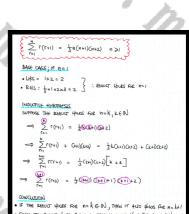
PROL BX DUCTION

Madas Aasinanas Com I. K. SUMMA'I. RESULTS ALASINALIS COM I.Y.C.B. MARIASINALIS COM I.Y.C.B. MARIASIN

Question 1 (**)

I.V.G.B.


Ins.co

I.C.B.

Prove by induction that

 $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2), \ n \ge 1, \ n \in \mathbb{N}.$

11₂₀₂₁

proof

Question 2 (**) Prove by induction that

 $\sum_{r=1}^{n} r(r+3) = \frac{1}{3}n(n+1)(n+5), \ n \ge 1, \ n \in \mathbb{N}.$

proof

1+

$\sum_{n=1}^{N} r(n+3) = \frac{1}{2} r(n+1)(n+3) \quad n \in \mathbb{N}$

- $\begin{array}{l} \textbf{B} & \textbf{B}_{SE} : CASE \quad n=1 \\ \textbf{U}_{S} = \sum_{r=1}^{3} (r(rs) = 1 \times 1 = 4 \\ \textbf{R} : s = \frac{1}{r \times 1} (v \times v \times c = 4 \end{array} \right\} \quad \textbf{R} \text{EQUIT-HELES FOR } H = 1 \\ \end{array}$
- $\begin{array}{l} \bullet \\ & \bullet \\ & \bullet \\ & & \\$
- $\left[\sum_{k=1}^{L=1} (0+3)\right] + (k+1)(k+4) = \frac{1}{2}(k-1)(k+2) + (k+1)(k+4)$
- $= \sum_{l=1}^{k+1} \Gamma(l+3) = \frac{1}{3} \cdot (k+l) \left[\kappa(k+S) + 3(k+4) \right]$
- $\sum_{k=1}^{l} h(k^2) = \frac{2}{2} O(k_1) \left(k_x + 8k + k^2 \right)$
- $\sum_{\substack{l=1\\l l l l}}^{l} r(e_l) = \frac{1}{2} (e_l) (e_l+1) (e_l+2) (e_l+2)$
- $\Rightarrow \sum_{r=1}^{cn} r(r+3) = \frac{1}{2} (trai) (trai) (trai) (trai) + 5$ • IF the securi charge for make for the provents
- Since the result basis for in ELENI, then the result for the result Since the result have be then , then it must find be AL NEIN

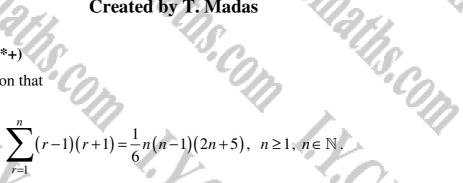
Created by T. Madas

1.01

(**+) **Question 3**

I.V.G.B.

alasmaths.com


2

Prove by induction that

Madasma

Smarns.com I.K.

I.C.B.

Madası

ths.com

1.60

6

madasma

LY.C.B. Madasm

(r-1)(r+1) = f-n(n-1)(2n+5

- $C_{\rm respective}^{\rm LMS} = O_{\rm respective}^{\rm CMS}$ Refige $\frac{1}{6} \times$ IF n=l
- $(F-1)(F+1) = \frac{1}{2}k(k-1)(2k+5)$
- $\frac{1}{2}k(k-1)(2k+5) + (k-1+1)(k+1+1)$

 - $\frac{1}{2}(r-1)(r+1) = \frac{1}{2}k\left[(k-1)(2k+5) + G(k+2)\right]$
 - 5 (r-1)(r+1)

I.V.C.B. Madasmatis Madasmaths.com

I. C.B. Madasman

Created by T. Madas

.G.B.

(**+) Question 4

Madas,

I.V.G.B.

Prove by induction that

Created by T. Madas
**+)
tion that

$$\sum_{n=1}^{n} r^{2}(r-1) = \frac{1}{12}n(n-1)(n+1)(3n+2), n \ge 2, n \in \mathbb{N}.$$

asinains.co

1.4.6.6

6

11.202811121

I.V.C.B. Madasn

Created by T. Madas

I.V.G.B.

Question 5 (**+)

.Y.C.B

I.C.B.

I.C.P.

Prove by induction that

 $1+8+27+64+\ldots+n^{3}=\frac{1}{4}n^{2}(n+1)^{2}, \ n\geq 1, \ n\in\mathbb{N}.$

1120251

• If $k = 10^{-1} - \frac{1}{4} x_k y^{2k} (1+k)_{k=1}^{2} - \frac{1}{2} - \frac{1}{2}$

Question 6 (***) Prove by induction that

 $\sum (2r-1)^2 = \frac{1}{3}n(2n-1)(2n+1), \ n \ge 1, \ n \in \mathbb{N}.$

proof

6

• F THE REPUT HOUSE FOR $n=k\in\mathbb{N}$ \implies T Also House for n=k+1Since THE Reput HOUSE FOR n=1 \implies T well that $\mathcal{F}_{\mathcal{H}}\in\mathbb{N}$

E.B.

nana

Created by T. Madas

N.C.

Question 7 (***)

I.F.G.B.

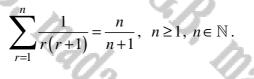
Maths.coj

I.C.B.

Prove by induction that

 $\sum_{r=1}^{n} r(3r-1) = n^2(n+1), \ n \ge 1, \ n \in \mathbb{N}.$

11202s1



$\left\{ \sum_{r=1}^{n} \Gamma(\hat{3}_{r-1}) = \eta(\tilde{5}_{r+1}) \right\}$
• IF $\eta = 1$ Uff $z = \sum_{r=1}^{2} \Gamma(3r_{-1}) = 1 \times 2 = 2$ RHS = $1^{2}(1+1) = 2$
SUPPLY THE REDUT HURS FOR M=KEN
$\sum_{T=1}^{k} \Gamma(2r-i) = l_{T}^{2}(2ri)$
$\sum_{t=1}^{k} \P(\Im t_{-1}) = + (k+i) \left[\Im (k+i)_{-1} \right] = k \left[\widehat{\langle \xi, +i \rangle}_{-1} + (k+i) \left[\Im (k+i)_{-1} \right] \right]$
$\sum_{i=1}^{4+i} r(s_{k-i}) = k^{2}(k+i) + (k+i)(3k+2)$
$\sum_{k=1}^{k+1} L(3k-1) = (k+1) \left[k_{j} + 3k + 5 \right]$
$\sum_{i \neq i}^{k+1} r(S_{i} - i) = (k+1)(k+1)(k+2)$
$\sum_{i=1}^{k+1} \Gamma(3r_{i-1}) = (k+1)^{2} (k+1) + 1$

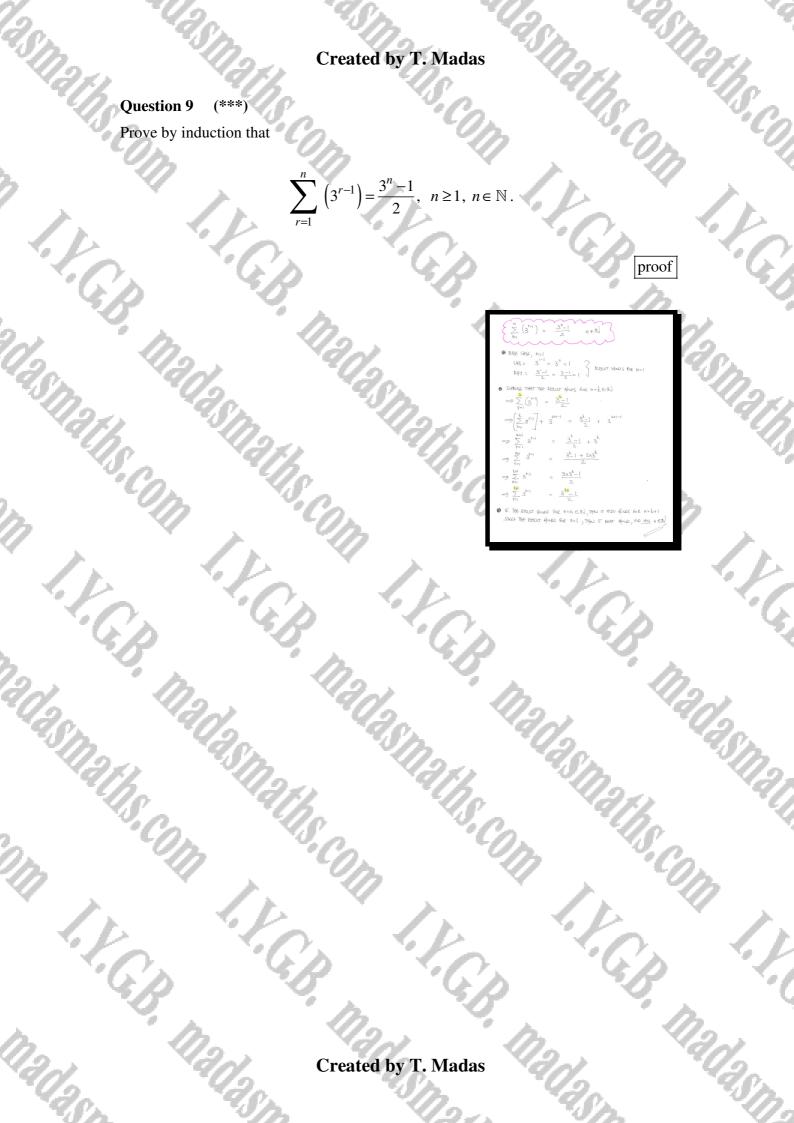
IF IF ERSUIT HURS FOR M-K-EN \implies 25500 Horse For $M \approx M^{-1}$ Since THE RESIT WAS FOR $M \approx M^{-1}$

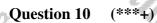
Question 8 (***)

Prove by induction that

1+

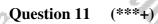
$\sum_{i=1}^{n} \frac{1}{\Gamma(i+1)} = \frac{n}{n+1}$


- IF N=1 UHS = $\sum_{T=1}^{1} \frac{1}{TOTH} = \frac{1}{1 \times 2} = \frac{1}{2}$ IF Elever these for N=1
- SUPPOSE THE POUR DIAS DE N=2-EN
- $\sum_{i=1}^{k} \frac{1}{i(i+i)} = \frac{k}{k+i}$
 - $\sum_{i=1}^{k} \frac{1}{r(r_{i})} + \frac{1}{(k+i)(k+2)} = -\frac{k}{k+i} + \frac{1}{(k+i)(k+2)}$
 - $\sum_{\substack{k=1\\k=1}}^{L} \frac{1}{1(Cr_1)} = \frac{k(k+2)+1}{(k+1)(k+2)}$
 - $\sum_{l=1}^{k+1} \frac{1}{l(ln)} = \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{(k+2)}$
 - $\sum_{t=1}^{t-1} \frac{t(t+1)}{t(t+1)} = \frac{E+1}{E+1+1}$
- If the ready topological the $n=k\in\mathbb{N}$ and n=k+1 , the ready topological the n=k and n=k+1 and $k\in\mathbb{N}$. The ready topological terms is the n=k and n=k+1 .


Created by T. Madas

K.C.

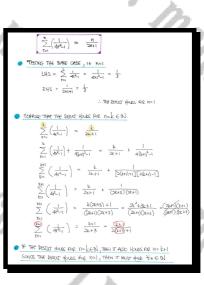
(***) **Question 9**


Prove by induction that

Prove by induction that

I.F.G.B.

13/1/s.CON


I.C.P.

Prove by induction that

1.

 $\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}, \ n \ge 1, \ n \in \mathbb{N}.$

112025

proof

Question 12 (***+) Prove by induction that

 $\sum_{r=1}^{n} r \times 2^{r} = 2 + (n-1)2^{n+1}, \ n \ge 1, n \in \mathbb{N}.$

proof

2

 $\begin{array}{c} \frac{\mu}{2} \left(r \times 2^{r} = -2 + C_{N-1} \right) \times 2^{N+1} \\ \bullet \quad SAHe CARE N=1 \\ LH_{2} = 1 \times 2^{2} = 2 \\ RH_{2} = 2 + C_{1-1} \times 2^{2} = 2 \\ RH_{2} = 2 + C_{1-1} \times 2^{2} = 2 \\ \end{array} \right) ZWAT Here Bet H=1 \\ \end{array}$

RHS = 2+CI-1)×2²=2.) ZHOUT HOLD AND SUPPOSE THE REAUT HOLD FOR N=KEN

- $\Longrightarrow \sum_{r=1}^{k} (x_2^r = 2 + (k-1)x_2^{k+1})$
- $\Longrightarrow \sum_{\substack{r=1\\k\neq i}}^{k+1} r \times 2^{r} = 2 + \mathcal{Q} \left((k-1) + (k+1) \right)$
- $\Longrightarrow \sum_{\substack{l \neq i \\ l \neq i}}^{k+i} r \times 2^{l} = 2 + 2 \times 2^{k}$ $\Longrightarrow \sum_{\substack{l \neq i \\ l \neq i}}^{k+i} r \times 2^{l} = 2 + 2 \times 2^{k} \times 2^{k}$

 $\begin{array}{l} \underset{r=1}{\overset{k+1}{\rightarrow}} \sum_{r=1}^{k+1} f_{r} x_{2}^{r} = 2 + \xi_{x} y_{x} \\ \xrightarrow{\frac{k+1}{r}} f_{r} x_{2}^{r} = 2 + (\overline{k+1} - 1)_{x} y_{x}^{\frac{k+1}{r}} \\ \xrightarrow{\frac{k+1}{r}} f_{r} x_{2}^{r} = 2 + (\overline{k+1} - 1)_{x} y_{x}^{\frac{k+1}{r}} \\ \end{array}$

● IF THE EQUITING LOG M- LC. THAN IT HERE HERE OF LEAT SACE IT HERE FOR N= LEAT SACE IT HERE FOR N=1, THAN IT WAT HERE FOR HER N

Augetian	12	(***
Question	13	(····

.Y.C.F

Prove by induction that

 $\sum_{r=1}^{n} \left[(r+1) \times 2^r \right] = n \times 2^n, \ n \ge 1, \ n \in \mathbb{N}.$

20121

nt N≥l	$U_{+}S = (1+1) \times 2^{1-1} = 2 \times 1 = 2$ $W_{+}S = 1 \times 2^{1} = 2$	BRANT HUDS
SUPPOSE TH	HE RESULT HOLDES BOT N= KEN	
2 (t+1) 2	= kx2 ^k	
[∑ ((+))2 ⁺	$\left[1\right] + \left(k+2\right) \times 2^{k} = \left(k \times 2^{k}\right) + \left($	(k+2)x 2 ^k
	" = 2 ^k [K+K+2]	
$\sum_{t=1}^{\frac{k+1}{2}} (\underline{C}+1) 2^{k}$	$^{1} = \partial^{k}(2k+2) = \partial_{x} \partial^{k}O_{k}$	+1)
$\sum_{r=1}^{k+1} (r+1) 2^r$	$d^{-1} = \partial_{k+1}C_{k+1} - O_{k+1}X_{2}^{k}$	4 -
F THE RAND	HOUS FOR KEN, THAN IT MUT A	to the Be nott!
DINCE THE RESU	T UPUES AR ANI , THAN IT MUST	HOUS YHEIN

Question 14 (***+)

Ĝ.

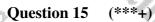
I.C.P.

If $n \ge 1$, $n \in \mathbb{N}$, prove by induction that

 $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n+1)! - 1.$

proof

6


$$\begin{split} & \left(\left[x \left(\frac{1}{2} \right) + \left(\frac{1}{2} x \left(\frac{1}{2} \right) + \left(\frac{3}{2} x \left(\frac{3}{2} \right) + \dots + \left(\frac{1}{2} x \left(\frac{1}{2} \right) \right) \right) - 1 \right) \\ & \sum_{n=1}^{N} r^n r^n \right] = (n+1) \left[-1 \right] \end{split}$$

15.CO

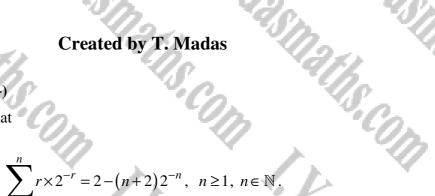
- 1=1 k+3 = 1×1! = 1 k+3 = (1+1)!-1=2!-1=2-1=1 ∴ etaar 4-vas fre n=1
- $\implies \sum_{i=1}^{n-1} i \times v_i^* = (i \times i) : -1$
- $\Longrightarrow \sum_{l=1}^{k} l \times l \cdot \frac{1}{l} + (k + l) \times (k + l) \frac{1}{l} = (k + l) \frac{1}{l} (k + l) (k + l) \frac{1}{l}$
- $\implies \sum_{k=1}^{k+1} t_{k} r_{k}^{\dagger} = (k+1)! \left[\left(+ Ck+1 \right) \right] 1$
 - r! = (k+1)! (k+2) 1

IF THE ROUT YOUS FOR USE (N), THIN IT ALSO HOUS FOR MS INT SINCE THE DESIGT FOR FOR MS I, THIN IT AUST YOU FOR AU IN

Tana.

