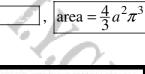
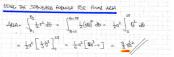
# Created by T. Madas POLAR COORDINATES 54 EXAM QUESTIONS RESTRETISCORE F.Y.C.B. TREESERENTISCORE F.Y.C.B. TREESERENTISCORE F.Y.C.B. TREESERENTISCORE F.Y.C.B. TREESERENT

# **BASIC QUES:** BASIC AUES: Haddeling the trades the trad MASIRALIS COM LY, C.B. MARIASIRALIS COM LY, C.B. MARIASIR

Question 1 (\*\*)




5

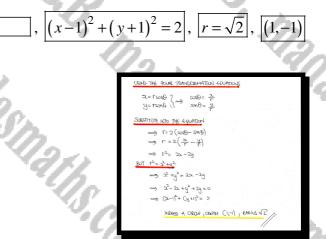

The figure above shows a spiral curve with polar equation

$$r = a\theta, \ 0 \le \theta \le 2\pi$$

where a is a positive constant.

Find the area of the finite region bounded by the spiral and the initial line.



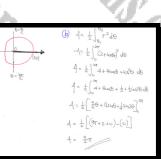



### Question 2 (\*\*)

The polar curve C has equation

 $r = 2(\cos\theta - \sin\theta), \ 0 \le \theta < 2\pi$ .

Find a Cartesian equation for C and show it represents a circle, indicating its radius and the Cartesian coordinates of its centre.




**Question 3** (\*\*) The polar curve *C* has equation

 $r = 2 + \cos \theta$ ,  $0 \le \theta < 2\pi$ .

**a**) Sketch the graph of C.

**b**) Show that the area enclosed by the curve is  $\frac{9}{2}\pi$ .



proof

### Question 4 (\*\*+)

N.C.B. Madasn

00

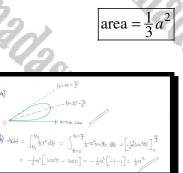
I.F.G.B.

6

The curve C has polar equation

$$a^2 = a^2 \sin 3\theta$$
,  $0 \le \theta \le \frac{\pi}{2}$ .

I.G.B.


2017

madasmans,

COM

- a) Sketch the graph of C.
- **b**) Find the exact value of area enclosed by the C.

Con



ŀ.G.p

nadasmaths.com

I.F.C.p

hs.com

1.4

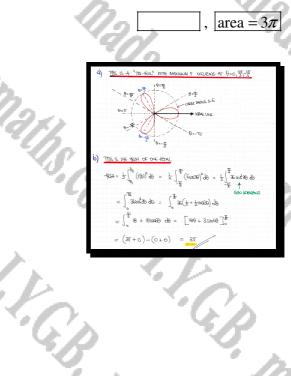
nadasma

Inadasn.

### Question 5 (\*\*+)

The curve C has polar equation

 $r = 6\cos 3\theta \ , \ -\pi < \theta \le \pi \ .$ 


**a**) Sketch the graph of C.

Y.G.B

I.C.B. III

I.C.P.

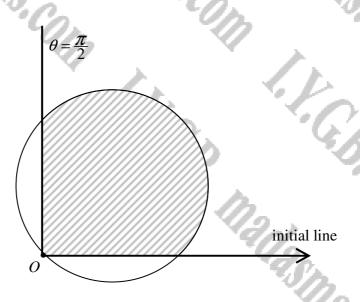
**b**) Find the exact value of area enclosed by the *C*, for  $-\frac{\pi}{6} < \theta \le \frac{\pi}{6}$ .



.com

ne,

M202

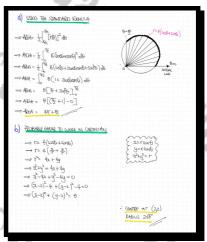

I.C.p

nn

140

115

Question 6 (\*\*+)




The figure above shows a circle with polar equation

 $r = 4(\cos\theta + \sin\theta) \quad 0 \le \theta < 2\pi$ 

- a) Find the exact area of the shaded region bounded by the circle, the initial line and the half line  $\theta = \frac{\pi}{2}$ .
- **b**) Determine the Cartesian coordinates of the centre of the circle and the length of its radius.

, area = 
$$4\pi + 8$$
, (2,2), radius =  $\sqrt{8}$ 



### Question 7 (\*\*\*)

E.B.

Write the polar equation

 $r = \cos\theta + \sin\theta$ ,  $0 \le \theta < 2\pi$ 

in Cartesian form, and hence show that it represents a circle, further determining the coordinates of its centre and the size of its radius.

 $\left(x-\frac{1}{2}\right)$ 

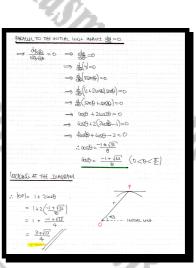
7+18-415-4

KANT ASPANARS" SHT DAIZU

+(y)

1+

Madası,


### Question 8 (\*\*\*)

A Cardioid has polar equation

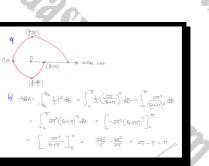
 $r=1+2\cos\theta, \ 0\leq\theta\leq\frac{\pi}{2}.$ 

The point P lies on the Cardioid so that the tangent to the Cardioid at P is parallel to the initial line.

Determine the exact length of OP, where O is the pole.



 $\frac{1}{4}(3+\sqrt{33})$ 


### A STANDAL SOUR STANDAL SOUR FRANK SOUR FRANK FRANK FRANK T. I. C.B. HARDSHALLSCOM I.Y.C.B. HARDSHALLSCOM I.Y.C.B. HARDSHALLSCOM I.Y.C.B. HARDSHALLSCOM I.Y.C. MASIRALISCOM LANCER MARINESSINALISCOM LANCER MARINESSINALISCOM LANCER MARINESSINALISCOM LANCER MARINESSINALISCOM

### **Question 1** (\*\*\*+)

A curve has polar equation

$$=\frac{2\pi}{\theta+\pi}, \ 0 \le \theta < 2\pi$$
.

- **a**) Sketch the curve.
- b) Find the exact value of area enclosed by the curve, the initial line and the half line with equation  $\theta = \pi$ .



area =  $\pi$ 

2

Question 2 (\*\*\*+)

Ĉ.B.

I.C.B.

initial line

The figure above shows the polar curve C with equation

 $r = 2\sin 2\theta \sqrt{\cos \theta}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}.$ 

Show that the area enclosed by one of the two identical loops of the curve is  $\frac{16}{15}$ .

0

| 2                                                                                                   | , pro                 |
|-----------------------------------------------------------------------------------------------------|-----------------------|
| 1m                                                                                                  | (                     |
| LOOKING AT THE LOOP ON THE RIGHT                                                                    | $\theta = \pi \delta$ |
| $-ABGA = \frac{1}{2} \int_{\Theta_1}^{\Theta_2} (f(e))^2 de$                                        |                       |
| ARIA = 1 Jor 2 Land and ]2 do                                                                       | NITAL                 |
| $=\frac{1}{2}\int_{0}^{\frac{1}{2}}$ 4 subsection do                                                | un⊱<br>B≈o            |
| $= \frac{1}{2} \int_{0}^{\infty} 4(2 \operatorname{sm} \theta \cos \theta^{2} \cos \theta d\theta)$ |                       |
| = _ <sup>18</sup> 82430 60530 600 600                                                               |                       |
| MANYPOLATE AS FOLLOWS, OR USE THE SUBSTITUTION (                                                    | λ= sanθ-              |
| eb ezav(esiz-1)€ine8 <sup>38</sup> ) =                                                              |                       |
| $-66 \cos 6^{4} \cos 9 - 3 \cos 6^{4} \cos 9^{-} =$                                                 |                       |
| BY EFFORTION WE HAVE                                                                                |                       |
| $= \left[\frac{9}{3}Sw_1^2\theta - \frac{9}{5}Sw_1^5\theta}\right]_{0}^{\frac{1}{2}}$               |                       |
| $= \left(\frac{B}{2} - \frac{B}{2}\right) - \left(0 - 0\right)$                                     |                       |
| - 8(± 5)                                                                                            |                       |
| = KS<br>TS ZEPURED                                                                                  |                       |
| ts required                                                                                         |                       |

12.57

, proof

Р

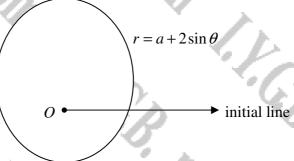
**Question 3** (\*\*\*+)

The figure above shows the polar curve with equation

Ō

 $r = \sin 2\theta$ ,  $0 \le \theta \le \frac{\pi}{2}$ .

a) Find the exact value of the area enclosed by the curve.


The point P lies on the curve so that the tangent at P is parallel to the initial line.

**b**) Find the **Cartesian** coordinates of P.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ], area = $\frac{\pi}{8}$ , $\left(\frac{2}{9}\sqrt{6}, \frac{4}{9}\sqrt{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$ | b) for "intersonal transf" $44d_{0} = 0$<br>$d_{0}^{2} = \frac{d_{0}^{2}d_{0}^{2}}{d_{0}^{2}d_{0}^{2}} = 0$<br>$d_{0}^{2} = \frac{d_{0}^{2}(d_{0})}{d_{0}^{2}} = \frac{d_{0}^{2}(a_{0})}{d_{0}^{2}} = -0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \int_{0}^{\frac{H}{2}} \frac{1}{2} S \theta^{2} \partial \theta$<br>Now thus, the theorem is sating for assure year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DFR3Xmate a soure the serviture)<br>→ 20xx29emb + san39cxb = 0<br>→ 20mb(2x26+1) + 25x96x26 =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 005.24 ≈ 1-25×34<br>005.44 ≈ and2tu1]= 1-20×324<br>6×12.4 ≈ 44-00544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o=D-Que in the constant of th |
| $-\pi i A = \int_{0}^{\frac{\pi}{2}} \pm \left[ \frac{1}{2} - \pm \cos(\theta) \right] d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\therefore \theta = \operatorname{otrace}(\frac{1}{25})$ $\therefore r = \operatorname{Sud}\theta = 2\operatorname{Sud}\operatorname{Sud}\theta$ $= 2\operatorname{Sud}(\frac{1}{5}) \times \frac{1}{15} = \frac{2}{5}\operatorname{AZ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \int_{-\infty}^{\infty} \pm - \pm \cos^{-1}\theta \int_{-\infty}^{\infty} \frac{1}{2} d\theta = \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Perfection of $P\left(\frac{1}{2}G, \frac{1}{2}G, \frac{1}{2}G\right)$<br>$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = ( = x + - o ) - (o - o)<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} \alpha = r_{000} \theta = -\frac{2}{3} c_{0}^{2} \times \frac{1}{10} = -\frac{2}{3} c_{0}^{2} = -\frac{2}{3} c_{0}^{2} \\ g = r_{000} \theta = -\frac{2}{3} c_{0}^{2} \left( \frac{c_{0}^{2}}{0} \right) \simeq -\frac{4}{340} = -\frac{4}{3} c_{0}^{2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Although as a Raminiter ( The \$13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

initial line

**Question 4** (\*\*\*+)

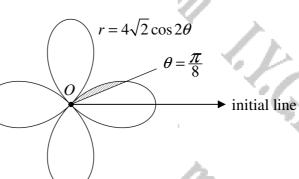


The diagram above shows the curve with polar equation

### $r = a + 2\sin\theta, \ 0 \le \theta < 2\pi,$

where a is a positive constant.

