PROOF

BY
INDUCTION

SUMMATION

RESULTS

Question 1 (**)
Prove by induction that

Question 2 (**)
Prove by induction that

Question 3 (**+)
Prove by induction that

Question 4 (**+)
Prove by induction that

Question 5 (**+)
Prove by induction that

Created by T. Madas

Question 7 (***)
Prove by induction that

$$
\sum_{r=1}^{n} r(3 r-1)=n^{2}(n+1), n \geq 1, n \in \mathbb{N}
$$

proof

Question 8 (***)

Prove by induction that

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}, n \geq 1, n \in \mathbb{N} .
$$

Created by T. Madas

Question 9 (***)
Prove by induction that

Prove by induction that

Created by T. Madas

Question 11 (***+)

Prove by induction that

$$
\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}=\frac{n}{2 n+1}, n \geq 1, n \in \mathbb{N}
$$

$\sum_{r=1}^{n} r \times 2^{r}=2+(n-1) 2^{n+1}, \quad n \geq 1, n \in \mathbb{N}$.
proof

Question 13 (***+)
Prove by induction that

proof

Question 14 (***+)
If $n \geq 1, n \in \mathbb{N}$, prove by induction that

Question $15 \quad(* * *+)$
Prove by induction that

Question 16 (****)
Prove by induction that

$$
\sum_{r=1}^{n} \frac{2 r^{2}-1}{r^{2}(r+1)^{2}}=\frac{n^{2}}{(n+1)^{2}}, n \geq 1, n \in \mathbb{N}
$$

\square
\square

By insfection $(k+1)^{4}=k^{4}+4 t^{3}+6 t^{2}+4 k+1$

RETVENING To THE MAIN UNH
$\Rightarrow \sum_{r=1}^{k+1} \frac{2 r^{2}-1}{r^{2}(r+1)^{2}}=\frac{(k+1)^{4}}{(k+1)^{2}(k+2)^{2}}$
$\Rightarrow \sum_{r=1}^{k+1} \frac{2 r^{2}-1}{r^{2}\left(S^{2}+1\right)^{2}}=\frac{(k+1)^{2}}{(k+2)^{2}}$
$\Rightarrow \sum_{r=1}^{(\pi+1)} \frac{2 r^{2}-1}{r^{2}(r+1)^{2}}=\frac{(\pi+1)}{((\pi+1)+1)^{2}}$
GNavan

- If The rtaut thas for $n=k \in \mathbb{N}$, i Ho it also theiss ser $n=k+1$ - Sincer the refurt plas ge $n=2$, titain π must tpid be ale n

Created by T. Madas

Question 17 (****)
Prove by induction that

Question 18 (****)
Prove by induction that

$$
1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2} \equiv \frac{1}{3} n\left(4 n^{2}-1\right), \quad n \geq 1, n \in \mathbb{N} .
$$

Created by T. Madas

Question 20 (****)
Prove by mathematical induction that if n is a positive integer then

$$
\sum_{r=1}^{n}(3 r-2)^{2}=\frac{1}{2} n\left(6 n^{2}-3 n-1\right)
$$

You may not use other methods of proof in this question.

Question 21 (****)
Prove by mathematical induction that if n is a positive integer then

$$
\sum_{r=1}^{n} \frac{3 r+2}{r(r+1)(r+2)}=\frac{n(2 n+3)}{(n+1)(n+2)}
$$

You may not use other methods of proof in this question.