I.F.G.B.

asmaths.com


2

I.V.C.B. Madasm

Madas,

I.C.p

Prove by induction that

11.202SI

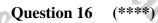
madasmaths.com

SMains.co

1.60

6

Madasman


I.V.C.B. Madasm

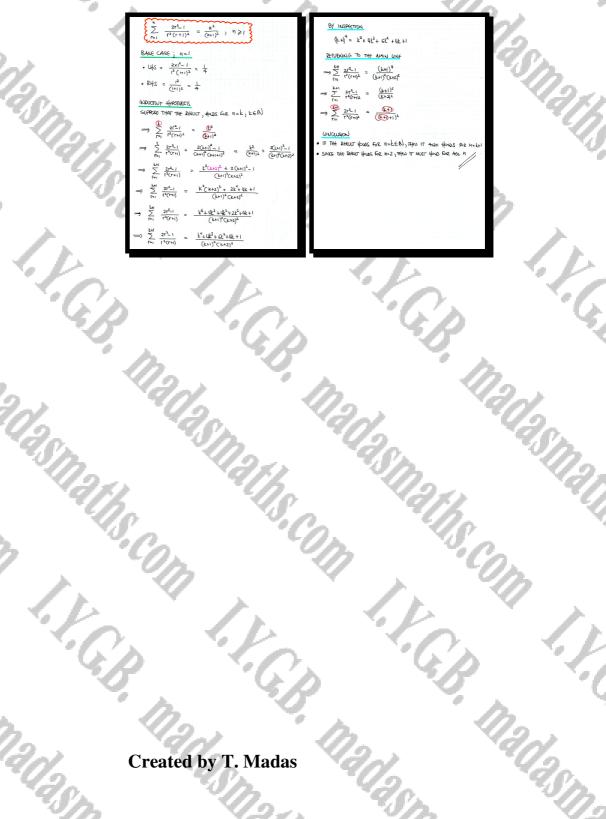
proof

Created by T. Madas

I.V.G.p

COM

asmaths.com

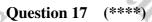

212

1720

I.V.G.p

Prove by induction that

 $\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2 (r+1)^2}$ $n \ge 1, n \in \mathbb{N}$. $\overline{(n+1)^2}$

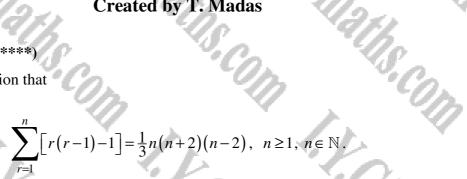

BY INSPECTION $(k+i)^4 = k^4 + 4k^3 + 6k^2 + 4k + i$ $\sum_{l=1}^{kH} \frac{2l^2 - l}{l^2(l+l)^2} = \frac{(k+l)^4}{(k+l)^2(k+2)^2}$ $\frac{\sum_{r=1}^{k+1} \frac{2r^2-1}{r^2(r+1)^2}}{r^2(r+1)^2} = \frac{(k+1)^2}{(k+2)^2}$ $\sum_{r=1}^{4} \frac{2r^2 - 1}{r^2(r+1)^2}$

CONCURRON THE RESTAT N

aths.com

proof

1.4.6


I.V.G.B.

alasmaths.com

Smaths.com

I.C.B

Prove by induction that

madasmaths.com

I.F.C.B.

5

Madasmans.com

The COL

4.60

6

LY.C.B. Madasm

Created by T. Madas

i C.B.

Question 18 (****)

.Y.C.B

'31/15.COJ

I.C.B.

Prove by induction that

 $\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!} = 1 - \frac{2^{n+1}}{(n+2)!}, \ n \ge 1, \ n \in \mathbb{N}.$

11₂₀₂

		- Alter
		12.
		11
SUPPOSE THET THE REPORT WARS FOR N=1		
$\left(4.5 \approx \sum_{l=1}^{7} \frac{l \times 2^{l}}{(l+2)!} \approx \frac{1 \times 2^{l}}{3!} \approx \frac{2}{6} \approx \frac{1}{2} $		
$\mathbb{R}_{\mathbb{H}} = \mathbb{I}_{\mathbb{H}} = $	3	
I.E READER HOUDS FOR N=1		
NERT SUPPOSE THAT THE RESULT YOUD FOR IN	=k, KEN	
$\sum_{l=1}^{k} \left(\frac{r_{\times,2}l}{(l,\alpha)!} \right) = l - \frac{2^{k+1}}{(k+2)!}$		
$\sum_{k=1}^{l=1} \left(\frac{(L+2)}{L\times \Sigma_{k}} \right)^{\frac{1}{2}} \rightarrow \frac{(k+3)!}{(k+3)!} = 1 - $	$\frac{2^{k+1}}{(k+2)!} + \frac{(k+1)_{X}}{(k+3)}$	21
$\sum_{j \neq i}^{L \in I} \left[\frac{(j+s)_i}{L \times \Sigma_L} \right] = j - \frac{(k+2)(s+3)_i}{(k+3)^{N}}$		
$\sum_{k=1}^{l\geq 1} \left[\frac{\lfloor r \times 2^{k} \rfloor}{\lfloor r \times 2^{k} \rfloor} \right] = 1 - \frac{(k+3) \times 2^{k+1}}{(k+3)!}$		
$\sum_{n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_4 \\ n_5 \\ n_6 \\ n_1 \\$	- (k+3) x 2 ^{k+1}	
$\sum_{\mathbf{R}_{i}}^{\mathbf{R}_{i}} \left[\frac{\mathbf{r} \times 2^{\mathbf{r}}}{(\mathbf{r} + 2)!} \right] = 1 - \frac{2^{\mathbf{r} \times 2}}{(\mathbf{k} + 3)!}$	= - <u>2</u> (im)+2)+I []
IF THE REACT YOURS FOR N= LEN, THEN	and the second	
SINCE THE REAL TUBER THE FORME	AF READET TOURS R	ie tu n
en er en myr e refer er er e er e		

proof

Question 19 (****)

Prove by induction that

 $1^{2} + 3^{2} + 5^{2} + 7^{2} + \dots + (2n-1)^{2} \equiv \frac{1}{3}n(4n^{2}-1), n \ge 1, n \in \mathbb{N}.$

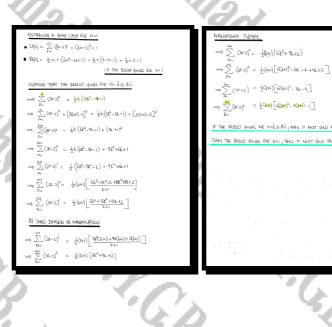
proof

• IF $H \subseteq I$ $\frac{1}{3} \times [x \left(\frac{1}{4} \times \left$	
· SUPPLIE THE EXCUT \$2403 FOR N= KEN	
$\Rightarrow 1^{2} + 3^{2} + 5^{2} + \cdots + (2k-1)^{2} = \frac{1}{2}k(4k^{2}-1)$	
$\Rightarrow ^{2} + 3^{2} + 5^{2} + \dots + (2k-1)^{2} + (2k+1)^{2} = \frac{1}{3} k (4k^{4} - 1) + (2k+1)^{2}$	
$\Rightarrow (^{2}+3^{2}+5^{2}++(2k+1)^{2}=\frac{1}{3}k(2k+1)(2k-1)+(2k+1)^{2}$	
$\Rightarrow [^{2}+3^{2}+5^{2}++(2k+i)^{2} = \frac{1}{4}(2k+i)[k(2k-i)+3(2k+i)]$	
$\Rightarrow 1^{2} + 5^{2} + 5^{2} + \dots + (2k+1)^{2} = \frac{1}{3}(2k+1)(2k^{2} - k + 6k+3)^{-1}$	
$\Rightarrow ^{2} + 3^{2} + 5^{2} + \dots + (2k+1)^{2} = \frac{1}{2}(2k+1)(2k^{2} + 5k+3)$	
$\Rightarrow [^{2}+3^{2}+5^{2}+\cdots+(2k+1)^{2}=\frac{1}{3}(2k+3)(k+1)$	
$\Rightarrow ^2 + 3^2 + 5^4 + \cdots + (3k +)^2 = \frac{1}{3} (k+1) \left[4k^2 + 8k + 3 \right]$	
$\Rightarrow [^{2}_{+} 3^{2}_{+} 5^{2}_{+} \dots + (2k+1)^{2} = \frac{1}{3} (k+1) [4(k^{2}+2k+1)-1]$	
$\Rightarrow ^{2} + 3^{2} + 5^{2} + \dots + (2l+1)^{2} = \sqrt[4]{(k+1)^{2} - 1}$	
· IF THE REDUCT HOLDS FOR W-LEN => IT TWO HOLDS FOR W-LEN	//
SINCE THE RESULT IFLOS FOR MEL -> THE RESULT IFLOS FUEN	
,	

Created by T. Madas

2

Question 20 (****)


I.C.B.

I.F.G.B.

Prove by mathematical induction that if n is a positive integer then

 $\sum_{r=1}^{n} (3r-2)^2 = \frac{1}{2}n(6n^2 - 3n - 1).$

You may not use other methods of proof in this question.

207

I.C.B.

6

1+

2012.51

Mada

proof

Created by T. Madas

I.Y.C.

Question 21 (****)

F.G.B.

I.C.B.

Prove by mathematical induction that if n is a positive integer then

$$\sum_{r=1}^{n} \frac{3r+2}{r(r+1)(r+2)} = \frac{n(2n+3)}{(n+1)(n+2)}$$

21/2.57

Madasn

20

I.C.p.

proof

222+712+5 (k+2)(2+3)

12.81

n

S 3(72)

3042

 $\sum_{r=1}^{r+1} \frac{3r+2}{r(r+1)(r+2)} = \frac{(2r+5)(b+1)}{(b+2)(b+3)}$

You may not use other methods of proof in this question.

Velai	-4
ESTABLISH & BASE CASE	
$ \begin{array}{l} & \text{EVEX}_{1} = \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1$	-
VIET THE BUILT TURE OF THE EN	-
$ \Rightarrow \sum_{ h_1 }^{\underline{d_1}} \frac{\underline{x}_{1(2)}}{(\overline{c}n)(\overline{c}n)} = -\frac{\underline{k}(2k+3)}{(\overline{c}k+(2k+3))} + \frac{\underline{k}(k+1)+2}{(k+1)(k+2)(\overline{c}k)} $	IF
$\rightarrow \sum_{p_1}^{k_1} \frac{3^{p_1k_2}}{(m_1)(n_2)} = \frac{4(2k+3)}{(k_1)(k_1k_2)} + \frac{3(k_1)k_2}{(k_1)(k_1k_2)(k_2)}$	9
$\Longrightarrow \sum_{j=1}^{\lfloor \omega^+ \rfloor} \frac{I_{(k+1)}(k+2)}{3^{k+2}} = \frac{(j+1)(j+2)}{k} + \frac{(j+1)(j+2)}{3^{k+2}}$	
$\Longrightarrow \sum_{j=1}^{j_{n+1}} \frac{\frac{3j_{n+2}}{(2j_{n})(m_{2})}}{(2j_{n})(m_{2})} = \frac{\frac{j_{n+1}(2j_{n+1})(2j_{n+1})}{(2j_{n+1})(2j_{n+1})}$	
$\longrightarrow \sum_{r\neq i}^{\lfloor r^{i} \rfloor} \frac{L(\mu)[(\mu 2)}{3^{2i+2r}} = \frac{(r^{i})(r^{i})(r^{i})(r^{i})}{3^{2i+2r}}$	
$\Longrightarrow \sum_{j \in H_1}^{ \mathcal{D} } \frac{L(\mathcal{H})[(j,j)]}{\mathcal{T}^{1+5}} = \frac{(\mathcal{H})(\mathcal{D}^{1+5})(\mathcal{D}^{1+5})}{\mathcal{H}_2^{1+1}\mathcal{H}_2^{1+1$	
YOW WE "EXPECT" THAT (2.11) IS 4 FRATER FOR THE INDUCTION TO WORK	
$\implies \sum_{l' \in I}^{l'} \frac{I_{U(k)}(t, \alpha)}{I_{U(k)}} = \frac{(kH) Cd(2) (kH) + T(k(t+1) + 2(kH))}{2k^2 (kH) + T(k(t+1) + 2(kH))}$	
$\Longrightarrow \sum_{\{\mu_1\}}^{\{\mu_1\}} \frac{\overline{r}(r_1)(r_2)}{3r+2} = \frac{(\mu_1)(r_2)(r_2+2)(\mu_2)}{(\mu_1)(r_2+2)(\mu_2)}$	

Question 22 (****)

COM

I.G.B.

I.F.G.B.

Prove by induction that

11202sn

aths com

I.V.C.B. Madasn

1.10

6

DIVISION IN THE OWNER OF THE OWNER OW MASIRALISCOM LYCCB. MRRIESENRALISCOM LYCCB. MRRIESEN

Question 1 (**)

 $f(n) = 7^n + 5, n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 6, for all $n \in \mathbb{N}$.

11₂₀₂

11 A A	
23	proof
10	proor

-fGn)	-	745	

- f(1)=7'+5=12 WH14tis DW151866BY 6 SURPORTHE REDUCT HELLS, FOR N=10=6W, U.E.N
- $f(k+1) f(k) = [7^{k+1} + 5] [7^{k} + 5]$
- f(кн) бм = 7^{кн} 7^к f(кн) — бм = 7^к7¹ - 7^к
- $f(k_1) = 6m + 6 \times 7^k$ $f(k_1) = 6[m + 7^k]$

Question 2 (**)

i C.B.

 $f(n) = 6^n + 4, \ n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 5, for all $n \in \mathbb{N}$.

proof

1+

Ċ,

(fa)= 6+4

It BENDET HUDS FR M=

IE POR = Sm , WHERE MEIN

 $f(k+1) - \hat{f}(k) = \begin{bmatrix} k+1 \\ +4 \end{bmatrix} - \begin{bmatrix} k \\ +4 \end{bmatrix} - \begin{bmatrix} k \\ +4 \end{bmatrix} - \begin{bmatrix} k \\ -4 \end{bmatrix} + \begin{bmatrix} k \\ -4 \end{bmatrix} + \begin{bmatrix} k \\ -4 \end{bmatrix} + \begin{bmatrix} k \\ -5 \end{bmatrix} = 5 \times 5^{k} - 5^{k}$

 $f(b+1) = 5m + 5x6^{\circ}$ $f(b+1) = 5[m + 6^{k}]$

IF THE BOUT HOUS BE N=LEN, THW IT HOS.
"HUS BE N=L+1.
SUSE IT HOUS BE N=1, THW IT MUST HOUS
HELPHING NON IT

Question 3 (**)

 $f(n) = 5^n + 3, \ n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 4, for all $n \in \mathbb{N}$.

proof

, proof

- +(KH)-+(K) = [5+3] -f(x+1) - Um :

Question 4 (**) Prove by induction that for all natural numbers n,

 4^{2n}

is divisible by 15.

$f(n) = 4^{2\theta} - 1 \quad , \quad n \in \mathbb{N}$

BASE CASE; N=1 $f(s) = 4\frac{2n}{2}$, i.e THE REDUT HERE GR N=1 UNDUCTIVE HYPOTHERIS science n=k, LEN, 16 f(L)=15m

- WHORE MEN $f(k+1) - f(k) = \begin{bmatrix} 4^{2(k+1)} & -1 \end{bmatrix} - \begin{bmatrix} 4^{2k} & -1 \end{bmatrix}$
- +1) 4^{2k} FOCHI) - ISM facti) - 15m
- f(KH) 15m
- (KHI) (le+1) 15 x 42 \$
- fari) $= \underline{IS}[m + 4^{2k}]$ \Rightarrow

CONCLUSION IF THE BOOUT HOLDS GRE M-LEIN, THRO IT AND HOLDS GRE M-LH HOUDE FOR n=1, THIN I

Question 5 (**)

Prove by induction that for all natural numbers n,

 $7^{2n-1} + 1$

is divisible by 8.

proof

Eler f(n) = 7³¹⁺¹+1

- €(1)=?+1=8 i.e. DWINBLE BY 8
 SUPPORT THE TREDIT YEAR PR n= K∈N, K = A(K)=8M, K ∈ N
- $f(t+1) f(t) = \left[7^{2(s_1)-1} + 1\right] \left[7^{2s-1} + 1\right]$
- $f(kn) = 8m = 7^{2k-1} 7^{2k-1}$ $f(kn) = 8m + 7^2 + 7^{2k-1} - 7^{2k-1}$
- $f(HI) = 8_{H_2} + 49_X 7^{2k-1} 7^{2k-1}$ $f(HI) = 8_{H_2} + 49_X 7^{2k-1} - 7^{2k-1}$
- $f(k+1) = B\left[m + 6 \times 7^{2k-1}\right]$
- IF THE RESOLT YOUS PE N=KEN, THEN IT MUST 4150 YOU FOR N= K+1 SINCE THE RESOLT YOUS PE N=1, THEN IT MUST YOU YOUEN

Question 6 (**)

1.21

Prove by induction that for all natural numbers n,

 $3^{2n} + 7$ is divisible by 8.

proof

1+

12

Elf t(s) = 3²⁰+7

- f(1) = 3²+7 = 9+7=16 is shukible by B
 suppose THAT THE RESULT HEARS THE MEEN, IS f(R) = BM THE MEEN
- $\begin{cases} f(k+1) f(k) = \begin{bmatrix} 3^{k(k+1)} \\ +7 \end{bmatrix} \begin{bmatrix} 3^{2k} + 7 \end{bmatrix}$
- $f(24) = 84 = 3^{-1} = 3^{-2}$ $f(34) = 84 + 3^{-3} \times 3^{-2} = 3^{-3}$
- $f(kH) = 8u_{f} + 9(3^{2k}) 2(m) + 9(3^{2k})$
- $f(BH) = 8[M + 8(3^{2k})]$ is a multiple of
- IF THE BLOWLY YOURS BE NOLEN, THOU IT ALLO HOURS FOR MOLEN. SINCE THE RESULT YOURS BE NOT, THAN IT WIT YOUR YOURS AN

Question 7 (**)

 $f(n)=3^{2n}-1, n\in\mathbb{N}.$

Prove by induction that f(n) is a multiple of 8, for all $n \in \mathbb{N}$.