Determine the value of a given that the area bounded by the curve is  $38\pi$ .


a = 6

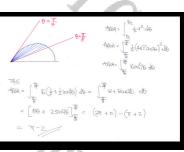


- $\Rightarrow 38\pi = \frac{1}{2} \int_{0}^{2\pi} \alpha^{2} + 2\alpha \sin\theta + 4\sin^{2}\theta \, d\theta$  $\Rightarrow 76\pi = \int_{0}^{2\pi} \alpha^{2} + 2\alpha \sin\theta + 4(\frac{1}{2} - \frac{1}{2}\cos^{2}\theta) \, d\theta$
- $= 76\pi = \int_{0}^{2\pi} a_{1}^{2} + 2aSmB + 2 2cos20 dB$
- $= 7\pi = \left[\alpha^2 \Theta 2\alpha \cos \theta + 2\Theta \sin 2\Theta\right]_{0}^{2\pi}$
- $\Rightarrow 7\hbar\pi = (2\pi q^2 24 + 4\pi 0) (0 24 + 0 0)$   $\Rightarrow 7\hbar\pi = 2\pi \theta^2 + \hbar\pi$
- $\Rightarrow 38 = a^2 + a^2$ 
  - x = 36 q = 6 ar.

### Question 5 (\*\*\*+)

2




The figure above shows the curve with polar equation

$$r = 4\sqrt{2}\cos 2\theta$$
,  $0 \le \theta < 2\pi$ .

Find in exact form the area of the finite region bounded by the curve and the line with polar equation  $\theta = \frac{\pi}{8}$ , which is shown shaded in the above figure.

area =  $\pi - 2$ 

C.J.



### **Question 6** (\*\*\*+)

A curve  $C_1$  has polar equation

$$r = 2\sin\theta$$
,  $0 \le \theta < 2\pi$ .

 $y^2 = \frac{x^4}{1 - x^2}, \ x \neq \pm 1.$ 

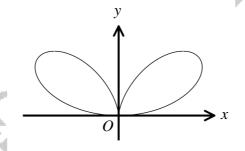
a) Find a Cartesian equation for  $C_1$ , and describe it geometrically.

A different curve  $C_2$  has Cartesian equation

**b**) Find a polar equation for  $C_2$ , in the form  $r = f(\theta)$ .

 $x^2 + (y-1)^2 = 1, \quad r = \tan \theta$ 

| (9) Γ= 2sm0                                              | (b) $y^2 = \frac{x^4}{1-x^2}$                                      |
|----------------------------------------------------------|--------------------------------------------------------------------|
| $\rightarrow \Gamma = 2\left(\frac{\eta}{\Gamma}\right)$ | $\Rightarrow y^2 - x^2y^2 = x^4$                                   |
| ⇒r= 2y                                                   | $\Rightarrow y^2 = x^4 + x^2y^2$                                   |
| = 2 + y2 - 2y=0                                          | $\implies y^2 = x^2(x^2+y^2)$                                      |
| =) 2+ (4-1)-1=0                                          | $\Rightarrow g^2 = a^2 r^2$                                        |
| $\Rightarrow 2^2 + (y_1 - 1)^2 = 1$                      | $\implies \Gamma^2 = \frac{\Omega^2}{2L^2}$                        |
| CIRCUT CHOTELE (Q1)                                      | $\implies \Gamma^2 = \frac{r^2 S w_1^2 \Theta}{r^2 \cos^2 \Theta}$ |
| RADIUS I                                                 | = r2 = tango                                                       |
| ~                                                        | ⇒ r=tan0                                                           |
|                                                          | 1/                                                                 |


·GB.

1+

**Question 7** (\*\*\*+)

GB. ma

. V.C.B.



The figure above shows the curve C with Cartesian equation

 $\left(x^2 + y^2\right)^2 = 2x^2y.$ 

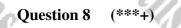
**a**) Show that a polar equation for C can be written as

 $r = \sin 2\theta \cos \theta \, .$ 

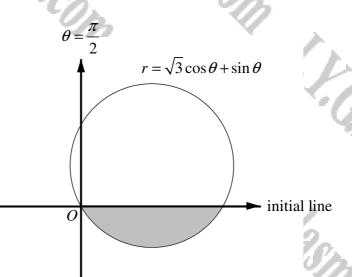
**b**) Determine in exact surd form the maximum value of r.



ne,


m

nadasm


ic.p.

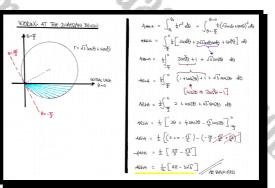
| (9) | $(\alpha^2 + y^2) = 2\alpha^2 y$                                             | $a^2+y^2=r$ |
|-----|------------------------------------------------------------------------------|-------------|
|     | $\Rightarrow (\Gamma^2)^2 = 2(\Gamma \omega S \theta)^2 (\Gamma S m \theta)$ | a=most      |
|     | $\Rightarrow \Gamma^{+} = 2(r^{2}\omega\hat{s}\theta)(rzm\theta)$            | METER       |
|     | => r = 2r3colomb rio                                                         |             |
|     | $\Rightarrow \Gamma = 20020 \text{SMO}$                                      |             |
|     | $\Rightarrow \Gamma = (2\cos\theta\sin\theta)\cos\theta$                     |             |
|     | => T = SIN20 COSE TS REPORTED                                                |             |
| A   |                                                                              |             |
| 0   | $\frac{dr}{d\theta} = 2\omega s 20 \cos\theta + s m 20 (-sm\theta)$          |             |
|     | Sawe for zino                                                                |             |
|     | = 26120 cost - s11/20 sm 0 = 0                                               |             |
|     | - OmerBrandmes - (1-02016) Oracis -                                          |             |
|     | => 41030-2000-2000sinft =0                                                   |             |
|     | → 4630-2600-2600(1-630)=0                                                    |             |
|     | =) 4400 - 2000 - 2000 + 2000 - 0                                             |             |
|     | =) 60030-4000=0                                                              |             |
|     | ⇒ 2650(3620-2)=0                                                             |             |
|     | € LOSE \$0 SINCE => B= I EO : MININ                                          | uuy         |

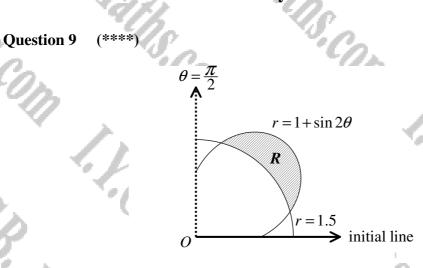
| <br>0 |  |
|-------|--|



P.C.P.




The diagram above shows the curve with polar equation


 $r = \sqrt{3}\cos\theta + \sin\theta$ ,  $-\frac{\pi}{3} \le \theta < \frac{2\pi}{3}$ .

By using a method involving integration in polar coordinates, show that the area of the shaded region is

 $\frac{1}{12} (4\pi - 3\sqrt{3}).$ 

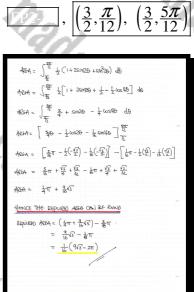
, proof

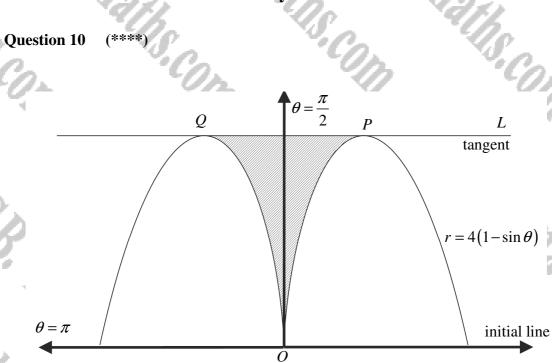




The diagram above shows the curves with polar equations

 $r = 1 + \sin 2\theta, \ 0 \le \theta \le \frac{1}{2}\pi,$  $r = 1.5, \ 0 \le \theta \le \frac{1}{2}\pi.$ 


a) Find the polar coordinates of the points of intersection between the two curves.


The finite region R, is bounded by the two curves and is shown shaded in the figure.

**b**) Show that the area of R is

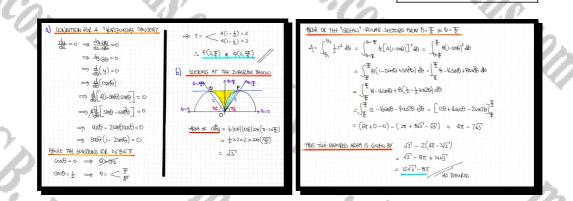
 $\frac{1}{16} \left(9\sqrt{3} - 2\pi\right).$ 

|    | TW. B/A                                                                                                                                                   |      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| a) | SOWING THE EQUATIONS -SIMUCTINGOUSLY                                                                                                                      |      |
|    | $\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                           |      |
|    | $\therefore  \underbrace{(\Gamma_1 \theta) = (\Gamma_2, \underbrace{\mathbb{T}}_2)  \text{or}  (\Gamma_1 \theta) = (\Gamma_2, \underbrace{\mathbb{T}}_2)$ |      |
| 9) | $\frac{\pi \omega n \epsilon_{\frac{1}{2}} \times \pi r^{\frac{1}{2}}}{\epsilon_{\frac{1}{2}} \times \pi \times (\frac{3}{2})^2} = \frac{1}{2} \pi \pi$   | - 12 |
|    | 4264 OF POUND SECTOR DIFFINIO BY T= 1+ SIN20                                                                                                              |      |
|    | $-4847 = \int_{0}^{\infty} \frac{1}{2} r^2 d\theta$ $-4847 = \int_{0}^{\infty} \frac{1}{2} \left(1 + \sin(2\theta)^2 d\theta\right)$                      |      |

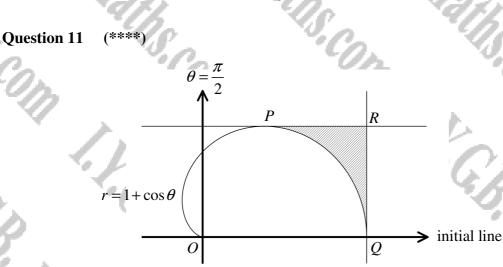




The figure above shows the graph of the curve with polar equation


 $r = 4(1 - \sin \theta), \ 0 \le \theta \le \pi$ .

