ROOTS OF POLYNOMIAL EQUATIONS

Created by T. Madas

Question 1 (***)
The quadratic equation

$$
x^{2}+2 k x+k=0
$$

where k is a non zero constant, has roots $x=\alpha$ and $x=\beta$.

Find a quadratic equation, in terms of k, whose roots are
\square

Created by T. Madas

Created by T. Madas

Question 2 (***)
The two roots of the quadratic equation

$$
x^{2}+2 x-3=0
$$

are denoted, in the usual notation, as α and β.

Find the quadratic equation, with integer coefficients, whose roots are

$$
\alpha^{3} \beta+1 \quad \text { and } \quad \alpha \beta^{3}+1
$$

ve, $x^{2}+28 x+52=0$

Created by T. Madas

Question 3 (***)
The roots of the quadratic equation

$$
x^{2}+2 x+3=0
$$

are denoted, in the usual notation, as α and β.

Find the quadratic equation, with integer coefficients, whose roots are
\square

$$
9 x^{2}+16 x+34=0
$$

Created by T. Madas

Question 4 (***)
The roots of the quadratic equation

$$
2 x^{2}-3 x+5=0
$$

are denoted by α and β

Find the quadratic equation, with integer coefficients, whose roots are

$$
3 \alpha-\beta \quad \text { and } \quad 3 \beta-\alpha
$$

Question 5 (***)

The roots of the equation

$$
a z^{2}+b z+c=0,
$$

where a, b and c are real constants, are denoted by α and β.

Given that $b^{2}=2 a c \neq 0$, show that $\alpha^{2}+\beta^{2}=0$.

Question 6 (***)
The roots of the quadratic equation

$$
2 x^{2}-8 x+9=0
$$

are denoted, in the usual notation, as α and β.

Find the quadratic equation, with integer coefficients, whose roots are
\square $4 x^{2}-20 x+57=0$

$\begin{aligned} & \text { SUESTIURE IMO THE QOADRAIC IN } x \\ & \Rightarrow 2(\pm \sqrt{y+1})^{2}-8(\pm \sqrt{y+1})+9= \\ & \Rightarrow 2(y+1) \pm 8 \sqrt{y+1}+9=0 \\ & \Rightarrow \pm 8 \sqrt{y+1}=-9-2(y+1) \\ & \Rightarrow \pm 8 \sqrt{y+1}=-9-2 y-2 \\ & \Rightarrow \pm 8 \sqrt{y+1}=-2 y-11 \\ & \Rightarrow 64(y+1)=(-2 y-11)^{2} \\ & \Rightarrow 64 y+64=4 y^{2}+44 y+121 \\ & \Rightarrow 0=4 y^{2}-20 y+57 \\ & 0 R \\ & 4 x^{2}-20 x+57=0 \end{aligned}$

Question 7 (***)
A curve has equation

$$
y=2 x^{2}+5 x+c
$$

where c is a non zero constant.

Given that the roots of the equation differ by 3 , determine the value of c.
\square $c=-\frac{11}{8}$

LET THE SMALUER ROCT OF THE QUADRATLC SE α
THe Sou of THH Roots: $\alpha+(\alpha+3)=-\frac{b}{a}=-\frac{5}{2}$ $\text { 1.E } \quad \begin{aligned} 2 \alpha & +3=-\frac{5}{2} \\ 2 \alpha & =-\frac{11}{2} \\ \alpha & =-\frac{11}{4} \end{aligned}$ THE PRODVT OF THE ROOTS: $\quad \alpha(\alpha+3)=\frac{c}{a}=\frac{c}{2}$ $\text { 1.E. } \begin{aligned} c & =2 \alpha(\alpha+3) \\ c & =2\left(-\frac{4}{4}\right)\left(-\frac{1}{4}+3\right) \\ c & =-\frac{11}{2} \times \frac{1}{4} \\ c & =-\frac{11}{8} \end{aligned}$ Altrenatuve-wrifor asing direaly refurts on the som AND Propuct of roots of a quadratic. LET THE SMAUAR of THE TWO Boors BE α THTW $2 x^{2}+5 x+c=0$ $\begin{aligned} & \Rightarrow x^{2}+\frac{5 x}{2}+\frac{c}{2}=0 \\ & \Rightarrow(x-\alpha)(x-(\alpha+3))=0 \\ & \Rightarrow x^{2}-(\alpha+3) x-\alpha x+\alpha(\alpha+3)=0 \\ & \Rightarrow x^{2}-(2 \alpha+3) x+\alpha(\alpha+3)=0 \end{aligned}$

- by comaracson we hant - $\frac{5}{2}=-(2 x+3)$ $\Rightarrow 2 \alpha+3=-\frac{5}{2}$
$\Rightarrow 4 \alpha+6=-5$ $\Rightarrow \psi_{\alpha}=-11$ $\Rightarrow \alpha=-\frac{11}{4}$

Created by T. Madas

Question 8 (***+)
The roots of the quadratic equation

2 are denoted by α and β.
The roots of the quadratic equation

$$
2 x^{2}-3 x+5=0
$$

$$
x^{2}+p x+q=0
$$

where p and q are real constants, are denoted by $\alpha+\frac{1}{\alpha}$ and $\beta+\frac{1}{\beta}$.