Question 22 (****)
Prove by induction that

$$
\sum_{r=1}^{n}\left[r(r+1)\left(\frac{1}{2}\right)^{r-1}\right]=16-\left(\frac{1}{2}\right)^{n-1}\left(n^{2}+5 n+8\right), n \geq 1, n \in \mathbb{N}
$$

BAEE CASE $n=1$

- $\sum_{r=1}^{1}\left[r(r+1)\left(\frac{1}{2}\right)^{r-1}\right]=1 \times 2 \times\left(\frac{1}{t}\right)^{0}=2$
- $16-\left(\frac{1}{2}\right)^{n-1}\left(n^{2}+5 n+8\right)=16-\left(\frac{1}{2}\right)^{0} \times(1+5+8)=16-1 \times 14=2$ IE THe Refor places for $n=1$ Supposs THAT THE RHOT pwas for $n=k, k \in \mathbb{N}$
$\rightarrow \sum_{n-1}^{E}\left[(x)(2)^{m}\right]=16-\left(\frac{1}{2}\right)^{*}\left(x^{2}+5 k+\theta\right)$

$\Rightarrow \sum_{i=1}^{4 n}\left[(\pi(5))\left(t^{1-1}\right]=16+(2)^{2}\left[k^{2}+3+2+2-2 t^{2}-10 t-6\right]\right]$

$\Rightarrow \sum_{k=1}^{k+1}\left[1(a+1)\left(\frac{3}{2}\right)^{-1}\right]=k-\left(\frac{\left.()^{k}\right)}{2}\left(k^{2}+7 k+14\right)\right.$

DIVISIBILITY RESULTS

$$
f(n)=7^{n}+5, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 6 , for all $n \in \mathbb{N}$.

Created by T. Madas

Question 3 (**)

$$
f(n)=5^{n}+3, n \in \mathbb{N} .
$$

Prove by induction that $f(n)$ is divisible by 4 , for all $n \in \mathbb{N}$.

Created by T. Madas

Question 5 (**)
Prove by induction that for all natural numbers n,

Prove by induction that for all natural numbers n,

Created by T. Madas

Question 7 (**)

$$
f(n)=3^{2 n}-1, n \in \mathbb{N} .
$$

Prove by induction that $f(n)$ is a multiple of 8 , for all $n \in \mathbb{N}$.

Question $9 \quad(* *+)$

$$
f(n)=5^{n}+8 n+3, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 4 , for all $n \in \mathbb{N}$.

$$
f(n)=3^{4 n}+2^{4 n+2}, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 5 , for all $n \in \mathbb{N}$.
\square

Created by T. Madas

Question 11 (**+)

Prove by induction that for all natural numbers n,

$$
9^{n}-5^{n}
$$

is divisible by 4 .

Question 12 (**+)

$$
f(n)=(4 n+3) 5^{n}-3, n \in \mathbb{N}
$$

Question 13 (***)
Prove by induction that the sum of the cubes of any three consecutive positive integers is always divisible by 9 .

Prove by induction that for all natural numbers n, such that $n \geq 2$,
is divisible by 7 .

$$
15^{n}-8^{n-2}
$$

Question 15 (***)
Prove by induction that for all natural numbers n,

$$
(2 n+1) 7^{n}+11
$$

Question 16 (***)

$$
f(n)=24 \times 2^{4 n}+3^{4 n}, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 5 , for all $n \in \mathbb{N}$.

Created by T. Madas

Created by T. Madas

Question 17 (***)

$$
f(n)=4 \times 7^{n}+3 \times 5^{n}+5, n \in \mathbb{N} .
$$

Prove by induction that $f(n)$ is divisible by 12 , for all $n \in \mathbb{N}$.

proof

$$
f(n)=(2 n+1) 7^{n}-1, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 4 , for all $n \in \mathbb{N}$.
proof
\square

Created by T. Madas

Question 19 (***+)
Prove by induction that for all natural numbers n,
is divisible by 9 .

Question 20 (***+)
Prove by induction that for all natural numbers n,

$$
4^{n+1}+5^{2 n-1}
$$

is divisible by 21 .

$$
f(n)=5^{2 n}+3 n-1, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 9 , for all $n \in \mathbb{N}$.

Prove by induction that 18 is a factor of $4^{n}+6 n+8$, for all $n \in \mathbb{N}$.

Created by T. Madas

Question 23 (****)
Prove by induction that for all natural numbers n,
is divisible by 8 .

