Create to a JOTS F POLYNOMIA EQUATIONS TH I.Y.C.B. Madasmanne I.Y.C.B. Madasa

THATS COM INCOME IN CALL IN CALL IN COME IN COME IN COME IN CALL IN CALL IN CALL IN COME INCOME IN COME IN COME IN COME IN COME INCOME CLASINGUIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASIN

Question 1 (***)

The quadratic equation

 $x^2 + 2kx + k = 0,$

where k is a non zero constant, has roots $x = \alpha$ and $x = \beta$.

Find a quadratic equation, in terms of k, whose roots are

è

Question 2 (***)

The two roots of the quadratic equation

 $x^2 + 2x - 3 = 0$

are denoted, in the usual notation, as α and β .

Find the quadratic equation, with integer coefficients, whose roots are

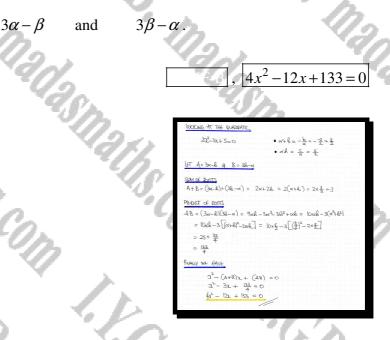
Question 3 (***)

The roots of the quadratic equation

 $x^2 + 2x + 3 = 0$

are denoted, in the usual notation, as α and β .

Find the quadratic equation, with integer coefficients, whose roots are


Question 4 (***)

The roots of the quadratic equation

 $2x^2 - 3x + 5 = 0$

are denoted by α and β .

Find the quadratic equation, with integer coefficients, whose roots are

Question 5 (***) The roots of the equation

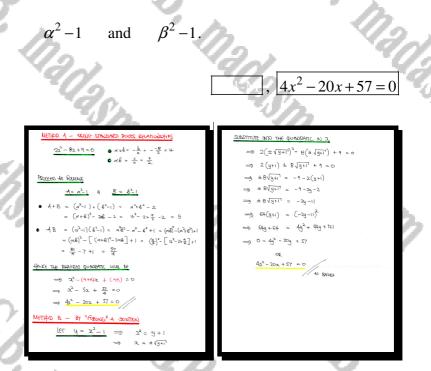
 $az^2 + bz + c = 0,$

where a, b and c are real constants, are denoted by α and β .

Given that $b^2 = 2ac \neq 0$, show that $\alpha^2 + \beta^2 = 0$.

 $\begin{aligned} & \lambda \xi^{k} + b^{2} + C = 0 \quad 4 \quad b^{2} = 2a\zeta_{-} \neq 0 \\ & x^{k} + b^{k} = (x_{1} + b_{1}^{k}) - 2xb = (-\frac{b}{a})^{2} - 2x \frac{c}{a} = -\frac{b^{2}}{ab} - \frac{2c}{a} \\ & = -\frac{b^{2} - 2xb}{a^{k}} = 0 \\ & z = -\frac{b^{2} - 2x}{a^{k}} = 0 \end{aligned}$

Question 6 (***)


F.C.B.

The roots of the quadratic equation

 $2x^2 - 8x + 9 = 0$

are denoted, in the usual notation, as α and β .

Find the quadratic equation, with integer coefficients, whose roots are

è

ng

Question 7 (***)

A curve has equation

i C.B.

 $y = 2x^2 + 5x + c,$

where c is a non zero constant.

Given that the roots of the equation differ by 3, determine the value of c.

LET THE SMAULE BOOT OF THE QUADRATIC BE &		BY (MAADISCH) WE HA
• $\frac{1}{2} = -\frac{1}{2} = -\frac{1}{2} = -\frac{1}{2}$		• $\frac{5}{2} = -(2x+3)$
1.E 2.00 +3 = -5		=====================================
$2_{p_1} = -\frac{11}{2}$		
$o'_{4} = -\frac{11}{4}$		-
• THE PRODUCT OF THE ROOTS: $\propto (\alpha + 3) = \frac{C}{\alpha} = \frac{C}{2}$		⇒ 4× = ~ 11
1.E. C= 2x(x+3)		
c= 2(-4)(-4+3)		
$C = -\frac{11}{2} \times \frac{1}{4}$		
C ~ - 11 8		
ALTHONATION - WITHOT WING DIRECTLY RECULT ON THE SUM		
AND PRODUCT OF ROOTS OF A QUADRATIC	1	
● LET THE SMALLED OF THE TWO YOUT BE ~		
$THW \qquad 2a^2 + Sx + C = 0$	1	
$\implies 3^2 + \frac{5\pi}{2} + \frac{c}{2} = 0$		
$\Rightarrow (\mathfrak{a} - \alpha)(\mathfrak{a} - (\alpha+3))=0$		
$\implies \mathfrak{J}^2 - (\alpha + \mathfrak{z})^2 - \alpha \chi + \alpha (\alpha + \mathfrak{z}) = 0$		
$\implies \chi^2 - (2\alpha + 3)\chi + \alpha(\alpha + 3) = 0$		

c

 $2\left(-\frac{11}{4}\right)\left(-\frac{11}{4}+3\right)$

£ŀ;

102

Question 8 (***+) The roots of the quadratic equation

 $2x^2 - 3x + 5 = 0$

are denoted by α and β .

12

The roots of the quadratic equation

 $x^2 + px + q = 0,$

where p and q are real constants, are denoted by $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\beta}$

Determine the value of p and the value of q.

 $q = \frac{14}{5}$ $p = \frac{21}{10},$

F.G.B.

121/2.517

$a^{2} - 3a + 5 = 0$ $a + b = -\frac{-3}{2} = \frac{3}{2}$ $a = \frac{5}{2}$	$ \begin{array}{l} (\mathrm{tr} \ \mbox{The Rots of} \ \ \alpha^{4} + \mathrm{pox} + q^{4} = 0 \ \ \mathrm{Bt} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$ \begin{aligned} & \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$= \frac{1}{2} + \frac{2\alpha - \frac{2(\beta + \alpha)}{\beta \alpha}}{\frac{2}{\beta}} + \frac{2\alpha}{2} + \frac{2}{\frac{2}{\beta}} + \frac{2}{\beta}$ $= \frac{1}{2} + \frac{2}{\frac{2}{\beta}} + \frac{2}{\beta} + $
ő.	$\mathcal{X}^{2} - \left(-\frac{24}{6}\tilde{A}\right) + \left(\frac{14}{5}\right) = 0 \qquad \text{if } p = \frac{21}{6}$

I.G.B.

(****) **Question 9**

Consider the quadratic equation

 $ax^2 + bx + c = 0,$

where a, b and c are real constants.

One of the roots of this quadratic equation is double the other.

Show clearly that both roots must be real.

400	proo
- 3 S IN	
$ ax^2 + bx + c = b $	
● LAT THE TWO 2007 BE of & Zar	
$\begin{array}{c} \alpha' + 2\alpha' = -\frac{\mathbf{b}}{\alpha} \\ \alpha' + 2\alpha' = -\frac{\mathbf{b}}{\alpha} \\ \alpha' + 2\alpha' = -\frac{\mathbf{c}}{\alpha} \end{array} \xrightarrow{3\alpha' = -\frac{\mathbf{b}}{\alpha}} \begin{array}{c} 3\alpha' = -\frac{\mathbf{b}}{\alpha} \\ = 3\alpha' = -\frac{\mathbf{b}}{\alpha'} \\ 2\alpha' = -\frac{\mathbf{c}}{\alpha} \\ = 2\alpha'^2 = -\frac{\mathbf{c}}{\alpha} \end{array} \xrightarrow{3\alpha' = -\frac{\mathbf{b}}{\alpha'}} \begin{array}{c} \alpha' + 2\alpha' = -\frac{\mathbf{b}}{\alpha'} \\ = 2\alpha' = -\frac{\mathbf{c}}{\alpha'} \\ = 2\alpha'' = -\frac{\mathbf{c}}{\alpha'} \\ $	}⇒ Divi⊅t
$\Rightarrow \Rightarrow \frac{q}{2} = \frac{\frac{b^2}{a^k}}{\frac{c}{\alpha}}$,	
$\Rightarrow \frac{q}{2} = \frac{ab^2}{a^2c}$	
$\implies \frac{q}{2} = \frac{b^2}{q_c}$	
$\implies b^2 = \frac{q}{2}ac or \left[\frac{1}{2}ac = \frac{1}{3}b^2\right]$	
NOW THE DUCEINING WILL BE b2-Hac = gac - hac = 1	zac
$=\frac{1}{2}b^2 > 0$	

proof

12

Question 10 (****) The roots of the quadratic equation

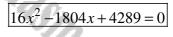
 $x^2 + 2x + 2 = 0$

are denoted by α and β .

Find the quadratic equation, with integer coefficients, whose roots are

Question 11 (****) The roots of the quadratic equation

 $x^2 + 2x - 4 = 0$


are denoted by α and β .

I.C.B.

I.C.B.

Find the quadratic equation, with integer coefficients, whose roots are

 $\alpha^4 + \frac{1}{\beta^2}$ and $\beta^4 + \frac{1}{\alpha}$

nn,

è

+2x-4=		$+ \mathcal{E} = -\frac{b}{a} = -\frac{c}{a}$	2
in		ib = & = -4	
XT24 2+82= (a+8) ² - 2x% = (-z) ² - 2(-4) =	4+6 = 12
$\psi + \delta^{\psi} = \left(\alpha^2 + 6 \right)$	$(2^{2})^{2} - 2n \mathcal{R}^{2} =$	122- 2(-+)2=	194-32 = 112

2M	UHT-		~ ~ + B2					
		R =	R4 + 1					
. 0	A+B	= ($\alpha^{ij} + \frac{1}{Q^2}$	+ (B+++	L) =	·(~4+&	$+\left(\frac{1}{\alpha'^2}+\frac{1}{6}\right)$	2)
		-	(a4+64) +	B2+K2		112 ±	12.	