Determine the value of p and the value of q.

$$
p=\frac{21}{10}, q=\frac{14}{5}
$$

\square $\alpha+b=-\frac{-3}{2}=\frac{3}{2}$
(स) THFRONS of $x^{2}+p x+\phi=0 B+A q B$ \rightarrow $=a b+\frac{a^{2}+b^{2}}{b x}+\frac{1}{a b}$ $=a b+\frac{\left.(\alpha+b)^{2}-\alpha\right)}{\alpha b}+\frac{1}{\alpha b}$ $=\frac{5}{2}+\frac{\left(\frac{3}{2}\right)^{2}-\frac{5}{2}}{\frac{5}{2}}+\frac{2}{5}=\frac{(4)}{5}$

Created by T. Madas

Created by T. Madas

Question 9 (****)
Consider the quadratic equation

$$
a x^{2}+b x+c=0,
$$

where a, b and c are real constants.
One of the roots of this quadratic equation is double the other.

Created by T. Madas

Question 10 (****)
The roots of the quadratic equation

$$
x^{2}+2 x+2=0
$$

are denoted by α and β.

Find the quadratic equation, with integer coefficients, whose roots are

$$
x^{2}-2 x+2=0
$$

Created by T. Madas

Question 11 (****)
The roots of the quadratic equation

$$
x^{2}+2 x-4=0
$$

are denoted by α and β.

Find the quadratic equation, with integer coefficients, whose roots are

$$
16 x^{2}-1804 x+4289=0
$$

\square

Created by T. Madas

Question 12 (****)

$$
x^{2}-4 \sqrt{2} k x+2 k^{4}-1=0 .
$$

The two roots of the above quadratic equation, where k is a constant, are denoted by α and β.

Given further that $\alpha^{2}+\beta^{2}=66$, determine the exact value of $\alpha^{3}+\beta^{3}$.

Question 13 (****+)
The quadratic equation

$$
a x^{2}+b x+c=0, x \in \mathbb{R}
$$

where a, b and c are constants, $a \neq 0$, has real roots which differ by 1 .

Determine a simplified relationship between a, b and c.

$$
b^{2}-4 a c=a^{2}
$$

$a x^{2}+b x+c=0$, Sowntions arffee by 1 \square

$$
\begin{aligned}
& \Rightarrow\left(\frac{(b+a}{a}\right)^{2}-\frac{2(b+a)}{a}=\frac{4 c}{a} \\
& \Rightarrow \frac{(b+a)^{2}}{a^{2}}-\frac{2(b+a)}{a}=\frac{4 c}{a} \\
& \Rightarrow(b+a)^{2}-2 a(b+a)=4 a c \\
& \Rightarrow b^{2}+2 a b+a^{2}-2 a b-2 a^{2}=4 a c \\
& \Rightarrow b^{2}-a^{2}=4 a c \\
& \Rightarrow b^{2}-4 a c=a^{2}
\end{aligned}
$$

Question 14 (****+)
The roots of the quadratic equation

$$
x^{2}-3 x+4=0
$$

are denoted by α and β.

Find the quadratic equation, with integer coefficients, whose roots are

$$
\text { जv, } x^{2}+12 x+99=0
$$

\square

\square $\left\{\begin{array}{l}\alpha^{4}+b^{4}=\left(\alpha^{2}+b^{2}\right)^{2}-2(\alpha b)^{2} \\ \alpha^{4}+b^{4}=\left[(\alpha+b)^{2}-2 \alpha\right]^{2}\end{array}\right.$
$\alpha^{2}+b=\left(\alpha^{2}+b^{2}\right)^{2}-2(\alpha b)^{2}$
$\alpha^{4}+b^{4}=\left[(\alpha+b)^{2}-2 a b\right]^{2}-2(\alpha b)^{2}$
$\Rightarrow A B=(\alpha B)^{3}+(\cos)-\left[\left[(\alpha+B)^{2}-20 B\right]^{2}-2(\alpha \theta)^{2}\right]$
$\Rightarrow A B=4^{3}+4-\left[3^{2}-2 \times 4\right]^{2}+2 \times 4^{2}$
$\Rightarrow A B=64+4-1+32$
$\Rightarrow A B=99$

