GENERAL

PROOF

Created by T. Madas

Question 1 (**)

$$
f(n)=n^{2}+n+2, n \in \mathbb{N} .
$$

Show that $f(n)$ is always even.

Question 3 (**)
Show that $a^{3}-a+1$ is odd for all positive integer values of a.
\square , proof

Question 4 (**)
Prove that the square of a positive integer can never be of the form $3 k+2, k \in \mathbb{N}$.

Question 5 (**+)
It is asserted that

$$
|2 x+1| \leq 5 \Rightarrow|x| \leq 2
$$

Disprove this assertion by a counter-example.

Question $7 \quad(* *+)$
Prove by contradiction that if p and q are positive integers, then

Without using proof by induction, show that $f(n)$ is a multiple of 8 .
\square , proof

Created by T. Madas

Question 9 (***)
Prove by contradiction that for all real x

Use direct proof to show that 2^{p+1} is a factor of N.

Question 11 (***)
Prove by exhaustion that if n is a positive integer that is not divisible by 3 , then $n^{2}-1$ is divisible by 3 .

Prove that if we subtract 1 from a positive odd square number, the answer is always divisible by 8 .

Question 13 (***+)
Given that $k>0$, use algebra to show that

$$
\frac{k+1}{\sqrt{k}} \geq 2
$$

Question 14 (***)
Prove by the method of contradiction that there are no integers n and m which satisfy the following equation.

$$
3 n+21 m=137
$$

\square , proof

Created by T. Madas

Created by T. Madas

Question 15 (***)

Use the method of proof by contradiction to show that if x then

$$
\left|x+\frac{1}{x}\right| \geq 2
$$

Created by T. Madas

Question $17 \quad(* * *+)$
Prove by the method of contradiction that there are no integers a and b which satisfy the following equation.

Question 18 (***+)
Use proof by exhaustion to show that if $m \in \mathbb{N}$ and $n \in \mathbb{N}$, then

Created by T. Madas

Question 19 (***+)

Use a calculus method to prove that if $x \in \mathbb{R}, x>0$, then

Question 20 (***+)

The figure above shows two right angled triangles.

- The triangle, on the left section of the figure, has side lengths of a, b and c,
where c is the length of its hypotenuse.
- The triangle, on the right section of the figure, has side lengths of

$$
a+1, \quad b+1 \text { and } c+1
$$

where $c+1$ is the length of its hypotenuse.

Show that a, b and c cannot all be integers.

Created by T. Madas

Question $21 \quad(* * *+)$
It is given that $x \in \mathbb{R}$ and $y \in \mathbb{R}$ such that $x+y=1$.

Prove that

$$
x^{2}+y=y^{2}+x
$$

\square proof

Question 22 (***+)
It is given that a and b are positive odd integers, with $a>b$.

Use proof by contradiction to show that if $a+b$ is a multiple of 4 , then $a-b$ cannot be a multiple of 4 .

Prove by contradiction that $\log _{10} 5$ is an irrational number.

Question 24 (****)
Let $a \in \mathbb{N}$ with $\frac{1}{5} a \notin \mathbb{N}$.
a) Show that the remainder of the division of a^{2} by 5 is either 1 or 4 .
b) Given further that $b \in \mathbb{N}$ with $\frac{1}{5} b \notin \mathbb{N}$, deduce that $\frac{1}{5}\left(a^{4}-b^{4}\right) \in \mathbb{N}$.
\square , proof

\square

Question 25 ($* * * * *)$
It is asserted that
" The difference of the squares of two non consecutive positive integers can never be a prime number".
a) Prove the validity of the above assertion.

The difference between two consecutive square numbers is 163 .
b) Given further that 163 is a prime number find the above mentioned consecutive square numbers.

Question 26 (****)
By considering $(\sqrt{2})^{\sqrt{2}}$, or otherwise, prove that an irrational number raised to the power of an irrational number can be a rational number.

Question 28 (****)
Given that $k \in \mathbb{N}$, use algebra to prove that

$$
\frac{2 k+2}{2 k+3}>\frac{2 k}{2 k+1}
$$

Question 29 (****)

$$
f(a)=a^{3}+5 a, a \in \mathbb{N}
$$

Without using proof by induction, show that $f(a)$ is a multiple of 6 .

Created by T. Madas

Created by T. Madas

Question 30 (****)

$$
f(k)=k^{3}+2 k, \quad k \in \mathbb{N} .
$$

Without using proof by induction, show that $f(k)$ is always a multiple of 3 .

Question 32 (****)
Prove that if 1 is added to the product of any 4 consecutive positive integers, the resulting number will always be a square number.