0	$(a^{2}+b^{2}) + \frac{b^{2}+b^{2}}{a^{2}b^{2}} = (12 + \frac{12}{(-4)^{2}})^{2}$
e.	$(12 + \frac{3}{4} = \frac{451}{4}$
8-AB =	$\left(\varkappa^{\psi}+\frac{1}{8^{2}}\right)\left(\varkappa^{\psi}+\frac{1}{\sqrt{2}}\right)=-\varkappa^{\psi}\varkappa^{\psi}+\varkappa^{2}+\varkappa^{2}+\frac{1}{\sqrt{8}}$
= (-4) ⁴ + $(x^2 + Q^2) + \frac{1}{(-Q)^2} = (-4)^4 + 12 + \frac{1}{1-2}$

		(no)-	6
=	= 256 + 12 + 16		
	42.89		

I.C.B.

29

200

Question 12 (****)

F.G.B. Ma

Į.C.B.

 $x^2 - 4\sqrt{2}\,kx + 2k^4 - 1 = 0\,.$

The two roots of the above quadratic equation, where k is a constant, are denoted by α and β .

Tasm.

Given further that $\alpha^2 + \beta^2 = 66$, determine the exact value of $\alpha^3 + \beta^3$.

 $\alpha^3 + \beta^3 = 280\sqrt{2}$

22-412 ka + 244 B C= STREETY SUM OF $(\alpha+\beta)^2 = \alpha^2+\beta^2+2\alpha\beta$ A NEXT -> (4NZ12)2= 66 + 2 (224-1) = 66 + 2(2) - 16K2 = 33 + 2K4-0= 2K4-16K \Rightarrow K2= 4 🖉 NOW (a+B) $a^{3} + 3a^{2}B + 3ab^{2} + b^{3}$ $= \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$ (x+B) $(4N\overline{2}k)^{3} = (\alpha^{3}+\beta^{3}) + 3(2k^{9}-1)(4N\overline{2}k)$ $(8\sqrt{2})^3 = \frac{3}{8^2 + 8^3} + 3\times 31 \times 8\sqrt{2}$ 1024NZ = d+b3 + 744NZ

200

F.G.B.

Mada

Question 13 (****+) The quadratic equation

I.C.B.

 $ax^2 + bx + c = 0, \ x \in \mathbb{R},$

where a, b and c are constants, $a \neq 0$, has real roots which differ by 1.

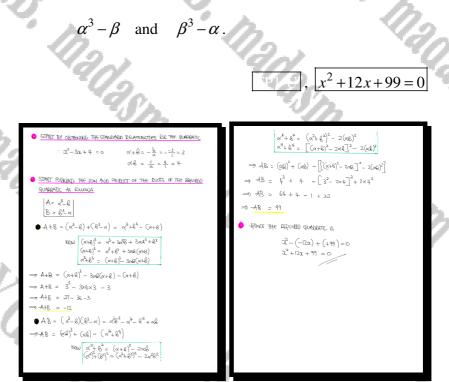
Determine a simplified relationship between a, b and c.

 $\left(\frac{b+a}{a}\right)^2 - \frac{2(b+a)}{a} = \frac{4c}{a}$ a22 + b2 + c =0 SOUTIONS JUFFER BY I $= \frac{(b+a)^2}{a^2} - \frac{2(b+a)}{a} = \frac{4c}{a}$ THE TWO SOLUTIONS BE $x_2 \in x_1$, $x_2 > x_1$ (b+a)2 - 2a (b+a) $\alpha_1 = 1$ => b2 + 2ab + a2 - 2ab - 2a2 = 4uc $b + \sqrt{b^2 - 4ac} = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = 1$ $= b^2 - a^2 = 4ac$ 2 N 62-4ac = 1 $b b^2 - 4ac = a^2$ $b^2 - 4ac = a$ 43 86586 $4 \propto \frac{a}{a} \left(-\frac{b}{a}-1\right)^{2} = \left(-\frac{b}{a}+1\right)^{2}$ $\int \longrightarrow \left(\frac{b}{a}+i\right)^2 + 2\left(-\frac{b}{a}-i\right) = \frac{4c}{a}$

 $b^2 - 4ac = a^2$

i.C.B.

mana.


Question 14 (****+) The roots of the quadratic equation

 $x^2 - 3x + 4 = 0$

are denoted by α and β .

P.C.P.

Find the quadratic equation, with integer coefficients, whose roots are

Question 15 (****+)

CB

 $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}, \quad x \neq -p \ x \neq -q.$

The roots of the above quadratic equation, where p, q and r are non zero constants, are equal in magnitude but opposite in sign.

 $\left(\frac{1}{2}\left[p^2+q^2\right]\right)$

Show that the product of these roots is

x+p + x+q MANHOULATE INTO A (2+0+2+P) (2+p)(2+0) + (pq - dr - pr) ICE THE PRODUCT OF TH 79-99 - r(p+q) $=\frac{1}{2}\left[2pq-2r(p+q)\right]$ $= \frac{1}{2} \left(2pq - (p+q)(p+q) \right)$ $=\frac{1}{2}\left[2pq - (p^{2}+2pq+q^{2})\right]$ $\frac{1}{2} \left(-p^2 - q^2 \right)$ $\downarrow \left[p^2 + q^2 \right]$ AS REQ

proof

ng

Question 16 (****+)

P.C.P.

 $2x^2 + kx + 1 = 0.$

The roots of the above equation are a and β , where k is a non zero real constant.

Given further that the following two expressions

 $\frac{\alpha}{\beta\left(1+\alpha^2+\beta^2\right)}$ $\frac{\beta}{\alpha \left(1+\alpha^2+\beta^2\right)}$ and

are real, finite and distinct, determine the range of the possible values of k.

18		4.0.02
5	2211	2003 FINNE AND TONITHE LAFF CRITADED 24TT WOUL 🔇
1	$\frac{2x^2 + kx + 1 = 0}{2 \epsilon R}$	$b^2 - 4ac > 0 \implies \left[2k^2(4-k)\right]^2 - 4xk^2k > 0$
	STUDIES TRUEND LANCE THE ADDRESS THAT S	$\Rightarrow 4k^4(4-k^2)^2 - 64k^4 > 0$
	$\propto \mathcal{C} = \frac{1}{2}$ $\alpha^2 + \beta^2 \approx (\alpha + \Omega)^2 - 2\alpha \mathcal{C}$	\Rightarrow $(4-k^2)^2 - 16 > 0$
	$u + o = (u + u) - t_{ab}$ $= \frac{1}{4}t^2 - (u + u)$	\Rightarrow $(4-k^2-4)(4-k^2+4)>D$
	• $A(+B) = \frac{\kappa}{R(1+\kappa^2+R^2)} + \frac{R}{\kappa(1+\kappa^2+R^2)} = \frac{1}{(1+\kappa^2+R^2)} \left[\frac{\kappa}{R} + \frac{R}{R}\right]$	$\implies -k^2(8-k^2) > 0$
	$= \frac{\alpha^2 + b^2}{\alpha^2} \times \frac{1}{1 + \alpha^2 + b^2} = \frac{-\frac{1}{\alpha} t^2 - 1}{\frac{1}{2}} \times \frac{1}{1 + \frac{1}{2} t^2 - 1}$	$\Rightarrow -(8-k^{\perp}) > 0$ ($k^{\perp} \neq 0$)
	2 4-	\implies $k^2 - \delta > 0$
	$= \frac{\frac{1}{4}k^{2}-1}{\frac{1}{2}} \times \frac{4}{k^{2}} = \frac{k^{2}-4}{\frac{1}{2}k^{2}} = \frac{2k^{2}-8}{k^{2}}$	$\Rightarrow k^2 > \delta$
		$\Rightarrow k > \sqrt{8} \underline{\circ R} k < -\sqrt{8}$
ſ,	$= \frac{1}{\left(1 + \frac{1}{2^{k}}t^{2-1}\right)^{2}} = -\frac{1}{\frac{1}{10}k^{4}} = -\frac{16}{k^{4}}$	
2	 4Forde THE Reforeed quadrattic Has Equation 	
	$\implies \mathfrak{A}^2 - (\mathfrak{A} + \mathfrak{b})\mathfrak{A} + (\mathfrak{A}\mathfrak{b}) = 0$	
	$\implies \chi^2 + \frac{\beta - \chi^2}{k^2} \chi + \frac{16}{k^4} = 0$	
	16.2	

 $|k| > \sqrt{8}$

Ĉ.

02

Question 17 (*****) The quadratic equation

 $4x^2 + Px + Q = 0,$

where P and Q are constants, has roots which differ by 2.

If another quadratic equation has repeated roots which are also the squares of the roots of the above given equation, find the value of P and the value of Q.

42	de.
LET THE ROOTS OF THE QUARRANTIC BE or of or+2.	BUT THIS SEPARTION NUMER HAVE BERRARD BOOK
$\begin{split} & \left\{ \alpha^{2} + \beta_{2} + \varphi_{2} = 0 & \text{if } \alpha^{+} \alpha^{+} 2 = -\frac{\beta}{4} \\ & \text{if } \alpha^{-} \alpha^{+} \alpha^{+} 2 = -\frac{\beta}{4} \\ & \text{if } \alpha^{-} \alpha^{+} \alpha^{+} \alpha^{-} \alpha^{+} \alpha^{-} \alpha^{+} \alpha^{+$	$\begin{split} b^{2} &- b_{\alpha L} = c & c \\ (4t - 8c)^{2} &- w_{b}(x + x_{b}(x + c^{2}) = c) \\ (4t + 8c)^{2} &- c + b_{c}(x + c^{2})^{2} - c + c^{2} \\ (8t + 8c)^{2} - c + c^{2} - c - c \\ (8t + 4c)(8t + c - c) = c \\ (8t + 2c + c - c) = c \\ \end{array}$
$ \Rightarrow (-\frac{p}{4}-2)^{2} + 4 (-\frac{p}{4}-2) = Q $ $ \Rightarrow \frac{p_{0}^{2}}{16} + p^{4} + -p^{-} - 8 = Q $ $ \Rightarrow Q = \frac{p^{2}}{16} - 4 $ $ \Rightarrow 6Q = p^{2} - 64 \text{or} P^{2}_{2} - 6Q + 64 $	2 <u>0 - 4</u> <u>NO UNC</u> P ² 61+160 mmt 04 ∴ <u>P=0</u>
MOD THE NEW QUARANTIC AND 20075 WHICH ARE SPONSES OF THE BOOLS OF THE GOMPTION	
- ひしょう ひゃ 11/35 GUARICAS - ひょうな ・ ひゃまん	
$\Rightarrow \begin{array}{l} (\underline{u}_{1} + P(\underline{u}\underline{u}_{1})) + Q = O \\ \Rightarrow (\underline{u}_{1} + Q = \pm P_{1}\underline{u}_{1}) \\ \Rightarrow (\underline{u}_{1}^{2} + 2Q_{1} + Q^{2} = P_{1}^{2}) \\ \Rightarrow (\underline{u}_{1}^{2} + 2Q_{1} + Q^{2} + Q^{2} + Q^{2} + Q^{2}) \\ \Rightarrow (\underline{u}_{1}^{2} + 2Q_{1} + Q^{2} + Q^{2}) \\ \Rightarrow (\underline{u}_{1}^{2} + Q^{2} + Q^{2}) \\ \Rightarrow (\underline{u}_{1}^{2} + Q^{2} + Q^{2}) \\ \end{array}$	

P=0, Q=-4

Question 18 (*****) The quadratic equation

 $x^2 - 4x - 2 = 0$,

has roots α and β in the usual notation, where $\alpha > \beta$.