Question $24 \quad(* * *+$)
Prove by mathematical induction that if n is a positive integer then $3^{2 n+3}+2^{n+3}$ is always divisible by 7 .

Question $25 \quad(* * *+)$
Prove by mathematical induction that if n is a positive integer then $5^{n-1}+11^{n}$ is always divisible by 6 .

Question 26 (***+)
Prove by the method of induction that
is divisible by 11 .

Created by T. Madas

Question 27 ($* * *+$)

$$
f(n)=8^{n}-2^{n}, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 6 , for all $n \in \mathbb{N}$.

Created by T. Madas

Question $29(* * *+)$

$$
f(n)=n^{3}+5 n, n \in \mathbb{N} .
$$

a) Show that $n^{2}+n+2$ is always even for all $n \in \mathbb{N}$.
b) Hence, prove by induction that $f(n)$ is divisible by 6 , for all $n \in \mathbb{N}$.

Question 30 (***+)
A sequence of positive numbers is given by

$$
a_{n}=12^{n+1}+2 \times 5^{n}, n \in \mathbb{N}
$$

Prove by induction that every term of the sequence is a multiple of 7

Question 31 (***+)

$$
f(r)=4+6^{r}, r \in \mathbb{N} .
$$

Prove by induction that $f(r)$ is divisible by 10

Prove by induction that for all natural numbers n, the following expression

$$
7^{n}+4^{n}+1
$$

is divisible by 6 .

Created by T. Madas

Question 33 (***+)

A sequence of positive numbers is given by

$$
u_{n}=7^{n}+3 n+8, n \in \mathbb{N} .
$$

Question 35 (***+)
A sequence of positive numbers is given by

$$
u_{n}=2^{3 n+2}+5^{n+1}, \quad n \in \mathbb{N}
$$

Prove by induction that every term of the sequence is a multiple of 3 .

Question 36 (***+)

$$
f(n)=3^{2 n+4}-2^{2 n}, n \in \mathbb{N}
$$

Prove by induction that $f(n)$ is divisible by 5 , for all $n \in \mathbb{N}$.

RECURRENCE RELATIONS

Created by T. Madas

Question 1 (**)
A sequence of integers is defined recursively by the relation

$$
a_{n+1}=a_{n}-4, a_{1}=3, n=1,2,3, \ldots
$$

Prove by induction that its $n^{\text {th }}$ term is given by

Created by T. Madas

Question 2 (**)
A sequence of integers $t_{1}, t_{2}, t_{3}, \ldots$ is given by the recurrence relation

$$
t_{n+1}=3 t_{n}+2, \quad t_{1}=1, \quad n \in \mathbb{N}
$$

Prove by induction that its $n^{\text {th }}$ term of the sequence is given by

$$
t_{n}=2 \times 3^{n-1}-1, n \in \mathbb{N}
$$

o) \square , proof

Created by T. Madas

Created by T. Madas

Question 3 (**)
A sequence of integers is defined inductively by the relation

$$
a_{n+1}=3 a_{n}+4, \quad a_{1}=3, \quad n=1,2,3, \ldots
$$

Prove by induction that its $n^{\text {th }}$ term is given by

$$
a_{n}=5 \times 3^{n-1}-2, \quad n=1,2,3, \ldots
$$

Question $4 \quad$ (**)

The terms of a sequence can be generated by the recurrence relation

$$
b_{n+1}=4 b_{n}+2, \quad b_{1}=2, \quad n=1,2,3, \ldots
$$

Prove by induction that the $n^{\text {th }}$ term of the sequence is given by

$$
b_{n}=\frac{2}{3}\left(4^{n}-1\right), n=1,2,3, \ldots
$$

Created by T. Madas

Question 5 (**)
A sequence is defined by the recurrence relation

$$
u_{n+1}=7 u_{n}-3, u_{1}=7, n=1,2,3, \ldots
$$

Prove by induction that its $n^{\text {th }}$ term is given by

Created by T. Madas

Question 6 (**)
A sequence of integers $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ is given by

$$
a_{n+1}=3 a_{n}+2, a_{1}=2, n=1,2,3, \ldots
$$

Prove by induction that its $n^{\text {th }}$ term is given by

Question $7 \quad(* *+)$
A certain sequence can be generated by the recurrence relation

$$
u_{n+1}=\frac{1}{3}\left(2 u_{n}-1\right), \quad u_{1}=1, \quad n=1,2,3, \ldots
$$