Question 33 (*****)
Show that for all positive real numbers a and b

$$
a^{3}+b^{3} \geq a^{2} b+a b^{2}
$$

\square , proof

Asseetion $a^{3}+b^{3} \geqslant a^{2} b+a b^{2}, \quad a, b$ posituv

- Dreine the finction
$f(a, b)=a^{3}+b^{2}-a^{2} b-a b^{2}$
- USINE THE SUM of corbes untrniy
$\Rightarrow f(a b)=(a+b)\left(a^{2}-a b+b^{2}\right)-a b(a+b)$
$\left\{A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right\}\right.$
$\Rightarrow f(a b)=(a+b)\left[a^{2}-a b+b^{2}-a b\right]$
$\Rightarrow f(a, b)=(a+b)\left(a^{2}-2 a b+b^{2}\right)$
$\Rightarrow f(a, b)=(a+b)(a-b)^{2}$
- AS $a, b>0$ \& $(a-b)^{2} \geqslant 0, \quad f(a, b) \geqslant 0$
$\Rightarrow(a+b)(a-b)^{2} \geqslant 0$
$\Rightarrow a^{3}+b^{3}-a^{2} b-a b^{2} \geqslant 0$
$\Rightarrow a^{3}+b^{3} \geqslant a^{2} b+a b^{2}$
ALTERNATUU UREIATION SET AS A CONTRADIGTON TYPE PROOF
Superes Tifer $a^{3}+b^{3}<a^{2} b+a b^{2} \quad a, b$ posinut
$\Rightarrow a^{3}+b^{3}-a^{2} b+a b^{2}<0$
$\Rightarrow(a+b)\left(a^{2}-a b+b^{2}\right)-a b(a+b)<0$
$\rightarrow(a+b)\left(a-a b+b^{2}-a b\right)<0$
$\Rightarrow(a+b)(a-b)^{2}<0$
What is + contrengurian as $(a+b)>0(a-b)^{2} \geqslant 0$

Question $34 \quad(* * * *+)$
Show clearly that for all real numbers α, β and γ

$$
\alpha^{2}+\beta^{2}+\gamma^{2} \geq \alpha \beta+\beta \gamma+\gamma \alpha
$$

Question 35 (****+)
Show, without using proof by induction, that the sum of cubes of any 3 consecutive positive integers is a multiple of 9 .

\square , proof

Created by T. Madas

Question 36 (****+)
Use a detailed method to show that

$$
\sqrt{1000 \times 1001 \times 1002 \times 1003+1}=1003001
$$

You may NOT use a calculating aid in this question.

Question 37 ($* * * * * *)$
Show that the square of an odd positive integer greater than 1 is of the form
where T is a triangular number.

$$
8 T+1
$$

Created by T. Madas

Question 38 (*****)
It is given that

$$
f(m, n) \equiv 2 m\left(m^{2}+3 n^{2}\right)
$$

where m and n are distinct positive integers, with $m>n$.

By using the expansion of $(A \pm B)^{3}$, prove that $f(m, n)$ can always be written as the sum of two cubes.

Created by T. Madas

Question 39
(*****)
It is given that

$$
f(k) \equiv\left(k^{3}-k\right)\left(2 k^{2}+5 k-3\right),
$$

where k is a positive integer.

Prove that $f(k)$ is divisible by 5 .

You may not use proof by induction in this question.

Created by T. Madas

Question 40
Prove that for all real numbers, a and b,

Question 41 (*****)
Show that for all positive real numbers a and b

$$
a^{3}+2 b^{3} \geq 3 a b^{2}
$$

Question 42 (*****)
It is given that x, a and b are positive real numbers, with $a>b$ and $x^{2}>a b$.

Use proof by contradiction to show that

$$
\frac{x+a}{\sqrt{x^{2}+a^{2}}}-\frac{x+b}{\sqrt{x^{2}+b^{2}}}>0
$$

\square , proof

suppase Titat
$\Rightarrow \substack{2^{2}+2,2+a+a^{2} \\ z+2 a^{2}} \frac{z^{2}+2 n+b^{2}}{\substack{2 \\ x+b^{2}}}$
$\Rightarrow \frac{2 x}{x+0} \leqslant \frac{2 x}{x+x^{2}}$
$\Rightarrow \frac{a}{3^{2}+a^{2}}<\frac{6}{x^{2}+x^{2}}$
$\Rightarrow a a^{2}+a^{2} \leqslant b^{2}+b^{2}+a^{2}$

\square
$\Rightarrow a x^{2}-b x^{2}+a b^{2}-a^{2} b \leq 0$
$\Rightarrow x^{2}(a-b)-a b(a-b) \leq 0$ $\rightarrow(a-b)\left(x^{2}-a b\right)<0$
$\left.\begin{array}{l}\text { - BUT } a>b \Rightarrow a-b>0 \\ \text { - A(So } x^{2}>a b \Rightarrow x^{2}-a b>0\end{array}\right\} \Rightarrow(a-b)\left(x^{2}-a b\right)>0$ 4 inct By conteadiction

Created by T. Madas

Question 43 (*****)
Prove that the sum of the squares of two distinct positive integers, when doubled, it can be written as the sum of two distinct square numbers

Question 44 (*****)
The Rational Zero Theorem asserts that if the polynomial

$$
f(x) \equiv a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}
$$

has integer coefficients, then every rational zero of $f(x)$ has the form $p q$, where p is a factor of the constant term a_{0} and q is a factor of the leading coefficient a_{n}.

Use this result to show that $\sin \left(\frac{\pi}{18}\right)$ is irrational.

Question 45 (*****)
By using the definition of e as an infinite convergent series, prove by contradiction that e is irrational.

