POLAR COORDINATES 54 EXAM QUESTIONS

Created by T. Madas

Created by T. Madas

Question 1 (**)

The figure above shows a spiral curve with polar equation

$$
r=a \theta, 0 \leq \theta \leq 2 \pi
$$

where a is a positive constant.

Find the area of the finite region bounded by the spiral and the initial line.
\square area $=\frac{4}{3} a^{2} \pi^{3}$

Created by T. Madas

Question 2 (**)
The polar curve C has equation

$$
r=2(\cos \theta-\sin \theta), 0 \leq \theta<2 \pi
$$

Find a Cartesian equation for C and show it represents a circle, indicating its radius and the Cartesian coordinates of its centre.

Question 3

(**)
The polar curve C has equation

$$
r=2+\cos \theta, 0 \leq \theta<2 \pi
$$

a) Sketch the graph of C.
b) Show that the area enclosed by the curve is $\frac{9}{2} \pi$.

Created by T. Madas

Created by T. Madas

Question $4 \quad\left({ }^{* *}+\right.$)
The curve C has polar equation

$$
r^{2}=a^{2} \sin 3 \theta, 0 \leq \theta \leq \frac{\pi}{3}
$$

a) Sketch the graph of C.
b) Find the exact value of area enclosed by the C.

$$
\text { area }=\frac{1}{3} a^{2}
$$

Created by T. Madas

Question 5 (**+)
The curve C has polar equation

$$
r=6 \cos 3 \theta,-\pi<\theta \leq \pi .
$$

a) Sketch the graph of C.
b) Find the exact value of area enclosed by the C, for $-\frac{\pi}{6}<\theta \leq \frac{\pi}{6}$.
\square , area $=3 \pi$

Created by T. Madas
Question $6 \quad\left({ }^{* *}+\right.$)

The figure above shows a circle with polar equation

$$
r=4(\cos \theta+\sin \theta) \quad 0 \leq \theta<2 \pi .
$$

a) Find the exact area of the shaded region bounded by the circle, the initial line and the half line $\theta=\frac{\pi}{2}$.
b) Determine the Cartesian coordinates of the centre of the circle and the length of its radius.
\square , area $=4 \pi+8,(2,2)$, radius $=\sqrt{8}$

Created by T. Madas

Created by T. Madas

Question 7 (***)
Write the polar equation

$$
r=\cos \theta+\sin \theta, 0 \leq \theta<2 \pi
$$

in Cartesian form, and hence show that it represents a circle, further determining the coordinates of its centre and the size of its radius.

Created by T. Madas

Question 8 (***)
A Cardioid has polar equation

$$
r=1+2 \cos \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

The point P lies on the Cardioid so that the tangent to the Cardioid at P is parallel to the initial line.

Determine the exact length of $O P$, where O is the pole.
\square
$\frac{1}{4}(3+\sqrt{33})$

Created by T. Madas

Created by T. Madas

Question 1 (***+)
A curve has polar equation

$$
r=\frac{2 \pi}{\theta+\pi}, 0 \leq \theta<2 \pi
$$

a) Sketch the curve.
b) Find the exact value of area enclosed by the curve, the initial line and the half line with equation $\theta=\pi$.

Created by T. Madas

The figure above shows the polar curve C with equation

$$
r=2 \sin 2 \theta \sqrt{\cos \theta},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

Show that the area enclosed by one of the two identical loops of the curve is $\frac{16}{15}$.

Created by T. Madas

Question $3 \quad(* * *+)$

The figure above shows the polar curve with equation

$$
r=\sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

a) Find the exact value of the area enclosed by the curve.