- Hince tife rapureso quasieatcic is
low $\begin{aligned} & (\alpha+b)^{3}=\alpha^{3}+3 \alpha^{2} b+3 a b^{2}+b^{3} \\ & (\alpha+b)^{2}=\alpha^{2}+b^{3}+3 \alpha b(\alpha+b) \\ & a^{3}+b^{3}=\left(\alpha b^{3}+b a+b\right.\end{aligned}$
$\alpha^{3}+b^{3}=(\alpha+b)^{3}-3 a b(\alpha+b)$
$\Rightarrow A+B=(\alpha+b)^{3}-3 a b(\alpha+b)-(\alpha+b)$
$\Rightarrow A+B=3^{3}-3 \times 4 \times 3-3$
$\Rightarrow A+B=\pi-36-3$
$\Rightarrow A+B=2 \pi-36-3$
$\Rightarrow A+B=-12$
- $A B=\left(\alpha^{3}-b\right)\left(b^{3}-\alpha\right)=\alpha^{3} b^{3}-\alpha^{4}-b^{4}+a b$
$\Rightarrow A B=(\alpha b)^{3}+(\alpha b)-\left(\alpha^{4}+b^{4}\right)$
$\mathrm{Naw} \begin{aligned} & \alpha^{2}+b^{2}=(\alpha+b)^{2}-2 \alpha b \\ & \left(\alpha^{2}\right)^{2}+\left(b^{2}\right)^{2}=\left(\alpha^{2}+b^{2}\right)^{2}-2 \alpha^{2} b^{2}\end{aligned}$

$$
\begin{aligned}
& x^{2}-(-12 x)+(+99)=0 \\
& x^{2}+12 x+99=0
\end{aligned}
$$

Created by T. Madas

Question 15 (****+)

$$
\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}, \quad x \neq-p \quad x \neq-q .
$$

The roots of the above quadratic equation, where p, q and r are non zero constants, are equal in magnitude but opposite in sign.

Show that the product of these roots is

Question 16 (****+)

$$
2 x^{2}+k x+1=0 .
$$

The roots of the above equation are a and β, where k is a non zero real constant.

Given further that the following two expressions

$$
\frac{\alpha}{\beta\left(1+\alpha^{2}+\beta^{2}\right)} \text { and } \frac{\beta}{\alpha\left(1+\alpha^{2}+\beta^{2}\right)}
$$

are real, finite and distinct, determine the range of the possible values of k.

$$
|k|>\sqrt{8}
$$

\square

Created by T. Madas

Question 17 (*****)
The quadratic equation

$$
4 x^{2}+P x+Q=0,
$$

where P and Q are constants, has roots which differ by 2 .

If another quadratic equation has repeated roots which are also the squares of the roots of the above given equation, find the value of P and the value of Q.

Created by T. Madas

Question 18 (*****)
The quadratic equation

$$
x^{2}-4 x-2=0
$$

has roots α and β in the usual notation, where $\alpha>\beta$.

It is further given that

$$
\frac{f_{10}-2 f_{8}}{f_{9}}
$$

\square , 4

$$
\begin{gathered}
\alpha^{2}-4 \alpha-2=0 \\
\alpha^{2} \alpha^{2}-4 \alpha \alpha^{8}-2 \alpha^{8}=0
\end{gathered}
$$

$$
\begin{aligned}
& 2 \alpha^{2}-4 \alpha \alpha^{8}-2 \alpha^{8}=0 \alpha^{6} \\
& \alpha^{6}-4 \alpha^{4}-2 \alpha^{8}=0 \text { a sminacy } \quad b^{10}-48^{9}-2 b^{8}=0
\end{aligned}
$$

$$
\Rightarrow f_{6}-4 f_{9}-2 f_{8}=0
$$

$$
\Rightarrow f_{B}-2 f_{B}=4 f_{9}
$$

$$
\rightarrow \frac{f-\frac{2 f_{6}}{t_{1}}=4}{}
$$

Question 19 (${ }^{(* * * * *)}$
The quadratic equation

$$
a x^{2}+b x+1=0, \quad a \neq 0
$$

where a and b are constants, has roots α and β.

Find, in terms of α and β, the roots of the equation

$$
x^{2}+\left(b^{3}-3 a b\right) x+a^{3}=0
$$

\square

$$
\frac{1}{\alpha^{3}}, \frac{1}{\beta^{3}}
$$

\square

Created by T. Madas

Created by T. Madas

Question 1 (**)

$$
x^{3}-6 x^{2}+4 x+12=0 .
$$

The three roots of the above cubic are denoted by α, β and γ.

Find the value of ...
a) $\ldots \alpha+\beta+\gamma$.
b) $\ldots \alpha^{2}+\beta^{2}+\gamma^{2}$.
c) $\cdots \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.

Created by T. Madas

Question 2 (**)
A cubic is given in terms of two constants p and q

$$
2 x^{3}+7 x^{2}+p x+q=0
$$

The three roots of the above cubic are $\alpha, \frac{1}{2} \alpha$ and $(\alpha-1)$.

Find the value of α, p and q.

Created by T. Madas

Question 3 (**+)

$$
x^{3}-2 x^{2}-8 x+11=0
$$

The roots of the above cubic equation are α, β and γ.

Find a cubic equation, with integer coefficients, whose roots are

$$
\alpha+1, \quad \beta+1, \quad \gamma+1 .
$$

\square

Question 4 (**+)
The three roots of the cubic equation

$$
x^{3}+3 x-3=0
$$

are denoted in the usual notation by α, β and γ.
Find the value of

$$
(\alpha+1)(\beta+1)(\gamma+1)
$$

are denoted by α, β and γ.