The straight line L is a tangent to the curve parallel to the initial line, touching the curve at the points P and Q.


**a**) Find the polar coordinates of P and the polar coordinates of Q.

**b**) Show that the area of the shaded region is exactly

 $15\sqrt{3}-8\pi$ .

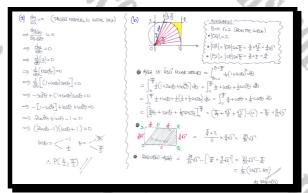


 $P\left(2,\frac{1}{6}\pi\right), Q\left(2,\frac{5}{6}\pi\right)$ 



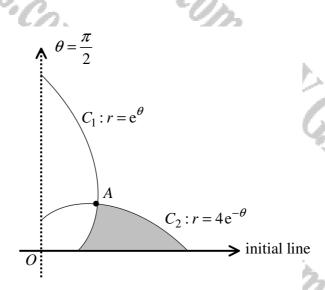
The diagram above shows the curve with polar equation

 $r = 1 + \cos \theta$ ,  $0 \le \theta \le \pi$ .


The curve meets the initial line at the origin O and at the point Q. The point P lies on the curve so that the tangent to the curve at P is parallel to the initial line.

a) Determine the polar coordinates of P.

The tangent to the curve at Q is perpendicular to the initial line and meets the tangent to the curve at P, at the point R.


b) Show that the area of the finite region bounded by the line segments PR, QR and the arc PQ is

 $\frac{1}{32}(21\sqrt{3}-8\pi).$ 



Question 12 (\*\*\*\*)

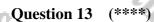
Y.C.



The diagram below shows the curves with polar equations

 $C_1: r = e^{\theta}, \quad 0 \le \theta \le \frac{\pi}{2}$  $C_2: r = 4e^{-\theta}, \quad 0 \le \theta \le \frac{\pi}{2}.$ 


The curves intersect at the point A.


I.C.B.

- **a**) Find the exact polar coordinates of A.
  - **b**) Show that area of the shaded region is  $\frac{9}{4}$ .



6







The figure above shows a curve and a straight line with respective polar equations

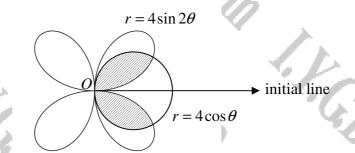
 $r = 4 + 4\cos\theta$ ,  $-\pi < \theta \le \pi$  and  $r = 3\sec\theta$ ,  $-\frac{\pi}{2} < \theta \le \frac{\pi}{2}$ .

The straight line meets the curve at two points, P and Q.

a) Determine the polar coordinates of P and Q.

The finite region, shown shaded in the figure, is bounded by the curve and the straight line.

**b**) Show that the area of this finite region is


 $8\pi + 9\sqrt{3}$ .

 $\left(6,\frac{\pi}{3}\right), Q\left(6,-\frac{\pi}{3}\right)$ 

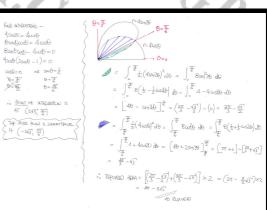


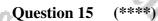
$$\begin{split} & h_{T} = \int_{0}^{T} \frac{1}{2} \left\{ \left( h_{T} + f_{1} f_{2} \right) - \frac{1}{2} h_{T} \right] \times \left\{ x = \left[ x = \frac{1}{2} + \frac{1}{2} h_{T} \right] \times \left\{ x = \frac{1}{2} + \frac{1}{2} h_{T} \right] \times \left\{ x = \frac{1}{2} + \frac{1}{2} h_{T} \right\} \\ & = \int_{0}^{T} \frac{1}{2} \left\{ h_{T} h_{T} h_{T} \right\} + \left\{ h_{T} h_{T} h_{T} h_{T} \right\} + \left\{ h_{T} h_{T} h_{T} h_{T} \right\} + \left\{ h_{T} h_{T} h_{T} h_{T} \right\} \\ & = \int_{0}^{T} \frac{1}{2} \left\{ h_{T} h_{T} h_{T} h_{T} \right\} + \left\{ h_{T} h_{T$$

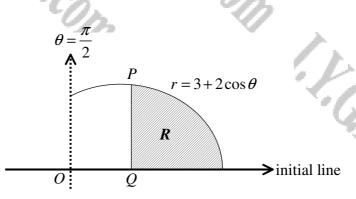
Question 14 (\*\*\*\*)



The figure above shows the curves with polar equations


 $r = 4\cos\theta, \ 0 \le \theta \le 2\pi$ ,


$$r = 4\sin 2\theta$$
,  $0 \le \theta \le 2\pi$ .


Show that the area of the shaded region which consists of all the points which are bounded by **both** curves is

 $4\pi - 3\sqrt{3}$ .

proof

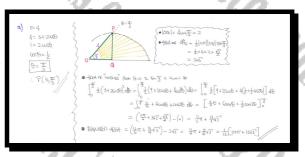




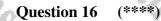


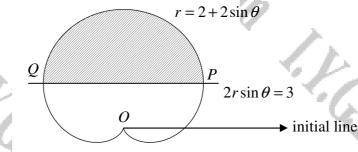
The figure above shows the cardioid with polar equation

### $r=3+2\cos\theta, \ 0<\theta\leq\frac{\pi}{2}$


The point P lies on the cardioid and its distance from the pole O is 4 units.

a) Determine the polar coordinates of P.


The point Q lies on the initial line so that the line segment PQ is perpendicular to the initial line. The finite region R, shown shaded in the figure, is bounded by the curve, the initial line and the line segment PQ.


**b**) Show that the area of *R* is

 $\frac{1}{12}(22\pi+15\sqrt{3}).$ 

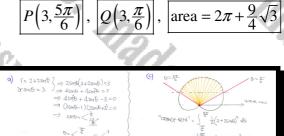


 $P\left(4,\frac{\pi}{3}\right)$ 





The figure above shows the curve with polar equation


$$r = 2 + 2\sin\theta, \ 0 \le \theta \le 2\pi$$

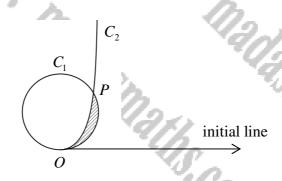
intersected by the straight line with polar equation

$$2r\sin\theta=3,\ 0<\theta<\pi.$$

a) Find the coordinates of the points P and Q, where the line meets the curve.

- **b**) Show that the area of the triangle *OPQ* is  $\frac{9}{4}\sqrt{3}$ .
- c) Hence find the exact area of the **shaded** region bounded by the curve and the straight line.




Question 17 (\*\*\*\*)

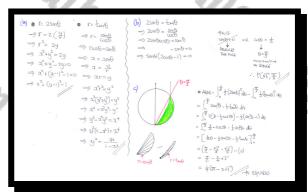
The curves  $C_1$  and  $C_2$  have respective polar equations

$$C_1: r = 2\sin\theta, \ 0 \le \theta < 2\pi$$

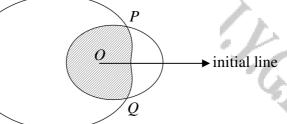
 $C_2: r = \tan \theta, \ 0 \le \theta < \frac{\pi}{2}$ 

**a**) Find a Cartesian equation for  $C_1$  and a Cartesian equation for  $C_2$ .




The figure above shows the two curves intersecting at the pole and at the point P.

The finite region, shown shaded in the figure, is bounded by the two curves.


**b**) Determine the exact polar coordinates of P

c) Show that the area of the shaded region is  $\frac{1}{2}(2\pi - 3\sqrt{3})$ .

### $C_1: x^2 + (y-1)^2 = 1$ , $C_1: x^2 + (y-1)^2 = 1$ , $P(\sqrt{3}, \frac{\pi}{3})$



Question 18 (\*\*\*\*)

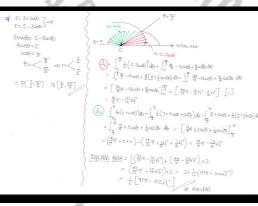


The figure above shows two overlapping closed curves  $C_1$  and  $C_2$ , with respective polar equations

 $C_1: r = 3 + \cos\theta, \ 0 \le \theta < 2\pi$ 

 $C_2: r = 5 - 3\cos\theta, \ 0 \le \theta < 2\pi.$ 

The curves meet at two points, P and Q.


**a**) Determine the polar coordinates of P and Q.

The finite region R, shown shaded in the figure, consists of all the points which lie **inside both**  $C_1$  and  $C_2$ .

**b**) Show that the area of *R* is

 $\frac{1}{6}(97\pi - 102\sqrt{3}).$ 

 $P\left(\frac{7}{2},\frac{\pi}{3}\right), Q\left(\frac{7}{2},\frac{5\pi}{3}\right)$ 



### Question 19 (\*\*\*\*)

E.B. Madasm

COM

I.C.B.

The curve C with polar equation

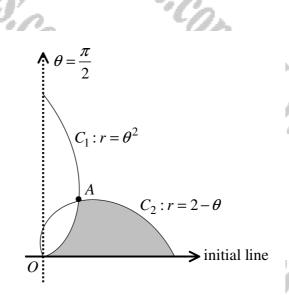
 $r = \sqrt{6}\cos 2\theta$ ,  $0 \le \theta \le \frac{\pi}{4}$ .

The straight line l is parallel to the initial line and is a tangent to C.

Find an equation of l, giving the answer in the form  $r = f(\theta)$ .

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $r = \frac{2}{3} \csc \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | asm |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\begin{aligned} &\Gamma = \sqrt{k} \left[ \cos 2\theta \right] \\ &Monton is to the human under the set of the set o$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} & NOW \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ | 42  |
| $\begin{array}{c} c_{ij} & (i \in \mathcal{C}_{ij}) \\ c_{ij} & (i \in $ | $\begin{split} & \Gamma = \frac{3}{3} \mathcal{K}^{\prime} \\ & I + \left( \frac{3}{3} \mathcal{K}^{\prime}_{1} \operatorname{arcsn}_{\mathcal{K}^{\prime}_{1}}^{I} \right) \\ & \sigma \Gamma \mathcal{M} \mathcal{K} \\ & \Gamma \mathcal{S} \mathcal{H} \mathcal{G} = \mathcal{G} = \left( \frac{3}{3} \mathcal{K}^{\prime} \right) \left( \frac{1}{\mathcal{K}^{\prime}_{1}} \right) \\ & \Gamma \mathcal{S} \mathcal{M} \mathcal{G} = \frac{3}{3} \\ & \Gamma = \frac{3}{3} \mathcal{L} \mathcal{L} \mathcal{L} \\ & \Gamma = \frac{3}{3} \mathcal{L} \mathcal{L} \mathcal{L} \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1 |

dasmaths.