Prove by induction that the $n^{\text {th }}$ term of the sequence is given by

Question 8 (***+)
A sequence is defined recursively by

$$
u_{n+1}=\frac{3}{4-u_{n}}, u_{1}=\frac{3}{4}, n=1,2,3, \ldots
$$

Prove by induction that

$$
u_{n}=\frac{3^{n+1}-3}{3^{n+1}-1}, n=1,2,3, \ldots
$$

\square , proof

\square

Question 9 (***+)
A sequence is defined recursively by

$$
u_{n+1}=u_{n}+3 k-2, u_{1}=3, \quad n=1,2,3, \ldots
$$

Prove by induction that

Question $10 \quad\left({ }^{* * *}+\right.$)
A sequence is defined recursively by

$$
u_{n+1}=\frac{u_{n}}{u_{n}+1}, u_{1}=2, n \in \mathbb{N}
$$

By writing the above recurrence relation in the form

$$
u_{n+1}=A+\frac{B}{u_{n}+1}
$$

where A and B are integers, use proof by induction to show that

\square , proof

$$
u_{n+1}=\frac{u_{n}}{u_{n}+1}=\frac{\left(u_{n}+1\right)-1}{\left(u_{n}+1\right)}=1-\frac{1}{u_{n}+1}
$$

BASE CASE, IF $n=1$
$\left.\begin{array}{l}u_{1}=2 \\ u_{1}=\frac{2}{2 \times 1-1}=2\end{array}\right\}$ i.e THE RESOC H Las Ge $n=1$
 $\Rightarrow u_{k}=\frac{2}{2 k-1}$
$\Rightarrow u_{k}+1=\frac{2}{2}+1$
$\Rightarrow u_{k}+1=\frac{2}{2 k-1}+1=\frac{2+(2 k-1)}{2 k-1}=\frac{2 k+1}{2 x-1}$
$\Rightarrow \frac{1}{u_{k}}=\frac{2 k-1}{2 k-1}$
$\Rightarrow \frac{1}{a_{k}+1}=\frac{2 k-1}{2 k+1}$
$\Rightarrow-\frac{1}{u_{k}+1}=-\frac{2 k-1}{2 k+1}$
$\Rightarrow 1-\frac{1}{u_{k}+1}=1-\frac{2 k-1}{2 k+1}=\frac{(2 x+1)-(2 k-1)}{2 x+1}=\frac{2}{2 k+1}$ $\Rightarrow u_{\underline{k+1}}=\frac{2}{2(\underline{\underline{(a n})-1}}$

Question 11 (***+)
A sequence is generated by the recurrence relation

$$
u_{n+2}=5 u_{n+1}-6 u_{n}, u_{1}=5, u_{2}=13, \quad n=1,2,3, \ldots
$$

Prove by induction that $n^{\text {th }}$ term of this sequence is given by

Question 12 (****)
A sequence is generated by the recurrence relation

$$
u_{n+2}=6 u_{n+1}-8 u_{n}, u_{1}=0, u_{2}=32, \quad n=1,2,3, \ldots
$$

Prove by induction that $n^{\text {th }}$ term of this sequence is given by

Question 13 (****)
A sequence is generated by the recurrence relation

$$
u_{n+2}=u_{n+1}+u_{n}, \quad u_{1}=0, u_{2}=1, \quad n=1,2,3, \ldots
$$

Prove by induction that $u_{5 m}$ is a multiple of 5 , for all $m \in \mathbb{N}$.