Show that the equation of the cubic whose roots are $\alpha \beta, \beta \gamma$ and $\gamma \alpha$ is given by

$$
x^{3}-2 x^{2}+24 x-16=0
$$

Created by T. Madas

Question 6 (**+)
The two roots of the quadratic equation

$$
2 x^{2}-5 x+8=0
$$

are denoted by α and β.

Determine the cubic equation with integer coefficients whose three roots are

$$
x^{3}-14 x^{2}+104 x-256=0
$$

\square

Created by T. Madas

Question $7 \quad(* *+)$

$$
x^{3}+b x^{2}+c x+d=0
$$

where b, c and d are real constants.

The three roots of the above cubic are denoted by α, β and γ.
a) Given that

$$
\alpha+\beta+\gamma=4 \quad \text { and } \quad \alpha^{2}+\beta^{2}+\gamma^{2}=20
$$

find the value of b and the value of c.
b) Given further that $\alpha=3+\mathrm{i}$, determine the value of d.

Created by T. Madas

Question $8 \quad(* *+)$

$$
x^{3}+2 x^{2}+5 x+k=0
$$

The three roots of the above cubic are denoted by α, β and γ, where k is a real constant.
a) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$ and hence explain why this cubic has one real root and two non real roots.
b) Given that $x=-2+3 i$ is a root of the cubic show that $k=-26$.

Question 10 (***)

$$
x^{3}-x^{2}+3 x+k=0
$$

The roots of the above cubic equation are denoted by α, β and γ, where k is a real constant.
a) Show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=-5 .
$$

b) Explain why the cubic equation cannot possibly have 3 real roots.

It is further given that $\alpha=1-2 \mathrm{i}$.
c) Find the value of β and the value of γ.
d) Show that $k=5$.

$$
\beta=1+2 \mathrm{i}, \gamma=-1
$$

Created by T. Madas

Question 11 (***)
The roots of the quadratic equation

$$
x^{2}+3 x+3=0
$$

are denoted by α and β.

Find the cubic equation, with integer coefficients, whose roots are
$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ and $\alpha \beta$.
\square $x^{3}-4 x^{2}+4 x-3=0$

Created by T. Madas

Question 12 (***)
The roots of the cubic equation
?

$$
x^{3}+p x^{2}+74 x+q=0
$$

where p and q are constants, form an arithmetic sequence with common difference 1.

Given that all three roots are real and positive find in any order ...
a) \ldots the value of p and the value of q.
b) ... the roots of the equation.

$$
p=-15, q=-120, x=4,5,6
$$

Created by T. Madas

Question 13 (***)
The roots of the cubic equation
T

$$
x^{3}+p x^{2}+56 x+q=0
$$

where p and q are constants, form a geometric sequence with common ratio 2 .

Given that all three roots are real and positive find in any order ...
a) \ldots the value of p and the value of q.
b) ... the roots of the equation.

$$
p=-14, q=-64, x=2,4,8
$$

\square

$$
a x^{3}+b x^{2}+c x+d=0
$$

where a, b, c and d are non zero constants, are the first three terms of a geometric sequence with common ratio 2 .

Show clearly that

$$
4 b c=49 a d
$$

Question 15 (***)

$$
f(z)=z^{3}-(5+\mathrm{i}) z^{2}+(9+4 \mathrm{i}) z+k(1+\mathrm{i}), z \in \mathbb{C}, k \in \mathbb{R}
$$

The roots of the equation $f(z)=0$ are denoted by α, β and γ.
a) Given that $\alpha=1+\mathrm{i}$ show that ...
i. $\ldots k=-5$.
ii. $\ldots \beta+\gamma=4$.
b) Hence find the value of β and the value of γ.

Question 16 (***)

$$
z^{3}+p z+q=0, z \in \mathbb{C}, p \in \mathbb{R}, q \in \mathbb{R} .
$$

The roots of the above equation are denoted by α, β and γ.
a) Show clearly that

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma
$$

It is further given that $\alpha=1+2 \mathrm{i}$.
b) Determine the value of p and the value of q.

The three solutions of the cubic equation

$$
x^{3}-2 x^{2}+3 x+1=0 \quad x \in \mathbb{R},
$$

are denoted by α, β and γ.

Find a cubic equation with integer coefficients whose solutions are

$$
2 \alpha-1,2 \beta-1 \text { and } 2 \gamma-1
$$

Question $18 \quad\left({ }^{* * *}+\right.$)
The roots of the cubic equation

$$
16 x^{3}-8 x^{2}+4 x-1=0 \quad x \in \mathbb{R},
$$

are denoted in the usual notation by α, β and γ.

Find a cubic equation, with integer coefficients, whose roots are

$$
\frac{4}{3}(\alpha-1), \frac{4}{3}(\beta-1) \text { and } \frac{4}{3}(\gamma-1)
$$

\square $27 x^{3}+90 x^{2}+108 x+44=0$ O

\square

Question 19 (***+)
The roots of the equation

$$
x^{3}-2 x^{2}+3 x-4=0
$$

are denoted in the usual notation by α, β and γ.