21/2

	4	~
f(h) = 3 - 1 $f(h) = 3^2 - 1 = 8 = 8 \times 1$	1F MUMPter 8	
e surrout the trace for a constant the trace $f(x, y) = \int (x, y) - f(x) = \begin{bmatrix} 2^{2(n+1)} \\ 3^{-1} \\ -1 \end{bmatrix}$ $\Rightarrow \int (2n+1) - \delta(x) = 3^{2n+2} - 3^{2n+2}$]-[3+1]	Buy jureNJ
$ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(1$	3 ²⁴ 3 ²⁴	
→ f(2+1) = On + 3 L1- → f(2+1) = Bu + Bx3 ²² • If THE REAUT BOAS FOR n= LEN - STATE THE REAUT BOAS FOR n= L.	$= 8 \left[w_{1} + 3^{2k} \right]$ $\Rightarrow \pi - 430 + 200 \text{ Fer n}$	ekti

proof

Question 8 (**+)

 $f(n) = 4^n + 6n - 1, \ n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 3, for all $n \in \mathbb{N}$.

proof

è

$-f(u) = 4^{u} + Gu - 1$

• $f(i) = \frac{1}{4} + \frac{6}{6}(1 - 1 = 9 - \frac{5}{3}\times 3)$ It P BAST free Present free Present free Present • SOPPOSE THE PROVIDENT SEC VIELE CN I.E. $f(G) = 3m_1 + m \in N$ $\Rightarrow f(k_1) - \frac{1}{3}(0) = \left(\frac{1}{4}^{k_1} + \frac{1}{3}(k_1) - \frac{1}{3}^{k_1} + \frac{1}{6}^{k_2} + \frac{1}{3}(k_1) - \frac{1}{3}m_1 + \frac{1}{3}\times \frac{1}{6}^{k_1} + \frac{1}{6}^{k_2} - \frac{1}{3}(k_1) - \frac{3}{3}m_1 + \frac{3}{3}\times \frac{1}{6}^{k_1} + \frac{1}{6}$ $\Rightarrow f(k_1) = 3 m_1 + \frac{3}{3}\times \frac{1}{6}^{k_1} + \frac{1}{6}$ $\Rightarrow f(k_1) = 3 [m_1 + \frac{3}{4}\times \frac{1}{6}^{k_1} + \frac{1}{6}]$ $\Rightarrow f(k_2) = 3 [m_1 + \frac{3}{6}\times \frac{1}{6}^{k_2} + \frac{1}{6}]$ $\Rightarrow f(k_3) = 3 [m_1 + \frac{1}{6}\times \frac{1}{6}]$ $f(k_3) = 3 [m_1 + \frac{1}{6}\times \frac{1}{6}\times \frac{1}{6}]$ $f(k_3) = 3 [m_1 + \frac{1}{6}\times \frac{1}{6}\times \frac{1}{6}]$ $f(k_3) = 3$

Question 9 (**+)

 $f(n) = 5^n + 8n + 3 , n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 4, for all $n \in \mathbb{N}$.

proof

f(4) = 5" + Bn +3

- f(1) = S1 + 8x1 +3 = 16, I.E DIVISIRIE BY 4
- · SUPPOSE THE RUTUT HUGS FOR N=KEN, IS fax)= 4M FOR MEN
- $\begin{aligned} -f(k) &= \left[S_{++}^{k+1} \Theta(k+1) + 3\right] \left[S_{+-}^{k} \Theta(k+1) + 3\right] \left[S_{+-}^{k} \Theta(k+1) + 3\right] \left[S_{+-}^{k} \Theta(k+3)\right] \\ &- 4t_{++} = S_{+++}^{k+1} \Theta(k+1) S_{+--}^{k} \Theta(k-3) \\ &- 4t_{++} = S_{++--}^{k+1} + 8 \end{aligned}$
- 44 + 5x5

Question 10 (**+)

 $f(n) = 3^{4n} + 2^{4n+2}, n \in \mathbb{N}$

Prove by induction that f(n) is divisible by 5, for all $n \in \mathbb{N}$.

proof

è

+(n) = 34+ 241

- (a)= 34+2°= 81+64= 145
- THAT THE DESULT HELDS FOR $N = k \in \mathbb{N}$, is $1 \frac{1}{2}(k) = \left[3^{4(k+1)} + 2^{4(k+1)+2}\right] \left[3^{4k} + 2^{4(k+1)+2}\right]$ 344+ 24442]
- == + (k+1) 5m
- 3 + 2 2 3
- $\Rightarrow f(i+1) = 5 (m+16 \times 3^4)$

 $9^{n} - 5^{n}$

Question 11 (**+)

Prove by induction that for all natural numbers n,

is divisible by 4

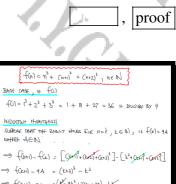
proof

let f(1)= 9"- 5"

- Jutest HT 3. (4 = 2 − P = '2 − 'C = (1)+
- Suppose the security laws for n=2-EN, i.e. $\mathcal{G}(S) = \mathcal{G}_{M}$ for $M \in \mathcal{S}_{M}$ $\mathcal{G}(z+1) \mathcal{G}(z) = (\mathcal{G}_{M} \mathcal{S}^{2M}) (\mathcal{G}_{M}^{k} \mathcal{S}^{k})$ $\mathcal{G}(z+1) \mathcal{G}_{M} = \mathcal{G}^{2M} \mathcal{G}^{k} + \mathcal{S}^{k} \mathcal{S}^{k+1}$
- f(1+1)- 4m = 9(94-9e+5e-5(5e $f(kH) - du_{t} = 8(9^{k}) - 4(s^{k})$
- f(kt) = 4m + 8/9k1-4/5k
- $d) = 4 \left[m + 2(9^k) 5^k \right]$ DWISIBLE BY 4
- NO WHEN

Question 12 (**+)

 $f(n) = (4n+3)5^n - 3, n \in \mathbb{N}.$


Prove by induction that f(n) is divisible by 16, for all $n \in \mathbb{N}$.

f(1)=(4n+3)54-3

- 4(1) = 7x5 -3 = 32 WHICH IS .DI
 $$\begin{split} & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}+32) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} & \text{is division by 16} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \\ & \left\{ (k_{1}) = 16 \left[m + (k_{1}) + (k_{2}) S^{k} \right] \right\} \\ & \left\{ (k_{1}) = 16 \left[m$$
- 4-LOS FOR N=KEN) THON IT MUST HOLD FOR N=K+ NOT HOLDS FOR N=1 , THON IT MUST HOLD +4+ETH

(***) Question 13

Prove by induction that the sum of the cubes of any three consecutive positive integers is always divisible by 9.

=9 (Ck+1)-94 = (k+9k+27k+27)-k+

- =) ((KH) = 9A + 922 + 27E + 27
- $= 9 \left[4 + b^2 + 3b + 3 \right]$ ⇒ ((k+1)

CONCUSSION IF THE REPUT HOURS FOR N=K, KEIN THAN IT THEO HOURS FOR N=K+1 SINCE THE RESULT HELDS FOR

Question 14 (***)

Prove by induction that for all natural numbers n, such that $n \ge 2$,

 $15^n - 8^{n-2}$

is divisible by 7.

Let f(n) = 15 - 8 -2

f(2) = 15 - 8° = 225 - I = 224 = 7x 32 16 EHOUT HOLDS BE 19=2. THE REALT YOURS FOR ME KENN,

proof

- f(k)=7m, well]-[IS^k-8^{k-2} $(k+l) - f(k) = \left[l 2 - 8 \right]_{k+l}$
- -8^{k-1}+8^{k-2} (in) - 74 = 1: - 8×8 + 8 lati) - The =
- f(++1) 7m = 14×15 - 7x8 $-\{0+1\} = 7_{M} + 14 \times 15^{k} - 7 \times 8^{k-2}$
- $f(k+1) = 7[m+2\times |S^k B^{k-2}]$
- F THE ZBUT HOLD GR N= KEN, THAN IT HAD HOLD GR N= K+1

Question 15 (***)

Prove by induction that for all natural numbers n,

 $(2n+1)7^n+11$,

is divisible by 4.

$$\begin{split} f(s) &= (2s_{1}s_{1}) \times 7^{2} + 11 \\ f(s) &= (2s_{1}s_{1}) \times 7^{2} + 11 = 3 \times 7 + 11 = 21 + 11 = 22 \\ & \text{i.e. Diverges by it } \\ & \text{sense Thype The sense years rescaled by } \end{split}$$

proof

- SUPPOSE THAT THE ZENUT BLOS FOR MELEN, LE for) = 4 My,
- $\begin{array}{l} \Longrightarrow \ \ \left(k(t) \right) \left(k(t) \right) = \left[\left(2(k_{1})_{t+1} \right] \times T^{k_{1}}_{t+1} \right] \left[\left(2(k_{1})_{t} \times T^{k_{1}}_{t+1} \right] \right] \\ \Rightarrow \ \ \left(k(t) \right) \frac{k_{1}}{k_{1}} = \left(2k_{1} \times 3 \right) \times T^{k_{1}}_{t+1} \left[1 \left(2k_{1} \times 3 \right) \times T^{k_{1}}_{t+1} \right] \end{array}$
- $\Rightarrow \gamma(k+1) 4u_1 = (ak+3) \times (+1) (ak+1) \times 7 + 7$ $\Rightarrow f(k+1) - 4u_1 = (ak+3) \times 7 \times 7^{k} - (ak+1) \times 7^{k}$
- $\Rightarrow \frac{1}{2} (k+1) 4k_1 = 7^k \left[7(2k+3) (2k+1) \right]$
- \Rightarrow { $(l+1) 4u_f \approx 7^k \left[12k + 20 \right]$
- $\rightarrow f(kH) = 4H_1 + 7 \times H(3k+5)$
- $\Rightarrow f(k_H) = 4 \lfloor M + 7^{8}(ak+s) \rfloor$ is a matrixer or 4
- IF THE BESULT HEADS FOR VIEWS FOR VIEWS TO AND THE MEDICAL VIEWS TO AND A THE BESULT HEADS FOR VIEW THAT HAVE FOR VIEWS TO AND A THE MEDICAL VIEWS TO AND A THE AND A THE MEDICAL VIEWS TO AND A THE AND A

Question 16 (***

$f(n) = 24 \times 2^{4n} + 3^{4n}, n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 5, for all $n \in \mathbb{N}$.

$(f(y) = 24 \times 2^{4y} + 3^{4y})$

- SUPPOR THE DUCUT YOUG BR N=KEN, IF for)=SM, MEN
- $\Rightarrow f(k_{H}) f(k) = \begin{bmatrix} 24 \times 2 + 3 \\ + 3 \end{bmatrix} \begin{bmatrix} 24 \times 2 + 3 \\ + 3 \end{bmatrix}$
- $= \frac{1}{2} \frac{4}{3} \frac{4}{3} \frac{3}{3} = \frac{3}{3} \frac{4}{3} \frac{4}{3} \frac{3}{2} \frac{4}{3} \frac{4}{3} + \frac{4}{3} \frac{4}{3} \frac{4}{3} \frac{4}{3} = \frac{3}{3} \frac{4}{3} \frac{4}{3}$
- 9 fair) Sm = 15×24×24+ 80×34
- $\Rightarrow \mathcal{A}(H) = SM + ISX2LX2^{Hk} + 80X3^{Hk}$
- $\Rightarrow \frac{1}{2}(1+1) = 5\left[\frac{1}{2}(1+1)^{2}\times\frac{1}{2}(1+1)^{2}\times\frac{1}{2}(1+1)^{2}\right]$
- IF THE REALT (\$100 BR N=KEN \Rightarrow IT two (\$100 BR N= KH) SAKE THE REALT (\$100 BR N=1 \Rightarrow T WAT (\$100 YM EN)

Question 17 (***)

 $f(n) = 4 \times 7^n + 3 \times 5^n + 5, \ n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 12, for all $n \in \mathbb{N}$.

÷

(f(n)= 4x7+3×5+5)
€ +(4) = 4x7' + 3x5' +5 = 28+15+5 = 40 = 4x12 + JUUIBLE 84
· SUPPOSE THE BEOUT HOUSE FOR N=KEN, IF fle)=12m, W+N
$ = -4x^{k_{H}} - 4(k) = [4x^{k_{H}} + 3x^{k_{H}} + 5] - [4x^{k} + 3x^{k_{H}} + 5] = (4k)^{k_{H}} + 5k^{k_{H}} + 5k^{k_{H$
$\Rightarrow -f(k_{H}) - f(k) = 4 \times 7^{H_{H}} - 4 \times 7^{K_{H}} + 3 \times 5^{K_{H}} - 3 \times 5^{K_{H}}$
-> f(k+1) - 1224 = 4x7x7 - 4x72+ 3x5x5 - 3x52
=> -f(KH)- 12in = 28x7k- 4x7k+ 15x5k- 3x5k
$\rightarrow -\sqrt{(k+1)} = 12k_1 + 24x7^k + 12x5^k$
$\Rightarrow + (0, H) = \mathbb{E} \left[W_1 + 2x 7^k + 5^k \right] + Division - By 12$
● IF THE SISTE DUSFOR N= KEN => IT ALSO HOUSS FOR N= EF1 SINCE THE RESULT DUSS FOR N=1 => IT WAT ALSO HOUS TH

Question 18 (***)

 $f(n) = (2n+1)7^n - 1, n \in \mathbb{N}$

Prove by induction that f(n) is divisible by 4, for all $n \in \mathbb{N}$.

proof

2

$f(n) = (2n+1)7^{h} - 13$

• $40 = 3x7^{1} - 1 = 3e = 5x4$ $e^{-1}R$

The basic threas be n-LEN , THAN IT ALSO thread Field N=L+H Since IT threads for N=L , THAN IT was thread for the N=L , THAN IT was the N=L , THAN IT was the N=L , THAN T was the N=L , THAN T was thread for the N=L , THAN

(***+) Question 19

Prove by induction that for all natural numbers n,

 $4^{n} + 6n - 1$

madası,

Con

is divisible by 9.

COM

0

ISM2ths.

I.C.B.

nadasmaths,

Madasn

COM

I.F.G.B.

\sim h
$f(n) = 4^{n} + 6n - 1$, $n \in \mathbb{N}$
BASE CASE -{(G) = 4 ¹ + 6×1-1 = 4+6-1=9 , IF BROUT HODS FR N=1
NOUTUR HYPOTHEUL SUPPOSE THAT THE REAUT flues BRE N=K, KEIN (F f(E)= 9W WHERF WEIN
$\Rightarrow f(k+1) - f(k) = \left[\left(l_{k+1}^{k+1} + C(k+1) - 1 \right) - \left[4^{k} \cdot C(k-1) \right] \right]$
=> f(2+1) - 9 m = 4 + 98 + 6 -1 - 42 - 88 +1
\Rightarrow -factor) - 9 $w_{\tau} = 4^{k+1} - 4^{k} + 6$
\rightarrow ((k+1) - $9u_1 = 4 \times u^k - u^k + 6$
$\Rightarrow f(k+1) - q_{W_1} = 3x4^k + 6$ $\begin{cases} f(k) = 4 + 6 \\ 4^k - f(k) - 6 \\ 4^k - f(k) - 6 \\ 4^k - 6 \\ $
$\Rightarrow f(k+1) = 9_{k_1} + 6 + 3 [f(k) - 6_k + 1]$
$\Rightarrow -f(k+1) = 9w_1 + 6 + 3 - f(k) - 18k + 3$
$\implies f(k+1) = 9k - 18k + 9 + 3(9k)$
\Rightarrow $f(k+1) = 364 - 18k + 9$
\Rightarrow f(k+1) = 9 $\left[4u_1 - 2k + 1\right]$
CONCUSSION IF THE RHOLT HELDS FOR N= k, KEN, THAN IT ASD HELDS FOR N= K+1

nadasmans.com

I.F.G.B.

nadasm.

