SERIES

and

INTEGRALS

Created by T. Madas

Question 1 (***)

The figure below shows the curve C with equation $y=\mathrm{e}^{-\frac{1}{x}}, 0<x \leq 1$.

a) By using a two different sets of rectangles of unit width under and above the graph of C, show that

$$
f(n)<\sum_{r=1}^{n} \frac{1}{r}<g(n)
$$

where $f(n)$ and $g(n)$ are functions involving natural logarithms.
b) Determine whether $\sum_{r=1}^{\infty} \frac{1}{r}$ exists.
c) Write down an approximation for $\sum_{r=1}^{N} \frac{1}{r}$ if N is very large.

$$
f(n)=\frac{1}{n}+\ln n, \sum_{r=1}^{g(n)=1+\ln n}, \sum_{r=1}^{\infty} \frac{1}{r} \text { diverges }, \text { as } n \rightarrow \infty, \sum_{r=1}^{N} \frac{1}{r} \approx \ln N
$$

Created by T. Madas

Question 2 (***)

The figure above shows the curve C with equation $y=\sqrt[3]{x}, x \geq 0$.
a) By using two different sets of rectangles of unit width under and above the graph of C, show that

$$
\int_{a}^{b} \sqrt[3]{x} d x<\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}<\int_{c}^{d} \sqrt[3]{x}
$$

stating the limits in the integrals.
b) Hence show that

$$
a=0, b=n, c=1, d=n+1
$$

Question 3 (***+)

The figure below shows the curve C with equation $y=\mathrm{e}^{-\frac{1}{x}}, 0<x \leq 1$.

a) By using two different sets of rectangles of width $\frac{1}{n}$ under and above the graph of C, show that

$$
A<\int_{0}^{1} \mathrm{e}^{-\frac{1}{x}} d x<A+\frac{1}{2 \mathrm{e}}
$$

where A is an exact finite series involving exponentials.

The above expression is to be used to approximate the area under C for $0<x \leq 1$.
When $n \geq N$, the error is less than 10^{-5}.
b) Determine the least possible value of N.

Question 4 (***+)
By considering the area of two different rectangles of unit width under and above the graph of $y=\frac{1}{x}$, show that

Question 5 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

\square , proof

Cols)

Question 6 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$
\int_{3}^{6} x^{2} d x=63
$$

\square , proof

Question 7 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

Question 8 (*****)
Determine the limit of the following series.

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\frac{1}{n+4}+\ldots+\frac{1}{n+n-2}+\frac{1}{n+n-1}+\frac{1}{n+n}+\right]
$$