It is further given that

 $f_n \equiv \alpha^n - \beta^n \, .$

Determine the value of

x2-42-2=0		-(- =	= ~ ⁴ -β ⁴	

202.51

, 4

164 01	d Ó	they sig	JUNIO	1 den	NUDAR	, NON	zawu,	we	tynne.
x2-	. U	2=0 							
2°-	400x - 40x9	_ 2x ⁸ =	0 a	SINICA	er4	в"-	489-	2.88=	-0
SUBTR	ACTING	THESE G	ZUNOTTAUS	suce.	BY SU	DE WE	o&r/h	4	
⇒ (~'	°- 6'°) - 4 (•	("_@")	-2(*	°- 6°) = 0			
⇒ f.	- 4	-f, -	2f8	= 0					
⇒ f	_b - 2	f _e =	4f9						
	ie - 1	<u>2-fe</u> =	4	/					
	79		/						

Question 19 (*****) The quadratic equation

I.G.B.

I.C.B.

 $ax^2 + bx + 1 = 0, \quad a \neq 0,$

where a and b are constants, has roots α and β .

Find, in terms of α and β , the roots of the equation

 $x^2 + (b^3 - 3ab)x + a^3 = 0.$

STALL WERY THE GNEN EQUATION x+&)n 1 = hna NOW LET A & B BE THE BOSTS OF THE EQUATION

NOW LET $A \oplus B$ be THE DOTS of THE EQUATION $\underline{x^2 + (b^2 - 3ab)x + a^3 = 0}$

THE SUM OF ITS ROOTS ARE

N.C.

$$\begin{split} \underline{A} + & \beta = -(b^2 - 2ab) = -b^3 + 2ab \\ & = -(-\frac{c_1 c_2}{c_1 b})^3 + 3(\frac{-b_2}{c_1 b})(-\frac{c_1 b_2}{c_1 b}) \\ & = \frac{(c_1 c_2)^3}{c_1 c_2} + 3(\frac{-b_2}{c_2 b})(-\frac{c_1 c_2}{c_2 b}) \\ & = \frac{c_1 c_2}{(c_1 b)^2} \left[\frac{(c_1 c_2)^2}{c_2 c_2} - 3 \right] \\ & = \frac{c_1 c_2}{c_2 c_2} \left[\frac{c_1^2 + 2ab + b^2}{c_2 c_2} - 3 \right] \\ & = \frac{c_1 c_2}{c_2 c_2} \left[\frac{c_1^2 + 2ab + b^2}{c_2 c_2} - 3 \right] \end{split}$$

$= \frac{\alpha + \ell}{\alpha^2 \beta^2} \times \frac{\alpha^2 - \alpha \beta + \beta^2}{\alpha \beta}$
$= \frac{(\kappa_1 \ell_1) (\kappa^2 - \kappa \ell_2 + \ell_1^2)}{\kappa^2 \ell_1^3} \ll \frac{1}{5} \frac{1}{1000} \frac{1}{1$
$= \frac{\langle \alpha_1 \alpha_2 \rangle \langle \alpha_1 - \alpha_2 + \delta^2 \rangle}{\alpha_1^2 \delta^3} \iff 0.00006666666666666666666666666666666$
$= \frac{1}{Q^2} + \frac{1}{\alpha'^3}$
34 ZIBOR ZTI TO TOUGHT SHIT YUMUIMI
$-AB = \frac{a^3}{1} = \left(\frac{1}{\alpha \theta}\right)^3 = \frac{1}{\alpha^4 \theta^3}$
Y INSPECTION 43
$A+B = \frac{1}{\alpha^{1}} + \frac{1}{8^{3}}$
$-AB = \frac{1}{\alpha^{\alpha}} \times \frac{1}{B^{3}}$
HE EXPLICED ROOTS WILL BE 1/3 & 1/2

I.C.B.

Mana.

 $\frac{1}{\alpha^3}$,

 $\frac{1}{\beta^3}$

1.4

T. T. C.B. MARIASHINGON L. T. C.B. MARIASHANISCON L. Y. MASINGUISCOM LANCER MARINESSINALISCOM LANCER MARINESSINALISSON

Question 1 (**)

 $x^3 - 6x^2 + 4x + 12 = 0.$

The three roots of the above cubic are denoted by α , β and γ .

Find the value of ...

20

- a) ... $\alpha + \beta + \gamma$.
- **b)** ... $\alpha^2 + \beta^2 + \gamma^2$.

1 c)

I.C.B. ma

I.G.p

Ø

I.G.B.

P.C.A

1 $\overline{\alpha + \beta + \gamma = 6}$, $\alpha^2 + \beta^2 + \gamma^2 = 28$ $\frac{1}{\gamma} = \frac{1}{3}$ α

$a^3 - 6a^2 + 4a + 12 = 0$

2017

madasn,

6

i.G.p.

- $\alpha + \beta + \gamma = -\frac{b}{a} = -\frac{-6}{1} = -6$ • $\alpha b + \beta \chi + \beta \chi = +\frac{5}{a} = \frac{4}{1} = 4$
- $\alpha b T = -\frac{d}{a} = -\frac{12}{1} = -12$

ち

- $\begin{aligned} a^{2}k &= \frac{1}{2} \left(\frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} + \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \cos \frac{1}{2} \frac{1}{2} \cos \frac$
- c) $\frac{1}{\alpha} + \frac{1}{8} + \frac{1}{3} = \frac{8\alpha + \alpha\beta + \alpha\beta}{\alpha\beta\gamma} = \frac{4}{-12} = -\frac{1}{3}$

I.C.B. Mada

(**) Question 2

2

Smaths,

Com

N.C.B. Madasm

00

I.C.B.

A cubic is given in terms of two constants p and q

 $2x^3 + 7x^2 + px + q = 0.$

The Com

q=2

≪(≅)(∞-I)

nadasmaths.com

I.V.C.B. Madasn

p = 7

 $\alpha = -1$

+6+8=-7 $\alpha b + b \gamma + \gamma \alpha = \frac{1}{2} p$ abr=-74

2017

I.C.B.

madasmaths,

2017

·C,

1.0

6

11202SI1121

The three roots of the above cubic are α , $\frac{1}{2}\alpha$ and $(\alpha-1)$.

nadasn.

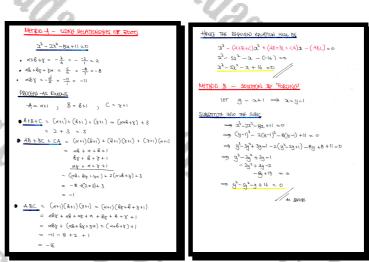
Com

Find the value of α , p and q.

adasmaths.

Question 3 (**+)

Ĉ.Ŗ.


i.G.B.

 $x^3 - 2x^2 - 8x + 11 = 0.$

The roots of the above cubic equation are α , β and γ .

Find a cubic equation, with integer coefficients, whose roots are

 α +1, β +1, γ +1.

 $x^3 - 5x^2 - x + 16 = 0$

nasn.

G.B.

Question 4 (**+)

The three roots of the cubic equation

 $x^3 + 3x - 3 = 0$

are denoted in the usual notation by α , β and γ .

Find the value of

 $(\alpha+1)(\beta+1)(\gamma+1).$

7

Question 5 (**+) The roots of the cubic equation

$x^3 - 6x^2 + 2x - 4 = 0$

are denoted by α , β and γ .

Show that the equation of the cubic whose roots are $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$ is given by

$$x^3 - 2x^2 + 24x - 16 = 0$$

proof

 $\begin{array}{c} \sqrt{2} = 6 \\ \sqrt{2} + 2 \\ \sqrt{2}$

Question 6 (**+)

The two roots of the quadratic equation

 $2x^2 - 5x + 8 = 0$,

are denoted by α and β .

Determine the cubic equation with integer coefficients whose three roots are

 $\alpha^2 \beta$, $\alpha \beta^2$ and $\alpha \beta$. $-14x^{2}+104x-256=0$ $\alpha b = \frac{c}{\alpha} = \frac{\theta}{2} = 4$ BE ABGC $\alpha_{\ell}^{2} + \alpha_{\ell}^{2} + \alpha_{\ell}^{2} = \alpha_{\ell}^{2} (\alpha + \ell + \iota) = 4(\frac{5}{2} + \iota) = 1$ $\begin{array}{l} \bullet \quad \mathsf{AB} + \mathsf{BC} + \mathsf{CA} = \left(a^2 \mathcal{C} \times a \mathcal{C}^2 \right) + \left(a \mathcal{C}^2 \times a \mathcal{C} \right) + \left(a \mathcal{C} \times a^2 \mathcal{C} \right) \\ = a^2 \mathcal{C}^2 + a^2 \mathcal{C}^3 + a^2 \mathcal{C}^3 + a^2 \mathcal{C} = a^2 \mathcal{C}^2 \left[a \mathcal{C} + \mathcal{C} + \alpha \right] \end{array}$ $= \left(\alpha' \beta' \right)^2 \left[\alpha' \beta + (\alpha' + \beta) \right] = 16 \left[4 + \frac{5}{2} \right] = 104$ $@ABC = aR \times ak^2 \times ak = a^4k^4 = (ak)^4 = 4^4 = (256)$ 23- (14)22+ (104)a $\chi^3 = 14\chi^2 + 104\chi - 25G =$ Created by T. Madas

Question 7 (**+)

 $x^3 + bx^2 + cx + d = 0,$

where b, c and d are real constants.

