Created by T. Madas

CONVERTING BETWEEN
CARTESIANS AND POLARS

Question 1
A curve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right), a \neq 0
$$

Determine a polar equation for C.

Question 2
A curve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{3}=(x+y)^{4}
$$

Show that a polar equation for C is given by

$$
r=1+\sin 2 \theta, r \geq 0
$$

proof

Question 3
Acurve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{2}=2 x^{2} y
$$

Show that a polar equation for C can be written as

$$
r=\sin 2 \theta \cos \theta
$$

Question 4
A circle has Cartesian equation

$$
(x-3)^{2}+(y-4)^{2}=25
$$

Show that a polar equation for the circle is given by

$$
r=A \cos \theta+B \sin \theta
$$

where A and B are constants.

Created by T. Madas

Created by T. Madas

Question 5

A circle has polar equation

$$
r=4(\cos \theta+\sin \theta) \quad 0 \leq \theta<2 \pi
$$

Determine the Cartesian coordinates of the centre of the circle and the length of its radius.

$$
(2,2), \text { radius }=\sqrt{8}
$$

Question 6

Write the polar equation

$$
r=\cos \theta+\sin \theta, 0 \leq \theta<2 \pi
$$

in Cartesian form, and hence show that it represents a circle, further determining the coordinates of its centre and the size of its radius.

Question 7
A curve C has polar equation

$$
r=1+\cos 2 \theta
$$

Determine a Cartesian equation for C.

Question 8
A curve C has polar equation

$$
r=\sec \theta+\tan \theta
$$

Determine a Cartesian equation for C.

Created by T. Madas

Question 9
A curve C has polar equation

$$
r=\frac{2}{1+\cos \theta}, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation for C.
b) Sketch the graph of C.

Created by T. Madas

Question 10
The curve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)(x-1)^{2}=x^{2}
$$

Find a polar equation of C in the form $r=f(\theta)$.

Created by T. Madas

Question 11
A curve C_{1} has polar equation

$$
r=2 \sin \theta, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation for C_{1}, and describe it geometrically.

A different curve C_{2} has Cartesian equation

$$
y^{2}=\frac{x^{4}}{1-x^{2}}, x \neq \pm 1
$$

b) Find a polar equation for C_{2}, in the form $r=f(\theta)$.

$$
x^{2}+(y-1)^{2}=1, r=\tan \theta
$$

\square

Created by T. Madas

Question 12
Show that the polar equation of the top half of the parabola with Cartesian equation

$$
y=\sqrt{2 x+1}, x \geq-\frac{1}{2}
$$

Question 13
The points A and B have respective coordinates $(-1,0)$ and $(1,0)$. The locus of the point $P(x, y)$ traces a curve in such a way so that $|A P \| B P|=1$.
a) By forming a Cartesian equation of the locus of P, show that the polar equation of the curve is

$$
r^{2}=2 \cos 2 \theta, 0 \leq \theta<2 \pi
$$

b) Sketch the curve.

Created by T. Madas

Question 14
The curve C has polar equation

$$
r=\tan \theta, 0 \leq \theta<\frac{\pi}{2}
$$

Find a Cartesian equation of C in the form $y=f(x)$.

Created by T. Madas

Created by T. Madas

Question 1
A Cardioid has polar equation

$$
r=1+2 \cos \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

The point P lies on the Cardioid so that the tangent to the Cardioid at P is parallel to the initial line.

Determine the exact length of $O P$, where O is the pole.

$$
\frac{1}{4}(3+\sqrt{33})
$$

Created by T. Madas

The figure above shows the polar curve with equation

$$
r=\sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

The point P lies on the curve so that the tangent at P is parallel to the initial line.

Find the Cartesian coordinates of P.

Created by T. Madas

Created by T. Madas

Question 1

The figure above shows a spiral curve with polar equation

$$
r=a \theta, 0 \leq \theta \leq 2 \pi,
$$

where a is a positive constant.

Find the area of the finite region bounded by the spiral and the initial line.

$$
\text { area }=\frac{4}{3} a^{2} \pi^{3}
$$

Created by T. Madas

Created by T. Madas

The figure above shows the polar curve C with equation

$$
r=\sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

Find the exact value of the area enclosed by the curve.

Created by T. Madas

The figure above shows a circle with polar equation

$$
r=4(\cos \theta+\sin \theta) \quad 0 \leq \theta<2 \pi .
$$

Find the exact area of the shaded region bounded by the circle, the initial line and the half line $\theta=\frac{\pi}{2}$.

Created by T. Madas

Question 4
The polar curve C has equation

$$
r=2+\cos \theta, 0 \leq \theta<2 \pi
$$

a) Sketch the graph of C.
b) Show that the area enclosed by the curve is $\frac{9}{2} \pi$.

Created by T. Madas

Question 5
0 ,

The figure above shows the polar curve C with equation

$$
r=2 \sin 2 \theta \sqrt{\cos \theta},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

Show that the area enclosed by one of the two identical loops of the curve is $\frac{16}{15}$.

Created by T. Madas

The diagram above shows the curve with polar equation

$$
r=a+2 \sin \theta, 0 \leq \theta<2 \pi
$$

where a is a positive constant.

Determine the value of a given that the area bounded by the curve is 38π.