Find a cubic equation with integers coefficients whose roots are α^{2}, β^{2} and γ^{2}.

$$
x^{3}+2 x^{2}-7 x-16=0
$$

\square $M+T b D B$
 This $(\pm \sqrt{y})^{3}-2\left(\pm \sqrt{y} y^{2}+3(\pm \sqrt{y})-4=0\right.$ $\Rightarrow \pm y^{\frac{2}{2}}-2 y \pm 3 y^{\frac{1}{2}}-4=0$ $\Rightarrow \neq y^{\frac{1}{2}}(y+3)=2 y+4$ $\Rightarrow y(y+3)^{2}=(2 y+4)^{2}$
$\Rightarrow y^{3}+6 y^{2}+9 y=4 y^{2}+16 y+16$ $\Rightarrow y^{3}+2 y^{2}-7 y-16=0$

Created by T. Madas

Question 20 (***+)
The roots of the equation

$$
x^{3}-2 x^{2}+3 x+3=0
$$

are denoted by α, β and γ.

Find the cubic equation with integer coefficients whose roots are

$$
9 x^{3}+6 x^{2}+3 x-1=0
$$

Created by T. Madas

Question 21 (***+)
The roots of the equation

$$
x^{3}+2 k x^{2}-27=0
$$

are α, β and $\alpha+\beta$, where k is a real constant.
a) Find, in terms of k, the value of \ldots
i. $\ldots \alpha+\beta$
ii. $\ldots \alpha \beta$
b) Use these results to show that $k=3$.

Question 22 (***+)
The roots of the equation

$$
x^{3}+2 x^{2}+3 x-4=0
$$

are denoted by α, β and γ.
a) Show that that for all w, y and z

$$
w^{2}+y^{2}+z^{2} \equiv(w+y+z)^{2}-2(w y+y z+z w) .
$$

Another cubic equation has roots A, B and C where

$$
A=\frac{\beta \gamma}{\alpha}, B=\frac{\gamma \alpha}{\beta} \text { and } C=\frac{\alpha \beta}{\gamma}
$$

b) Show clearly that

$$
A+B+C=\frac{25}{4}
$$

c) Show that the equation of the cubic whose roots are A, B and C is

$$
2 z^{3}+k z^{2}+1=0, z \in \mathbb{C}
$$

where k is a non zero constant, is given.
a) If the above cubic has two identical roots, determine the value of k.
b) If instead one of the roots is $1+\mathrm{i}$, find the value of k in this case.

Created by T. Madas

Question 24 (***+)
A cubic equation is given below as

$$
a x^{3}+b x^{2}+c x+d=0
$$

where a, b, c and d are non zero constants.
Given that the product of two of the three roots of above cubic equation is 1 , show that

$$
a^{2}-d^{2}=a c-b d
$$

proof

Question 25 (***+)

If the cubic equation $x^{3}-A x+B=0$, has two equal roots, show that

$$
4 A^{3}=27 B^{2} .
$$

Created by T. Madas

Question 26 (****)

$$
b x^{3}+b x^{2}+c x+d=0,
$$

where a, b and c are non zero constants.

If the three roots of the above cubic equation are in geometric progression show that

$$
b^{3}=c a^{3} .
$$

\square

Created by T. Madas

Question 27 (****)
The three roots of the equation

$$
x^{3}+2 x^{2}+10 x+k=0
$$

where k is a non zero constant, are in geometric progression.
Determine the value of k.
\square , $k=125$
\square
THe cosfrainss of A wBBC
$x^{3}+2 x^{2}+10 x+k=0$

$$
a b+b y+\gamma \alpha=\frac{c}{a}=\frac{10}{T}=10
$$

$$
a b \gamma=-k
$$

- AS THE ROOTS ARE IN GBMATRIC PROGRESION
$\alpha+b+r=\alpha+\alpha r+\alpha r^{2}$
$\alpha b+b \gamma+\gamma \alpha=\alpha+\alpha r+\alpha)$
$\alpha b \gamma=\alpha(\alpha r)\left(\alpha r^{2}\right)=\alpha^{3} r^{3}$
- Tidino up these expressions.

- diviona fpuations I \& I
$\frac{\alpha^{2} r\left(1+++r^{2}\right)}{\alpha\left(1+r+r^{2}\right)}=\frac{10}{-2} \quad \therefore \quad \alpha r=-5$
- Hince gquation III GVES
$k=-(\alpha r)^{3}=-(-s)^{3}=125$

Created by T. Madas

Created by T. Madas

Question 28 (****)

$$
2 x^{3}-4 x+1=0
$$

The cubic equation shown above has three roots, denoted by α, β and γ.

Determine, as an exact simplified fraction, the value of

Question 29 (****)
A cubic equation is given below as

$$
a x^{3}+b x^{2}+c x+d=0
$$

where a, b, c and d are non zero constants.

Given that two of the three roots of above cubic equation are reciprocals of one another show that

$$
a^{2}-d^{2}=a c-b d
$$

Created by T. Madas

Question 30

$$
x^{3}-2 x^{2}+k x+10=0, k \neq 0
$$

The roots of the above cubic equation are α, β and γ.
a) Show clearly that

$$
\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+k(\alpha+\beta+\gamma)+30=0
$$

It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-4$
b) Show further that $k=-3$.