Madasn,

hs.com

proof

Created by T. Madas

madasmaths.

COM

F.G.B.

00

Question 20 (***+)

Prove by induction that for all natural numbers n,

 $4^{n+1} + 5^{2n-1}$

112/12

N.

is divisible by 21.

I.C.B.

I.C.B.

proof

1.60

$$\begin{split} & \{(\bar{H}_{1}) - 2|_{H_{1}} = 4 x 4^{H_{1}} - 4^{H_{1}} + 5^{X_{1}} + 5^{X_{2}} - 5^{X_{2}} - 5^{X_{2}} \\ & -\{(\bar{H}_{1}) - 2|_{H_{1}} = 4 x 4^{H_{1}} - 4^{H_{1}} + 4^{H_{1}} + 25 x 5^{X_{2}} - 5^{X_{2}} \\ & -\{(\bar{H}_{1}) - 2|_{H_{1}} = 3 x 4^{H_{1}} + 24 x 5^{X_{2}} - 5^{X_{2}} \end{bmatrix}$$

 $f(th) = 2^{1\times} [4\omega_1 + 5^{2k-1}]$ • (answerich) If $f(th) = 20 \times [4\omega_1 + 5^{2k-1}]$

IF f(k) is divided by 21 for $k\in\mathbb{N}$, so is f(k+1). Since f(k) is divided by 21 for \mathcal{AU} in \mathbb{N}

0

I.C.B.

F.G.B.

Question 21 (***+)

 $f(n) = 5^{2n} + 3n - 1, n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 9, for all $n \in \mathbb{N}$.

 $\begin{aligned} & \left\{ \begin{array}{l} \left\{ b(1) = S^{2k} + 3k - 1 \right\} \\ & \left\{ f(1) = S^{2k} + 3k - 1 \right\} = 27, \ k \text{ Southat by } 9 \\ & SRRee The Resort has Get <math>k = k + k + 3, \ k = k + 2k + 3 \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3k + 1 \right] - \left[- \left[S^{2k} + 3k - 1 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3k + 1 \right] - \left[- \left[S^{2k} + 3k - 1 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3k + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) - f(k) = \left[S^{2k + 1} + 3 \right] \\ & \Rightarrow f(k + 1) = \left[S^{2k +$

Question 22 (****)

Prove by induction that 18 is a factor of $4^n + 6n + 8$, for all $n \in \mathbb{N}$.

proof

proof

	1
TIN M	
A second second	
A	
$f(n) = 4^{n} \pm 6n \pm 83$	
● \$(1)= 4+6+8=18 LE DWISHERE BY [5	2
SUPPOR THE THE REOLT HOUSE FOR N=	KENLIE for- 18m
WHERE WIEN	
$f(k+1) - f(k) = [4 + 6(k+1) + 8] - [4^{k} + 6(k+1) + 8]$	148
+(64) - 184 = 4 - 4 + 6	
$f(k_{H}) - 18w_{L} = 4(4^{k}) - 4^{k} + 6$	(a)=4++++++++++++++++++++++++++++++++++++
f(kH) - 18m = 3×t*+6	\$ 184 = 4+6K+8 5
f(CH) = 18m + 54m - 18K - 24 + 6	{ Buy-GK-8=4K
f-(ic+1) = 72m-18K-18_	$3\times4^{k} = .54m - 1.8K24$
f(kH) = 18 [dm-k-1] H + MUTIPU	t of 18
IF THE DESOLT LOODS FOR N=16-6 N, THEO IT W	WT AUD HOLD FOR M-641
SINCE THE REQUIT HERE FOR n=1, THEN IT U	WT HOLD BO ALL N_

Question 23 (****)

Prove by induction that for all natural numbers n,

nadasmaths.com

 $2^{n} + 6^{n}$

Madasm,

is divisible by 8.

I.C.B. Madasm

COM

I.F.G.B

alasmaths.com

2

	- F - A		<i>.</i>
no.	- <	$f(y) = 2^{h} + 6^{u}, y \in \mathbb{N}$	0
, ¹ <i>q</i> 0 ₅		(C) = 2 ¹ +6 ¹ = 2+6 = 8 ₂ 1€ INVISIENTE BY B	95
20. 95		$\begin{split} & \sum M_{k} \in \Pi_{k}^{(k)} + \Pi_{k}^{(k)} \otimes M_{k}^{(k)} + $)= 8м,
m. 42	1.	$\Rightarrow f(2k+1) - 8km = 2^{k+1} - 2^k + 6^{k+1} - 6^k$ $\Rightarrow f(2k+1) - 8km = 2x2^k - 2^k + 6x6^k - 6^k$ $\Rightarrow f(2k+1) - 8km = 2^k + 5x6^k$	
Alb. A	10	$\Rightarrow f(2k_1) - B_{M_1} = [f(2) - 6^k] + 5 \times 6^k \begin{cases} f(k) = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2+6 ^k 5(k)-6 ^k
S.A.	163	$\Rightarrow f(2t+1) - 8u_{t} = 8u_{t} + 4 \times 6 \times 6^{t-1}$ $\Rightarrow f(2t+1) = 16u_{t} + 24 \times 6^{t-1}$ $\Rightarrow f(2t+1) \approx 8 [2u_{t} + 3 \times 6^{t-1}]$	
, Op	-	CONCULSION	n- 641
Charles and the		SINCE THE SHOUT HUNG FE WELL SHOUL IT HUNT HERE	
50. I.V	2	N.	14
CAP C	0.	62	
· · · ·	58		
12.	×.,	<i>b.</i>	02.
1 420		4201	10
982 20		-420	
1215 9	Ch.	no.	
"Ino	S		
···Co.	-4	m v	n
× 10		× .	On
6 K Y		1.1	V
S.O. S.J		50	

l. F.C.B.

ths.com

14,

proof

hs.col

F.C.S

Inadasn,

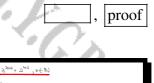
Created by T. Madas

Question 24 (***+)

Ý.G.B.

I.V.G.P.

I.C.B.


I.C.P.

20

Prove by mathematical induction that if *n* is a positive integer then $3^{2n+3} + 2^{n+3}$ is always divisible by 7.

madas

Ŋ

1.4

Madasma,

madasn

$\nabla \times 7\mathcal{E} = \rho_{2S} = 24 + 642 = -442 + 46 = -624 = -602$
IE THE RENUT HOLDS FOR MEI
SUPPOSE THAT THE RHUT-HOLDS FOR N= KEIN, IF for - 74, AEIN
$\Longrightarrow f(k_{H})_{-} f(k) = \left[3^{2k+q+3} + 2^{k+1/43} \right] - \left[3^{2k+3} + 2^{k+3} \right]$
$\Rightarrow f(kH) - 7A = 3^{2k+5} + 2^{k+4} - 3^{2k+3} - 2^{k+3}$
$\Rightarrow (b_{H}) - 7A = 3^{2} \times 3^{2843} + 3^{1} \times 2^{263} - 3^{2843} - 2^{163}$
$= \frac{1}{2} - \frac{1}{2} (k+1) - \frac{1}{2} A = 9 \times 3^{2k+3} - 3^{2k+3} + 2 \times 2^{k+3} - 2^{k+3}$
$\rightarrow -\sqrt{2}a_1 - 7A = 8x 3^{2n+3} + 3^{n+3}$
$\begin{cases} br & +\zeta A = 7A \\ A^{Ta} = c^{2M} c^{2} & \frac{1}{2} c^{2M} c^{2} \\ A^{Ta} = c^{2M} c^{2} & -\delta^{Ta} c^{2} \end{cases}$
- (124) 71 - By 2283, 71 22843

Created by T. Madas

ŀG.B.

na

か

Y.G.B.

Question 25 (***+)

F.G.B.

I.F.G.B.

Ismaths,

I.C.B.

^CO_D

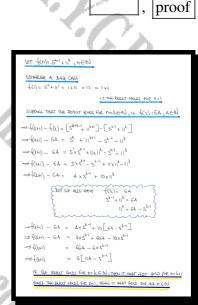
I.C.p

0

Prove by mathematical induction that if *n* is a positive integer then $5^{n-1} + 11^n$ is always divisible by 6.

Madası,

12


17202

6

F.G.B.

Madasn.

200

1.4

Madasma

Inadasn

ne,

ŀ.G.p.

(***+) **Question 26**

Prove by the method of induction that

madasmaths.com

T.C.B. Madasman

ISM3///SCOM I.V.C.P

I.F.G.B.

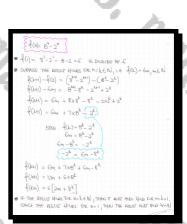
 $3^{3n-2}+2^{4n-1}$, $n \in \mathbb{N}$,

I.V.G.B. is divisible by 11. G.J.

asmaths.com

62	- 4 <i>P</i>	, proof	
		In.	
	\mathcal{O}_{α} \mathcal{A}	$f(n) = 3^{3N-2} + 2^{k_0-1}, n \in \mathbb{N}$ BASE CASE, n=1	0
	1900	10 = 2 ⁽¹⁾ - 3 + 2 = 3+8 = 11 , <u>ιε την ενιυτ-φωρ σε ν~1</u> (0)= 3 + 2 = 3+8 = 11 , <u>ιε την ενιυτ-φωρ σε ν~1</u> (Νοσιμε τηνητικός	9.82
2	ash.	SUPROSE THAT THE RELET GUE FOR $n < k$, LEN, LE $\{k\} = \{k\}_{n \in \mathbb{N}}$ $\Rightarrow \{k+1\} = \{G\} = \begin{bmatrix} 3^{3(k+1)-2} & 2^{4(k+1)-1} \end{bmatrix} = \begin{bmatrix} 3^{3k-2} & 2^{4k-1} \end{bmatrix}$	12.
100	121	$\begin{array}{l} \Longrightarrow \ \ \ \ \ \ \ \ \ \ \ \ \$	- "Ch
1212	"Cho	$\begin{cases} f(k) = 3^{3k-2} + 2^{4k-1} \end{cases}$	10
		$ = \frac{\left\{ \begin{array}{c} \left $	
~	Co. Co.	$= - \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$	3
1.	~n	<u>(2022)</u> 19 THE REAL HUSS BE N=K3 KEDN, MHWI TH ALLO HUSS BE N=K+1 SANE THE RRUT HUSS BE N=1 <u>NHK2 THUST HUS</u> BE AG N=KN.	
S.P.		5.12	6.1
- 67	h sh	S.O.	
0	· · 6 / >	48	
	1. 5	· · · ·	L.
<u>.</u>	201.	m 4	2.
05	28	AN.	420.
Sp	Mar.	98	Nr.
121		121	97
- 4			
b	·Co.	m Sec	
	~~ <u></u>	Y , Y	12
6.1		6.10	× .
- 50		50.	L
- S.	8	s SP	101
	· ~ · · ·		A
2	Van'	D.	122
90.	Created by T. Madas	Nell'	420
3Sh	· · · ·	982	- Sh
	and the second	· · · · · · · · · · · · · · · · · · ·	

ths.com


hs.co

KG

Question 27 (***+)

 $f(n) = 8^n - 2^n, \ n \in \mathbb{N}$

Prove by induction that f(n) is divisible by 6, for all $n \in \mathbb{N}$.

proof

Question 28 (***+)

 $f(n) = 7^n - 2^n, \ n \in \mathbb{N}$

Prove by induction that f(n) is divisible by 5, for all $n \in \mathbb{N}$.

f(n)= 7⁴-2⁴

• $f(t) = 7^{t} - 2^{t} = 5$ In terror funct for t=1• workset the securi fixed size $n=1 \in \{0\}$ is f(t) = 5 in fact size $n \in \mathbb{N}$ $f(t_{1}) - f(t_{2}) = (7^{t+1} - 2^{t+1}) - (7^{t} - 2^{t})$ $f(t_{2}) - f(t) = (7^{t+1} - 7^{t+1}) - (7^{t} - 2^{t})$ $f(t_{3}) - 5 = 7^{t+1} - 7^{t-1} - 2^{t+1} + 2^{t}$ $f(t_{3}) - 5 = 7^{t+1} - 7^{t-1} - 2^{t}$ $f(t_{3}) - 5 = 5 = 7^{t+1} - 3^{t}$ $f(t_{3}) - 5 = 5 = 7^{t} + 5 = 7^{t}$ $f(t_{3}) = 5 = 7 = 7^{t} + 5 = 5^{t}$ $f(t_{3}) = 5 = 7 = 7^{t} + 5 = 5^{t}$ $f(t_{3}) = 5 = 2^{t} + 5 = 7^{t} + 5 = 5^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t}$ $f(t_{3}) = 5 = 2^{t} + 7^{t} - 2^{t} + 5^{t} +$

Question 29 (***+)

 $f(n) = n^3 + 5n, \ n \in \mathbb{N}.$

a) Show that $n^2 + n + 2$ is always even for all $n \in \mathbb{N}$.

b) Hence, prove by induction that f(n) is divisible by 6, for all $n \in \mathbb{N}$.

- => f(k+)-6m = (k3+3k2+3k +5k+5)-(k3-5k)-
- \Rightarrow $f(k+1) = G_{M} + 3k^2 + 3k +$

 $\eta^2 + \eta + 2 = \eta(k+1) + 2$

- $f(k+1) = G_{W} + 3(k^2 + k + 2)$
- ⇒ f(k+1) = 6m + 6p <from PACT (a) K+K+2 U MAZ
- => f(k+1) = G(W+P) IE DWAIBLE BY G
- If the neutr locals for m=ken), then it we since the asult holds for n=1, then it we

Question 30 (***+)

A sequence of positive numbers is given by

 $a_n = 12^{n+1} + 2 \times 5^n$, $n \in \mathbb{N}$.

Prove by induction that every term of the sequence is a multiple of 7

proof	
-------	--

proof

Qy = 2"+1	2× 5 ⁴¹	
a a1 = 12 + :	2×5' = 144+10 = 154 = 7	×22 16 4 NUMPLE OF 7
· SUPPOSE THE	ESUIT HUDS ROR NOKE IN, H	QE= TH, WEN
	= (12 + 2x 5 +)- (12 +	
	$= 12^{k+2} - 12^{k+1} + 2xS^{k+1} - 2$	
$\Rightarrow \alpha_{i41} - 7_{i41}$	$= (2x)^{k+1}_{2} - (2^{k+1})_{2} + 2xSxS^{k}_{2} -$	2xS ^L
⇒akn - 7w	= 11×12 + 8×5k	(ak=12+2x5
	$n = 11 \times 12^{244} + 4(2 \times 5^{k})$	$\begin{pmatrix} cx_k = 12^{kel} = 2xS_k^2 \\ cx_k = 12^{kel} = 2xS_k^2 \end{cases}$
$\Rightarrow Q_{k+1} - \gamma_k$	$w = ll \times l2^{k+l} + 4 \left[\alpha_k - l2^{k+l} \right]$	mini
=) ain - 71	4 = 7x12 + 4ak	
$\Rightarrow \alpha_{keq}$	$= 7 \times 12^{k+1} + 4(7m) + 7m$	
$\Rightarrow \circ_{t+1}$	= 7 [12 + Sm] 10 A	+ MUCTIRE OF 7

Question 31 (***+)

 $f(r) = 4 + 6^r, r \in \mathbb{N}.$

Prove by induction that f(r) is divisible by 10

2	proof
	proor

IN AR PELLI

proof

UST HOLD YGE A

f(r)= 4+ cr	
• f(i) = 4+6'= 10, 14 DIVISIBLE BY 10	
· SUPPORT THE REACT HOUSE BE I = ECOPPIC .	-{(k)= 10n, n=N
$f(k_{H}) - f(k) = (4 + 6^{k_{H}}) - (4 + 6^{k_{H}})$	
-f(k+1) - 10h = 6k+1 6k	
$f(k+1) = 10y = 6x6^k - 6^k$	
	ACK) = 4 + 6 K
-{au) - 101 = 5[104-4]	$10y = 4 + 6^{k}$ $10y - 4 = 6^{k}$
$-(3c_H) = 10_1 + 50_1 - 20$	
f(k+1) = 10 [64-2], 1+ DIVSIBLE	RV ID

IF THE RESULT HELDS FOR

Question 32 (***+)

Prove by induction that for all natural numbers n, the following expression

 $7^{n} + 4^{n} + 1$

is divisible by 6.