The three roots of the above cubic are denoted by α , β and γ .

a) Given that

EB Madasn

 $\alpha + \beta + \gamma = 4$ and $\alpha^2 + \beta^2 + \gamma^2 = 20$,

find the value of b and the value of c.

b) Given further that $\alpha = 3 + i$, determine the value of d.

	-0
6)	23+ ba2+ c2+ d=0
	$\begin{array}{cccc} \Phi(q+\xi)+\chi=q & (q+\xi)q^{2} & \pi^{2}+\xi^{2}+\chi^{2}+\chi(x\xi)+\xi_{1}+\chi x) \\ -\frac{b}{1}=4 & q^{2} & = \lambda_{0}+2(x\xi)+\xi_{1}+\chi x) \\ b=-q & (\xi=2x)+2 \\ & -\xi=2x \\ & -\xi=2 \end{array}$
6	$\begin{array}{cccc} \ell \xi &=& \xi \\ \ell \xi &=& 3-1 \\ && \xi &=& 3-2 \end{array}$
	BT $2=-2$ is 4 sources of $2^3 - 42^4 - 22 + 4d = 0$ $\sqrt[9]{8}$ -8 - 16 + 4 + 4d = 0 d = 20

1211S

F.G.B.

Maga

200

b = -4, c = -2, d = 20

1+

madasm.

Question 8 (**+)

 $x^3 + 2x^2 + 5x + k = 0.$

The three roots of the above cubic are denoted by α , β and γ , where k is a real constant.

- a) Find the value of $\alpha^2 + \beta^2 + \gamma^2$ and hence explain why this cubic has one real root and two non real roots.
- **b**) Given that x = -2 + 3i is a root of the cubic show that k = -26.

 $\alpha^2 + \beta^2 + \gamma^2 = -$

 $a^3 + 2b^2 + \leq x + k = 0$

• $nk + k_{K} + k_{K} = \frac{k}{2} - \frac{k}{2}$ • $nk + k_{K} + k_{K} = \frac{k}{2} - \frac{k}{2}$ • $(k^{-1})^{-1} - \frac{k}{2}k^{-1$

Question 9 (**+)

The roots of the quadratic equation

 $x^2 + 4x + 3 = 0$

are denoted, in the usual notation, as α and β

Find the cubic equation, with integer coefficients, whose roots are α , β and $\alpha\beta$.

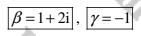
 $x^3 + x^2 - 9x - 9 = 0$

- $\forall + \theta = -\frac{1}{2} = -4$ $\forall \theta = \frac{1}{2} = 3$
- $\alpha' + b + \alpha b = -u + 3 = (1)$ • $\alpha' + b + \alpha b + b (\alpha b) = \alpha b (1 + \alpha + b) = 3 (1 - 4)$
- $\pi (\alpha \beta) = (\alpha \beta)^2 = 3^{-1} = 9$ $3^3 = (13^2) + (-93) = 0$
- $\mathcal{J}_{g} \mathcal{J}_{g} \mathcal{J}_{g} \mathcal{J}_{g} \mathcal{J}_{g} = 0$

Question 10 (***)

 $x^3 - x^2 + 3x + k = 0.$

The roots of the above cubic equation are denoted by α , β and γ , where k is a real constant.


a) Show that

 $\alpha^2 + \beta^2 + \gamma^2 = -5.$

b) Explain why the cubic equation cannot possibly have 3 real roots.

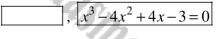
It is further given that $\alpha = 1 - 2i$.

- c) Find the value of β and the value of γ .
- **d**) Show that k = 5.

(0)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6)	AS REAL SQUARED QUARTITUS ARE NON WESTING, THERE IS A NON PLACE BUT
C)	$\begin{array}{c} y = -1 \\ y = -1 \\ y = 1 \\ y = 1 \\ y = 1 \\ y = 1 \\ y = -1 \\ y = 1 \\ y = -1 \\ y = 1 \\ y = -1 \\ y = 0 \\ y = 0 \\ y = -1 \\ y = 0 \\ y = 0 \\ y = -1 \\ y = 0 \\ y $

Question 11 (***) The roots of the quadratic equation

 $x^2 + 3x + 3 = 0$


are denoted by α and β .

R,

I.C.B.

Find the cubic equation, with integer coefficients, whose roots are

 $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ and $\alpha\beta$.

$f = 3^{2} + 31 + 3 = 0 \qquad \Longrightarrow \qquad \alpha + b = -\frac{b}{\alpha} = -\frac{3}{1} = -3$ $\longrightarrow \qquad \alpha b = -\frac{b}{\alpha} = -\frac{3}{1} = -3$

 $\frac{\mathbf{k}(\mathbf{x})}{\mathbf{k}} \underbrace{\mathbf{P}(\mathbf{u})}_{\mathbf{u}} \underbrace{\mathbf{H}}_{\mathbf{u}} \underbrace{\mathbf{O}_{\mathbf{x}}}_{\mathbf{x}} \mathbf{f}_{\mathbf{u}} \underbrace{\mathbf{N}}_{\mathbf{u}} \underbrace{\mathbf{O}_{\mathbf{u}}}_{\mathbf{u}} \underbrace{\mathbf{O}_{\mathbf{u}}} \underbrace{\mathbf{O}_{\mathbf{$

• $AB + BC + CA = \frac{\alpha}{16} \times \frac{\beta}{\alpha} + \frac{\beta}{\alpha} (\alpha \delta) + \alpha \delta \times \frac{\alpha}{\delta} = 1 + \delta^2 + \alpha^2$ = $(\alpha + \delta)^2 - 2\alpha\delta + 1 = (-3)^2 - 2\times 3 + 1 = (-)^2$

i G.B.

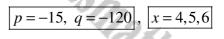
12

è

ARC. = xx & x al = orb = ?

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Question 12 (***)


The roots of the cubic equation

 $x^3 + px^2 + 74x + q = 0,$

where p and q are constants, form an arithmetic sequence with common difference 1.

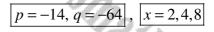
Given that all three roots are real and positive find in any order ...

- **a**) ... the value of p and the value of q.
- **b**) ... the roots of the equation.

(a) let x>6>8 5	⇒ (X-4)(X+6)=0
$\propto - \mathcal{L} = 1$ $\mathcal{L} = \gamma = 1$	V = < 4 K all postur
OR OR SHIPLEST ROOT IS Y	HAVE BOOK ARE 4,5,6
6 = 7+1 (9 ROM THE LAP FRONTION
• $\alpha' + \beta + \gamma = -P$ $\alpha\beta + \beta\gamma + \gamma\gamma = 74$	2+3=-p p=-1S
apl= -d	9 ROM 3rd AVATION
$\left(\begin{array}{c} \dot{\gamma}^{+2} + \gamma + 1 + \gamma = -p \end{array} \right)$	$-q = \mathcal{T}(\mathcal{X} \mapsto \mathcal{Y}(\mathcal{X}))$ $-q = 4 \times 5 \times 6$
(3+2)(3+1)+(3+1)3+3(3+2)=7+1 8 (3+1)(3+2)=-9 3	d = -120
HUCE ROW THE 260 QUATION → X2+3X+2 +X2+X +X2+2X=74	
=======================================	
= 32+28-24=0	

1+

Question 13 (***)


The roots of the cubic equation

 $x^3 + px^2 + 56x + q = 0,$

where p and q are constants, form a geometric sequence with common ratio 2.

Given that all three roots are real and positive find in any order ...

- **a**) ... the value of p and the value of q.
- **b**) ... the roots of the equation.

let roots be or, zor, 400	
$ \begin{array}{c} \ast \kappa^{2} + 2\kappa + 4\kappa^{2} = -p \\ \ast & 2\kappa^{2} + 8\kappa^{2} + 4\kappa^{2} = 56 \\ \ast & 8\kappa^{2} = -q \end{array} \begin{array}{c} \neg \alpha = -p \\ \rightarrow & 14\kappa^{2} = 56 \\ 8\kappa^{4} = -q \end{array} \begin{array}{c} \neg 4\kappa = 2 \\ \kappa^{2} = 2 \\ \kappa^{2} = 0 \end{array} $	
1. ROOTS ARE 2,4,8	ł
$\begin{array}{cccc} a & p = -7\alpha \\ q = -8x^3 \end{array} \xrightarrow{\qquad p = -14} & q = -64 \end{array}$	ł

200

Question 14 (***)

The roots of the cubic equation

 $ax^3 + bx^2 + cx + d = 0,$

where a, b, c and d are non zero constants, are the first three terms of a geometric sequence with common ratio 2.

Show clearly that

C.B.

4bc = 49ad.

12

LET THE POOLS BE 91 24, 44	h
• x + 2x + 4x = - b 7 7x = - b 7	
• $2a^2 + 8a^2 + 4a^2 = \frac{c}{a}$ (\rightarrow) $14a^2 = \frac{c}{a}$ (\rightarrow) $14a^2 = \frac{c}{a}$	
• $8\alpha^{3} - \frac{d}{q}$ $8\alpha^{3} = \frac{d}{q}$ $8\alpha^{3} = -\frac{d}{q}$	
$1 - \frac{98 \pi^2}{6 \pi^2} = \frac{-\frac{b_c}{\alpha^2}}{-\frac{d}{\alpha}}$	
$\frac{4}{4} = \frac{abc}{a^{2}b}$	
49. = bc : 49ad = 4bc the Exputero	

Question 15 (***)

Ĝ.

i C.B.

$$f(z) = z^{3} - (5+i)z^{2} + (9+4i)z + k(1+i), \ z \in \mathbb{C}, \ k \in \mathbb{R}$$

2017

madasn,

 $\gamma = 2 - i$

20

F.G.B.

Mada

27

 $\beta = 2 + i$

The roots of the equation f(z) = 0 are denoted by α , β and γ .

- **a**) Given that $\alpha = 1 + i$ show that ...
 - **i.** ... k = -5.
 - ii. ... $\beta + \gamma = 4$.

b) Hence find the value of β and the value of γ .