I.C.p

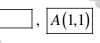
COM

2017

COM

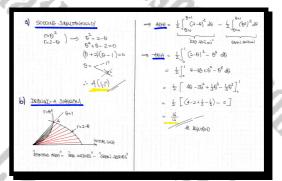
Question 20 (\*\*\*\*)

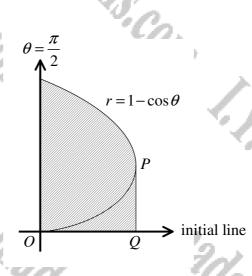



The diagram above shows the curves with polar equations

$$C_1: r = \theta^2, \ 0 \le \theta \le \frac{\pi}{2}$$
$$C_2: r = 2 - \theta, \ 0 \le \theta \le 2.$$

The curves intersect at the point A.


Y.G.B.


- **a**) Find the polar coordinates of *A*.
- **b**) Show that the area of the shaded region is  $\frac{16}{15}$ .



21/201

1



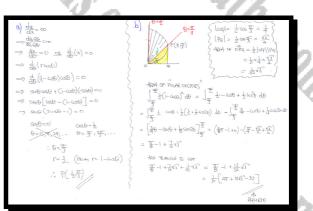


The figure above shows the curve C with polar equation

Question 21

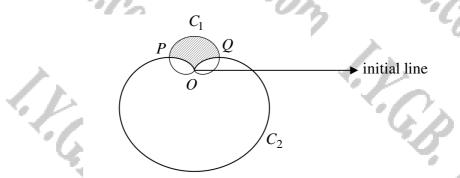
(\*\*\*\*)

 $r=1-\cos\theta, \ 0\leq\theta<\frac{\pi}{2}.$ 


The point P lies on C so that tangent to C is perpendicular to the initial line.

a) Determine the polar coordinates of P.

The finite region R consists of all the points which are bounded by C, the straight line segment PQ, the initial line and the line with equation  $\theta = \frac{\pi}{2}$ .


**b**) Show that the area of R, shown shaded in the figure above, is exactly

 $\frac{1}{32}(4\pi+15\sqrt{3}-32).$ 



 $P\left(\frac{1}{2},\frac{\pi}{3}\right)$ 

Question 22 (\*\*\*\*)



The figure above shows two closed curves with polar equations

 $C_1: r = a(1 + \sin \theta), \ 0 \le \theta \le 2\pi$  and  $C_2: r = 3a(1 - \sin \theta), \ 0 \le \theta \le 2\pi$ ,

intersecting each other at the pole O and at the points P and Q.

**a**) Find the polar coordinates of the points P and Q.

**b**) Show that the distance PQ is  $\frac{3\sqrt{3}}{2}a$ .

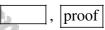
The finite region shown shaded in the above figure consists of all the points inside  $C_1$  but outside  $C_2$ .

c) Given that the distance PQ is  $\frac{3}{2}$ , show that the area of the shaded region is

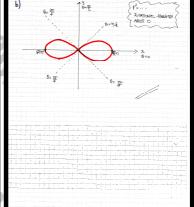
### $3\sqrt{3}-\frac{4}{3}\pi$ .

 $Q\left(\frac{3}{2}a,\frac{\pi}{6}\right)$ 

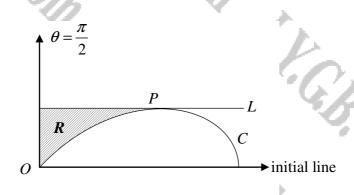
### Question 23 (\*\*\*\*)


The points A and B have respective coordinates (-1,0) and (1,0).

The locus of the point P(x, y) traces a curve in such a way so that |AP||BP| = 1.


a) By forming a Cartesian equation of the locus of P, show that the polar equation of the curve is

 $r^2 = 2\cos 2\theta, \ 0 \le \theta < 2\pi \ .$ 


**b**) Sketch the curve.



| a) Detreminue the chertry                                                  | 2000 /                                                                                                                                                            |    | b) |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| A(HO) B(HO)                                                                | P(Xyy)                                                                                                                                                            |    |    |
| • $ AP  = \sqrt{(2+1)^2 + (2^2)^2}$<br>• $ BP  = \sqrt{(2-1)^2 + (2^2)^2}$ | $\begin{cases} \implies (AP \mid  BP  = 1) \\ \implies (HP \mid BP \mid e_1) \end{cases}$                                                                         |    |    |
|                                                                            | $\Rightarrow$ $(\uparrow \uparrow \uparrow   BP  = 1)$<br>$\Rightarrow [(2+1)^2 + q^2][(2-1)^2 + q^2] = 1$                                                        |    |    |
|                                                                            | $ \Longrightarrow \left\{ \begin{array}{l} Q^{2}(2xri)^{2} + (2xri)^{2}(2xri)^{2} \\ Q^{2}(2xri)^{2} + (Q^{\frac{1}{2}}) \end{array} \right\} = 1 $               |    |    |
|                                                                            | $\Rightarrow g^{2}[(\alpha + i)^{2} + (x - i)^{2}] + g^{4} + (\alpha + i)^{2}(x - i)^{2} = i$                                                                     |    |    |
|                                                                            | -> y [atar +2 =21] + y + (2-1)=1                                                                                                                                  |    |    |
|                                                                            | $\implies y^2 [2x^2+2] + g^4 + x^4 - 2x^2 + l = l$                                                                                                                |    |    |
| 26000012                                                                   | $ \Rightarrow 2x_{y}^{2} + 2y_{z}^{2} + y_{y}^{4} + x_{z}^{4} - 2x_{z}^{2} = 0  \Rightarrow (y_{y}^{4} + 2x_{y}^{2} + x_{z}^{4}) + 2(y_{z}^{2} - x_{z}^{2}) = 0 $ |    |    |
| oth MSG264T                                                                | $\implies (x^2+y^2)^2+2(y^2-x^2)=0$                                                                                                                               |    |    |
| Podes                                                                      | $= (f^2)^2 + 2(r_{sm}^2 - r_{ad}) = 0$                                                                                                                            | -1 | -  |
|                                                                            | $r^4$ + 2r <sup>2</sup> (sur) - (or $\theta$ ) = 0                                                                                                                |    | ++ |
|                                                                            | $\Rightarrow 1^{2} + 2(\omega^{2}\theta - \omega^{2}\theta) = 0$                                                                                                  |    |    |
|                                                                            | $\Rightarrow \Gamma' = 2(correl - swift)$                                                                                                                         |    |    |
|                                                                            | => r <sup>2</sup> = 20020                                                                                                                                         |    |    |
|                                                                            | As Required                                                                                                                                                       |    |    |
|                                                                            |                                                                                                                                                                   |    |    |



Question 24 (\*\*\*\*)



The figure above shows a curve C with polar equation

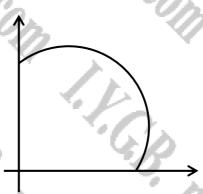
 $r^2 = 2\cos 2\theta, \ 0 \le \theta < \frac{\pi}{4}.$ 

The straight line L is parallel to the initial line and is a tangent to C at the point P.

**a)** Show that the polar coordinates of *P* are  $\left(1, \frac{\pi}{6}\right)$ .

The finite region *R*, shown shaded in the figure above, is bounded by *C*, *L* and the half line with equation  $\theta = \frac{\pi}{2}$ .

**b)** Show that the area of R is


 $\frac{1}{8} \left( 3\sqrt{3} - 4 \right).$ 

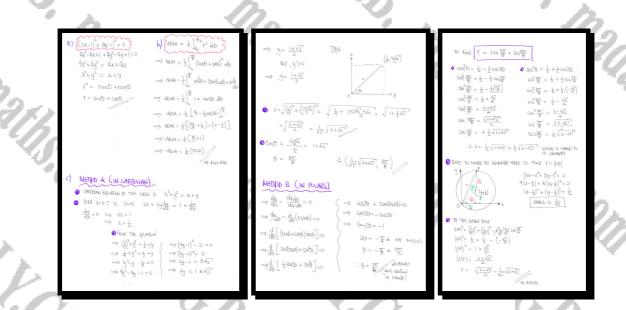
, proof

[solution overleaf]



**Question 25** (\*\*\*\*)




The figure above shows the curve C, with Cartesian equation

$$(2x-1)^2 + (2y-1)^2 = 2, x \ge 0, y \ge 0$$

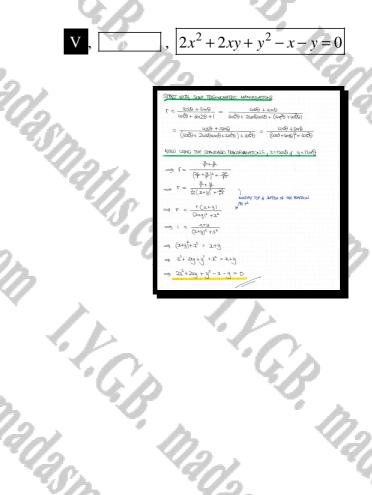
D.

- **a**) Find a polar equation for *C*, in the form  $r = f(\theta)$ .
- **b**) Show that the area bounded by C and the coordinate axes is  $\frac{1}{4}(\pi+2)$ .
- c) Determine, in exact simplified form, the polar coordinates of the point on C, where the tangent to C is parallel to the x axis.

 $s = \frac{1}{4}\sqrt{5} + \ln\left[\frac{1}{4}\left(1 + \sqrt{5}\right)\right]$ 



## Question 26 (\*\*\*\*)


K.C.B. Ma

I.C.B.

A curve has polar equation

$$=\frac{\cos\theta+\sin\theta}{\cos^2\theta+\sin2\theta+1}, \quad 0\le\theta<2\pi$$

Find a Cartesian equation of the curve giving the answer in the form f(x, y) = 0.



23

ŀ.G.p.

11<sub>202</sub>

# Created by T. Madas CLASTICALISE COM LANCER MARINESSINALISE COM LANCER MARINESCOM LANCER MARINESCOM LANCER MARINESCOM LANCER MARINESSIN

## **Question 1** (\*\*\*\*+)

Show that the polar equation of the top half of the parabola with Cartesian equation

$$y = \sqrt{2x+1} , \ x \ge -\frac{1}{2}$$

is given by the polar equation

ŀ.G.p.

I.C.B.

$$r = \frac{1}{1 - \cos\theta}, \ r \ge 0.$$

202.01

20

I.C.P.