ELET f(n) = 7"+ 4"+13

- f(5) = 7 + 4 + 1 = 12 = 2×6 if event those here n=1
- Suppose THE BETUT WERE THE KEIN, IN f(t) = 6m, $m \in \mathbb{N}$
- $= \frac{1}{2} \left(\frac{1}{2} + 1 \right) 6 = 7 \times 7^{k} 7^{k} + 4 \times 4^{k} 4^{k}$
- $\rightarrow -f(k+1) = 6u_1 = 6xT^k + 3xU^k$
- $= \int (ix+1) G_{M} = G_{X7}^{k} + 3 \times (3)^{k}$ $= \int (ix+1) G_{M} = G_{X7}^{k} + 3 \times 2^{2k}$
- $\rightarrow -(k+1) G_{M} = G_{X}T^{k} + 3_{X}a_{X}2^{2k}$
- $\rightarrow f(k+1) = 6m + 6 \times 7^{k} + 6 \times 2^{2}$
- $\Rightarrow f(k+1) = 6 \left[2m + 7^{k} + 2^{2k-1} \right]$
- IF THE RANT HOUS BE N=KEN, THIN IT AND HOUS BE N=K+1 SINCE THE RENUT HOUS BE N=1 , THEN IT MUST HOUS $\forall n\in \mathbb{N}$

Question 33 (***+)

A sequence of positive numbers is given by

 $u_n = 7^n + 3n + 8, \ n \in \mathbb{N}.$

Prove by induction that every term of the sequence is a multiple of 9

	n.
100	
	$\begin{array}{c} (U_{1}=7\overset{*}{+}\overset{*}{3},+\theta) \\ \bullet (U_{1}=7\overset{*}{+}\overset{*}{3},+\theta) = \theta = \theta \times 2, \text{if MURPL-OF } \\ \bullet Subtract He \ \text{Reuring basis (Sch. h=k, \in N)}, U_{k} = \theta_{w_{1}}, \text{sec} \in \mathbb{N} \\ \Rightarrow U_{k+1} - U_{k} = \left[1\overset{*}{w_{1}}\overset{*}{3}(x_{1}), y \overset{*}{\theta_{1}} \right] - \left[1\overset{*}{w_{1}}\overset{*}{3} \overset{*}{3} + \vartheta \right] \\ \Rightarrow U_{k+1} - \theta_{k} = 7\overset{*}{w_{1}} - 7\overset{*}{w_{1}}\overset{*}{3} + 3\overset{*}{3} \overset{*}{3} \overset{*}{3} - \overset{*}{3} \\ \Rightarrow U_{k+1} - \theta_{k} = 7\overset{*}{(k_{1},7)^{k}} - \overset{*}{1} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - \theta_{k} = (1,7)^{k} - 1\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - 0\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - 0\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - 0\overset{*}{n} + 0\overset{*}{n} + 3 \\ \Rightarrow U_{k+1} - 0\overset{*}{n} + 3 \\ \Rightarrow U_{k+1}$
	but $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$
2	$\begin{array}{l} \text{$(n+1)$} $($

proof

Question 34 (***+)

 $f(n) = 5^{n+1} - 4n - 5, n \in \mathbb{N}.$

Prove by induction that f(n) is divisible by 16

proof

f(h) = 5"-4h -5

- $\begin{array}{l} & \forall e^{-y} a \\ & \forall e^{-y} a$
 - $\Rightarrow \{(k_{H}) |b_{H}| = 5^{k_{H2}} 4k 4 8 5^{k_{H1}} + 5$
- ⇒f(k+1) 16m = s^{k+2} s^{k+1} 4 ⇒f(k+1) - 16m = sxs^{k+1} s^{k+1} 4
- 3-100H) 16W1 = 4×5tH 4
 - $\begin{cases} 2807 + 4k = 5^{241} 4k 5 \\ 16m = 5^{241} 4k 5 \end{cases} = 4x5^{241} = 64m + 16k + 2 \end{cases}$
- $\frac{2}{f(k+1)} 16k 20$
- $\Rightarrow f(k_{H}) = 80w_{+}|6k_{+}|6$ $\Rightarrow f(k_{H}) = 1000 + 10000 + 1000 + 1000 + 100000 + 100000 + 100000 + 100000 + 100000 + 1$
- ⇒ f(kn) = 16[Sm+k+1] 16 DNUBLE BY 16 19 THE REVUT HERE FOR N=1×EN, THEN T-ASO HERE FOR N=2+
- FITTLE REVER HERE FOR N=1 + FITTLE FOR THE TASS HERE FOR N=1+1 SINCE THE REVER HERE FOR N=1, THIS THE REPORT HERE FOR ALL N

Question 35 (***+)

A sequence of positive numbers is given by

 $u_n = 2^{3n+2} + 5^{n+1}, \quad n \in \mathbb{N}.$

Prove by induction that every term of the sequence is a multiple of 3.

	<u></u>
	$\alpha'' = \delta_{2^{j_0+j_0}} + \zeta_{j_{l+j}}$
۲	If n=1 U1 = 2 + 52 = 32 + 25 = 57 = 3×19 IE DWGIBLE BY 3
0	SUPPOSE THE RESULT YOUS FOR N=KEN, IF UKE 3M , WEN
	$U_{kij} - U_k = \left[2^{3(kij)+2} + 5^{(kij)+1}\right] - \left[2^{3ki+2} + 5^{kij}\right]$
	Uku - 3m = 2 - 2 + 5 - 5 ++1
	$U_{k+1} - 3m = 2 \times 2 - 2^{k+2} + 5 \times 5^{k+1} - 5^{k+1}$
	$U_{kH} - 3M = 7 \times 2^{3k+2} + 4 \times 5^{k+1}$
	With - 3m = 7x 2 = 3x 5 + 5 + 5
	$(B_{UT} (t_{K} = 2 s^{34,42} s^{244})$
	$(u_k - 2^{2k+2} = 5^{k+1})$
	$U_{kk_1} - 3w_1 = 7x 2^{3k_1k_2} + 3x 5^{k_1} + U_{k_1} - 2^{3k_1k_2}$
	$U_{k+1} = 3M = 6 \times 2^{3k+2} + 3 \times 5^{k+1} + 3M$
	$U_{k+1} = 6w + 6x 2^{3k+2} + 3x 5^{k+1}$
	$U_{k+1} = 3 \left[2m + 2x^{3k+2} + 5^{k+1} \right]$
@ 19	THE REALT HOUSE FOR MINING IN AND IT THIS HEADS FOR MINING HIM
	ave the share there 60 met - a method March)

proof

Question 36 (***

$f(n) = 3^{2n+4} - 2^{2n}, n \in \mathbb{N}$

Prove by induction that f(n) is divisible by 5, for all $n \in \mathbb{N}$.

11

+(u)= 32n+4 - 22n -

- $$\begin{split} & \Phi(0) = \mathcal{S}_{-2}^{-2} = 729 4 = 725 \quad \text{Whole its Dranseller By S} \\ & \text{Sufface that the feature frace for the bold is the transel for some one bold is the transel for the feature for the bold is the transel for the bold is the bold is$$
 - $\begin{cases} f(kl) = 5w_l + 8(3^{2k+q}) + [15w_l 3(3^{2k+q})] \\ f(kl) = -30w_l + 5(-3^{2k+q}) + [15w_l 3(3^{2k+q})] \\ \\ f(kl) = -30w_l +$
 - $\begin{cases} \frac{1}{2} \frac{$
- \bullet Is the deput buss for n=k+1, then it wut 400 kbus for n=k+1. Since the resurt buss for n=1 , then the return buss $\neg v_n \in N$

RECURRENS RECURRENS MASIRALISCOM LANCER MARINESSMANNESSOM LANCER MARINESSMANNESS Antonactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionactionaction

Question 1 (**)

Com

I.V.G.B. INad

I.C.B

A sequence of integers is defined recursively by the relation

 $a_{n+1} = a_n - 4$, $a_1 = 3$, n = 1, 2, 3, ...

Prove by induction that its n^{th} term is given by

$$a_n = 7 - 4n$$
, $n = 1, 2, 3, ...$

nadasmarh

2017

2017

·C2

I.G.B.

an=7-44

The Com

proof

1:0

1+

madasm.

naths.com

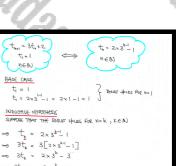
- $a_1 = 7 4x = 3$

Madasn

2017

Question 2 (**)

F.G.B.


I.C.p

A sequence of integers t_1, t_2, t_3, \dots is given by the recurrence relation

$$t_{n+1} = 3t_n + 2, \quad t_1 = 1, \quad n \in \mathbb{N}$$

Prove by induction that its n^{th} term of the sequence is given by

 $t_n = 2 \times 3^{n-1} - 1$, $n \in \mathbb{N}$.

proof

$$= 3t_k = 2 \times 3^k - 3$$

-	3tx+2 =	2×8 ^k	3+2

23

F.C.B.

Question 3 (**)

A sequence of integers is defined inductively by the relation

 $a_{n+1} = 3a_n + 4$, $a_1 = 3$, n = 1, 2, 3, ...

Prove by induction that its n^{th} term is given by

 $a_n = 5 \times 3^{n-1} - 2, \quad n = 1, 2, 3, \dots$

$\{\alpha_{n_{1}}^{n_{1}} = 3\alpha_{i_{1}} + 4a_{1}^{n_{1}} = 3\}$ is the same def $\{\alpha_{n_{1}}^{n_{1}} = 5 \times 3a_{1}^{n_{1}} - 2\}$
• IF $\eta_{=1}$ $q_1\!=\!3$ $Q_1\!=\!s_XS_{-Z}^\circ=\!s_Z$ for the field the q_1 the q_2
• Software the detail theor for $n=k\in \mathbb{N}$ $\implies \Im_{0} = S_{X} S^{k-1} - 2$ $\implies \Im_{0_{X}} = \Im_{0_{X}} S^{k-1}) - 6$
$\Rightarrow 3\alpha_{k} - \frac{1}{2}x_{3}x_{3} - 6$ $\Rightarrow 3\alpha_{k} - \frac{1}{2}x_{3}x_{-6}$
→ $q_{\underline{(i)}} = s \times \frac{g_{\underline{(i)}}}{2}$. • F THE RELIT (Hole DR: In= $k \in \mathbb{N}$), THAN IT MUIT ASO (HAD DR: In= $k+1$ SNOTE THE RELIT (HOLE DR: IN=1), THAN IT MUIT (HOLE DR: IN= $k+1$).

proof

Question 4 (**)

The terms of a sequence can be generated by the recurrence relation

 $b_{n+1} = 4b_n + 2$, $b_1 = 2$, n = 1, 2, 3, ...

Prove by induction that the n^{th} term of the sequence is given by

$$b_n = \frac{2}{3} (4^n - 1), \quad n = 1, 2, 3, \dots$$

 $\begin{array}{l} b_{n} = \frac{4k_{1}k_{2}}{b_{1}-2} & 4 & b_{n} = \frac{3}{2}(4^{n}-1) \\ b_{1} = \frac{3}{2}(4^{n}-1) = \frac{3}{2}(\lambda \lambda = 2) \\ b_{2} = \frac{3}{2}(\frac{4^{n}}{2}-1) = \frac{3}{2}(\lambda \lambda = 2) \\ \hline \\ \text{SUPCOSE THE PREAT FLARE FOR THE END THAT SOLE NEIL$ $by <math>\frac{3}{2}\frac{3}{2}(\frac{4^{n}}{2}-1) = \frac{3}{2}(\frac{4^{n}}{2}-\frac{1}{2}) \\ \frac{4k_{2}}{4k_{2}} = \frac{4}{2}(\frac{4^{n}}{2}-1) = \frac{3}{2}(\frac{4^{n}}{2}-\frac{1}{2}) \\ \frac{4k_{2}}{4k_{2}} = \frac{4}{2}(\frac{4^{n}}{2}-\frac{1}{2}) \\ \frac{4k_{2}}{4k_{2}} = \frac{4}{2}(\frac{4^{n}}{4}-\frac{1}{2}) \\ \frac{4k_{2}}{4k_{2}} = \frac{4}{2}(\frac{4^{n}}{4}-\frac$

proof

Question 5 (**)

madasma

SMaths.com

I.C.B. Madasm

I.C.B.

A sequence is defined by the recurrence relation

 $u_{n+1} = 7u_n - 3$, $u_1 = 7$, n = 1, 2, 3, ...

Prove by induction that its n^{th} term is given by

 $u_n = \frac{1}{2} (13 \times 7^{n-1} + 1), n = 1, 2, 3, ...$

Com

Madasmaths.com

I.V.C.B. Madash

The Com

proof

4.6.0

1+

madasm.

Question 6 (**)

nadasma

COM

I.C.B. Madasn

I.C.p

2

Smaths,

A sequence of integers a_1 , a_2 , a_3 , a_4 , ... is given by

 $a_{n+1} = 3a_n + 2$, $a_1 = 2$, n = 1, 2, 3, ...

Prove by induction that its n^{th} term is given by

 $a_n = 3 \times 3^{n-1} - 1, \ n = 1, 2, 3, \dots$

Com

2017

Ĭ.G.B.

COM

nadasmaths.com

I.Y.C.B. Madash

ths.com

proof

1

6

madasm.

Question 7 (**+)

A certain sequence can be generated by the recurrence relation

 $u_{n+1} = \frac{1}{3}(2u_n - 1), \quad u_1 = 1, \quad n = 1, 2, 3, \dots$

Prove by induction that the n^{th} term of the sequence is given by

 $u_n = 3\left(\frac{2}{3}\right)^n - 1, \quad n = 1, 2, 3, \dots$ SHAIRSCOM I.Y.C.B. MARASHAIRSCOM I.Y.C.B. MARA

hs.com

I.Y.G.

nadasm.

Question 8 (***+)

A sequence is defined recursively by

$$u_{n+1} = \frac{3}{4 - u_n}, \ u_1 = \frac{3}{4}, \ n = 1, 2, 3, ...$$

:0M

proof

The,

Mada

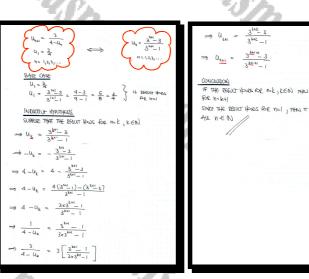
I.F.C.B.

1.G.D.

6

I.C.B.

()_{k+1} =


27

Prove by induction that

I.V.C.B. III,

I.F.G.B.

 $u_n = \frac{3^{n+1}-3}{3^{n+1}-1}, n = 1, 2, 3, \dots$

Created by T. Madas

I.V.C.

(***+) **Question 9**

A sequence is defined recursively by

 $u_{n+1} = u_n + 3k - 2$, $u_1 = 3$, n = 1, 2, 3, ...

Prove by induction that

nn

00

I.C.P.

 $u_n = \frac{1}{2}(3n-1)(n-2)+4, n = 1, 2, 3, ...$

nn

I.C.B.

	, proor
	1900 C
	WHO TO SHOW THAT THE WHI THOU OF THIS RECURRENCE RELATION
	$\label{eq:generalized_states} \frac{U_{2}}{U_{2}} = \frac{1}{2}(3n-1)(n-2) + 4$
2	FRATY IF n=1
212	$U_{i} = \frac{1}{2} \times 2 \times (-i) + 4 = -i + 4 = 3 \qquad \text{ for the Boson space for } m-1$
	SUPPOSE THAT THE REALT INFLOR N= 12 EIN
612	\rightarrow $u_{g} = \frac{1}{2} (34-1)(k-2) + 4$
- V.I.	$\implies U_{k} + 3k - 2 = \frac{1}{2}(3k-1)(k-2) + \mu + 3k - 2$
·····	$\implies U_{k+1} = \frac{1}{2}(3k-1)(k-2) + 3k + 2$
	$\Rightarrow U_{k+1} = \frac{1}{2} \left[(3k-1)(2-2) + 6k + 4 \right]$
· · · /	\rightarrow $U_{k+1} = \frac{1}{2} \left[3\ell^2 - 7k + 2 + 6l + 4 \right]$
5	$\Rightarrow U_{LM} = \frac{1}{2} \left[\Im^{a} + \zeta \right]$
	$\implies u_{kH} = \frac{1}{2} \left[(3t^2 - k - 2) + 8 \right]$
	$\Rightarrow U_{k_{H}} = \frac{1}{2}(3k_{-}^{2}k - 2) + 4$
	$\implies U_{k+1} = \frac{1}{2}(3k+2)(k-1) + 4$
<u>}</u>	$\implies U_{22} = \pm [3(2\pi) - 1] [2\pi - 1] + 4$
1 L L	IF THE REAL OLD BE N= EEN , THEN IT WIT THE BE N= 2+1
- P	SINCE THE REDUCT QUES FOR N=1, THEN IT WAT WAS ROR ALL N E N
G)	1 C P
V	

Madasmaths,

I.F.C.B.

COM

Mada

2017

hs.com

1+

Created by T. Madas

madasmaths,

2017

Question 10 (***+)

F.G.B.

I.C.B.

A sequence is defined recursively by

$$u_{n+1} = \frac{u_n}{u_n + 1}, \ u_1 = 2, \ n \in \mathbb{N}$$

By writing the above recurrence relation in the form

$$u_{n+1} = A + \frac{B}{u_n + 1},$$

where A and B are integers, use proof by induction to show that

 $u_n = \frac{2}{2n-1}, n \in \mathbb{N}$.