	1/ W
$ \begin{array}{l} (\mathbf{\hat{n}}) & (\mathbf{\hat{r}}) \\ \mathbf{\hat{r}}^{2} & \mathbf{\hat{r}}^{-1} (\mathbf{\hat{r}}+\mathbf{\hat{r}}) \mathbf{\hat{r}}^{2} + \mathbf{\hat{\theta}} + \mathbf{\hat{u}}(\mathbf{\hat{r}}) \mathbf{\hat{r}} + \mathbf{\hat{r}}(\mathbf{\hat{r}}+\mathbf{\hat{r}}) = 0 \\ & \mathbf{\hat{r}} & \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = 0 \\ & \mathbf{\hat{r}} + \mathbf{\hat{r}} \\ & (\mathbf{\hat{r}}+\mathbf{\hat{r}})^{2} - (\mathbf{\hat{r}}+\mathbf{\hat{r}}) + (\mathbf{\hat{r}}+\mathbf{\hat{r}}) + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = 0 \\ & (\mathbf{\hat{r}}+\mathbf{\hat{r}}) - (\mathbf{\hat{r}}+\mathbf{\hat{r}}) + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = 0 \\ & \mathbf{\hat{r}} + \mathbf{\hat{r}} - \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = 0 \\ & \mathbf{\hat{r}} = \mathbf{\hat{r}} \\ & $	$(\mathbf{J}_{1}) = \mathbf{J}_{2} + \mathbf{J}_{2} + \mathbf{J}_{2} = \mathbf{J}_{2$
(1) $q_{+}^{+}\theta_{+}^{+}\chi_{=}^{-}-\frac{q_{+}^{+}(z_{+}^{+})}{1}=z_{+}^{+}i$ $\chi_{+}^{+}b_{+}^{+}\chi_{=}^{-}z_{+}^{+}i$ $\chi_{+}^{+}\psi_{+}^{+}z_{+}^{+}\chi_{+}^{-}z_{+}^{+}v_{+}v_{+}v_{+}v_{+}v_{+}v_{+}v_{+}v_$	0

Question 16 (***)

 $z^3 + pz + q = 0, z \in \mathbb{C}, p \in \mathbb{R}, q \in \mathbb{R}.$

The roots of the above equation are denoted by α , β and γ .

a) Show clearly that

 $\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma.$

It is further given that $\alpha = 1 + 2i$.

b) Determine the value of p and the value of q.

(a) $\{z^3 + p^2 + q^2 = 0\}$	NOW $\alpha_{+}^{3} + p\alpha + q = 0$ $\alpha_{+}^{3} + p\beta + q = 0$
 def def def def def def def def def def	$\frac{\chi_{\gamma}^{2} + b\chi + d}{\left(\chi_{\gamma}^{2} + \theta_{\gamma}^{2} + \chi_{\gamma}^{2}\right) + b\left(\chi_{\gamma}\theta + \chi_{\gamma}^{2}\right) + 3d = 0}$
	$\alpha^{3} + \beta^{3} + \beta^{3} = 3\alpha\beta\gamma$
(b) IF Pa d-the RHAL S	H ZLANIAGO H ZLANIAGO H ZLANIAGO H ZLANIAGO
x=1+21 B=1-21 y=RAL	$ = \left[\left(2 - (-2i) \right] \left[2 - (1 + 2i) \right] \left[2 + 2i \right] = 0 $ $ = \left[\left(2 - i \right) - 2i \right] \left[\left(2 - i \right) + 2i \right] \left[2 + 2i \right] = 0 $
4+6+8=0 2+8=0	$\Rightarrow \begin{bmatrix} 2+2 \\ 2 \end{bmatrix} \begin{bmatrix} (2-1)^2 & (21)^2 \end{bmatrix} = 0$ $\Rightarrow \begin{bmatrix} 2+2 \\ 2^2-22+1+4 \end{bmatrix} = 0$ $\Rightarrow \begin{bmatrix} 2+2 \\ 2^2-22+5 \end{bmatrix}$
9.=-5	⇒ 2 ³ -22 ² +52 2 ² -42+10 = 0
	H p=1, d=10

p = 1, q = 10

è

Question 17 (***+) The three solutions of the cubic equation

 $x^3 - 2x^2 + 3x + 1 = 0 \quad x \in \mathbb{R}$,

are denoted by α , β and γ .

I.C.B.

Find a cubic equation with integer coefficients whose solutions are

 $2\alpha - 1$, $2\beta - 1$ and $2\gamma - 1$.

1 * <i>2</i>	
$x^3 - x^2 + 7x + 17 =$	0
Sp	
$x^3 - 2x^2 + 3x + 1 = 0$	
LET THE SOUTION OF THE WHAT OUSK BY \times $X = 2\alpha - i \iff x = \frac{2\alpha + 1}{2}$	
$\left(\frac{\times+1}{2}\right)^3 - 2\left(\frac{\times+1}{2}\right)^2 + 3\left(\frac{\times+1}{2}\right) + 1 = 0$	
$\frac{1}{8}(X_{+}^{3}3X^{2}+3X+1)-\frac{1}{2}(X_{+}^{3}2X+1)+\frac{3}{2}(X+1)+1 = 0$	
$(X^3+3X^2+3X+1) - 4(X^2+2X+1) + 12(X+1) + 8 = 0$	
$X^{3}+3X^{2}+3X+l-4X^{2}-8X-l+12X+l2+8=0$	5
: X ³ -X ² +7X+17=0	2
ACTRANT	1
UT THE POULS BE A, B, C (N+6+Y=2)	1
A+B+C=(2n-1)+(2n-1)+(2n-1) = $2(\alpha_1L_{2N})-3=1$	
• $A = B_{C,1} \subset A = (2n-1)(2k-1) + (2n-1)(2j-1) + (2k-1)(2j-1)$ = $4 = 4nk - 2n - 2k + 1 + (4nj - 2nj + 4kj) + 2k + 2nj + 2k + 2nj + 2k + 2nj + 2nj + 2k + 2nj $	
= 4x3-4x2+3 =7	
• $ABC = (2\alpha - 1)(2\beta - 1)(2\gamma - 1) = (2\alpha - 1)(4\alpha\gamma - 2\beta - 2\gamma + 1)$ = $8\alpha\beta\gamma - 4\alpha\beta - 4\alpha\gamma + 2\alpha - 4\beta\gamma + 2\beta + 2\beta - 1$	
= 806y-4(ab+0y+by)+2(arb+3)-1	
$= 8(-1) - 4 \times 3 + 2 \times 2 - 1 = -17$	

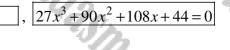
F.G.B.

è

Question 18 (***+)

F.G.B.

I.F.G.B.


The roots of the cubic equation

 $16x^3 - 8x^2 + 4x - 1 = 0 \quad x \in \mathbb{R},$

are denoted in the usual notation by α , β and γ .

Find a cubic equation, with integer coefficients, whose roots are

 $\frac{4}{3}(\alpha-1), \frac{4}{3}(\beta-1) \text{ and } \frac{4}{3}(\gamma-1).$

USING A SUBSTITUTION + HER
$y = \frac{1}{2}(\alpha - 1)$
3y = 4x - 4
4x = 3y+4
WANNAULATE THE COBIC FOR SIMPLICITY
$\Rightarrow \ G_x^3 - 8x^2 + \ \chi - 1 = 0 \} \times 4$
=> 6423 - 3222 + 162 - 4 = 0 K
$\implies (4x)^{2} - 2(4x)^{2} + 4(4x) - 4 = 0$
$\implies (3_{4}+4_{1})^{3}-2(3_{4}+4_{1})^{2}+4(3_{4}+4_{1})-4=0$
Now
$(A+B)^{3} = A^{3} + 3A^{2}B + 3AB^{2} + B^{3}$
$(3y+4)^2 = 27y^3 + 3(3y)^2x4 + 3(3y)x4 + 64$
= 2[y3 + 105 y2 + 1444 +64
$\Rightarrow \Im (y^3 + 108g^2 + 144y + 64 - 2(9y^2 + 24y + 16) + 12y + 16 - 4$
= 27y3 + 108y2+144y +64 7

⇒ 2743 + 9042 + 1084 + 44 = 0

m

I.C.B.

Question 19 (***+) The roots of the equation

F.G.B.

I.C.P.

 $x^3 - 2x^2 + 3x - 4 = 0,$

are denoted in the usual notation by α , β and γ .

Find a cubic equation with integers coefficients whose roots are α^2 , β^2 and γ^2 .

$\mathfrak{A}^3-\mathfrak{Sp}^2+\mathfrak{Z}_{\mathbf{A}}=4\approx0$	(a+B+7=2~3
MATTER A	(46+69+94=3) (468=4
• $q^2 + b^2 + q^2 = (q+b+)$ = $2^2 - 2^2$	$\left(\frac{1}{2}\right)^2 - 2\left(ab + b_{T} + b_{T}\right)$
= 4-6 = 2	~^3
• $\alpha^2 \beta^2 \eta^2 = (\alpha \beta \eta)^2$	4 ² 416
34 =	$= \frac{2}{\sqrt{6}} \left\{ \frac{1}{6} + \frac{1}{6} \frac{1}{6} + \frac{1}{6} \frac{1}{6} + $
g ² l ² + b ² y ² + g ² y ² Hance THE REPUBD CUB	
The off colores and	x3+2x2-7x-16=0

FGB.

n

F.G.B.

 $x^{3} + 2x^{2} - 7x - 16 = 0$

COM

1+

nadasm

Inadasn

Question 20 (***+) The roots of the equation

 $x^3 - 2x^2 + 3x + 3 = 0$

are denoted by α , β and γ .

Find the cubic equation with integer coefficients whose roots are

Question 21 (***+) The roots of the equation

 $x^3 + 2kx^2 - 27 = 0,$

are α , β and $\alpha + \beta$, where k is a real constant.

- **a**) Find, in terms of k, the value of ...
 - i. ... $\alpha + \beta$
 - ii. ... *αβ*

F.C.B.

b) Use these results to show that k = 3.