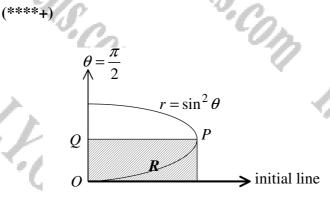
|         | $y = \sqrt{22+1}$                   |                                                                                               |   |
|---------|-------------------------------------|-----------------------------------------------------------------------------------------------|---|
|         | $y^2 = 2x + 1$                      | $\begin{cases} \implies r - n \cos \theta = 1 \\ \implies r(1 - \cos \theta) = 1 \end{cases}$ |   |
|         | $y^2 + \chi^2 = \chi^2 + 2\chi + 1$ | $\rightarrow$ r= $\frac{1}{1-1000}$                                                           | ~ |
| -       | $t^2 = (x+1)^2$                     | 1-6099                                                                                        |   |
| <b></b> | 1= 2+1                              | . }                                                                                           |   |
| -)      | F-1= F658                           | 1                                                                                             |   |

1120250

27

Ċ.p

hains,


I.C.B.

proof

1+

nadasm

ITadası

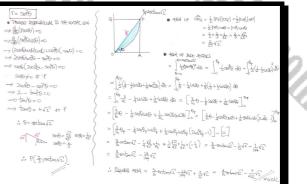


The figure above shows the curve with polar equation

Question 2

$$r = \sin^2 \theta$$
,  $0 \le \theta \le \frac{\pi}{2}$ 

The point P lies on the curve so that the tangent to the curve at P is perpendicular to the initial line.


a) Find, in exact form, the polar coordinates of P

The point Q lies on the half line  $\theta = \frac{\pi}{2}$ , so that PQ is parallel to the initial line.

The finite region R, shown shaded in the above figure, is bounded by the curve and the straight line segments PQ and OQ, where O is the pole.

**b**) Determine the area of R, in exact simplified form.

 $\frac{7}{432}\sqrt{2} \approx 0.1562$  $P\left(\frac{2}{3}, \arctan \sqrt{2}\right)$ ,  $\left| \operatorname{area} = \frac{1}{2} \arctan \sqrt{2} - \frac{1}{2} \operatorname{arctan} \sqrt{2} \right|$ 



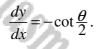
## Question 3 (\*\*\*\*+)

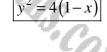
A curve C has polar equation

$$=\frac{2}{1+\cos\theta},\ 0\le\theta<2\pi.$$

**a**) Find a Cartesian equation for C.

.F.G.B.


N.

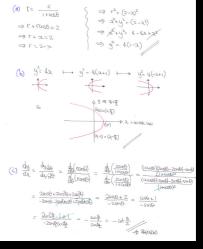

I.C.B. Ma

I.C.P.

20

- **b**) Sketch the graph of C.
- c) Show that on any point on C with coordinates  $(r, \theta)$



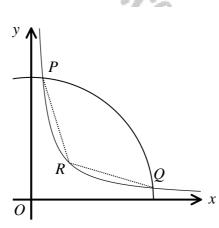



[n]]

madasm

G

è




I.C.p

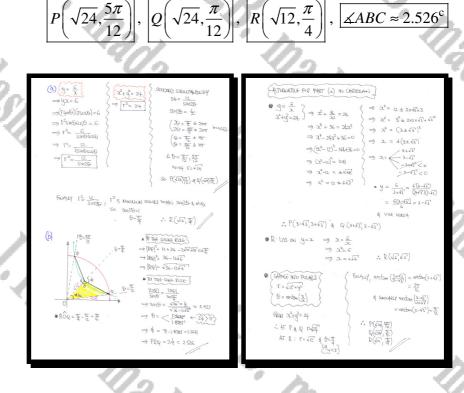
11<sub>202</sub>

I.G.B.

Question 4 (\*\*\*\*+)



The figure above shows a hyperbola and a circle with respective Cartesian equations


 $y = \frac{6}{x}, x > 0$ 

 $x^2 + y^2 = 8, x > 0, y > 0.$ 

The points P and Q are the points of intersection between the hyperbola and the circle, and the point R lies on the hyperbola so that the distance OR is least.

- a) Determine the **polar** coordinates of P, Q and R.
- **b**) Calculate in radians the angle PRQ, correct to 3 decimal places.

and



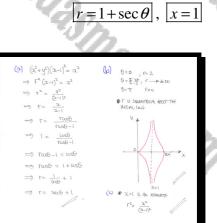
## Question 5 (\*\*\*\*+)

The curve C has Cartesian equation

 $(x^2 + y^2)(x-1)^2 = x^2.$ 

·C.A

- **a**) Find a polar equation of *C* in the form  $r = f(\theta)$ .
- **b**) Sketch the curve in the Cartesian plane.


I.C.P.

. C.B. 1030381

COM

I.G.B.

c) State the equation of the asymptote of the curve.



13.81

2017

21/18

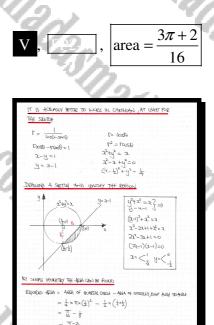
I.V.C.B. Mada

COM

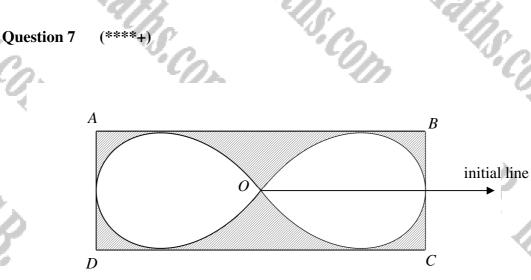
1+

## Question 6 (\*\*\*\*+)

C.B.


The following polar equations are given.

ł


$$_{\rm i} = \cos \theta$$
,  $0 \le \theta \le \pi$ 

 $_{2} = \frac{1}{\cos \theta - \sin \theta}, \quad -\frac{1}{4}\pi \le \theta \le \frac{5}{4}\pi.$ 

Find, in exact simplified form, the area of the **smaller** of the two finite regions, bounded by  $r_1$  and  $r_2$ .



ng



The figure above shows the rectangle ABCD enclosing the curve with polar equation

 $r^2 = \cos 2\theta$ ,  $\theta \in \left[0, \frac{1}{4}\pi\right] \cup \left[\frac{3}{4}\pi, \frac{5}{4}\pi\right] \cup \left[\frac{7}{4}\pi, 2\pi\right)$ .

Each of the straight line segments AB and CD is a tangent to the curve parallel to the initial line, while each of the straight line segments AD and BC is a tangent to the curve perpendicular to the initial line.

Show with detailed calculations that the total area enclosed between the curve and the rectangle *ABCD* is  $\sqrt{2}-1$ .

proof

| <u>.</u> | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.                                                                   | <u> </u> |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------|
| 2        | <ul> <li>W INSPECTION THE "VERTICAL" TRANSPORT HAS PELL, AS [00220/6]</li> <li>NEXT FULL THE HOUSENTRATISSING</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒ 20 = ∃   翌   翌   15 ····<br>⇒ 0 = ∃   妥 , 翌 , [5 ,···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+4244 = 4 \left[ \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{1}{2}}$ |          |
| 12       | $\sigma = \frac{du}{dy} - \circ - \circ \frac{dy}{dy} = \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>LUE JUIT NEED ONE RELAVING POINT TO MORE OUT THE<br/>REPURSO RECOMMENTLY</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hern = [.sun 20]*                                                     |          |
| 190      | $\sigma = \frac{du}{d\sigma} = 0$ $\sigma = (g_{min})_{ij} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{(\frac{1}{3}x_{2})^{2}} = \frac{1}{2} \frac{1}{(\frac{1}{3}x_{2})^{2}} = \frac{1}{2} \frac{1}{(\frac{1}{3}x$ | Alin = 1 - 0<br>Alin = 1                                              |          |
|          | $\Rightarrow \frac{d}{d\theta} (r^2 S \tilde{d} \theta) = 0  (S \theta S M FULLY)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $r^{2} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () HANCE BY SUBTRACTION THE REPURED AREA U                            |          |
|          | $\implies \frac{1}{46} (\omega 28 \text{ scm} 0) = 0$ $\implies -2 \text{ scm} 20 \text{ scm} 0 + \omega 28 (2 \text{ scm} 0 \omega 20) - 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Gamma = + \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VZ-1                                                                  |          |
|          | == 6200 85M2 + 69112 85M25 - ==<br>== 6200 + 691125 - 95M2 == 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Per  - 4 <u>2</u><br> Per  - 4 <u>2</u><br>#4xEc (HC)= 4 <u>2</u> × ±<br> Per  - 4 <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |          |
|          | $ = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$ | The AGA of The RECTIVING HELD is<br>$(2x) x (2x \frac{2}{4}) = \frac{\sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 2)       |
| 10       | $ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $                                                                                                                                                                                                                                                            | $ \begin{array}{c} \bullet & \bullet $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |          |
| 1.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |          |
|          | no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nad .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Do                                                                    | 17       |

## **Question 8** (\*\*\*\*+)

The curves  $C_1$  and  $C_2$  have polar equations

$$C_1: r = 2\cos\theta - \sin\theta, \quad 0 < \theta \le \frac{\pi}{2}$$

 $C_2: r = \sqrt{2} + \sin \theta, \quad 0 \le \theta < 2\pi.$ 

The point P lies on  $C_1$  so that the tangent at P is parallel to the initial line.

a) Show clearly that at *P* 

## $\tan 2\theta = 2$

**b**) Hence show further that the exact distance of P from the origin O is

 $\sqrt{\frac{5-\sqrt{5}}{2}}.$ 

The point Q is the point of intersection between  $C_1$  and  $C_2$ .

c) Find the value of  $\theta$  at Q.

| AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) $\Gamma = 2(\alpha\beta - \alpha_{M}\beta)$<br>$\frac{d\eta}{dt} - \frac{d\eta}{dt}\frac{d\eta}{dt} = 0$<br>$x \cdot \frac{d\eta}{dt} = 0$<br>$\forall \frac{d\eta}{dt} - (\alpha_{M}\beta) - 0$<br>$\Rightarrow \frac{d\eta}{dt} [(2\alpha\beta - \alpha_{M}\beta)\alpha_{M}\beta]] = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{cases} \Rightarrow \frac{1}{26} \left( \lambda \omega \Omega \omega \theta - \omega_0 \theta \right) = 0 \\ \Rightarrow \frac{1}{26} \left( \omega \omega \Omega - \omega_0 \theta \right) = 0 \\ \Rightarrow 2\omega \omega \Omega - 2\omega n \theta (\omega \Omega - 0) \\ \Rightarrow 2\omega \omega \Omega - 2\omega n \theta (\omega \Omega - 0) \\ \Rightarrow 2\omega \omega \Omega - 2\omega n \Omega = 0 \\ \Rightarrow 2\omega \omega \Omega - 2\omega n \Omega = 0 \\ \Rightarrow 2\omega \omega \Omega - 2\omega n \Omega = 0 \\ \Rightarrow 4\pi u (\omega \omega n) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c} (b) \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{cases} -\frac{1}{1+\sqrt{2}} \left( \frac{1}{\sqrt{2}} \frac{\sqrt{ k-\sqrt{2} ^2}}{\sqrt{ k-\sqrt{2} ^2}} + \frac{\sqrt{ k-\sqrt{2} ^2}}{\sqrt{ k-\sqrt{2} ^2}} \right) \\ & \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{l} \displaystyle \bigcup_{i=1}^{n} \left\{ - \int_{M_{i}} $ | $ \begin{array}{c} \mathcal{V}_{44} & \{ \boldsymbol{\theta}, \boldsymbol{\xi}, $ |

 $\theta = \frac{\pi}{12}$ 

### (\*\*\*\*+) **Question 9**

alasmaths.com

COM

I.F.G.B.

