=3-6 x^{2}+8 x^{4}+O\left(x^{6}\right)
$$

Created by T. Madas

Question 3 (***+)
A curve has an equation $y=f(x)$ that satisfies the differential equation

$$
\mathrm{e}^{-x} \frac{d^{2} y}{d x^{2}}=2 y \frac{d y}{d x}+y^{2}+1
$$

with $y=1, \frac{d y}{d x}=2$ at $x=0$.
a) Show clearly that

$$
\mathrm{e}^{-x} \frac{d^{3} y}{d x^{3}}=\left(2 y+\mathrm{e}^{-x}\right) \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}\left(y+\frac{d y}{d x}\right)
$$

b) Find a series solution for $f(x)$, up and including the term in x^{3}.
\square
$\square, y=1+2 x+3 x^{2}+5 x^{3}+O\left(x^{4}\right)$

$\rightarrow \frac{d}{d x}\left[e^{x} \frac{x}{d x} \frac{d}{d x}\right]=\frac{d}{d x}\left[2 y \frac{d y}{d x}\right]+\frac{d}{d x}\left[y^{2}+1\right]$

$\Rightarrow e^{-x} \frac{d y}{d x^{3}}=e^{-x} \frac{d^{2} y}{d x^{2}}+2 y^{2} \frac{y^{2} y}{d x^{2}}+2 \frac{d y}{d x} \frac{d y}{d x}+2 y \frac{d y}{d x}$
$\Rightarrow e^{-\frac{d y}{d y}} \frac{d x^{3}}{}=\left(e^{x}+2 y\right) \frac{d y}{d x^{2}}+2 \frac{d y}{d x}\left[\frac{d y}{d x}+y\right]$
b) NAwort AT $a=0$

- 和 RHOChO

$x=0$	$y=1$
	$\frac{d y}{d x}=2$

$\frac{d^{2} y}{d y^{2}}=6 \longrightarrow \quad e^{\left.-\frac{d y}{2} \right\rvert\,} d=2 \times 1 \times 2+1^{2}+1$
$\frac{d_{3} y}{d x^{3}}=30 \longrightarrow \quad e^{-0} \frac{d x}{d x^{3}}=\left(e^{0}+2 x\right) \times 6+2 \times 2[2+1]$
Hinct int thate
$y=y_{0}+x y_{0}^{\prime}+\frac{x^{2}}{21} y_{0}^{\prime \prime}+\frac{x^{3}}{3!y_{0}^{\prime \prime}}+o\left(x^{4}\right)$ $y=1+2 x+\frac{x^{2}}{2} \times 6+\frac{x^{3}}{6} \times 30+0\left(x^{4}\right)$ $y=1+2 x+3 x^{2}+5 x^{3}+O\left(x^{4}\right)$

MIXED

SERIES

EXPANSIONS

3 QUESTIONS

Created by T. Madas

Question 1 (***+)

$$
f(x)=\frac{\cos 3 x}{\sqrt{1-x^{2}}},|x|<1 .
$$

Show clearly that

$$
f(x) \approx 1-4 x^{2}+\frac{3}{2} x^{4} .
$$

Question $2(* * *+)$

a) Find the first four terms in the series expansion of $\left(1-\frac{1}{2} y\right)^{\frac{1}{2}}$.
b) By considering the first two non zero terms in the expansion of $\sin 3 x$ and the answer from part (a), show that

$$
\sqrt{1-\frac{1}{2} \sin 3 x} \approx 1-\frac{3}{4} x-\frac{9}{32} x^{2}+\frac{117}{128} x^{3}
$$

$$
1-\frac{1}{4} y-\frac{1}{32} y^{2}-\frac{1}{128} y^{3}+O\left(y^{4}\right)
$$

Created by T. Madas

Question 3 (*****)
By considering a suitable binomial expansion, show that

