RATIONAL FUNCTIONS

Created by T. Madas

Question 1 (***+)

The curves C_{1} and C_{2} have respective equations

$$
y=\frac{1}{x}, x \in \mathbb{R}, x \neq 0, \quad \text { and } \quad y=\frac{x}{x+2}, x \in \mathbb{R}, \quad x \neq-2 .
$$

a) Sketch in the same set of axes the graph of C_{1} and the graph of C_{2}. Indicate clearly in the sketch ...

- ... the equations of any asymptotes.
- ... the coordinates of any intersections between each curve with the coordinate axes.
b) Find the coordinates of the points of intersection between the graph of C_{1} and C_{2}, and hence solve the inequality

$$
\frac{1}{x} \geq \frac{x}{x+2}
$$

$$
(-1,-1),\left(2, \frac{1}{2}\right),-2<x \leq-1 \cup 0<x \leq 2
$$

Created by T. Madas

Question 2 (****)

The curve C has equation $y=f(x)$ given by

$$
f(x)=\frac{x^{2}}{(x-1)(x-5)}, x \in \mathbb{R}, x \neq 1, x \neq 5 .
$$

a) State the equation of each of the two vertical asymptotes of the C.
b) Show clearly that $y=1$ is a horizontal asymptote to the curve.
c) Solve the equation $f(x)=1$.

The straight line with equation $y=k$, where k is a constant, touches C at two points.
d) Find possible values the of k.
e) Sketch the graph of C.

Indicate clearly in the sketch

- the equations of the asymptotes
- the coordinates of any intersections of C with the coordinate axes.
- the coordinates of any turning points of C.

$$
x=1,5, x=\frac{5}{6}, k=-\frac{5}{4}, 0
$$

Created by T. Madas

Question 3 (****)

The curve C has equation $y=f(x)$ given by

$$
f(x)=\frac{x-4}{(x-5)(x-8)}, x \in \mathbb{R}, x \neq 5, x \neq 8 .
$$

a) State the equation of each of the two vertical asymptotes of the C.
b) Show clearly that $y=0$ is a horizontal asymptote to the curve.

The straight line with equation $y=k$, where k is a constant, touches C at two points.
c) Find possible values the of k.
d) Sketch the graph of C.

Indicate clearly in the sketch

- the equations of the asymptotes
- the coordinates of any intersections of C with the coordinate axes.
- the coordinates of any turning points of C.

Created by T. Madas

Question 4 (****)
The curves C_{1} and C_{2} have respective equations

$$
y=\frac{x+3}{x}, x \in \mathbb{R}, \quad x \neq 0, \quad \text { and } \quad y=\frac{x}{2-x}, x \in \mathbb{R}, \quad x \neq 2 .
$$

a) Sketch in the same set of axes the graph of C_{1} and the graph of C_{2}. Indicate clearly in the sketch ...

- ... the equations of any asymptotes.
- ... the coordinates of any intersections between each curve with the coordinate axes.
b) Use the sketch of part (a) to solve the inequality

$$
x \leq-2 \cup 0<x \leq \frac{3}{2} \cup x>2
$$

Created by T. Madas

Question 5 (****+)
A curve C has equation

$$
h(x)=\frac{f(x)}{g(x)}, x \in \mathbb{R}, g(x) \neq 0 .
$$

It is further given that $f(x)$ is a quadratic function and $g(x)$ a linear function.

The asymptotes of C have equations $x=-1$ and $y=x+2$, and its graph is passing through the point $P(1,5)$.
a) Determine a simplified Cartesian equation for C.
b) Use a discriminant method to find the range of $h(x)$ and hence calculate the coordinates of the stationary points of C.
c) Sketch in separate diagrams, showing all the relevant details including asymptotic behaviour, the graph of ...
i. $\quad \ldots y=h(x)$.
ii. $\ldots y^{2}=h(x)$.
$h(x)=\frac{x^{2}+3 x+6}{x+1}=x+2+\frac{4}{x+1}, h(x) \leq-3 \cup h(x) \geq 5,(1,5),(-3,-3)$