 $\alpha + \beta = -k,$ $\alpha\beta =$

121/2.Sn

6

(x3+3k2-27=0 x, b,	x+B {
(a) $\alpha' + b + (\alpha + b) = -\frac{2k}{1}$ (b) a + 2b = -2k $\alpha' + b = -k$	$\begin{array}{c} x \times \ell \times (\alpha + \ell) = -\frac{-27}{1} \\ \alpha \ell (\alpha + \ell) = 27 \\ \alpha \ell (-k) = 27 \\ \alpha \ell = -\frac{27}{4} \end{array}$
$ \begin{array}{c} \displaystyle \underbrace{ \bigcirc}_{k} \left\{ \begin{array}{l} \left\{ x_{k} \left\{ z \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + \left\{ x_{k} \left\{ x_{k} \right\} + $	//

F.G.B.

ng

Question 22 (***+) The roots of the equation

$$x^3 + 2x^2 + 3x - 4 = 0$$

are denoted by α , β and γ .

a) Show that that for all w, y and z

$$w^{2} + y^{2} + z^{2} \equiv (w + y + z)^{2} - 2(wy + yz + zw).$$

Another cubic equation has roots A, B and C where

$$A = \frac{\beta \gamma}{\alpha}, B = \frac{\gamma \alpha}{\beta} \text{ and } C = \frac{\alpha \beta}{\gamma}$$

Ph

b) Show clearly that

$$A+B+C=\frac{25}{4}.$$

c) Show that the equation of the cubic whose roots are A, B and C is

$$4x^3 - 25x^2 - 8x - 16 = 0.$$

(w+y+z) = (w+y+2)(w+y+2)= $\frac{w^{2}+w_{2}+w_{2}}{w_{3}}+\frac{w_{2}}{+w_{2}}+\frac{y^{2}+y_{2}}{+y_{2}}+\frac{w_{3}}{+y_{2}}+\frac{w_{3}}{+y_{3}}+\frac{w_$ $(w + y + z)^{2} = w^{2} + y^{2} + z^{2} + 2(w)$ $w^{2} + y^{2} + z^{2} = (w + y + z)^{2} - 2(y)$ $\frac{\partial \chi}{\partial t} + \frac{\partial \chi}{\partial t} + \frac{\partial \xi}{\partial t} = \frac{\partial^2 \chi^2_+ \partial^2 \chi^2_+ \partial^2 \chi}{\partial t \partial t}$ $\frac{\partial^2 \chi}{\partial t} + \frac{\partial^2 \chi}{\partial t} + \frac{\partial^2 \chi}{\partial t} = \dots \quad \text{winc}(\mathbf{a})$ 6) $= \frac{(\alpha b + b \chi + \chi \star)^2 - 2(\alpha b^2 \chi + \alpha b \chi^2 + \alpha^2 b \chi)}{\alpha b \chi}$ $= \frac{(n^2 + b_1 + y_1)^n - 2\alpha b_1(n+b+\gamma)}{\alpha b_1}$ $= \frac{3^2 - 2 \times 4 \times (-2)}{4} = \frac{9 + 16}{4} \left(\frac{25}{4}\right)$ (c) •AB+BC+ CA = $\frac{b_{11}}{a} \times \frac{b_{11}}{b} + \frac{b_{11}}{a} \times \frac{b_{12}}{a} + \frac{a_{12}}{a} \times \frac{b_{12}}{a} = \frac{a_{12}}{a} \frac{b_{12}}{a} + \frac{a_{12}}{a_{12}} + \frac{a_{12}}{a_{12}} + \frac{a_{12}}{a_{12}}$ ${}^{2}+{}^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha\beta+\beta\gamma+\gamma\kappa)$ $(-1)^2 - 2 \times 3 =$ •ABC = $\frac{b_{\overline{\alpha}}}{\alpha} \times \frac{5d}{b} \times \frac{\alpha b}{\overline{\beta}} = \frac{\alpha^2 b_{\overline{\alpha}} \gamma^2}{\alpha b_{\overline{\alpha}}^2} = \alpha b_{\overline{\beta}} = 4$ $3^{3} - (\frac{3}{4}3^{2}) + (-2x) - (4) = 0$

proof

Question 23 (***+) The cubic equation

 $2z^3 + kz^2 + 1 = 0$, $z \in \mathbb{C}$,

where k is a non zero constant, is given.

- a) If the above cubic has two identical roots, determine the value of k.
- **b**) If **instead** one of the roots is 1+i, find the value of k in this case.

	· · · · · · · · · · · · · · · · · · ·
$2z^{3} + kz^{2} + 1 = 0, z \in C$ $\frac{2z^{3} + kz^{2} + 1}{kz^{2} + 1} = 0, z \in C$ $\frac{2z^{3} + kz^{2} + 1}{kz^{2} + 1} = 0, z \in C$ $\frac{2z^{3} + kz^{2} + 1}{kz^{2} + 1} = 0, z \in C$ $\frac{2z^{3} + kz^{2} + 1}{kz^{2} + 1} = 0, z \in C$ $\frac{2z^{4} + 1}{kz^{2} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{2z^{4} + 1}{kz^{4} + 1} = -\frac{1}{k}, (z = 1)$ $\frac{1}{kz^{4} + 1} = -\frac{1}{kz^{4} + 1}$ $\frac{1}{kz^{4}$	b) CASE while only of the PLOTA IL 1+1 $\Rightarrow Z = 1+1$ $\Rightarrow Z^{2} = (1+1)^{2} = (1+2)^{2} = ($
- a k ll an ll 1 2 + k 3	

 $k = -\frac{1}{2}(4+3i)$

|k = -3|,

Question 24 (***+)

A cubic equation is given below as

 $ax^3 + bx^2 + cx + d = 0,$

where a, b, c and d are non zero constants.

Given that the product of two of the three roots of above cubic equation is 1, show that

 $a^2 - d^2 = ac - bd$

100.	19
10/20	, proof
<u>1F 022+p55+c5+q≈0</u>	$I = \frac{b}{2a} = -\frac{b}{2a} = -I$ $I = \frac{b}{2a} + b + b + b = -\frac{b}{2a} + b + b + b = -\frac{b}{2a}$ $II = -\frac{b}{2a} = $
200 τωσ 2007 τω <u>9</u> 201 τωσ 2007 τω <u>9</u> 201 - 2 2 - 2 2 - 2	of Gruteality of a luurtay to 1
Substitute wild II 4 I $a + b = \frac{a}{a} = -\frac{b}{a}$	• $1 + (\frac{-1}{\alpha})(\alpha + \theta) = \frac{c}{\alpha}$ $1 + \gamma(\alpha + \theta) = \frac{c}{\alpha}$
$\frac{\log_{10}\log_{10}\log_{10}}{1-\frac{d}{a}\left(\frac{d-b}{b}\right)}=\frac{c}{a}$	
$1 - \frac{d(d-b)}{a^{k}} = \frac{c}{a}$ $a^{2} - d(d-b) = ca$ $a^{2} - d^{2} + bd = ac$ $a^{n} - d^{2} = ac - bd$	
4 - 8 8 4C - 60	44 EEQUIRAD

Question 25 (***+)

If the cubic equation $x^3 - Ax + B = 0$, has two equal roots, show that

 $4A^3 = 27B^2.$

proor	ø
	1

1+

Let roots be arain b (at + 2005 be arain b (at + 2006 = -A) (at = -A) (at = -A) (at = -A)	$ \begin{array}{c} \label{eq:constraint} \left\{ \begin{array}{c} \left\{ A, X, E \right\} \\ & \left\{ B, -2\alpha \right\} \\ & \left\{ S, B, B, B, T \right\} \\ & \left\{ S, B, M, T \right\} \\ & \left\{ A, M, T \right\} \\ & \left\{$	$\begin{array}{c} 3^{24} + 2^{27$
--	---	--

Question 26 (****)

 $bx^3 + bx^2 + cx + d = 0,$

where a, b and c are non zero constants.

nadasmaths

00

I.C.B.

If the three roots of the above cubic equation are in geometric progression show that

nadasm.

.com

 $b^3 = ca^3.$

Not o	
$ \left\{ \begin{array}{l} (q+b+\gamma=-\alpha) \\ a(b+b\gamma+\gamma=-\alpha) \\ a(b+b\gamma+\gamma=-b) \\ a(b+b\gamma+\gamma=-b) \end{array} \right. if in Generative Received in the second secon$	
$ \begin{array}{l} \displaystyle $	$\begin{array}{c} \textbf{Durbe TiyEs: Two} \\ \Rightarrow \frac{a}{\alpha t^{n}} = -\frac{a}{b} \\ \Rightarrow \frac{a}{\alpha t^{n}} = -\frac{b}{b} \\ \Rightarrow \alpha t^{n} = -\frac{b}{b} \\ \Rightarrow \alpha t^{n} = -\frac{b}{a} \\ \Rightarrow \alpha t^{n} = -\frac{b}{a} \\ \Rightarrow -c = -\frac{b}{a} \\ $

K.C.B. Madasmarks.Com

The Com

proof

Co)

11-10

Madasma

I.C.B. Madast

Created by T. Madas

madasmarns,

2011

Question 27 (****)

The three roots of the equation

 $x^3 + 2x^2 + 10x + k = 0,$

where k is a non zero constant, are in geometric progression.

Determine the value of k.

i C.B.

I.G.B.

 $\begin{array}{c} \underline{\textbf{SMC}} & \underline{\textbf{MC}} \\ \hline \textbf{The contrast here realizes the realized the real here } \\ \hline \underline{\textbf{The contrast of A conc}} \\ \hline \underline{\textbf{T}_{a}^{2} + 2\textbf{T}_{a}^{2} + 10\textbf{T}_{a} + \textbf{k} = \textbf{O} \\ \hline \textbf{T}_{a}^{2} + 2\textbf{T}_{a}^{2} + 10\textbf{T}_{a} + \textbf{k} = \textbf{O} \\ \hline \end{array}$

expl = -kexpl = -k

i G.B.