 $= \frac{u_n}{u_n+1} = \frac{(u_n+1)-1}{(u_n+1)} = 1 - \frac{1}{u_n+1}$

Y.G.B.

2017

Madasn.

, proof

 $U_1 = 2$ $U_1 = \frac{2}{2\lambda_1 - 1} = 2$ i.e the result if up for n = 1

SUPPORT THE THE RESULT FOR SER N= k, KEN $\Rightarrow U_k = \frac{2}{2k-1}$

 $= \int_{0}^{\infty} u_{k}(1 - \frac{1}{2k+1}) = \int_{0}^{\infty} \frac{2k-1}{2k+1} = \frac{2k-1}{2k+1} = \frac{2k-1}{2k+1} = \frac{2}{2k+1} =$

 $= \int_{\frac{1}{2}} \int_{\frac{1}{2}} \frac{1}{2(\frac{1}{2})^{n-1}} + \frac{1}{2(\frac{1}{2})^{$

F.G.B.

na

Question 11 (***+)

A sequence is generated by the recurrence relation

I.C.B.

~?.

112012

I.V.G.B. III.a.

I.C.B.

200

 $u_{n+2} = 5u_{n+1} - 6u_n$, $u_1 = 5$, $u_2 = 13$, n = 1, 2, 3, ...

Prove by induction that n^{th} term of this sequence is given by

 $u_n = 2^n + 3^n$, n = 1, 2, 3, ...

COM

proof

I.V.C.B. Mada

1+

- $$\begin{split} U_{2} = 3 + 3 &= 3 + 9 = 13 \\ SUPREM THE EVENT HEADS FOR THE DESCRIPTION ATHEREY IN THE EVENT HEADS FOR THE DESCRIPTION ATHEREY IN THE EVENT HEADS FOR THE DESCRIPTION ATHEREY. IN THE EVENT HEADS FOR THE DESCRIPTION AT A DESC$$
- $\begin{array}{c} U_{k}=2^{k}+3^{k}\\ U_{kH}=3^{kH}+3^{kH}\end{array} \right\} \begin{array}{c} -\varepsilon U_{k}=-\varepsilon \times 2^{k}-\varepsilon \times 3^{k}\\ -\varepsilon U_{kH}=\varepsilon \times 2^{kH}+\varepsilon \times 3^{kH}\end{array} \right\} \begin{array}{c} +\delta D_{ij} \\ +\delta D_{ij} \\ +\delta D_{ij} \\ +\delta D_{ij} \end{array}$
- $$\begin{split} & 5 U_{0x1} G U_k = \left[5 \times 2^{2 H_1} G \times 2^k \right] + \left[5 \times 3^{4 L_1} G \times 3^k \right] \\ & U_{4 L_k} = \left[5 \times 2^k \times 2^k G \times 2^k \right] + \left[5 \times 3^k \times 3^k G \times 3^k \right] \\ & U_{4 R_k} = \left[4 \times 2^k 4 \times 3^k \right] + \left[15 \times 3^{k -} 6 \times 3^k \right] \\ & U_{4 R_k} = 4 \times 2^k + 4 \times 3^k \\ & U_{4 R_k} = 4 \times 2^k + 3^k \times 3^k \\ & U_{4 R_k} = 6 \times 2^k \times 3^k \times 3^k \times 3^k \\ \end{split}$$
- $u_{22} = 2^{2} + 3^{2}$

23

) IF THE RESULT YOUS GOE $M=k\in\mathbb{N}$ of m=k+1, THON IT WAT ALLO YOUR SOE n=k+2. Since The Resourt Yous for n=1 of n=2, THON IT WAT HAD $\forall h\in\mathbb{N}$

(****) Question 12

madasma

Smarns.com

K.C.B. Madasm

Smarns Com I. K. C. B.

I.C.p

A sequence is generated by the recurrence relation

5

 $u_{n+2} = 6u_{n+1} - 8u_n$, $u_1 = 0$, $u_2 = 32$, n = 1, 2, 3, ...

Prove by induction that n^{th} term of this sequence is given by

.com

 $u_n = 4^{n+1} - 2^{n+3}$, n = 1, 2, 3, ...nadasman

I.V.C.B. Madasman

Madasmanar Com

I.V.C.B. Madasa

The Com

proof

4.60

1.4

Madasma,

Created by T. Madas

P.C.P.

Question 13 (****)

I.C.B. ma

I.C.B.

COM

A sequence is generated by the recurrence relation

 $u_{n+2} = u_{n+1} + u_n$, $u_1 = 0$, $u_2 = 1$, n = 1, 2, 3, ...

Prove by induction that u_{5m} is a multiple of 5, for all $m \in \mathbb{N}$.

1120251

200

112112

0

ŀ.G.B.

manasn

2017

COM

4.60

6

nadasm.

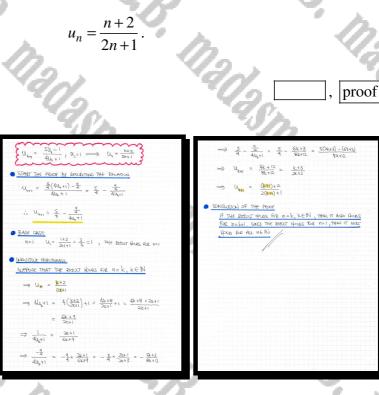
he,

I.F.C.P.

COM

Inalla,

Question 14 (****+)


I.C.B.

I.C.B.

A sequence of numbers is given by the recurrence relation

$$u_{n+1} = \frac{5u_n - 1}{4u_n + 1}, \ u_1 = 1, \ n \in \mathbb{N}, \ n \ge 1$$

Prove by induction that the n^{th} term of the sequence is given by

23

I.C.P.

mada

nn,

1+

(****+) Question 15

Smaths.com

I.Y.C.B. Mad

I.F.G.B.

Smarths.com I.V.C.B

A sequence of numbers is given by the recurrence relation

 $u_{n+1} = \frac{u_n - 5}{3u_n - 7}, u_1 = -1, n \in \mathbb{N}, n \ge 1.$

Prove by induction that the n^{th} term of the sequence is given by

 $u_n = \frac{2^{n+1} - 5}{2^{n+1} - 3}.$ $\frac{U_{h_{h}}-7}{3U_{h}-7}=-\frac{3}{2}\left(\frac{U_{h}-\frac{7}{3}}{U_{h}-\frac{7}{3}}\right)=-\frac{1}{2}\left(\frac{(U_{h}-\frac{7}{3})-\frac{8}{3}}{U_{h}-\frac{7}{3}}\right)$

h=1 $U_1 = \frac{2^2 - 5}{2^2 - 3} = \frac{4 - 5}{5}$

THE REAUT HOLDS FR. AU. NEN

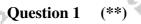
The Com

proof

aths.com

I.F. C.B. Mada

I.F.G.S


6

Created by T. Madas

aths com

N.C.

POWERS OF MATRICES MASIRALISCOM LANCER MARINESSMANNESSON LANCER MARINESSON LANCER MARINESSMANNESSON LANCER MARINESSMANNESS AMANNESSMANN AMANNESSMANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNE AMANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNE AMANNESSKAN

Prove by induction that

asmaths.com

asiliatils.com

Question 2 (**)

R,

I.C.P.

A transformation where $\mathbb{R}^2 \mapsto \mathbb{R}^2$ is defined by

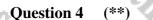
 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$

- **a**) Find the elements of the matrices, \mathbf{A}^2 and \mathbf{A}^3 .
- **b**) Write down a suitable form for \mathbf{A}^n and use the method of proof by induction to prove it.

2n1 $\mathbf{A}^3 =$ $\mathbf{A}^2 =$ 0 0 0 1 $\Rightarrow \underline{A}^{\underline{\mathbf{kH}}} = \begin{pmatrix} 1 & 2(\underline{\mathbf{kH}}) \\ 0 & 1 \end{pmatrix}$ CARLY DOT THE REQUIRED WULTIPUCATIONS $\underline{\underline{A}}^{2} = \underline{\underline{A}} \underline{\underline{A}} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \times 1 + 2 \times 0 & (X \times 2 + 2 \times 1) \\ 0 \times 1 + (X \times 0 & 0 \times 2 + 1 \times 1) \end{pmatrix}$ IF THE REGIOD HOUDS FOR $n=k\in\mathbb{N}$, THEN IT ALSO HOUSS Re n=k+1 (1 4) SINCE THE RESOLT HOU PR AU NEN $\underline{A}^{2} = \underline{A}^{2} \underline{A} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \times 1 + 4 \times 0 & 1 \times 2 + 4 \times 1 \\ 0 \times 1 + 1 \times 0 & 0 \times 2 + 1 \times 1 \end{pmatrix}$ (6 1) A POSSIBLE FORM OF A MIGHT BE $\underline{A}_{n} = \begin{pmatrix} 1 & 2h \\ 0 & 1 \end{pmatrix}$ • IF Mal) $\underline{A}^{1} = \underline{A} = \left(\begin{smallmatrix} 1 & 2 \\ o & 1 \end{smallmatrix} \right)$, if the result strates ios foil n=k+en) $\overline{\nabla}_{\mathbf{k}} = \begin{pmatrix} \mathbf{1} & \mathbf{s}_{\mathbf{k}} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$ $\underline{A}^{k}\underline{A} = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ = (1 242

A.C.P.

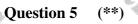
Question 3 (**)


Prove by induction that if $n \ge 1$, $n \in \mathbb{N}$, then

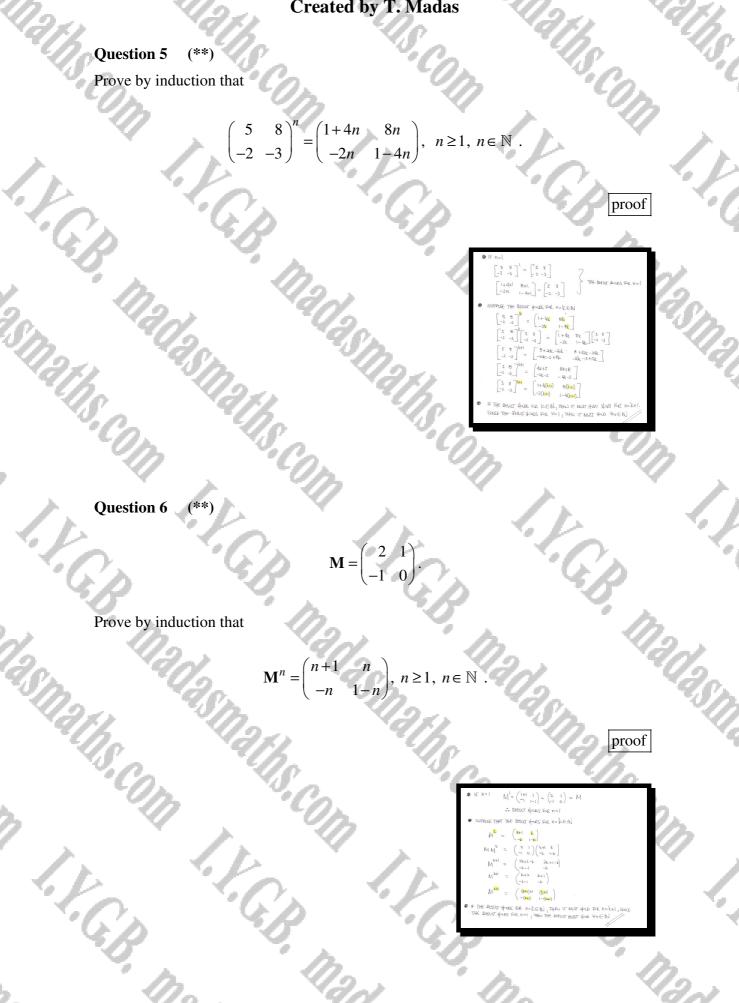
naths.com

Smains.co

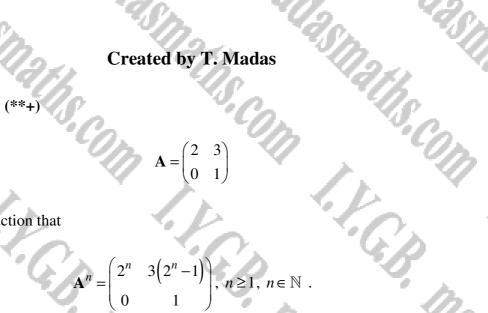
I.F.C.



	Question 4 (**		Co.		"Co
2	COD		$\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	1. 01	
/r.	Prove by induction	n that if $n \ge 1, n \in \mathbb{N}$,	, then	·	1.1
	Cp 1	A ^{<i>n</i>} =	$\begin{pmatrix} 3^n & 0 \\ 3(3^n-1) & 1 \end{pmatrix}.$	~B 	Ċ,
20/20.	nan	120		proof	13sm
1302	10 35	n31,	Sharp.	• IF WEI $A^{1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{1} = \begin{pmatrix} 3 & 0 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$ • Suffice the gass that we be M	
3	°.Com	- CON	· · · CO]	• Suffere the part that the varies of $A^{\text{E}}_{n} = \begin{pmatrix} 3^{\text{E}}_{n} \\ (3^{\text{E}}_{n}) \end{pmatrix}$ $A^{\text{E}}_{n} = \begin{pmatrix} 3^{\text{E}}_{n} \\ (3^{\text{E}}_{n}) \end{pmatrix}$	7
1.1		Ko, "	1.1.	$ \begin{array}{c} \left[\begin{array}{c} 1 \\ \left[x \\ x \\ x \\ z \\$	1.Y.
22.	B	~B 	G'A	S.	ч 7.
		Sp.		20/20	adasm.
2	Is.Co.	12ths	The co	, "naths	1911 -
⁰ 0 ,					
	Gp	GB	· · · · · · · · · · · · · · · · · · ·	- Cp	·
na	112	Create	ed by T. Madas	nan	nada
-43S)		2sm	The second	-43Sp.	SD.