Created by T. Madas

Question $14 \quad(* * * *+)$
A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=\frac{5 u_{n}-1}{4 u_{n}+1}, u_{1}=1, n \in \mathbb{N}, n \geq 1
$$

Prove by induction that the $n^{\text {th }}$ term of the sequence is given by

$$
u_{n}=\frac{n+2}{2 n+1} .
$$

Created by T. Madas

Question 15 (****+)
A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=\frac{u_{n}-5}{3 u_{n}-7}, u_{1}=-1, n \in \mathbb{N}, n \geq 1
$$

Prove by induction that the $n^{\text {th }}$ term of the sequence is given by

$$
u_{n}=\frac{2^{n+1}-5}{2^{n+1}-3}
$$

\square , proof 2

\square
for Rewt beos fer $n=k \in \mathbb{N}$, IfN It teco beos for $n=k+1$ Se $n=1$, teso

MATRICES

Created by T. Madas

Question 1 (**)
Prove by induction that

Question 2 (**)
A transformation where $\mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ is defined by

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

a) Find the elements of the matrices, \mathbf{A}^{2} and \mathbf{A}^{3}.
b) Write down a suitable form for \mathbf{A}^{n} and use the method of proof by induction to prove it.

Created by T. Madas

Question 3 (**)
Prove by induction that if $n \geq 1, n \in \mathbb{N}$, then

Created by T. Madas

Question 4 (**)

$$
\mathbf{A}=\left(\begin{array}{ll}
3 & 0 \\
6 & 1
\end{array}\right)
$$

Prove by induction that if $n \geq 1, n \in \mathbb{N}$, then

Question 5 (**)
Prove by induction that

Created by T. Madas

Created by T. Madas

Question 7 (**+)

Prove by induction that

Created by T. Madas

Question 8 (**+)
Prove by induction that

Created by T. Madas

Question 9 (**+)
Prove by induction that

Question 10
$(* * * * *)$

Prove by induction that

$$
\mathbf{A}^{n}=n \mathbf{A}-(n-1) \mathbf{I}, n \geq 1, n \in \mathbb{N}
$$

\square , proof

- Retuemna to tie mannauation of tie inevation.
$\Rightarrow A^{k+1}=k[2 A-I]-(k-1) A$
$\Rightarrow A^{k+1}=2 k A-k I-k A+A$
$\Rightarrow A^{k+1}=k \underline{A}+A-k I$
$\Rightarrow \underline{A}^{k+1}=(k+1) A-[(k+1)-1] I$
 THE Revis wost the fore tu $n \in \mathbb{N}$

MISCELLANEOUS

Question 1 (**+)
De Moivre's theorem states

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta, n \in \mathbb{N}
$$

Prove this theorem by induction.

$$
u_{n}=\frac{3}{7}\left(8^{n}-1\right), n \in \mathbb{N}
$$

Prove by induction that every term of this sequence is an integer.

Created by T. Madas

Question $3 \quad(* *+)$

$$
\sum_{r=1}^{n}(2 r+1)=(n+1)^{2}, n \in \mathbb{N}
$$

a) Show that if the above result holds for $n=k$, then it also holds for $n=k+1$.
b) Explain why the result is not true.

Created by T. Madas

Question 4 (**+)
The distinct square matrices \mathbf{A} and \mathbf{B} have the properties

- $\mathbf{A B}=\mathbf{B}^{5} \mathbf{A}$
- $\mathbf{B}^{6}=\mathbf{I}$
where \mathbf{I} is the identity matrix.
a) Show that $\mathbf{B A B}=\mathbf{A}$.

b) Hence prove by induction that $\mathbf{B}^{n} \mathbf{A} \mathbf{B}^{n}=\mathbf{A}$, for all $n \in \mathbb{N}$.

Created by T. Madas

Question 5 (***)
$x y+3 y=x$.

Prove by induction

Question 6 (***)
Bernoulli's inequality asserts that if $a \in \mathbb{R}, a>-1$ and $n \in \mathbb{N}, n \geq 2$, then

$$
(1+a)^{n}>1+a n .
$$

Prove, by induction, the validity of Bernoulli's identity.