M2(12)

k =125

● 45 THE 200TL ARE IN GROWETRIC PROGRESSION

 $\begin{array}{rcl} \alpha (\kappa r) \left(\alpha r^{2} \right) &= \alpha (\kappa r) \left(\alpha r^{2} \right) \\ \alpha (\kappa r) \left(\alpha r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r) \left(\kappa r^{2} \right) &= \alpha (\kappa r) \left(\kappa r^{2} \right) \\ \alpha (\kappa r)$

 $\begin{array}{c|c} \hline \textbf{Invalue} & \textbf{inva$

A (Let + 1²) -2
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $k = -(\alpha r)^2 = -(-5)^2 = 125$

(****) **Question 28**

2025M2

Y.C.B. Madası

COM

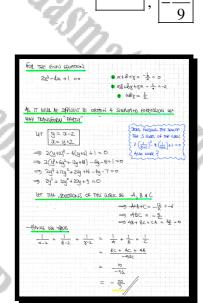
I.C.B

2

Smaths,

 $2x^3 - 4x + 1 = 0$.

 $\beta - 2$


γ-

ths.com The cubic equation shown above has three roots, denoted by α , β and γ .

 $\alpha - 2$

11202

Determine, as an exact simplified fraction, the value of

m

20

aths com

The,

2

Question 29 (****)

A cubic equation is given below as

 $ax^3 + bx^2 + cx + d = 0,$

where a, b, c and d are non zero constants.

Given that two of the three roots of above cubic equation are reciprocals of one another show that

 $a^2 - d^2 = ac - bd \; .$

proof

$a^3 + bx^2 + cx + d = 0$

 $\begin{array}{c} \left(\begin{array}{c} \left(x + \frac{1}{x} \right) + \theta \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{x} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{x} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) \\ \left(x + \frac{1}{2} \right) &= \frac{1}{2} \\ \end{array} \\ \left(\begin{array}{c} \left(x + \frac{1}{2} \right) \right) \\ \left(x + \frac{1}{2} \right) \\ \left$

 $\begin{array}{c} \textcircled{0} \quad \begin{pmatrix} \mathbf{a}' + \frac{1}{\mathbf{a}'} \\ \mathbf{a}' - \frac{1}{\mathbf{a}} \\ \mathbf{a}' + \frac{1}{\mathbf{a}'} \\ \mathbf{a}' +$

 $= \frac{d^2}{q^2} - \frac{bd}{q^2} = 1 - \frac{c}{q}$

 $\Rightarrow d^2 - bd = a^2 - ac$ $\Rightarrow d^2 - a^2 = bd - ac$

=) q²-d² = ac-bd As Exprised

Question 30 (****)

 $x^3 - 2x^2 + kx + 10 = 0, \ k \neq 0$

The roots of the above cubic equation are α , β and γ .

a) Show clearly that

 $\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+k\left(\alpha+\beta+\gamma\right)+30=0.$

It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$

.C.B.

I.C.B.

b) Show further that k = -3.

 $\begin{array}{l} \left(\frac{1}{2} + \frac{1}{2$

2017

nn,

proof

20

ŀ.G.p.

è

Question 31 (****)

The three roots of the equation

$$z^3 + pz^2 + qz + r = 0,$$

where p, q and r are constants, are denoted by α , β and γ .

a) Given that

 $\alpha\beta + \beta\gamma + \gamma\alpha = -2 + 3i$ and $\alpha^2 + \beta^2 + \gamma^2 = 4 - 6i$,

determine the value of p and the value of q.

- **b**) Given further that $\alpha = 1 + i$, show that ...
 - **i.** ... r = 7 3i
 - ii. ... β and γ are solutions of the equation

$z^2 - (1+i)z = 2+5$	ji	
----------------------	----	--

(a)	$(\alpha_{1}\beta_{1}+\beta_{1})^{2} = 4-6i + 2(-2+3i)$ $(\alpha_{1}\beta_{1}+\beta_{1})^{2} = 4-6i + 2(-2+3i)$ $(\alpha_{1}\beta_{1}+\beta_{2})^{2} = 4-6i - 4+6i$	
	$(\alpha+\beta+\beta)^2 = \alpha+\beta+\beta=0$ $\therefore P=0$ q=-2+3i	
(6)) Firstly $(1+i)^3 = (1+i)(1+i)^2 = (1+i)(1+2i-1) = -2+2i$	
	$\begin{array}{c} TH(x \ \mathcal{C}^{2}+(\mathcal{L}^{2}S_{1})_{\mathcal{L}}+\Gamma=0\\ (1+1)^{k}+(\mathcal{L}^{2}S_{1})(1+1)+\Gamma=0\\ -\mathcal{L}^{k}\mathcal{G}^{k}(\mathcal{L}-\mathcal{L}^{k})(1+3)+\Gamma=0\\ -\mathcal{L}^{k}\mathcal{G}^{k}(\mathcal{L}-\mathcal{L}^{k})(1+3)+\Gamma=0\\ -\mathcal{L}^{k}\mathcal{G}^{k}(\mathcal{L}-\mathcal{L}^{k})(1+3)+\Gamma=0\\ \Gamma=7-31\\ \mathcal{L}^{k}\mathcal{G}^{$	
(1	$ \begin{array}{cccc} & \langle + & k + \chi \rangle = 0 & , & \langle n^2 + & k^2 + \chi^2 = & 4 - 6 \ \\ \hline & (+1)^2 + & k^2 + \chi^2 = & 4 - 6 \ \\ \hline & (+1)^2 + & k^2 + \chi^2 = & 4 - 6 \ \\ \hline & (k+\chi)^2 + & k^2 + \chi^2 + & 4 - 6 \ \\ \hline & (k+\chi)^2 + & k^2 + \chi^2 + & 4 - 6 \ \\ \hline & (k+\chi)^2 + & k^2 + \chi^2 + & 4 - 6 \ \\ \hline & (k+\chi)^2 + & k^2 + \chi^2 + & 4 - 6 \ \\ \hline & (k+\chi)^2 + & k^2 + & k^2 + & k^2 + & k^2 + \\ \hline & (k+\chi)^2 + & k^2 + \\ \hline & (k+\chi)^2 + & k^2 + & k$	
	Now $(\xi + \xi)^2 = \xi^2 + 2\xi_{\xi} + \xi^2$ $(-1-1)^4 = 2\xi_{\xi} + 4 - \xi_1^2$ $1+2i - j = 2\xi_{\xi} + 4 - \xi_1^2$ $2i = -2\xi_{\xi} + 4 - \xi_1^2$	

p = 0

q = -2 + 3i

	$i = b\chi + 2 - 4i$	
1	68 = -2-5i	
L		
7-	$(-i-i) \leq + (-5-2i) = 0$	
Z -	$(1+i)_{2} = 2+5i$	

 $g_{z} = (1+1)g_{z} = 5+21$ $g_{z} = (-1-1)g_{z} + (-5-21)g_{z} = 0$

Question 32 (****)

 $z^3 + 2z^2 + k = 0,$

The roots of the above cubic equation, where k is a non zero constant, are denoted by α , β and γ .

- **a**) Show that ...
 - **i.** ... $\alpha^2 + \beta^2 + \gamma^2 = 4$.
 - ii. ... $\alpha^3 + \beta^3 + \gamma^3 = -8 3k$.

It is further given that $\alpha^4 + \beta^4 + \gamma^4 = 4$.

- **b**) Show further that k = -1.
- c) Determine the value of

R,

Y.C.B.

 $\alpha^5 + \beta^5 + \gamma^5 \, .$

a) LOOKING AT THE CURU **T**) $((x+b+z)^{2} = a^{2}+b^{2}+z^{2}+($ $\frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{1}{3} \frac{1}$

	and the second sec	
⇒ 8-16-6K-3K=0		
	_	
	The Aquileo	
bsinic title APPROACH of PART (b)		
A . K . 2		

 $\alpha^{2} +$

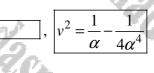
21/201

= -4

 $g_{\chi}^{2} + 5g_{\chi}^{2} + g_{\chi}^{2} + g_{\chi}^{2} + g_{\chi}^{2} + g_{\chi}^{2} = 0$

$$\begin{split} &\chi_{\chi} + \varrho_{\chi} + \chi_{\chi} + 5\chi_{\chi} + 5\chi_{\chi} + 5\chi_{\chi} + 6\chi_{\chi} + (-1)\chi_{\chi} + \zeta_{\chi} + (-1)\chi_{\chi} + \zeta_{\chi} - 0 \end{split}$$

~ x5+8+82 c-4


Question 33 (****)

The cubic equation shown below has a real root α .

$$x^3 + kx^2 - 1 = 0$$
,

where k is a real constant.

Given that one of the complex roots of the equation is u + iv, determine the value of v^2 in terms of α .

Places to cased
$a^3 + ba^2 - 1 = 0$, $k \in \mathbb{R}$
IF or is a southan (erral or stiffewile)
$\rightarrow \alpha^{3} + l_{x}^{2} - l = 0$
\Rightarrow k x^{2} 1 - x^{2}
$\Leftrightarrow k = \frac{1-\alpha^3}{\alpha^2}$
\rightarrow $\flat \sim \frac{1}{\sqrt{2}} - \kappa$
NOW FLOW THE REOT - CONFACINST RECATIONESTICS
⇒ x+6+8=- <u>E</u>
$\Rightarrow \alpha + (u+iv) + (u-iv) = -(\frac{1}{2}e^{-\alpha})$
At ODEFFICIENTS ARE REAL THE FIRE
$\Rightarrow \alpha + 2u = \alpha - \frac{1}{\pi 2}$
$= -\frac{1}{8^2}$
q^2 $\rightarrow (u_{-1} - \frac{1}{2q^2})$
ter test est est est est est est est est es
FINALLY FROM ANOTHER RELATIONSTIC
$\propto \beta \lambda = -\frac{1}{-1} = 1$
$\alpha'(u+iv)(u-iv) = 1$
$\alpha'(u^2 + v^2) = 1$
$ \propto \left[\frac{1}{4\alpha^{2}} + V^{2} \right] \approx 1 $ $ V^{2} + \frac{1}{4\alpha^{2}} \approx \frac{1}{2\alpha} \qquad \qquad$
$V^2 + \frac{1}{4\alpha t} = \frac{1}{\alpha}$ $\therefore V^2 = \frac{1}{\alpha c} - \frac{1}{4\alpha t}$

Question 34 (****)

 $x^3 + 2x + 5 = 0$.

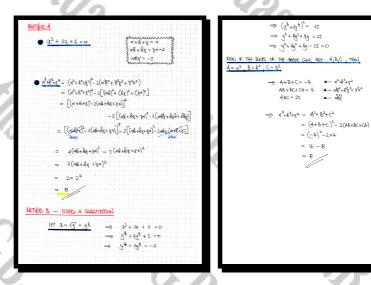
nn

, 8

F.C.B.