Created by T. Madas

Question 31 (****)
The three roots of the equation

$$
z^{3}+p z^{2}+q z+r=0
$$

where p, q and r are constants, are denoted by α, β and γ.
a) Given that

$$
\alpha \beta+\beta \gamma+\gamma \alpha=-2+3 \mathrm{i} \text { and } \alpha^{2}+\beta^{2}+\gamma^{2}=4-6 \mathrm{i},
$$

determine the value of p and the value of q.
b) Given further that $\alpha=1+\mathrm{i}$, show that \ldots
i. $. . r=7-3 \mathrm{i}$
ii. ... β and γ are solutions of the equation

$$
z^{2}-(1+\mathrm{i}) z=2+5 \mathrm{i}
$$

$$
p=0, q=-2+3 \mathrm{i}
$$

Question 32 (****)

$$
z^{3}+2 z^{2}+k=0
$$

The roots of the above cubic equation, where k is a non zero constant, are denoted by α, β and γ.
a) Show that \ldots
i. $\quad \ldots \alpha^{2}+\beta^{2}+\gamma^{2}=4$.
ii. $\ldots \alpha^{3}+\beta^{3}+\gamma^{3}=-8-3 k$.

It is further given that $\alpha^{4}+\beta^{4}+\gamma^{4}=4$.
b) Show further that $k=-1$.
c) Determine the value of

$$
\alpha^{5}+\beta^{5}+\gamma^{5}
$$

\square

$$
\alpha^{5}+\beta^{5}+\gamma^{5}=-4
$$

Question 33 (****)
The cubic equation shown below has a real root α.

$$
x^{3}+k x^{2}-1=0,
$$

where k is a real constant.

Given that one of the complex roots of the equation is $u+\mathrm{i} v$, determine the value of v^{2} in terms of α.
(2),$v^{2}=\frac{1}{\alpha}-\frac{1}{4 \alpha^{4}}$

Created by T. Madas

Question 34 (****)

$$
x^{3}+2 x+5=0
$$

The cubic equation shown above has three roots, denoted by α, β and γ.

Determine the value of

$$
\alpha^{4}+\beta^{4}+\gamma^{4}
$$

\square
\square
$\Rightarrow\left(y^{\frac{1}{2}}+2 y^{\frac{1}{2}}\right)^{2}=25$
$\Rightarrow y^{3}+4 y^{2}+4 y=25$
$\Rightarrow y^{3}+4 y^{2}+4 y-25=0$
 $A=\alpha^{2}, B=b^{2}, C=\gamma^{2}$

$$
\begin{aligned}
& \begin{array}{ll}
\rightarrow A+B+C=-4 & \leftarrow \alpha^{2}+B^{2}+r^{2} \\
A B+B C+C A=4 & \leftarrow \alpha^{2} E^{2}+b^{2}+\gamma^{2} \alpha^{2} \\
A B C=2 S & \leftarrow 2 B d
\end{array} \\
& \Rightarrow \alpha^{4}+b^{4}+\gamma^{4}=A^{2}+B^{2}+C^{2} \\
& =(A+B+C)^{2}-2(A B+B C+C A) \\
& =(-4)^{2}-2 \times 4 \\
& \begin{array}{l}
=16-8 \\
=8
\end{array} \\
& =8
\end{aligned}
$$

Created by T. Madas

Question 35 (*****)
The three roots of the cubic equation

$$
x^{3}+2 x-1=0
$$

are denoted by α, β and γ.

Determine the exact value of $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}$.
\square