Created by T. Madas

Question 7 (***+)
Prove by induction that

$$
\sum_{m}=\frac{10}{2}
$$

proof

Created by T. Madas

Question 9 (****)
Prove by induction that
$2^{n}>2 n$, for $n \geq 3, n \in \mathbb{N}$.

Question 10 (****)
Prove by induction that
$2^{n}>n^{2}$, for $n \geq 5, n \in \mathbb{N}$.

Created by T. Madas

Question 11 (****)
Prove by induction that if $n \in \mathbb{N}, n \geq 3$, then

Question 12 (****)
Prove by induction that for all even natural numbers n

$$
\frac{d^{n}}{d x^{n}}(\sin 3 x)=(-1)^{\frac{n}{2}} \times 3^{n} \times \sin 3 x
$$

\square , proof

Question 13 (****+)
Prove by induction that for $n \geq 1, n \in \mathbb{N}$

$$
\prod_{r=1}^{n}\left(\cos \left(2^{r-1} x\right)\right)=\frac{\sin \left(2^{n} x\right)}{2^{n} \sin x}
$$

\square , proof

WRIT THe Π obseatre expuctly
$\prod_{r=1}^{n}\left[\cos \left(2^{n} \alpha\right)\right]=\cos x \cos 2 x \cos 4 x \cos 8 x \ldots \cos \left(2^{n-1} x\right)$
CHEOQ Tit BASECASE, IE IF $n=1$
L.H.S $=\prod_{n=1}^{1} \cos \left(2^{-4} x\right)=\cos x$

RH.S $=\frac{\sin \left(2^{\prime} x\right)}{2^{\prime} \sin x}=\frac{\sin 2 x}{2 \sin x}=\frac{2 \sin 2 \cos x}{2 \sin x}=\cos x$
Suffocs THAT TAE REGUT hess for $n=t \in \mathbb{N}$
$\Rightarrow \prod_{r=1}^{k}\left[\cos \left(2^{r-1} a\right)\right]=\frac{\sin \left(2^{k} a\right)}{2^{k} \sin x}$
$\Rightarrow \prod_{r=1}^{k}\left[\cos \binom{r-1}{2 x}\right] \times \cos \left(2^{k} x\right)=\frac{\sin ^{(2 x}\left(2^{k}\right)}{2^{k} \sin x} \times \cos \left(z^{k}\right)$
$\Rightarrow \prod_{r=1}^{k=1}\left[\cos \left(2^{r=1} x\right)\right]=\frac{\sin (2 x) \cos \left(2^{k} x\right)}{2^{k} \sin x}=\frac{2 \sin \left(2_{2}^{k}\right) \cos \left(2^{k} x\right)}{2 \times 2^{k} \sin x}$
$\Rightarrow \prod_{r=1}^{k+1}\left[\cos \left(2^{(t-1} x\right)\right]=\frac{\sin \left[2 \times 2_{z}^{k}\right]}{2^{k+1} \sin x}$
$\Rightarrow \prod_{E=1}^{\operatorname{H}}\left[\cos \left(2^{R-1} x\right)=\frac{\sin \left(2^{2+1} x\right)}{2^{k+1} \sin x}\right.$
 Smact Th RENuT plos for $n=1$, THFN ir masr pas for Au $n \in \mathbb{N}$

Question $14 \quad(* * * *+)$
Prove by induction that
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos [(2 n-1) x] \equiv \frac{\sin (2 n x)}{2 \sin x}$

Question 15 (****+)
Prove by induction that every positive integer power of 5 can be written as the sum of squares of two distinct positive integers.