asmaths.com

ás III á TIIS. COL



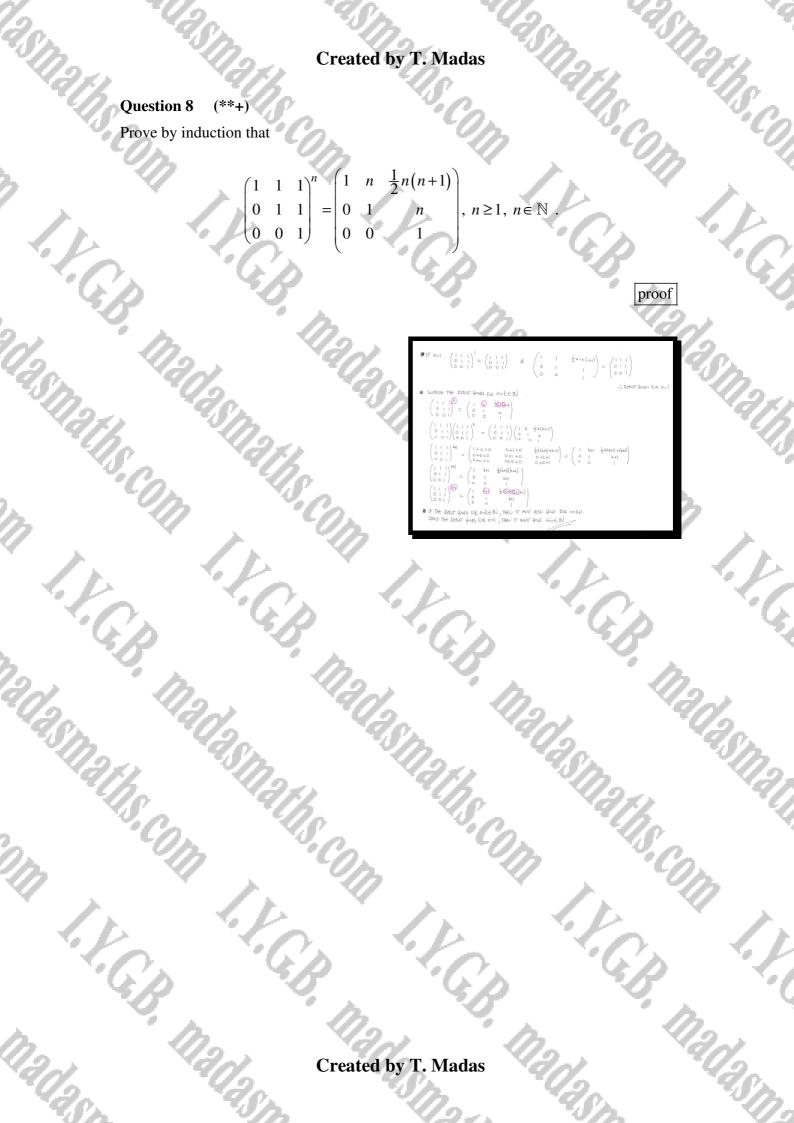
2

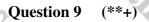
Prove by induction that

6

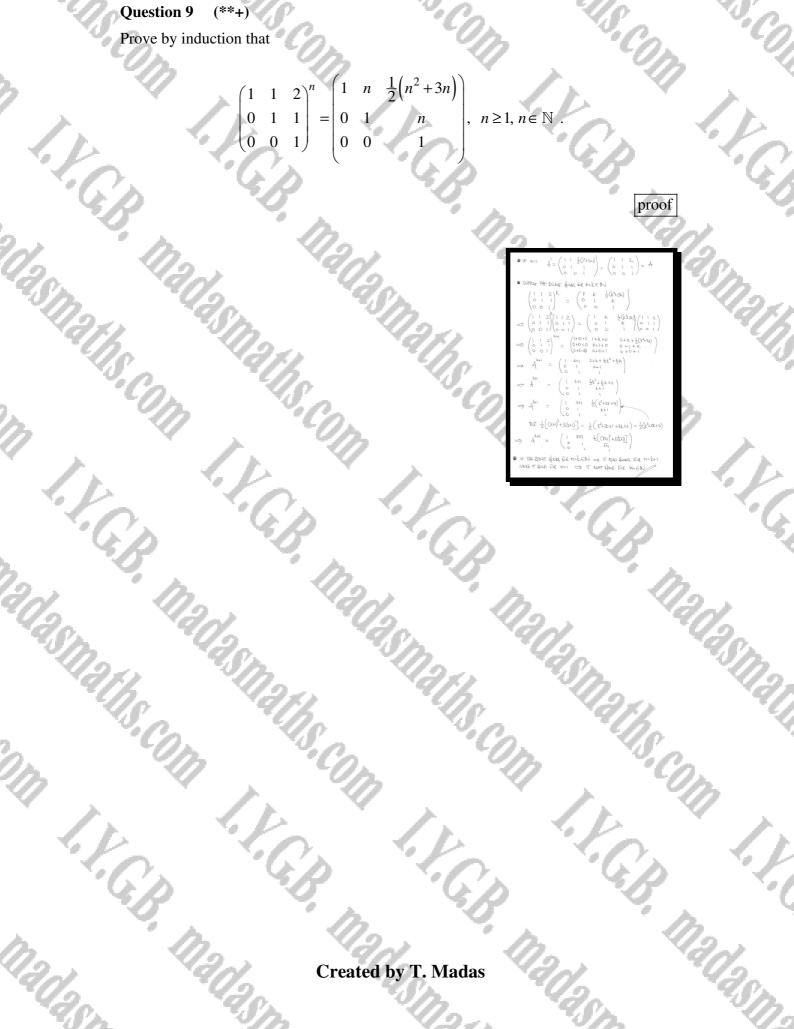
I.F.G.B. Prove by induction that

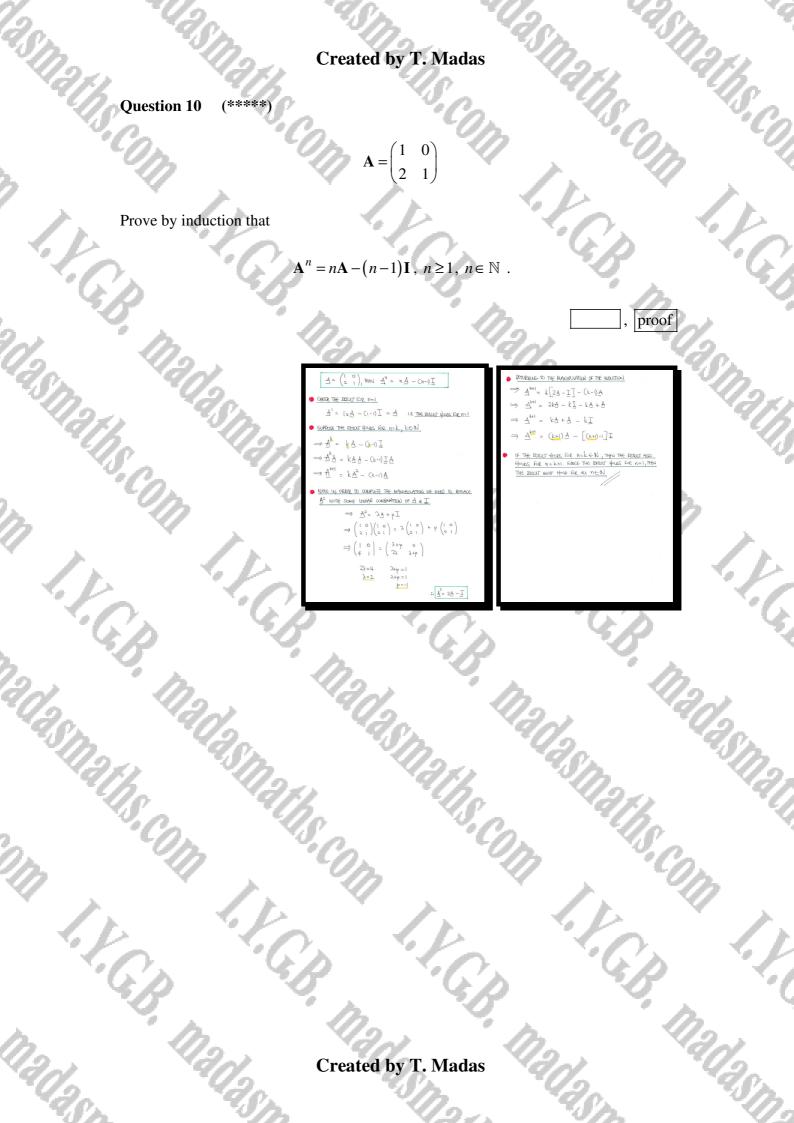
Question 7


2



asillatilis.co.


I.F.C.



Prove by induction that

naths.com

asillatils.co

Created by T. Madas MISCELLANEOUS TESULTS TISCELLANE RESULTS MASIRALISCOM LYCCB. MRRIESERALISCOM LYCCB. MRRIESERAL

Question 1 (**+)

De Moivre's theorem states

 $(\cos\theta + i\sin\theta)^n \equiv \cos n\theta + i\sin n\theta, \ n \in \mathbb{N}.$

Prove this theorem by induction.

proof

- (3aci + 6ac) (dhai + 6ac) = (4aci + 6ac) (4aci + 4ac) $hadda + dwathe) + (4achar - 4acdha) = (^{+}(4aci + 6ac)$ $[= 4ac] hac + (= (^{+}(4ac)) + (^{+}(4ac$
- IF THE BERDIT HOUSE RE N= KEN => IT too HOUSE RE N= K+1 SINCE THE SENSE HOUSE GE N=1 => IT WAT HOU FOR N

Question 2 (**+)

Ka,

 $u_n=\frac{3}{7}\left(8^n-1\right),\ n\in\mathbb{N}\,.$

Prove by induction that every term of this sequence is an integer.

proof

1+

ろ

$\lambda_{\mu} = \frac{3}{7} \left(g^{\mu} - 1 \right)$

- $U_1 = \frac{3}{7} \left(8^{-1} \right) = \frac{3}{7} \times 7 = 3$ (IF by INTHER
- THEN S (WEH) 3 (WEH)
- $k_{k+1} N = \frac{3}{7} \left[8^{k+1} 8^{k} \right]$
- hun − N = ∻[8x8^k-8^k_ hun − N = ≟x 7x 8^k
- With = N + BK without is there by motion
- IF THE 88.007 Knos for n= KEN, THON IT AND Knos Ge n= L+1 SINCE THE RELOT KNOS FOR n=1, THEN THE RELOT WORT HAVE FOR ALL N

Question 3 (**+)

20

$$\sum_{r=1}^{n} (2r+1) = (n+1)^2, \ n \in \mathbb{N}$$

a) Show that if the above result holds for n = k, then it also holds for n = k + 1.

Madasm.

200

Inada.

0

. K.G.B.

Madasn.

2017

1.5

Madasm.

Inadası,

proof

RE n=KEN

(k+1)+1 = $(k+1)^2 + [2(k+1)+1]$

21/18

I.F.C.B.

b) Explain why the result is **not** true.

I.G.B.

I.C.B. Mad

COM

I.V.G.p

Question 4 (**+)

The distinct square matrices **A** and **B** have the properties

- $AB = B^5A$
- $\mathbf{B}^6 = \mathbf{I}$

Ĉ,

C.B.

where \mathbf{I} is the identity matrix.

a) Show that BAB = A.

b) Hence prove by induction that $\mathbf{B}^n \mathbf{A} \mathbf{B}^n = \mathbf{A}$, for all $n \in \mathbb{N}$.

a) $BAB = B(AB) = B(B^{S}A) = B^{C}A = IA = A$

1.5 15305 HOUS RU 11=1

 $B^{k}AB^{k} = A$

 $B^{k}AB^{k} = BA$

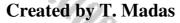
B A B B = DAD

24

23

●17 THE BESUT HELDS FOR N=KEIN, THEN IT HERD HERS FOR N=KHI, SINCE THE BESUT HELDS FOR N=1, THEN IT NUT HELD YOU

C.B.


mada

Question 5 (***)

xy + 3y = x

Prove by induction

 $(y) + (n+1)\frac{d^{n-1}}{dx^{n-1}}(y) = 0.$ $(x+3)\frac{d^n}{dx^n}$

The Com

ths.col

I.V.C.

(***) Question 6

Bernoulli's inequality asserts that if $a \in \mathbb{R}$, a > -1 and $n \in$ $n \ge 2$, then

 $(1+a)^n > 1+an.$

Prove, by induction, the validity of Bernoulli's identity.

madasmaths

Smaths.com

N.C.B. Madasm

00

I.C.B.

	· · >	
- Maria		BERNOULL INFOLAUTY
20	y 14	$(1+\alpha)^n > 1+\alpha n \qquad \alpha \in \mathbb{R}, \alpha > -1$ $n \in \mathbb{N}, n \ge 2$
> ~ <i>`U</i>	2	Place by induction
	0.	• IF N=2 $l_{4}l_{5} \approx (l + \alpha)^{2} = \alpha^{2} + 2\alpha + 1$ $P_{4}l_{5} = (l + 2\alpha)^{2} = \alpha^{2} + 2\alpha + 1$
(P. 7	102	μης = 17 24 ∴ α²+2α+1> 2α+1, so THF REQUET HUDS For h=2
m.	1200	• SUPPOSE THAT THE INEQUAUTY HULL BR N=kEN, K>2
191×	416	$\Rightarrow (1+\alpha)^{k} > 1+\alpha^{k}$ $\Rightarrow (1+\alpha)^{k}(1+\alpha) > (1+\alpha)(1+\alpha^{k})$
416	.0	$\implies (1+a)^{k+1} > 1+ak+a+a^{2}k$
4.0	"on	$\implies (1+a)^{k+1} > 1 + a(k+1) + a^{2}k > 1 + a(k+1)$ $\stackrel{\mathfrak{P}}{\Longrightarrow} (p_{\text{sump}})$
Son-		\Rightarrow (i+a) > i + a(kti)
- CD.		 IF THE INSERVATIVE HELDS FOR N=KEN, K>2, THW IT WWW. ALSO HOLD FOR N= K+1.
> m	Y	AS THE INXQUAUTY HUDS FOR N=2, THIN IT MUST HUD FOR ALL POSITULY INTEGRAS GRATEL THAN 2
		the trustice initiaties activities 19440 2
	· · · · · · · · · · · · · · · · · · ·	J 1.
	_ h.	10
10 C. Y.		
~ ~ <i>O</i> ~		- (x'A
-05	- 1 × X	510
	510	
m		
10		x 0
	Y	<i>D</i>
$\gamma = \gamma$	9.	2.2
9.	CPA.	400-
CP.	Yn.	de la
200	1.2 x .	
121	416	
· · · · · / / /	10	dry
4/0		~ <i>l</i> / <i>b</i> .
10 -	- C7	2
-10		De Cal
~Uh	. · · · · · · · · · · · · · · · · · · ·	<i>47 °C</i>
	7	×
/ k / Y		
512		- C. L.
	B.	10 M

Madasmaths.com

I.V.C.B. Madasn

madasm.

proof

Question 7 (***+)

. Y.C.J.

Prove by induction that

 $\frac{1}{n^2}$ for $n \ge 1, n \in \mathbb{N}$.

proof

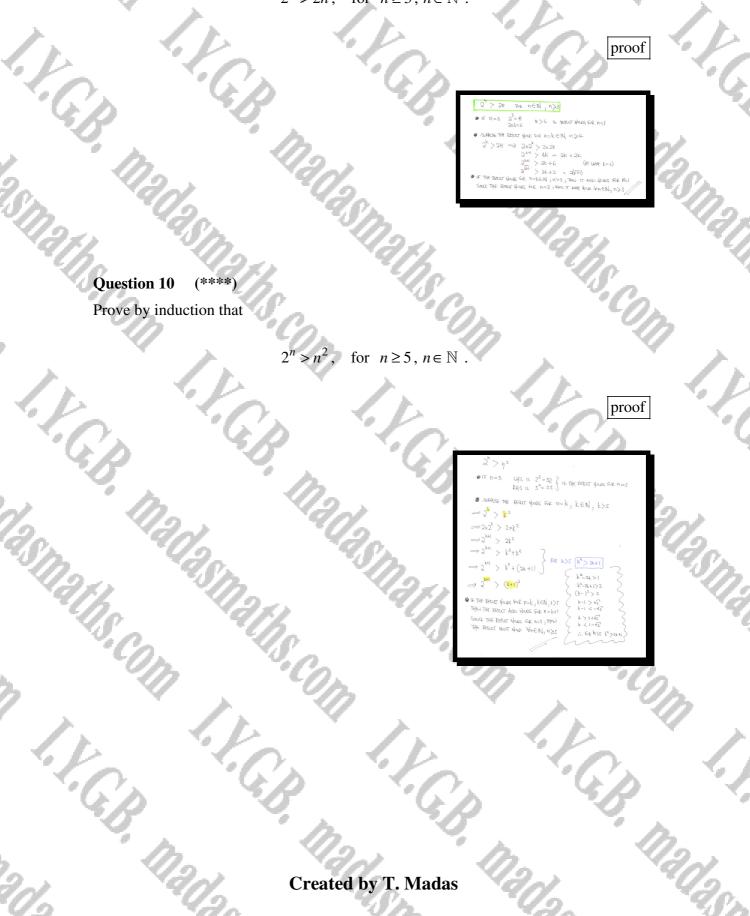
Question 8 (***+) Prove by induction that

Y.C.B.

 $x^{2} \ge \frac{1}{4}n(n+1)^{2}$, for $n \ge 1, n \in \mathbb{N}$.

1+

- $2^{+}S = \frac{(C_{1+1})^{2}}{2^{+}} = 1$ UT HOURS THEVE FOR M=1
- esuer eques ∞e n=k, k∈N
- $\geq \frac{K(k+1)^2}{7}$
 - $+ (k+i)^2 \ge \frac{1}{4} k (k+i)^2 + (k+i)^2$
 - $\geqslant \frac{1}{4}(k+i)^2 \left[k+i^2 \right]$ $\geq \frac{1}{4} (k+1) (k+1) (k+q)$
 - $\geq \frac{1}{4}(k+1)(k^2+5k+4)$
 - $r^{2} \ge \frac{1}{4}(k+1)(k^{2}+3k+4) > \frac{1}{4}(k+1)(k^{2}+4k+4)$
- $> \frac{1}{4}(k+1)(k+2)^2 = \frac{1}{4}(k+1)(k+1+1)^2$
- DSFOR N=KEN, THAN IT ALSO HOLDS BE N=641


Created by T. Madas

2

Question 9 (****)

Prove by induction that

 $2^n > 2n \,,$ for $n \ge 3, n \in \mathbb{N}$.