$x^{3}+0 x^{2}+2 x-1=0$
$\left\{\begin{array}{l}\alpha+\gamma+\gamma=-\frac{0}{1}=0 \\ a^{\theta}+\operatorname{br\gamma } \gamma+\gamma \alpha=+\frac{2}{1}=2\end{array}\right.$
$\left\{\begin{array}{l}\alpha b+\gamma_{\gamma}+\delta \alpha=+\frac{1}{1}=2 \\ 2 b y=-\frac{-1}{1}=1\end{array}\right\}$
STher tiff TiDN OP
$\frac{1}{\alpha^{4}}+\frac{1}{b^{4}}+\frac{1}{\gamma^{4}}-\frac{b^{4} \gamma^{4}+\alpha^{4} \gamma^{4}+\alpha^{4} b^{4}}{(\alpha 6 \gamma)^{4}}-\frac{\left.\left(a^{2}\right)^{2}\right)^{2}+\left(\alpha^{2} z^{2}\right)^{2} L\left(x^{2} \alpha^{2}\right)^{2}}{(\alpha b \gamma)^{4}}$ Now using $A^{2}+B^{2}+C^{2} \equiv(++B+C)^{2}-2(A B+B C+C A)$
$\cdots=\frac{\left(b^{8} x^{2}+\alpha^{2} x^{2}+\alpha^{2} B^{2}\right)^{2}-2\left(\alpha^{2} b^{2} x^{4}+\alpha 8^{2} x^{2}+\alpha^{2} b^{4} x^{2}\right)}{14}$
$=\left(b^{2} \gamma^{2}+a^{2} \delta^{2}+a^{2} b^{2}\right)^{2}-2 a^{2} b^{2} \gamma^{2}\left(\gamma^{2}+a^{2}+b^{2}\right)$
$=\left(b^{2} y^{2}+\alpha^{2} \gamma^{2}+\alpha^{2} \alpha^{2}\right)^{2}-z(\alpha \alpha \gamma)^{2}\left(\alpha^{2}+b^{2}+\gamma^{2}\right)$
$\left.\left.=[(\alpha))^{2}+(x)\right)^{2}+(x \alpha)^{2}\right]-2 x 1^{2}\left(\alpha^{2}+b^{2}+r^{2}\right)$
$\left.=[(a b))^{2}+(b \gamma)^{2}+(\gamma \alpha)\right]^{2}-2\left(\alpha^{2}+b^{2}+\gamma^{2}\right)$ 2tapped THE wowlicy from Asout,
$=\left[(a b+b \gamma+\gamma a)^{2}-2\left(a b b^{2}+a b \gamma^{2}+2 a b \gamma\right]^{2}-2\left[(\alpha+b+\gamma)^{2}-2(b \alpha+b \gamma+\gamma \alpha)\right]\right.$
$=\left[(a b+b \gamma+\gamma+)^{2}-2 a b y(a+b+r)\right]^{2}-2\left[(a+b+f r)^{2}-2(a b+b b+b a)\right]$ $=(a b+b r+k a)^{4}-4(a b+b a+r a)$
$=2^{4}+4 \times 2$
$=24$

Question 36 (****+)
The roots of the cubic equation

$$
x^{3}-4 x^{2}+2 x-5=0
$$

are denoted in the usual notation by α, β and γ.

Show that the cubic equation whose roots are

$$
5 x^{3}+36 x^{2}+60 x-25=0
$$

\square proof

\square

Hance THe Requess waic IS
$x^{3}-(A+B+C) x^{2}+(A B+B C+C A) x-(A B C)=0$ $x^{3}-\left(-\frac{3 x}{5} x^{2}\right)+12 x-5=0$
$x^{3}+36 x^{2}+12 x-5=0$ $x^{2}+\frac{36}{5} x^{2}+12 x-5=0$
$5 x^{3}+36 x^{2}+60 x-25=0$

Created by T. Madas

Question 37 (****+)

$$
z^{3}-(4+2 \mathrm{i}) z^{2}+(4+5 \mathrm{i}) z-(1+3 \mathrm{i})=0, \quad z \in \mathbb{C} .
$$

Given that one of the solutions of the above cubic equation is $z=2+\mathrm{i}$, find the other two solutions.

Question 38 (****+)
The roots of the cubic equation

$$
x^{3}-4 x^{2}-3 x-2=0
$$

are denoted in the usual notation by α, β and γ.

Show that the cubic equation whose roots are

$$
\alpha+\beta, \quad \beta+\gamma \text { and } \quad \gamma+\alpha
$$

is given by

$$
x^{3}-8 x^{2}+13 x+14=0
$$

\square

FOR THE OUBIC $x^{3}-4 x^{2}-3 x-2=0$ $\begin{aligned} & \alpha+b+\gamma=-\frac{b}{a}=-\frac{-4}{1}=4 \\ & \alpha b+b \gamma+\gamma \alpha=\frac{c}{a}=\frac{-3}{1}=-3 \\ & \alpha b \gamma=-\frac{d}{a}=-\frac{-2}{1}=2 \end{aligned}$ LET THE THLEE ROUTS OF THE REYOIRED CUBIC BE $\begin{aligned} & \cdot A=\alpha+b \\ & \cdot B=b+\gamma \\ & \cdot C=\gamma+\alpha \end{aligned}$ $\begin{aligned} A+B+C & =(\alpha+b)+(b+\gamma)+(\pi+\alpha) \\ & =2(\alpha+b+\gamma) \\ & =2 \times 4 \\ & =8 \end{aligned}$ $\begin{aligned} A B+B C+C A= & (\alpha+b)(b+\gamma)+(b+\gamma)(\gamma+\alpha)+(\gamma+\alpha)(\alpha+b) \\ = & \alpha b+\alpha \gamma+b^{2}+b \gamma \\ & \alpha b+\alpha \gamma+\gamma^{2}+b \gamma \\ & \alpha b+\alpha \gamma+\alpha^{2}+b \gamma \\ = & \left(\alpha^{2}+b^{2}+\gamma^{2}\right)+3(\alpha b+b \gamma+\gamma \alpha) \\ = & \left(\alpha^{2}+b^{2}+\gamma^{2}+2 \alpha b+2 b \gamma+2 \gamma \alpha\right)+(a b+b \gamma+\gamma \alpha) \\ = & (\alpha+b+\gamma)^{2}+(\alpha b+b \gamma+\gamma \alpha) \\ = & 4^{2}+(-3) \\ = & 16-3 \\ = & 13 \end{aligned}$