1720251

1+


The cubic equation shown above has three roots, denoted by α , β and γ .

Determine the value of

,C.B.

I.C.B.

 $\alpha^4+\beta^4+\gamma^4.$

Question 35 (****) The three roots of the cubic equation

 $x^3 + 2x - 1 = 0$,

 $\gamma^{\overline{4}}$

are denoted by α , β and γ .

ŀ.C.B.

I.G.B.

Determine the exact value of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\beta^4}$

ŀ.G.p.

24

Created by T. Madas

1.01

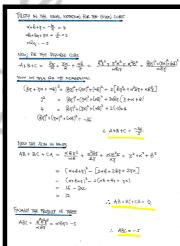
Question 36 (****+)

The roots of the cubic equation

 $x^3 - 4x^2 + 2x - 5 = 0$

are denoted in the usual notation by α , β and γ .

Show that the cubic equation whose roots are


 $\frac{\beta\gamma}{\alpha}, \frac{\gamma\alpha}{\beta}$ and $\frac{\alpha\beta}{\gamma}$,

is given by

C.B.

I.C.P.

 $5x^3 + 36x^2 + 60x - 25 = 0$

KGE 774€ RESPURCES CURLL IS $\mathcal{X}^{3} - (A+B+C)\mathcal{X}^{2} + (AB+BC+CA)\mathcal{Q} - (ABC) = 0$ $3_3^2 + \frac{37}{34}2_5^2 + 157 - 2 = 0$ $3_3^2 - \left(-\frac{3}{2}x_3\right) + 157 - 2 = 0$ $53^3 + 363^2 + 603 - 25 = 0$

i.G.B.

madasn.

, proof

F.G.B.

12/12

Question 37 (****+)

 $z^{3} - (4+2i)z^{2} + (4+5i)z - (1+3i) = 0, z \in \mathbb{C}$.

Given that one of the solutions of the above cubic equation is z = 2 + i, find the other two solutions.

nana,

$\left(\frac{2^{3}-(4+2i)}{2^{2}}+(4+5i)\frac{2}{2^{2}}-(1+3i)=0\right)$
@ x = 2+i
$\alpha + \beta + \gamma = -\frac{b}{a}$ $\alpha \beta \gamma = -\frac{d}{a}$
(2+i)+6+8= 4+2i (2+i)88= 1+3i
$6+3=2+i$ $6\gamma=\frac{1+3i}{2\pi i}$
$g_{\mathcal{X}} = \frac{(5+i)(5-i)}{(1+2^{2})(5-i)} = \frac{2}{2+2!}$
$(2i)(2-i) \qquad z$
SALLO VOR UN 8 B 3 H ZHOUTUNZ HOUTHMAR @
$\begin{array}{c} & = & \ell_{1} + \gamma_{2} = & 2 + 1 \\ & = & \lambda_{1}^{2} + & \lambda_{2}^{2} = & \delta(2 + 1) \\ & = & \delta_{1}^{2} + & (e_{1}^{2} +) + & Q(e_{1}^{2}) \\ & = & 2 \delta_{2}^{2} - & \delta(2 + 1) + C(1 + 1) = 0 \end{array}$
$ = \beta_{e} \frac{2+i \pm \sqrt{2+i^{2}-4x_{1}(j+1)^{1}}}{2x_{1}} = \frac{2+i \pm \sqrt{4+4i-1-4-4i}}{2} $
$\Rightarrow b = \frac{2+i\pm\sqrt{-1}}{2} = \frac{2+i\pm\sqrt{-1}}{2} = < i+i$
$\Rightarrow \gamma = \langle \downarrow_{l+1}$
• $Z_1 = 2 + 1$ $Z_2 = 1 + 1$
$z_1 = 1$

12.81

Madasn.

27

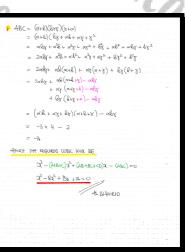
z = 1, z = 1 + i

Question 38 (****+) The roots of the cubic equation

 $x^3 - 4x^2 - 3x - 2 = 0$

are denoted in the usual notation by α , β and γ .

Show that the cubic equation whose roots are


 $\alpha + \beta$, $\beta + \gamma$ and $\gamma + \alpha$,

is given by

i C.B.

 $x^3 - 8x^2 + 13x + 14 = 0$

12.01

proof

Question 39 (*****)

I.C.B.

A system of simultaneous equations is given below

x + y + z = 1

 $x^{2} + y^{2} + z^{2} = 21$ $x^{3} + y^{3} + z^{3} = 55$. By forming an auxiliary cubic equation find the solution to the above system. You may find the identity $x^{3} + y^{3} + z^{3} \equiv (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx) + 3xyz,$ useful in this question. , x, y, z = -2, -1, 4 in any order START BY UGING THE IDAJINY (2+4+2)= $\implies (a+1)(a-2)(a-4) = 0$ $\rightarrow (2x_{2}y_{2}z_{1})^{2} = 2^{2}y_{1}^{2}z_{2}^{2}z_{1}^{2} + 2x_{2}y_{1}^{2} + 2x_{2}^{2}z_{2}^{2} + 2x_{2}^{2}z_{1}^{2}$ $\Rightarrow 1^{2} = 2^{3} + 2(2y_{1}+y_{2}+x_{2})$ $\exists a : \in \mathbb{P}_{4}^{1}$ $\rightarrow 2(xy+yz+xz) = -20$: 32=-1, y=2 -- (24+45+22) =-10 E. 5 yet + (25-54-42-42-32+2) + 3245 o)] + 3242 + 3242 3xyz = = syx = A CUBIC IN THICTHEFE WHEIMBLE, SAY a $\Rightarrow a^3 - (la^2) +$ $(-10_{a}) - (8) = 0$ Z ARE THE SOUTION & OF = $a^3 - a^2 - 10a - 8 = 0$ a=-1 is an abilities southand, (-1) -(-1) -10(-1) - 8 =0
$$\begin{split} & \alpha^2(a_H) - 2\alpha(a_{H1}) - B(a_{-1}) = 0 \\ & (\alpha_{L+1})(\alpha^2 - 2\alpha - 8) = 0 \end{split}$$

Created by T. Madas

i.C.B.

12 n.	"" "" "" "" "" " " " " " " " " " " " "	asp.	Υq.
Do.	Created by T. Madas	21, 4211.	
	Question 40 (*****)	18 48	0_
.0	The roots of the cubic equation	Con	Q
3	$8x^3 + 12x^2 + 2x - 3 = 0$		
1.	are denoted in the usual notation by α , β and γ .	0. · J	_
·	An integer function S_n , is defined as	5B - C	
10	$S_n \equiv (2\alpha + 1)^n + (2\beta + 1)^n + (2\gamma + 1)^n, n \in \mathbb{Z}.$	In.	0
201	$S_n \equiv (2\alpha + 1) + (2\beta + 1) + (2\gamma + 1)$, $n \in \mathbb{Z}$.	alla.	
950	Determine the value of S_3 and the value of S_{-2} .		
121	γ	$S_3 = 6$, $S_{-2} = 1$	6
1	I LOCKING AT THE DREESSION TO SE GRAVATED, DOC TRY TO.		0
2	• Locking at the pression to be sampled just the T_2 . • $\frac{1}{100 + 0.184} + 0.2841$ $\frac{1}{2} = 2241$ 2x = y-1 • $\frac{1}{2} = 2241$ $\frac{1}{2} = 2241$ $\frac{1}{2} = 2241$ $\frac{1}{2} = 2241$ $\frac{1}{2} = 2241$	$ \begin{array}{c} $	
	$ \begin{array}{c} \underbrace{\textcircled{blue}}_{t} \underbrace{\textcircled{blue}}_{t} \underbrace{\textcircled{blue}}_{t} \underbrace{\textcircled{blue}}_{t} \underbrace{\overbrace{\overbrace{b}}}_{t} \underbrace{\overbrace{b}}_{t} \underbrace{b}}_{t} \underbrace{b}}$	$\begin{array}{c} (\underline{C}^{2} - \underline{C} - \underline{L}_{2}) \\ & A^{2}B^{2} + \underline{C}^{2} - \underline{G} A B B \overline{C} + \delta C \\ & A^{3} + B^{3} + C^{2} + \delta C \\ & A^{3} + B^{3} + C^{2} + \delta C \end{array}$	
1.1	$ \left\{ \begin{array}{c} (\frac{1}{2} - \frac{3}{2})^2 + \frac{3}{2} - \frac{1}{2} \\ \frac{3}{2} - \frac{1}{2} - \frac{1}{2} + \frac{3}{2} \end{array} \right\} = 0 \qquad \qquad$		
1.	$-\frac{1}{3} - \frac{1}{3} - \frac{1}{2} = 0$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$ $(48c)^{2}$	$p_{i}^{2} + c_{i}^{2} \equiv (a + p + c)_{i}^{2} - S(a) + pc_{i} + c_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) + pc_{i} = (a + p + c)_{i}^{2} - S(a) +$	6
2	$\beta_{ij} \sim A^{i} + B^{i} + C^{ij} \qquad = \frac{0.02 \times C^{ij}}{(4\pi C)^{ij}}$ $\frac{Wifter}{i} \qquad And locking \qquad = \frac{(-2)^{2} - 2 \times 2 \times 0}{2^{2}}$ $= \frac{(-2)^{2} - 2 \times 2 \times 0}{2^{2}}$	<u>xc (4+x+c)</u>	
905		201	
Sh.		a. Asp	
- A	the Wars With	nos V	2
2	Co. S. Co.	The second	4
200		Con	
× 7.			•
~ ~ <u>}</u>	Chiller In	60× 4	Þ
		-6	-
<i>b</i> .	in las in	12.	
1201	Created by T. Madas		
1982	Sp 12. 19	Sp. W	2

Alls Com I.V. **QUARTICS QUARTICS** Alls Com I.V. **QUARTICS** Alls Com I.V. C.B. 114113 I.V. C.B. 1141431144 T. I. C.B. HROBINSHISCOM I.Y.C.B. HROBINSHISCOM I.Y.C. CLASINGUIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASINANIS COM LY, C.B. MARCASIN