The curve C has polar equation

$$r = \tan \theta$$
,  $0 \le \theta < \frac{\pi}{2}$ 

nadası,

Find a Cartesian equation of C in the form y = f(x).

nadasmaths.com

|              | 201    |         | 100                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |        | 73/15   | $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ |
| 1.y.         | 5 ×    |         | $\Rightarrow 1+b_{1}^{2}\theta = \frac{1}{1-\lambda^{2}}$                                                                                  | I.C.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| las n.       | Inada. | SIN3/AS | nau                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ASINALIAN IN | S.COM  |         | 00                                                                                                                                         | nans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.J.         |        | 1.      |                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

K.C.B. Madasman

The Com

*x*<sup>2</sup>

 $\sqrt{1}$ 

y =

G

6

madasma,

Created by T. Madas

I.V.C.J

## Question 10 (\*\*\*\*+)

F.G.B.

I.C.P.

The curve C has polar equation

$$=\frac{4}{4-3\cos\theta},\ 0\le\theta<2\pi.$$

 $v^2$ 

4-36050

4r 4r\_3r0050

4r-30L

4 41-3x

 $y = \frac{1}{16}(-1x+4)(4-x)$ 

 $U = \frac{1}{12} \left( \frac{1}{2} (x + 4) (4 - x) \right)$ 

 $=\frac{1}{16}(16+24x-7x^2)$ 

 $\implies l_{0}(x^{2}+y^{2}) = (3x + y)^{2}$  $\implies l_{0}x^{2}+l_{0}y^{2} = (3x + y)^{2}$ 

 $\implies |\xi y^2 = (3x + y)^2 - |6x^2$ 

 $= \int by_{\alpha}^{2} = (7x+4)(4-x)$   $= \int by_{\alpha}^{2} = \frac{1}{16}(7x+4)(4-x)$   $= \int by_{\alpha}^{2} = \frac{1}{16}(7x+4)(4-x)$   $= \int by_{\alpha}^{2} = \frac{1}{16}(b+24x-7x^{2})$ 

F.C.P.

Madash

2

11-4-

- **a**) Find a Cartesian equation of *C* in the form  $y^2 = f(x)$ .
- **b**) Sketch the graph of C.

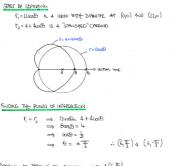


# 10 ENRICHM DUESTIONS RESTRETISCOM F.Y.C.B. MERIESENERIES.COM F.Y.C.B. MARINE

## Question 1 (\*\*\*\*\*)

Two curves,  $C_1$  and  $C_2$ , have polar equations

$$C_1: r = 12\cos\theta, -\frac{\pi}{2} < \theta \le \frac{\pi}{2}$$


 $C_2: r = 4 + 4\cos\theta, -\pi < \theta \le \pi.$ 

One of the points of intersection between the graphs of  $C_1$  and  $C_2$  is denoted by A. The area of the **smallest** of the two regions bounded by  $C_1$  and the straight line segment OA is

 $6\pi - 9\sqrt{3}$ .

The finite region R represents points which lie inside  $C_1$  but outside  $C_2$ .

Show that the area of R is  $16\pi$ .



### OO LING AT PART OF THE DIAGRAM - LET A (G.王)



 $= \int_{0}^{\infty} 8 + k(c_{0}\theta + 8(\frac{1}{2} + \frac{1}{2}c_{0}\lambda_{0}\theta) d\theta$   $= \int_{0}^{\frac{1}{2}} 12 + 16c_{0}\theta + 4k_{0}x_{0}\theta d\theta$   $= \left[ 12\theta + 16c_{0}\theta + 2c_{0}x_{0}\theta - \frac{1}{2}\right]_{0}^{\frac{1}{2}}$   $= \left( 12x_{0}\frac{1}{2} + 16c_{0}\theta + 2c_{0}x_{0}\theta - \frac{1}{2}\right) - \left( 0 + 16c_{0}x_{0}\theta + 2c_{0}y_{0}\theta \right)$   $= 4\pi + 8x_{0}\frac{1}{2} + 2(\frac{1}{2})$   $= 4\pi + 9x_{0}^{\frac{1}{2}}$   $= 4\pi + 9x_{0}^{\frac{1}{2}}$   $= 4\pi + 9x_{0}^{\frac{1}{2}}$   $= 16\pi + 9x_{0}^{\frac{1}{2}}$ 

proof

 $\begin{bmatrix} +\text{REA} \text{ of } 591(\text{LREA} - (-\text{AREA GOUD} + -\text{AREAGOUD}) \end{bmatrix} \times 2 \\ \uparrow & \uparrow \\ +\text{This is independent} \\ -\text{Areagonal in a single form } \\ -\text{(for - 9A_1^2)} \end{bmatrix}$ 

- $\int \left[\frac{1}{2} \pi \chi \delta^{2} \left(4\pi + 5 \delta^{2} + 6\pi \delta^{2}\right)\right] \times 2$
- = [181 101] ×2

= 16 17 the sequence

**Question 2** (\*\*\*\*\*)

1

A curve has polar equation

 $0 \leq \theta \leq \frac{1}{2}\pi$ .  $r = 1 + \tan \theta$ ,

The point *P* lies on the curve where  $\theta = \frac{1}{3}\pi$ 

The point Q lies on the initial line so that the straight line L, which passes through Pand Q meets the initial line at right angles.

Determine, in exact simplified form, the area of the finite region bounded by the curve and L.

 $\frac{1}{2}[\ln 3 - 1]$ 

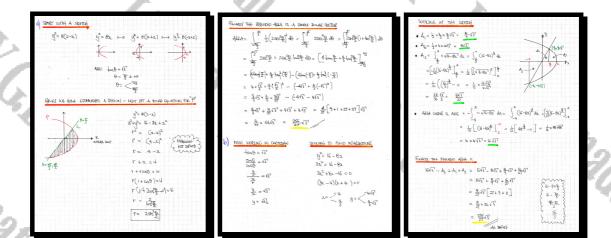
|              |                                                              | - 20                                                                                                                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| START WAY -  | STEETO                                                       |                                                                                                                           | THUS WE NOW HAVE THE CO-ORDINATES OF R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | )P                                                           | BV INSPECTION                                                                                                             | $\mathcal{L}\left(1+\frac{i\Omega}{3},\frac{\pi}{5}\right) \implies  \circ\mathcal{L}  = 1+\frac{i\Omega}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | - Paittant                                                   | • P(1+451, T5)                                                                                                            | ARCA OF THE TRUMULE OF & IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| /            | R                                                            | $\left\{ \cdot \left[ b Q \right] = (1 + \delta_2) \left[ b Q \right] = \frac{1}{2} C \left[ + \delta_2 \right] \right\}$ | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13           | IUTTIAL CINE                                                 | · Equition of une PRQ                                                                                                     | 始4世: 平1061 1081 28(正正) = デ(1+42)(1+花)四丘 = キ(1+花+2+13+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0            | <i>Q</i> >                                                   | 1000= 10001                                                                                                               | $= \frac{1}{2} \left( 5 + \frac{2}{2} t_2^2 \right) = \frac{1}{2} + \frac{2}{2} t_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                              | $\Gamma(\alpha s \theta = \frac{1}{2}C(1+5)$                                                                              | ARIA OF POLAR SECTOR NEXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NEXT WE NEED | THE POCKE GO ORDINATES OF                                    | POUT R                                                                                                                    | $h_{2SA} = \frac{1}{2} \int_{0}^{0} (T(a))^2 db = \frac{1}{2} \int_{0}^{1/2} (1 + \tan \theta)^2 d\theta = \frac{1}{2} \int_{0}^{1/2} (1 - 2\tan \theta + \tan^2 \theta) d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r= 1+ ton    | θ r≈sθ=                                                      | <u>+</u> (+/͡s)                                                                                                           | $= \pm \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} + \frac{d^2 \theta}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} + \frac{d^2 \theta}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} + \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 \theta}{dt} + \int_{-\infty$ |
|              | > 2                                                          |                                                                                                                           | $= \left[ \ln \left[ \sec \Theta \right] + \frac{1}{2} \tan \theta \right]_{\pi \pi}^{\pi 0} = \left[ \frac{1}{2} \tan \theta - \ln \left( \csc \Theta \right) \right]_{\pi \pi}^{\pi 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | $(1+b_{H}\theta)\cos\theta = \frac{1}{2}CH\sqrt{3}$          | )                                                                                                                         | 96 - 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1            | (1+ Smb) and = f Cital                                       | 2)                                                                                                                        | $= \left(\frac{1}{2}\sqrt{3}' - \ln\left(\frac{1}{2}\right)\right) - \left(\frac{1}{2}x\frac{d_1}{d} - \ln\left(\frac{d_1}{d}\right)\right) = \frac{d_1}{2} + \ln 2 - \frac{1}{6}\sqrt{3} + \ln \frac{d_2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $0000 + 5000 = \frac{1}{2}(1+\sqrt{2})$                      | 2,)                                                                                                                       | $= \frac{2}{2}A_{2}^{2} + \rho^{2}\left(5\times\frac{2}{2}\right) = \frac{2}{2}A_{2}^{2} + \rho^{2}A_{2}^{2} = \frac{2}{2}A_{2}^{2} + \frac{2}{2}\rho^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STINDARD AN  | Meskat                                                       | FOR THERE WHO LEVEN A FEW AND THE AND A THE                                                                               | THAS THE EXECUTIONS ABOUT COMPACE IN VELOCIO IN THE DIAGODANT IN FROM BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (COSB+SMB    | 4)2= +(4+13)2                                                | $(\overline{z}_{1}+i) = (\theta_{M2} - \frac{1}{2} + \theta_{20}) = \frac{1}{2}(1+i)$                                     | 26901860 ARIA= ± N37 + ± M3 - (±+± N37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6030 + 21050 | $ISM\theta + SIJF\theta = \frac{1}{4}(1+2J\overline{3}^2+3)$ | SHETCOSE + COSECUNDE 1/1 (1+13)                                                                                           | = = + + = + = + = + =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 + SM20 =   |                                                              | $SM(0+\frac{\pi}{4}) = \frac{6}{4}(1+\sqrt{5})$                                                                           | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SW20 = 5     |                                                              | $\mathcal{D}M\left(\theta+W_{4}\right)=\frac{\sqrt{\varepsilon^{2}+\sqrt{\varepsilon^{2}}}}{4}$                           | - F(p2 -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | CPEINGRAL VALUE HELEI                                        | $\Theta + \Xi = \frac{2\pi}{12} (32incidet only)$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0= F         |                                                              | er ₹                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Question 3 (\*\*\*\*\*)

A set of cartesian axes is superimposed over a set of polar axes, so that both set of axes have a common origin O, and the positive x axis coincides with the initial line.