p $A B C=(\alpha+b)(B+\gamma)(\gamma+\alpha)$
$=(\alpha+b)\left(b \gamma+\alpha b+a \gamma+\gamma^{2}\right.$
$=\alpha b \gamma+\alpha^{2} b+\alpha^{2}+2 \alpha^{2}+\alpha \gamma+a \gamma$
$=a b \gamma+\alpha b+\alpha \gamma+a x^{2}+b \gamma+a b^{2}+a b \gamma+b x^{2}$

$$
=2 \alpha b \gamma+\alpha^{2} b+\alpha b^{2}+\alpha^{2} \gamma+\alpha \gamma^{2}+b \gamma^{2}+b^{2} \gamma
$$

$$
=2 \alpha \beta \gamma+\alpha b(\alpha+b)+\alpha \gamma(\alpha+\gamma)+b \gamma(b+\gamma)
$$

$$
\begin{aligned}
=2 \alpha b_{\gamma} & +\alpha b(\alpha+b+\gamma)-\alpha b \gamma \\
& +\alpha \gamma(\alpha+\gamma+b)-\alpha b \gamma
\end{aligned}
$$

$+\operatorname{br}(b+\gamma+\alpha)-a b \gamma$
$=(\alpha b+\alpha \gamma+b \pi)(\alpha+b+x)-\alpha b \gamma$

$$
=-3 \times 4-2
$$

Hince int REquilno wBic wue RE
$x^{3}-(A+B+C) x^{2}+(A B+B C+C D) x-(A B C)=0$ $x^{3}-8 x^{2}+3 x+14=0$

+ \& Ravirero

Created by T. Madas

Question 39 (*****)
A system of simultaneous equations is given below

$$
\begin{aligned}
& x+y+z=1 \\
& x^{2}+y^{2}+z^{2}=21 \\
& x^{3}+y^{3}+z^{3}=55
\end{aligned}
$$

By forming an auxiliary cubic equation find the solution to the above system.
You may find the identity

$$
x^{3}+y^{3}+z^{3} \equiv(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z
$$

useful in this question.

Question 40
The roots of the cubic equation

$$
8 x^{3}+12 x^{2}+2 x-3=0
$$

are denoted in the usual notation by α, β and γ.

An integer function S_{n}, is defined as

$$
S_{n} \equiv(2 \alpha+1)^{n}+(2 \beta+1)^{n}+(2 \gamma+1)^{n}, \quad n \in \mathbb{Z} .
$$

Determine the value of S_{3} and the value of S_{-2}.
\square

$$
, S_{3}=6, S_{-2}=1
$$

- Looking AT THE Explession to BE ENA, wated, we Toy to Ler $\begin{aligned} y & =2 x+1 \\ 2 x & =y-1\end{aligned}$
- Retwrity Ttfe cosic for simplaty is
$\Rightarrow 8 x^{2}+12 x^{2}+2 x-3=0$
$\Rightarrow(2 x)^{3}+3(2 x)^{2}+(2 x)-3=0$
$\Rightarrow(y-1)^{3}+3(y-1)^{2}+(y-1)-3=0$
$\Leftrightarrow\left\{\begin{array}{r}3-3 y^{2}+3 y-1 \\ 3 y^{2}-6 y+3 \\ y-4\end{array}\right\}=0$
$\Rightarrow y^{3}-2 y-2=0$
- Hther we now thent
$S_{4}=(2 \alpha+1)^{n}+(28+1)^{n}+(2 \gamma+1)^{n}$ $S_{4}=A^{n}+B^{n}+C^{4}$

whret	
- $A=2 \alpha+1$	- $A+B+C=0$
- $B=2+1$	$A B+B C+C A=-2$

$: B=2 b+1$
$\therefore C=2 \gamma+1$
$A B+B C+C A=-2$

- $A B C=+2$
\square

\qquad
\qquad
\qquad
\qquad
$x^{3}+B^{3}+c^{3}=2(a+B+c)+6$
$A+B+C=6$
$\frac{1}{C^{2}}=\frac{A^{2} B^{2}+A^{2} C^{2}+B^{2} C^{2}}{A^{2} B^{2} C^{2}}$
- $S_{-2}=A^{-2}+B^{-2}+C^{-2}=\frac{1}{A^{2}}+\frac{1}{B^{2}}+\frac{1}{C^{2}}=\frac{A^{2} B^{2}+A^{2} C^{2}+B^{2} C^{2}}{A^{2} B^{2} C^{2}}$
$=\frac{(A B)^{2}+(B C)^{2}+(C A)^{2}}{(A B C)^{2}}$
$=\frac{(A B+B C+C A)^{2}-2\left(A^{2} B C+A B^{2} C+A B C^{2}\right)}{(A B C)^{2}}$
\qquad
$=\frac{(A B+B C+C A)^{2}-2 A B C(A+B+C)}{(A B C)^{2}}$
$=\frac{(-2)^{2}-2 \times 2 \times 0}{2^{2}}$

Created by T. Madas

QUARTICS