Question 11 (****)

Prove by induction that if $n \in \mathbb{N}$, $n \ge 3$, then

 $3^n > (n+1)^2.$

$LHS = 3^{2} = 27$ $RHS = (3+1)^{2} = 16$	27>16 so THE Nuepoduny Howas Fre n=3
NOUTRY HYPOTHERIS	
SOPPORE THAT THE INEQUAL	ny yous be nekell, k>3
$\implies 3^{\underline{k}} > C \overline{k}$	() _s
⇒ 3×3 > 3×0	(x+1) ²
$\rightarrow 3^{k+1} > 3k^2$	+ 6k + 2 > k ² + 6k +2
$\implies 3^{k+1} > k^2$	+ 4k + (2k+2)
NOU	N AS K>3 2K+2>8>4
$\rightarrow 3^{kH} > k^2$	+ 44. + 4
$\Rightarrow 3^{\underline{l}\underline{m}} > Ck$	$(+2)^2 = \left[(\underline{k+1}) + 1\right]^2$
LANZUUD (AD	
F THE INFPUAUNY YOULS FOR PURS FOR VI= K+1.	n=kEN, K>3, THEN IT ALCO

Question 12 (****)

Prove by induction that for all even natural numbers n

 $\frac{d^n}{dx^n}(\sin 3x) = (-1)^{\frac{n}{2}} \times 3^n \times \sin 3x$

, proof

SHECKLITHE BASE CASE, N=2

 $\begin{aligned} & \frac{d_{2k}^{(k)}(s_{2k}s_{k})}{d_{2k}^{(k)}(s_{2k}s_{k})} = -\frac{q_{2k}s_{k}}{q_{k}^{(k)}(s_{2k}s_{k})} \\ & (-1)^{\frac{1}{2}} \times 3^{\frac{1}{2}} \times s_{2k}s_{k} = (-1)^{\frac{1}{2}} + 3^{\frac{1}{2}} \times s_{2k}s_{k} = -1s_{k}s_{k} \\ & (-1)^{\frac{1}{2}} \times 3^{\frac{1}{2}} \times s_{k}s_{k} = (-1)^{\frac{1}{2}} \times 4^{\frac{1}{2}} \times s_{k}s_{k} \\ & \frac{1}{2} \frac{1$

² THF Elguit 40.06 Role n-k=2m ,774N π μμπ 400 Rol = 142 = 2Gru) 18 THF 861057 1400 Rol 10=2 ,774N π μωτ 440 Rol 446 Wherey

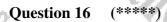
(****+) Question 14

Prove by induction that

 $\cos x + \cos 3x + \cos 5x + \dots + \cos\left[(2n-1)x\right] \equiv \frac{\sin(2nx)}{2\sin x}$

GHER THE BASE GISE, n=1	DEcomposition to the induction, within $sin(-4) = -sin A$
520) = (1-1×5)20) = 2+4J	
$RHS = \frac{SM(2x xx)}{2kmx} = \frac{SM2x}{2kmx} = \frac{ZMM0x}{2kmx} = 0.06X$	$\sum_{r=c}^{cont} \left(cr((r-t))_{n} \right) = \frac{3n(2n) + sm(2n+t)_{n}}{3cm_{n}} - \frac{sm(2n)}{2}$
S. THE REAL HOUS BR ME!	
SUPPOSE THAT THE RESULT IDUOS FOR MELEIN	$\sum_{z_1 \in z_1} \sum_{z_1 \in z_2} $
$\sum_{\substack{l=1\\l \in I}}^{4} \cos\{[2l-1]a_{-l}] = \frac{-SN(2k_{-l})}{2sm_{-l}}$	(F THE REALT YELD FOR N-KEN, THEN IT WAT ALSO HERE FOR A
$(DZ \left[g(rt) - i \right] T \right] + \sum_{r}^{(r+1)} (rr \left[(3-i)z \right] = \frac{3(rid)r}{2k} + ce \left[[3(rid) - i \right] r$	SINCE THE ZENT HUZS FOR N=1, THE THE ZENT HULL HAVEN
$\sum_{l=1}^{leq} \log[(3r_{-1})_{lk}] = \frac{2n(2r_{0})}{2lm_{k}} + \log[2r_{0})_{lk}$	
$\sum_{\substack{(n) \\ (n)}}^{(n)} (n \mathbb{Z}[(n-i)n]) = \frac{Sh(S(n) + S(n) Con[(S(n))n])}{S(n)}$	
WOOD WE NEED TO DREWE SOME DEWINES	
$m(A+B) \equiv \sin A \cos A = 4 \cos A \sin A = 3 \text{ Adding}$ $\sin(A-B) \equiv \sin A \cos B = \cos A \sin A = 3 \text{ Adding}$	
$sn(A+B) + sm(A-B) \equiv 2snAloeB$	
$2 \operatorname{sm} \operatorname{ApisB} \equiv \operatorname{sm}(\operatorname{A+B}) + \operatorname{sm}(\operatorname{A-B})$	
2-342 605 (2++)2] = 2n [2+(2+1)2] + 3n [2-(2+1)2]	
A 8 AHS A-8	
Dance From T + pullarith T + subar T	

(****+) **Question 15**


Prove by induction that every positive integer power of 5 can be written as the sum of squares of two distinct positive integers.

, proof

è

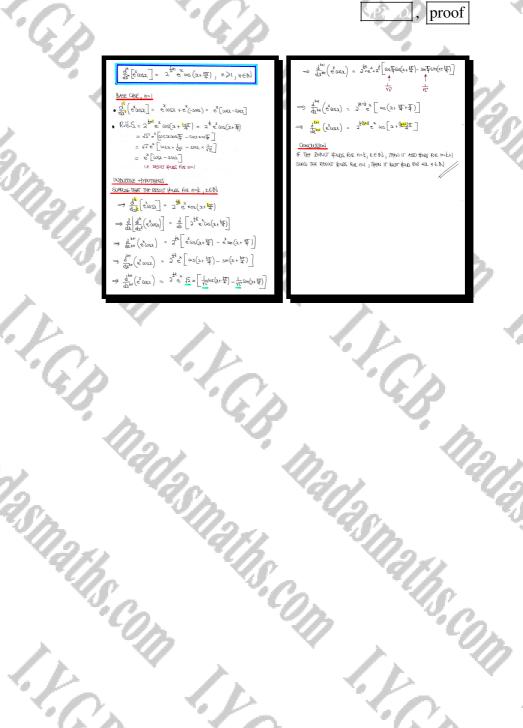
proof

START BY INVESTIGATING SOME BASE CASES
IF n=1 51 = 22 + 12 1.5 RHOUT 4005 FOR H=1
1F N=2 52 = 52 + 42 1 = 26005 1/2-205 1/2 11=2
SUPPOSE THE REGULT YELDS FOR MEE, KEIN
= 22 + g2 = 52 , where 2 4 y net sutinut nonferes
$\implies 25(\hat{a}^2 + y^2) = 26 \times 5^k$
$\Rightarrow 25x^2 + 25y^2 = 5x^2x^5$
$\implies (\Sigma x)^2 + (\Sigma y)^2 = \Sigma^{k+2}$
(the and y their duttimet theorem indifferent, so Would shart the sy]
IF THE RESULT HOUDS FOR N= 1 IT WWW AND HOUD FOR N-K+2
BUT THE RESULT HOUDS FOR MOIL, SO IT MUST HOUD FOR ALL ODD INTHERE
POWERS OF S
AND AS THE RESULT HOUDS FOR M=2, IT WHET ALSO HOLD FOR ALL FUNN
WITHOFE POWLAS OF S
. THE THE REWLT HELDS FOR ALL ME IN

Inana

I.V.C.B. Madası

Smaths.com


I.F.G.B

I.F.G.B.

alasmans.com

Prove by induction that

 $\frac{d^n}{dx^n} \left(e^x \cos x \right) = 2^{\frac{1}{2}n} e^x \cos\left(x + \frac{n\pi}{4}\right), \quad n \ge 1, n \in \mathbb{N}$

The Com

6

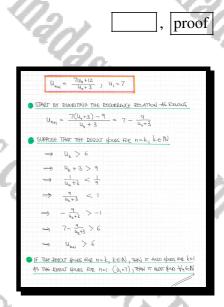
11.303SM2

Created by T. Madas

2011

I.F.C.B

madasmaths.com

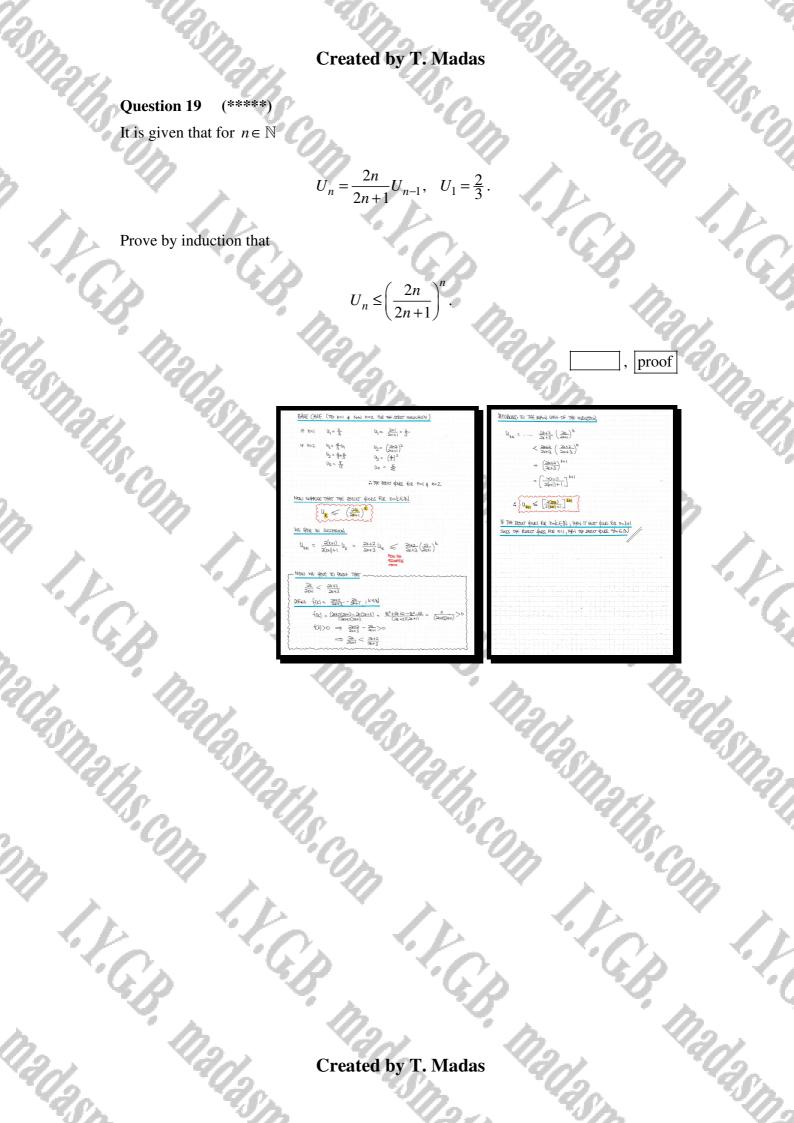

i C.B.

Question 17 (*****) It is given that for $n \in \mathbb{N}$

$$u_{n+1} = \frac{7u_n + 12}{u_n + 3}, \quad u_1 = 7.$$

Prove by induction that

 $u_n > 6$.


Question 18 (*****)

Prove by induction that every positive integer power of 14 can be written as the sum of squares of three distinct positive integers.

• If h=1 $|^2+2^2+3^2=14=14^1$, it reput for n=1h=2 $4^2+6^2+12^2=1\%=14^2$, it reput for n=2.

- SUPPOSE THE RESULT YOURS FOR M= KEN
- - $= 14^{2} (4^{2} + 1$
 - ⇒ (142)² + (144)² + (142)² = 14²⁺² If 3,42
- 16 2.4.2 442 JORNOT 19(1), 12, 149,112 + 445
 4500 DOMINIT
 16 TH€ BESIOT 42005 FE 10=15, 7140 5° LUTT 4500 4200 500 11=142.
 SULT 14 2200 42005 FE 10=1, 7140 1 MUST 4400 FE 410 200 INTREES
 SULT THE BESIT 42015 60 11=2, 71400 5° LUTT 4400 FE 410 540 1147142
 - MUS THE REDUT HURS YNEIN

6

Question 20 (*****)

I.F.G.B.

alasmaths.com

I.F.G.B.

Smaths.com

I.G.p

2

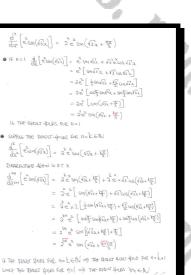
Prove by induction that

nadasn.

Madasn

ths.com $\frac{d^n}{dx^n} \left(e^x \sin\left(\sqrt{3}x\right) \right) = 2^n e^x \sin\left(\sqrt{3}x + \frac{n\pi}{3}\right),$ $n \geq 1, n \in \mathbb{N}$.

Madası,


nn

F.G.B.

nn

I.G.P.

I.F.C.B.

Madasmaths.com

proof

20

E.

6

Madasma,

LY.C.B. Madasm

Created by T. Madas

madasmaths,

Question 21 (*****)

The function f(x) is defined by

 $f(x) = 2 - \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$

a) Prove that

F.G.B.

I.C.P.

$$f^{n}(x) = \frac{(n+1)x - n}{nx - (n-1)}, n \ge 1,$$

where $f^{n}(x)$ denotes the n^{th} composition of f(x) by itself.

b) State an expression for the domain of $f^n(x)$.

(a) $\bullet \int_{-1}^{1} (\chi_{2} = \frac{(1+)\chi_{1}-1}{(\chi_{2}-(1-))} = \frac{2\chi_{2}-1}{\chi} = 2 - \frac{1}{\chi} = \frac{1}{2} (\varphi)$ $\bullet \int_{-1}^{1} (\chi_{2}) = \frac{1}{2} (\frac{1}{2}(\chi_{2})) = \frac{1}{2} - \frac{1}{2-\frac{1}{\chi}} = 2 - \frac{\chi_{2}}{2\chi_{2}-1} = \frac{4\chi_{2}-2-3}{2\chi_{2}-1}$

.F.G.B.

nn

Madasn,

n-

n

 $x \in \mathbb{R}, x \neq$

è

SUPPORT THE BOUT HUDS SHE N= KEN

• $f_{(2)}^{k} = \frac{(k+1)\alpha-k}{k\alpha-(k-1)}$

 $\bullet \left\{ \begin{matrix} u^{kil} \\ (\lambda) = \frac{1}{4} \left[\frac{(u_{1})\lambda_{1}-k_{1}}{|\lambda_{1}-(0_{1})|} = & 2 - \frac{1}{(\frac{1}{4})\frac{1}{2}-k} = & 2 - \frac{|k_{1}-(\tilde{\lambda}_{1}-1)|}{(k_{1}-\tilde{\lambda}_{1}-\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{2}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-1)\lambda_{1}-(\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-1)\lambda_{1}-(\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{(k_{1})\lambda_{1}-(\tilde{\lambda}_{1}-1)}{(k_{1}-1)\lambda_{1}-(\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} \\ \frac{1}{k_{1}-(\tilde{\lambda}_{1}-1)} = & \frac{1}{k$

This if THE ROUT HERE WE WE KEN \to THE ROUT AGO HERE FRE WENT IS FOR THE ROUT HERE HERE $K \in \mathbb{N}_+$

F.G.B.

ma

 $\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$

Question 22 (*****)

F.G.B.

I.C.P.

Prove by induction that if $n \in \mathbb{N}$, $n \ge 3$, then

 $n^{n+1} > \left(n+1\right)^n,$

and hence deduce that if $n \in \mathbb{N}$, $n \ge 3$, then

 $\sqrt[n]{n} > \sqrt[n+1]{n+1}$

 $|F n \in \mathbb{N}_1 n \ge 3$ $THW n^{N+1} > (n+1)^N$

 $\frac{BASE \ OASE \ , \ N=3}{L.H.S \ = \ S^{4} \ = \ 81}$ RHS. = $4^{3} \ = \ 64$ 1564, SO THE REGULT INDUCTIVE HYPOTHESIS office that the result that for n=k>3 , $k\in\mathbb{N}$

 $k^{k+1} > (k+1)^k$ $k \frac{k+1}{\left(k+1\right)^{k+2}} > \left(k+1\right)^{k} \left(k+1\right)^{k+2}$

-9 K (K+1) +2 > (K+1) 22+2

 $\Rightarrow (k+i)^{k+2} > \frac{(k+i)^{2k+2}}{k^{k+1}}$

NOW WE NEED TO SHOW THAT $\frac{(k+l)^{2k+2}}{k^{k+l}} \geqslant (k+2)^{k+l} \Longrightarrow (k+1)^{2k+2} \geqslant k^{k+l} (k+2)^{k+l}$ $\Rightarrow \left[\left(k+1\right)^{2}\right]^{k+1} \ge \left[k\left(k+2\right)\right]^{k+1}$ \rightarrow $(k+1)^2 > k(k+2)$

 $\Rightarrow k^2 + 2k + 1 > k^2 + 2k$

with thornton

proof

1+

 $(\underline{k+1})^{\underline{[k+1+1]}} > [(\underline{k+1})+1]^{\underline{k+1}}$ ιê

concention

IF THE REBUT HOUS FOR N= KEN, WITH N>3 THEN IT MUTH ALLO FOLD BE N= 6+1 As THE BESLOT HOLD FOLD N=3, 77470 IT WUT HOLD FOR ALL NEN, WITH N>3

I.C.B.

 $\frac{F_{NNNUY}}{n^{NH}} > \frac{(n+1)^n}{n \in \mathbb{N}}, n \ge 3$ $\rightarrow \left(n^{\frac{1}{2}}\right)^{\mathfrak{d}(\mathfrak{n}\mathfrak{n})} > \left[(\mathfrak{n}\mathfrak{n})^{\frac{1}{2}}\right]^{\mathfrak{m}\mathfrak{n}}$ $\rightarrow \left[n_{\frac{p}{2}}\right]_{n_{2}+2^{p}} > \left[(n_{+1})_{\frac{p}{2}}\right]_{n_{2}+p}$ ⇒ × ۲ > NH NHI

Created by T. Madas

1.01