Question 16 (*****)
Prove by induction that

Question 17 (*****)
It is given that for $n \in \mathbb{N}$

$$
u_{n+1}=\frac{7 u_{n}+12}{u_{n}+3}, \quad u_{1}=7
$$

Prove by induction that

$$
u_{n}>6
$$

\square
$u_{n+1}=\frac{7 u_{n}+12}{u_{n}+3}, u_{1}=7$

- Starer by rewriting tite recorefict reation As fowows

$$
u_{n+1}=\frac{7\left(u_{n}+3\right)-9}{u_{n}+3}=7-\frac{9}{u_{n}+3}
$$

- suppose That Tite resuct pous for $n=k, k \in \mathbb{N}$
$\Rightarrow u_{k}>6$
$\Rightarrow u_{k}+3>9$
$\Rightarrow \quad \frac{1}{u_{k}+3}<\frac{1}{9}$
$\Rightarrow \frac{a}{u_{k}+3}<1$
$\Rightarrow-\frac{9}{4_{k}+3}>-1$
$\Rightarrow \quad 7-\frac{a}{u_{k}+3}>6$
$\Rightarrow \quad u_{k+1}>6$
- If THE RHEat puos bor $n=k, k \in \mathbb{N}$, THeN it Also lpoos br $k+1$ As the resur yous bor $n=1 \quad\left(a_{1}=7\right)$, THWN IT must pis $\forall_{4} \in \mathbb{N}$

Question 18 (*****)
Prove by induction that every positive integer power of 14 can be written as the sum of squares of three distinct positive integers.

Created by T. Madas

Question 19 (*****)
It is given that for $n \in \mathbb{N}$

$$
U_{n}=\frac{2 n}{2 n+1} U_{n-1}, \quad U_{1}=\frac{2}{3} .
$$

Prove by induction that

Created by T. Madas

Question 20 ($* * * * * *)$
Prove by induction that
$\frac{d^{n}}{d x^{n}}\left(\mathrm{e}^{x} \sin (\sqrt{3} x)\right)=2^{n} \mathrm{e}^{x} \sin \left(\sqrt{3} x+\frac{n \pi}{3}\right), n \geq 1, n \in \mathbb{N}$.

Created by T. Madas

Question 21 ($* * * * * *)$
The function $f(x)$ is defined by

$$
f(x)=2-\frac{1}{x}, x \in \mathbb{R}, x \neq 0 .
$$

a) Prove that

$$
f^{n}(x)=\frac{(n+1) x-n}{n x-(n-1)}, n \geq 1
$$

where $f^{n}(x)$ denotes the $n^{\text {th }}$ composition of $f(x)$ by itself.
b) State an expression for the domain of $f^{n}(x)$.

Question 22 ($* * * * * *)$
Prove by induction that if $n \in \mathbb{N}, n \geq 3$, then

$$
n^{n+1}>(n+1)^{n}
$$

and hence deduce that if $n \in \mathbb{N}, n \geq 3$, then

$$
\sqrt[n]{n}>\sqrt[n+1]{n+1}
$$

\square , proof

RETURNING TO THE MAN UNE OF THE INDUCTUUE-HYRTHESIS

- If $k^{k+1}>(k+1)^{k}$
- TH(ow) $(k+1)^{k+2}>\frac{(k+1)^{2 k+2}}{k^{k+1}}>(k+2)^{k+1}$
l.e $(k+1)^{\sqrt{k+k+1]}}>[(k+1)+1]^{k+1}$
conceusion
If THe Revat thas for $n=k \in \mathbb{N}$, writ $n \geqslant 3$ THind π As THE Resoct Hours for $n=3$, THTh it Must HLD for Ale $n \in \mathbb{N}$, witht $n \geqslant 3$
Finduly we thane
. $n^{n+1}>(n+1)^{n} \quad n \in \mathbb{N}, n \geqslant 3$
$\left.\rightarrow\left(n^{\hbar}\right)^{n(n)}>\left[(n+1)^{1}\right]^{7(3)}\right]^{(3 n) n}$
$\Rightarrow\left[n \frac{1}{2}\right]^{n^{n+2}}>\left[(n+1)^{n+1}\right]^{k+n}$
$\Rightarrow \sqrt[n]{n}>\sqrt[m]{n+1}$