A parabola P has Cartesian equation

$$y^2 = 8(2-x)$$
,  $x \le 2$ .


A straight line L has polar equation

$$\tan \theta = \sqrt{3} \ , \ -\pi < \theta \Leftrightarrow \pi$$
.

a) Use polar coordinates to determine, in exact simplified form, the area of the finite region bounded by P and L.

 $\frac{256}{27}$ 

b) Verify the answer of part (a) by using calculus in cartesian coordinates



Question 4 (\*\*\*\*\*)

A curve has polar equation

$$r = 1 + \tan \theta$$
,  $0 \le \theta \le \frac{1}{2}\pi$ ,

meets the initial line at the point P.

Another curve has polar equation

 $r = 4\cos^2\theta$ ,  $0 \le \theta \le \frac{1}{2}\pi$ .

The two curves meet at the point Q.

Determine, in exact simplified form, the area of the finite region bounded by the straight line through P and Q, and the curve with equation  $r = 1 + \tan \theta$ .

Give the answer in the form  $\frac{1}{k} \left[ 1 - \sqrt{k} + \ln k \right]$ , where k is a positive integer.

 $-\sqrt{2} + \ln 2$ 

| START WITH + SKETCH OF THE TWO ADDULS                                          |                 |
|--------------------------------------------------------------------------------|-----------------|
|                                                                                | uNf             |
| HALD THE IGHERECTION WAT                                                       |                 |
|                                                                                |                 |
| $f = b = \theta$                                                               |                 |
| auto= (r-1)2= 12-25+1 4= cudo                                                  |                 |
| => 1+ tago = seco                                                              | • r=1+ tout     |
| $\implies$ $l + (r^2 - 2r + i) = \frac{k}{r}$                                  | == 2 = 1 + tent |
| $\Longrightarrow 2 + l^2 - 4\Gamma = \frac{4}{\Gamma}$                         | - 1 = tay B     |
| $ \Rightarrow t^{2} - 3t^{2} - 4 = 0 \Rightarrow t^{3} - 2t^{2} + 2t - 4 = 0 $ | ⇒ θ=¥           |
| $\implies t^2(r-2) + 2(r-2) = 0$                                               | : Q(2)至)        |
| = (-2)(+2)20                                                                   |                 |
| => F=2_                                                                        |                 |
| NOW LOOKING AT THE DUGGHM                                                      | .9              |
|                                                                                | = /             |

| 4= 100//00/5m# = 1x1x2x 2 = 12                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATTA OF RUAR SERVICE                                                                                                                                                                               |
| $A = \frac{1}{2} \int_{\Theta_1}^{\Theta_2} (f(\omega))^2  d\theta = \frac{1}{2} \int_{0}^{\frac{1}{2}} C_1 + t_{n+1} \theta^2  d\theta$                                                           |
| $A = \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{1}{1 + 2b_{m}\theta + hav^{2}\theta}  d\theta = \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{3}{2b} \frac{\partial}{\partial t} + 2b_{m}\theta  d\theta$ |
| [1+ toyle = 5430]                                                                                                                                                                                  |
| $A = \frac{1}{2} \left[ \tan \theta + 2\ln  \sec \theta  \right]_{0}^{\frac{N}{2}} = \frac{1}{2} \left[ \tan \theta - 2\ln  \cos \theta  \right]_{0}^{\frac{N}{2}}$                                |
| $h = \frac{1}{2} \left[ \left( 1 - 2h \frac{2}{2} \right)_{-} \left( 0 - 2h \right) \right]$                                                                                                       |
| $A_{i} = \frac{1}{2} - b_{i} \frac{Q_{i}^{i}}{2} = \frac{1}{2} - b_{i} \frac{1}{\sqrt{2}} = \frac{1}{2} + b_{i} \sqrt{2}^{i} = \frac{1}{2} + \frac{1}{2} b_{i} 2$                                  |
| FINALLY WE HAVE                                                                                                                                                                                    |
| $25POIDED  \forall RFA = \left(\frac{1}{2} + \frac{1}{2} w_2  - \frac{\sqrt{2}}{2}\right)$                                                                                                         |
| $= \frac{1}{2} (1 + b_{12} - 4z^2)$                                                                                                                                                                |
| $=\frac{\frac{1}{2}(1-r_2^2+lu_2)}{2}$                                                                                                                                                             |
|                                                                                                                                                                                                    |

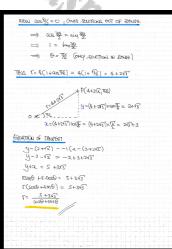
## **Question 5** (\*\*\*\*\*)

A cardioid has polar equation

 $r = 4(1 + \cos \theta), \quad 0 \le \theta \le \frac{1}{2}\pi.$ 

A tangent to the curve at some point P has gradient -1.

Find, in the form  $r = f(\theta)$ , the polar equation of this tangent.


There by detriving the Goldentz Forcettod  $\begin{aligned}
\frac{G_{11}}{G_{12}} = \frac{G_{12}}{G_{12}} =$ 

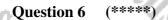
COSP +COSRE ZCOS 壁 COSE ) ··· SMP+SMR = ZCM 壁 COS 豊 BETORNIAG TO THE "MAIN LING"

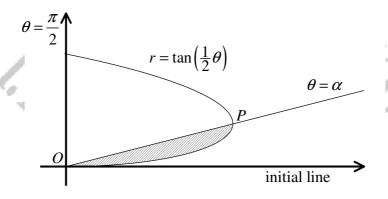
→ (ab + 6020 = 500 + 540 → /205柴025 = 左49毫025 → (555€ (1623-549警)=0

æ

I.C.B.




 $\frac{5+3\sqrt{3}}{\cos\theta+\sin\theta}$ 


?

F.C.P.

1720251

è

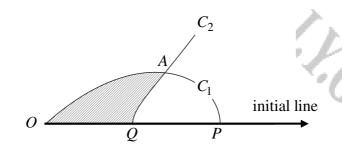




The figure above shows the curve C with polar equation

$$r = \tan\left(\frac{1}{2}\theta\right), \ 0 \le \theta < \frac{\pi}{2}$$

The point P lies on C so that tangent to C is perpendicular to the initial line.


The half line with equation  $\theta = \alpha$  passes through *P*.

Find, in exact simplified form, the area of the finite region bounded by C and the above mentioned half line.

TTY WE NEED THE "O CO-ODDINATE" OF P, without is with => (T2+2)2  $\frac{dy}{dx} = \frac{dy}{dx}\frac{d\theta}{d\theta} = cr$ <sup>2</sup>+2 = : 02 = 0  $\Rightarrow \frac{1}{2}(r \cos \theta) = 0$  $o = \left[ \partial_{\partial \Omega} \frac{g}{2} m_{\sigma}^{2} \right] \frac{1}{\partial \theta} \in$ V-2+VS = <u>1</u> sec<sup>2</sup> ⊕ coso - buy € sub = 0 arctay J-2+VE -> SEC \$ COSO - 2 full SMD=0 -2+15 RAPUIRED MOGA - about toy 0 = 0 tan20 - 2tan 0 2tan2  $\tan 4 = \frac{3\tan 45}{1-\tan^2 \frac{1}{2}}$ -1 ds  $l + T^2 - 2T \left(\frac{2\Gamma}{1 - \tau^2}\right) = 0$  $\frac{4T^2}{1-7^2} = 0$  $AQ_{4} = \frac{1}{2} \left[ 2 \sqrt{-2+\sqrt{5}^{1}} - 2 \operatorname{archan} \sqrt{-2+\sqrt{5}^{1}} \right]$ J-2+NE

 $\operatorname{area} = \sqrt{-2 + \sqrt{5}} - \arctan\sqrt{-2 + \sqrt{5}}$ 

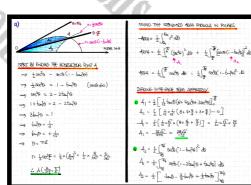
Question 7 (\*\*\*\*\*)



The figure above shows the curves  $C_1$  and  $C_2$  with respective polar equations

 $r_1 = \sec \theta \left( 1 - \tan^2 \theta \right)$  and  $r_2 = \frac{1}{2} \sec^3 \theta$ ,  $0 \le \theta < \frac{1}{4} \pi$ .

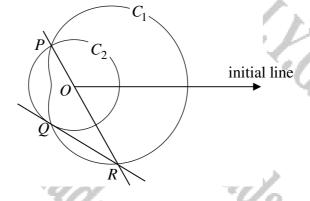
The points P and Q are the respective points where  $C_1$  and  $C_2$  meet the initial line, and the point A is the intersection of  $C_1$  and  $C_2$ .


a) Find the exact area of the curvilinear triangle OAQ, where O is the pole.

The angle OAP is denoted by  $\psi$ .

**b**) Show that  $\tan \psi = -3\sqrt{3}$ .

You may assume without proof


 $\int \sec^6 x \, dx = \frac{1}{15} \left( 8 + 4 \sec^2 x + 3 \sec^4 x \right) \tan x + C$ 

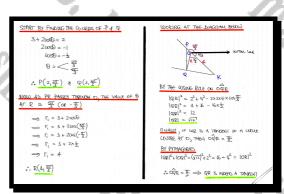


| $ \begin{array}{c} \rightarrow & A_{2} = \frac{1}{2} \left[ \left( 1 - \frac{2}{3} + \frac{1}{3} \right) - \left( \frac{2}{3} - \frac{2}{3} \right) \\ \Rightarrow & A_{2} = \frac{1}{2} \left[ \frac{2 - \frac{1}{3} + \frac{1}{3}}{12} - \left( \frac{2 - \frac{2}{3}}{12} + \frac{2}{32} \right) \\ \Rightarrow & A_{2} = \frac{1}{2} \left[ \frac{2}{3} - \frac{2}{3} - \left( \frac{4 - (\frac{2}{3} - \frac{2}{3})}{12} + \frac{2}{32} \right) \\ \Rightarrow & A_{2} = \frac{1}{2} \left[ \frac{2}{3} - \frac{2}{33} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{2} \left[ \frac{2}{3} - \frac{2}{33} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{2} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{33} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} - \frac{2}{3} \right] \\ \Rightarrow & A_{2} = \frac{1}{3} \left[ \frac{2}{3} -$ | 6 + 1/15 (S)]<br>- 457)]<br>- 1/8 (S = 1/8 - 2/15 | <sup>1</sup> /25€ = <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ) LOOLING OF THE DIAGRAM OPPOARE<br>$\rightarrow \underline{small} = \underline{sm}(\underline{\overline{rr}} - \underline{v})$<br>$+ \underline{small} = smp(\underline{\overline{rr}} - \underline{v})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *6/                                               | Ψ <sup>A(\$G,</sup> ₹)<br>₹-Ψ<br>P(t <sub>i</sub> o)                                                                                                      |  |
| → 4755mp - 9507€asp-90<br>→ 4754mp = 9x±-9(-至)6<br>→ 8754mp = 9+9734mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                           |  |
| => -15 temp = 9<br>=> -3 temp = 913<br>-3 temp = -313 - 15 sepres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>0</u>                                          |                                                                                                                                                           |  |

 $2(18-5\sqrt{3})$ 

Question 8 (\*\*\*\*\*)




The figure above shows the curves  $C_1$  and  $C_2$  with respective polar equations

 $r_1 = 3 + 2\cos\theta$ ,  $0 \le \theta < 2\pi$  and  $r_2 = 2$ .

