GENERAL PROOF
Question 1 (**)

\[f(n) = n^2 + n + 2, \ n \in \mathbb{N}. \]

Show that \(f(n) \) is always even.

Question 2 (**)

Prove that when the square of a positive odd integer is divided by 4 the remainder is always 1.
Question 3 (**)
Show that \(a^3 - a + 1\) is odd for all positive integer values of \(a\).

Question 4 (**)
Prove that the square of a positive integer can never be of the form \(3k + 2\), \(k \in \mathbb{N}\).
Question 5 (***+)

It is asserted that

\[|2x+1| \leq 5 \implies |x| \leq 2. \]

Disprove this assertion by a **counter-example**.

Question 6 (***+)

Prove by **contradiction** that for all real \(\theta \)

\[\cos \theta + \sin \theta \leq \sqrt{2}. \]
Question 7 (**+)
Prove by contradiction that if p and q are positive integers, then

\[\frac{p}{q} + \frac{q}{p} \geq 2. \]

proof

Question 8 (***)

\[f(n) = 5^{2n} - 1, \quad n \in \mathbb{N}. \]

Without using proof by induction, show that $f(n)$ is a multiple of 8.

proof
Question 9 (***)
Prove by contradiction that for all real x

$$(13x+1)^2 + 3 > (5x-1)^2.$$

Question 10 (***)
It is given that

$$N = k^2 - 1 \quad \text{and} \quad k = 2^n - 1, \quad n \in \mathbb{N}.$$

Use direct proof to show that 2^{n+1} is a factor of N.

Created by T. Madas
Question 11 (***)
Prove by exhaustion that if n is a positive integer that is not divisible by 3, then $n^2 - 1$ is divisible by 3.

proof

Question 12 (***)
Prove that if we subtract 1 from a positive odd square number, the answer is always divisible by 8.

proof
Question 13 (***)

Given that \(k > 0 \), use algebra to show that

\[
\frac{k + 1}{\sqrt{k}} \geq 2.
\]

Proof:

\[
\frac{k + 1}{\sqrt{k}} = \frac{k^{1/2} + 1}{\sqrt{k}} \geq \frac{2}{\sqrt{k}}
\]

Since \(k > 0 \), \(\sqrt{k} > 0 \), and \(k + 1 > k \), it follows that

\[
\frac{k + 1}{\sqrt{k}} \geq 2.
\]

Question 14 (***)

Prove by the method of contradiction that there are no integers \(n \) and \(m \) which satisfy the following equation.

\[
3n + 21m = 137
\]

Proof:

Assume that there exist integers \(n \) and \(m \) such that

\[
3n + 21m = 137
\]

This implies

\[
3n + 21m \equiv 0 \pmod{21}
\]

Since 137 is not divisible by 21, we have a contradiction. Therefore, there are no integers \(n \) and \(m \) which satisfy the equation.

Created by T. Madas
Question 15 (***)
Use the method of **proof by contradiction** to show that if \(x \) then
\[
\left| x + \frac{1}{x} \right| \geq 2.
\]

\[\text{NG}^2, \text{ proof}\]

Question 16 (***)
Prove that the sum of two even consecutive powers of 2 is always a multiple of 20.

\[\text{proof}\]
Question 17 (***+)
Prove by the method of contradiction that there are no integers a and b which satisfy the following equation.

\[a^2 - 8b = 7 \]
Question 18 (***)

Use proof by exhaustion to show that if \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \), then

\[
m^2 - n^2 \neq 102.
\]

Proof

1. Assume for contradiction that \(m^2 - n^2 = 102 \).
2. Since \(102 = 2 \times 3 \times 17 \), we can consider the cases for the prime factors of \(m^2 - n^2 \).
3. If \(m^2 - n^2 \) is divisible by 2, then both \(m^2 \) and \(n^2 \) must be even, implying that both \(m \) and \(n \) are even.
4. If \(m \) and \(n \) are even, then there exist integers \(k \) and \(l \) such that \(m = 2k \) and \(n = 2l \).
5. Substituting these expressions into the equation, we get \((2k)^2 - (2l)^2 = 102 \), which simplifies to \(4k^2 - 4l^2 = 102 \), and further to \(k^2 - l^2 = 25.5 \).
6. However, \(k^2 - l^2 \) is an integer, which contradicts the assumption that \(m^2 - n^2 = 102 \).

Therefore, our initial assumption is false, and \(m^2 - n^2 \neq 102 \).
Question 19 (***+)

Use a calculus method to prove that if $x \in \mathbb{R}$, $x > 0$, then

$$x^4 + x^{-4} \geq 2.$$
The figure above shows two right angled triangles.

- The triangle, on the left section of the figure, has side lengths of \(a\), \(b\) and \(c\), where \(c\) is the length of its hypotenuse.

- The triangle, on the right section of the figure, has side lengths of \(a+1\), \(b+1\) and \(c+1\), where \(c+1\) is the length of its hypotenuse.

Show that \(a\), \(b\) and \(c\) cannot all be integers.
Question 21 (***+)

It is given that $x \in \mathbb{R}$ and $y \in \mathbb{R}$ such that $x + y = 1$.

Prove that

\[x^2 + y = y^2 + x. \]
Question 22 (***)

It is given that a and b are positive odd integers, with $a > b$.