The two curves intersect at the points P and Q.

A straight line passing through P and the pole O intersects  $C_1$  again at the point R.

Show that RQ is a tangent of  $C_1$  at Q.



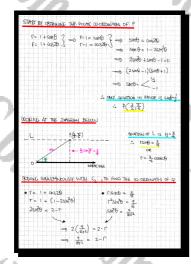
proof

and

**Question 9** (\*\*\*\*\*)

The curves  $C_1$  and  $C_2$  have respective polar equations

 $r = 1 + \sin \theta$ ,  $0 < \theta < \frac{1}{2}\pi$ 


 $r=1+\cos 2\theta$ ,  $0<\theta<\frac{1}{2}\pi$ .

The point P is the point of intersection of  $C_1$  and  $C_2$ .

A straight line, which is parallel to the initial line, passes through P and intersects  $C_2$  at the point Q.

Show that

 $|PQ| = \frac{1}{32} \left[ 24\sqrt{3} - \left(2 + 2\sqrt{13}\right)^{\frac{3}{2}} \right].$ 



| q ≈ 16r <sup>2</sup> 8r <sup>3</sup>                                           |
|--------------------------------------------------------------------------------|
| $\implies$ $\Theta r^3 - 16r^2 + q = 0$                                        |
| ·本 「こ毫 い、み southar, FAECORISE BY INSPECTION                                    |
| $\implies (2r-3)(4r^2+\lambda r-3)=0$                                          |
| -6(-3) = 0<br>-3(2+4) = 0                                                      |
| → (2r-3) (4r <sup>2</sup> -2r-3)=0                                             |
| SOWING THE QUASPATTC (PRUCE OR COMPLETING THE SPORE)                           |
| ⇒ 4r <sup>2</sup> -x-3=0                                                       |
| =) $(= \frac{2 \pm \sqrt{4 + 4x + x(-3)}}{2x + 4} = \frac{2 \pm \sqrt{52}}{8}$ |
| $\Rightarrow \Gamma = \frac{2 \pm 2\sqrt{15}}{8}$                              |
| 2 ±+±√6                                                                        |
|                                                                                |
| 10 Find the claut of €, 45 Q ues on row 0= =                                   |
|                                                                                |
| ⇒ rsm0 = = <del>3</del><br>⇒ (±+±√6) ≈m0 = 3                                   |
| $\rightarrow (4^{+} 4^{+} 6) 1 = 3$                                            |
| → (m+)(m-1)sm = 3(m-1)                                                         |
| $\Rightarrow 12 \text{sm}\theta = 3(\sqrt{6} - 1)$                             |

| $\implies \leq i \eta \theta = \frac{1}{4} (\sqrt{i} \frac{1}{2} - 1)$                                                              |                                        |                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOW LOOKING AT THE DIP                                                                                                              | AGRAN BELOV                            | <u>a</u>                                                                                                                                                                                                 |
| in the second                                                                                                                       | P                                      | - The F                                                                                                                                                                                                  |
| 0 A                                                                                                                                 | ₿                                      | $ \begin{cases} \Gamma_{p} = \frac{1}{2} \\ S_{p} = \frac{1}{2} \\ \Gamma_{q} = \frac{1}{4} + \frac{1}{4} (\overline{S}) \\ S_{q, q} = \operatorname{arcan}(\frac{1}{4}((\overline{S}-1))) \end{cases} $ |
| PROCEED TO FIND THE                                                                                                                 | EXACT 1/MO                             | -of αsθ <sub>o</sub>                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                               |                                        | $(3 - 24\sqrt{3} + 1) = \frac{1}{16}(14 - 24\sqrt{3})$                                                                                                                                                   |
| = 7-                                                                                                                                |                                        |                                                                                                                                                                                                          |
| $\Rightarrow 020 = +\sqrt{1}$                                                                                                       |                                        | $(-(\frac{1}{6}-\frac{1}{6}\sqrt{3}))$<br>$\sqrt{\frac{1}{6}(2+2\sqrt{3})}$                                                                                                                              |
| = <del>1</del> | 12.00                                  |                                                                                                                                                                                                          |
| FINALLY WE MANY                                                                                                                     | 1994                                   |                                                                                                                                                                                                          |
| [PQ] = [08] - [0A] =                                                                                                                |                                        | +15) [ +12+215 ] [<br>+26] × +(2+215) ±                                                                                                                                                                  |
|                                                                                                                                     | $\frac{3\sqrt{3}}{4} - \frac{1}{2}(2)$ |                                                                                                                                                                                                          |
|                                                                                                                                     | <u>ha</u> [24w3' - (                   | 2+2/17) <sup>2</sup> ]                                                                                                                                                                                   |
|                                                                                                                                     |                                        |                                                                                                                                                                                                          |

], proof

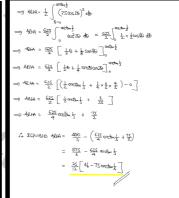
1+

## **Question 10** (\*\*\*\*\*)

A straight line L, whose gradient is  $-\frac{3}{11}$ , is a tangent to the curve with polar equation

 $r = 25\cos 2\theta, \ 0 \le \theta \le \frac{1}{2}\pi$ 

Show that the area of the finite region bounded by the curve, the straight line L and the initial line is


 $\frac{25}{12} \left[ 46 - 75 \arctan \frac{1}{3} \right].$ 

| START WITH + OVICK SKETCH OF 1= \$500520, which there is user therefor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE 4 "WAVES" OF THE WENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| General and the state of the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FIND AN OUPLIESION BE THE<br>GRADINT FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\rightarrow \frac{d_{2}}{d_{2}} = \frac{d_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _ du_ & (Femp) & (stars205m9) Crestine -25m295mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ = \frac{\partial g}{\partial t} = \frac{\partial f}{\partial t} \left( \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} - \frac{\partial f}{\partial t} \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \cos(\theta)}{\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t} \cos(\theta)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \cos(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \cos(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \cos(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \cos(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \sin(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} \sin(\theta)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}}(t)}{f_{\text{eq}}(t)} - \frac{f_{\text{eq}$ |
| - du = 2svifsang - angeves<br>du = 2svifsang - angeves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SETTING THE GRADUAST TO - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2sm0.sm29 - 00s29ccs93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $=$ $\frac{1}{2 \sin 2\theta \cos \theta + \cos 2\theta \sin \theta} = \frac{1}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ⇒ 22kmb fm(20 - 11 = - 6 fm/20 - 3 kmb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| → 22hull ( 2hull ) - 11 = - C (2hull ) 3hull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\rightarrow 2\overline{u}\left(\frac{2\tau}{(-\tau^{2})}\right) \sim    \approx -6\left(\frac{2\tau}{(-\tau^{2})}\right) - 3\overline{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Rightarrow 44T^{2} - 11(1-T^{2}) = -12T - 3T(1-T^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\rightarrow$ 44t <sup>2</sup> - 11+11t <sup>2</sup> = -12t - 3t + 3t <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| NEXT GIND THE CO. OR DE OF P                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • $c_{AAB} = \frac{1}{3} \implies smb = \frac{1}{16}$<br>$\implies c_{ABB} = \frac{3}{46}$<br>$\implies c_{ABB} = \frac{3}{46}$<br>$\implies c_{ABB} = 2a_{AB}^2 - 1 = 2x_{B}^2 - 1 = \frac{5}{3}$<br>$\implies sm28 = \frac{3}{3}$ |
| <ul> <li>F= 25(0)20 = 25× y= 20</li> </ul>                                                                                                                                                                                          |
| • In CARTERIAN $Q = Tros \theta = 20 \times \frac{3}{10} - \frac{5n}{\sqrt{10}} = 64^{-1}$                                                                                                                                          |
| $\mathcal{Y} = \operatorname{Derm}\Theta = 2 \circ \times \frac{1}{\sqrt{n}} = \frac{2 \circ}{\sqrt{n}} = 2 \sqrt{n}$                                                                                                               |
| 16 P(6VB, 2VG)                                                                                                                                                                                                                      |
| GRUATION OF TANDENT                                                                                                                                                                                                                 |
| - y-210=-3 (2-610)                                                                                                                                                                                                                  |
| - 11y - 2216 = -3a + 18 66                                                                                                                                                                                                          |
| -> 1/y+32 = 9016                                                                                                                                                                                                                    |
| anter dino                                                                                                                                                                                                                          |
| $\frac{A^{2}A}{2} \text{ of } oPQ = \frac{1}{2} \times \frac{9}{2} \sqrt{6} \times \frac{1}{2} \sqrt{6} = \frac{1}{2} \frac{1}{2} \sqrt{6}$                                                                                         |
| NEXT FIND THE ARGA "INSUE" THE WOR                                                                                                                                                                                                  |
| $\partial_{r} \int_{0}^{1} \frac{\partial_{r}}{\partial t} dt = \frac{1}{2} \int_{0}^{1} \frac{\partial_{r}}{\partial t} dt = \frac{1}{2} \int_{0}^{1} \frac{\partial_{r}}{\partial t} dt$                                          |

| $\Rightarrow 0 = 3T^3 = 35T^2 - 15T + 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FACTORIZE BY LONG DIVISION/NATIVIPULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| => T <sup>2</sup> (3T-1) - 18T(2T-1) - 11(3T-1) = 0 4-45 THE NOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Rightarrow (3T-1)(T^{2}-18T-11) = 0 \qquad \text{arcbarg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\Rightarrow \tan \theta = \frac{1}{3}$ or $\tan \theta = \frac{18 \pm \sqrt{368}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $   4ull \approx \frac{18 \pm 2\sqrt{72^2}}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tung = 9 ± 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOCKING AT THE STATIONARY-POINT"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{rcl} \displaystyle \frac{d_{y}}{dL} &= 0 & \Longrightarrow & \displaystyle 2 \mathrm{sub} \mathrm{Carb} Carb$ |
| 6=0 (6=070-1)=0<br>0=0 (1=000-1)(1=000-0) (0=00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - One remember source source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\theta \sim 24 \cdot l^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

proof