Use proof by contradiction to show that if $a + b$ is a multiple of 4, then $a - b$ cannot be a multiple of 4.

Question 23 (***)

Prove by contradiction that $\log_{10} 5$ is an irrational number.
Let $a \in \mathbb{N}$ with $\frac{1}{5}a \notin \mathbb{N}$.

a) Show that the remainder of the division of a^2 by 5 is either 1 or 4.

b) Given further that $b \in \mathbb{N}$ with $\frac{1}{5}b \notin \mathbb{N}$, deduce that $\frac{1}{5}(a^4 - b^4) \in \mathbb{N}$.

Proof,
Question 25 (****)

It is asserted that

“The difference of the squares of two non consecutive positive integers can never be a prime number”.

a) Prove the validity of the above assertion.

The difference between two consecutive square numbers is 163.

b) Given further that 163 is a prime number find the above mentioned consecutive square numbers.

6561, 6724
Question 26 (***)

By considering \((\sqrt{2})^{\sqrt{2}}\), or otherwise, prove that an irrational number raised to the power of an irrational number can be a rational number.

\[
(\sqrt{2})^{\sqrt{2}}
\]

Proof

Question 27 (***)

It is given that

\[a^2 + b^2 = c^2, \quad a \in \mathbb{N}, \quad b \in \mathbb{N}.
\]

Show that \(a\) and \(b\) cannot both be odd.

Proof

Created by T. Madas
Question 28 (****)
Given that \(k \in \mathbb{N} \), use algebra to prove that
\[
\frac{2k + 2}{2k + 3} > \frac{2k}{2k + 1}.
\]

proof

Question 29 (****)
\[
f(a) = a^3 + 5a, \ a \in \mathbb{N}.
\]
Without using proof by induction, show that \(f(a) \) is a multiple of 6.

proof
Question 30 (****)

\[f(k) = k^3 + 2k, \quad k \in \mathbb{N}. \]

Without using proof by induction, show that \(f(k) \) is always a multiple of 3.

Question 31 (****)

Consider the following sequence

\[3, 8, 15, 24, 35, 48, \ldots \]

Prove that the product of any two consecutive terms of the above sequence can be written as the product of 4 consecutive integers.
Question 32 (***)
Prove that if 1 is added to the product of any 4 consecutive positive integers, the resulting number will always be a square number.

\[
\text{proof}
\]

Question 33 (****+)
Show that for all positive real numbers \(a\) and \(b\)

\[
a^3 + b^3 \geq a^2b + ab^2.
\]

\[
\text{proof}
\]
Question 34 (***)
Show clearly that for all real numbers \(\alpha \), \(\beta \) and \(\gamma \)
\[
\alpha^2 + \beta^2 + \gamma^2 \geq \alpha \beta + \beta \gamma + \gamma \alpha.
\]

proof

Question 35 (**++)
Show, without using proof by induction, that the sum of cubes of any 3 consecutive positive integers is a multiple of 9.

proof
Question 36 (***)

Use a detailed method to show that

\[\sqrt{1000 \times 1001 \times 1002 \times 1003 + 1} = 1003001 \]

You may NOT use a calculating aid in this question.
Question 37 \(\text{****} \)

Show that the square of an odd positive integer greater than 1 is of the form \(8T + 1 \),

where \(T \) is a triangular number.
Question 38 (*****)

It is given that

\[f(m,n) = 2m(m^2 + 3n^2), \]

where \(m \) and \(n \) are distinct positive integers, with \(m > n \).

By using the expansion of \((A \pm B)^3\), prove that \(f(m,n) \) can always be written as the sum of two cubes.

\[\boxed{\text{proof}} \]
It is given that

\[f(k) \equiv (k^3 - k)(2k^2 + 5k - 3), \]

where \(k \) is a positive integer.

Prove that \(f(k) \) is divisible by \(5 \).

You may not use proof by induction in this question.
Prove that for all real numbers, a and b,

$$\sqrt{a^2 + b^2} \leq \frac{\sqrt{4a^2 + b^2} + \sqrt{a^2 + 4b^2}}{3}.$$
Question 41 (*****)

Show that for all positive real numbers \(a \) and \(b \)

\[
a^3 + 2b^3 \geq 3ab^2.
\]
Question 42 (*****)

It is given that x, a and b are positive real numbers, with $a > b$ and $x^2 > ab$.

Use proof by contradiction to show that

$$\frac{x+a}{\sqrt{x^2+a^2}} + \frac{x+b}{\sqrt{x^2+b^2}} > 0.$$
Question 43 (*****)

Prove that the sum of the squares of two distinct positive integers, when doubled, it can be written as the sum of two distinct square numbers

proof
Question 44 (*****)

The Rational Zero Theorem asserts that if the polynomial

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0 \]

has integer coefficients, then every rational zero of \(f(x) \) has the form \(\frac{p}{q} \), where \(p \) is a factor of the constant term \(a_0 \) and \(q \) is a factor of the leading coefficient \(a_n \).

Use this result to show that \(\sin \left(\frac{\pi}{18} \right) \) is irrational.

\[\square \text{, proof} \]
Question 45 (*****)
By using the definition of e as an infinite convergent series, prove by contradiction that e is irrational.