The point P lies on the curve so that the tangent at P is parallel to the initial line.
b) Find the Cartesian coordinates of P.

area $=\frac{\pi}{8},\left(\frac{2}{9} \sqrt{6}, \frac{4}{9} \sqrt{3}\right)$

b) Foe "Hecronit Tinaar" dy $\frac{\text { ar }}{\text { b }}=0$
$\frac{d y}{d t}=\frac{d y d \theta}{d / d \theta}=0$
$\frac{d y}{d \theta}=\frac{d}{d \theta}(r \sin \theta)=\frac{d}{d \theta}(\sin 2 \sin \theta)=0$
Dffercratit a Sowe The Geoftion
$\Rightarrow 2 \cos 2 \theta \sin \theta+\sin 2 \theta \cos \theta=0$
$\Rightarrow 2 \sin \theta\left(2 \cos ^{2} \theta-1\right)+2 \sin \theta \cos ^{2} \theta=0$
$\Rightarrow 2 \sin \theta\left[3 \cos ^{2} \theta-1\right]=0$
$\Rightarrow 2 \sin \theta\left[3 \cos ^{2} \theta-1\right]=0$
$\therefore \sin \theta=0 \quad \cos \theta=\frac{1}{\sqrt{5}} \quad \cos \theta=\frac{1}{\sqrt{5}}$ $\therefore \theta=\arccos \left(\frac{1}{\sqrt{3}}\right)$
$\therefore r=\sin 2 \theta=2 \sin \cos \theta$ \square
$\frac{\text { PaAD woelinites of } P\left(\frac{2}{3} \sqrt{2}, \operatorname{archax} \frac{1}{5}\right)}{4}$
$x=r \cos \theta=\frac{2}{3} \sqrt{2} \times \frac{1}{\sqrt{5}}=\frac{2 \sqrt{2}}{38}=\frac{2}{9} \sqrt{6}$ $y=r \sin \theta=\frac{2}{3} \sqrt{2}\left(\frac{\sqrt{2}}{\sqrt{5}}\right)=\frac{4}{3 \sqrt{3}}=\frac{4}{5} \sqrt{3}$

Created by T. Madas

The diagram above shows the curve with polar equation

$$
r=a+2 \sin \theta, 0 \leq \theta<2 \pi,
$$

where a is a positive constant.

Determine the value of a given that the area bounded by the curve is 38π.

Created by T. Madas

Question $5 \quad(* * *+)$

The figure above shows the curve with polar equation

$$
r=4 \sqrt{2} \cos 2 \theta, 0 \leq \theta<2 \pi
$$

Find in exact form the area of the finite region bounded by the curve and the line with polar equation $\theta=\frac{\pi}{8}$, which is shown shaded in the above figure.

Created by T. Madas

Question 6 (${ }^{* * *+) ~}$
A curve C_{1} has polar equation

$$
r=2 \sin \theta, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation for C_{1}, and describe it geometrically.

A different curve C_{2} has Cartesian equation

$$
y^{2}=\frac{x^{4}}{1-x^{2}}, x \neq \pm 1 .
$$

b) Find a polar equation for C_{2}, in the form $r=f(\theta)$.

$$
x^{2}+(y-1)^{2}=1, r=\tan \theta
$$

\square

Created by T. Madas

Question $7 \quad(* * *+)$

The figure above shows the curve C with Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{2}=2 x^{2} y .
$$

a) Show that a polar equation for C can be written as

$$
r=\sin 2 \theta \cos \theta
$$

b) Determine in exact surd form the maximum value of r.

Created by T. Madas

Created by T. Madas

Question $8 \quad(* * *+)$

$$
\theta=\frac{\pi}{2}
$$

The diagram above shows the curve with polar equation

$$
r=\sqrt{3} \cos \theta+\sin \theta,-\frac{\pi}{3} \leq \theta<\frac{2 \pi}{3}
$$

By using a method involving integration in polar coordinates, show that the area of the shaded region is

Question 9 (****)

$$
\theta=\frac{\pi}{2}
$$

The diagram above shows the curves with polar equations

$$
\begin{aligned}
& r=1+\sin 2 \theta, 0 \leq \theta \leq \frac{1}{2} \pi, \\
& r=1.5,0 \leq \theta \leq \frac{1}{2} \pi .
\end{aligned}
$$

a) Find the polar coordinates of the points of intersection between the two curves.

The finite region R, is bounded by the two curves and is shown shaded in the figure.
b) Show that the area of R is

$$
\frac{1}{16}(9 \sqrt{3}-2 \pi)
$$

\square

Created by T. Madas

Question 10 (****)

The figure above shows the graph of the curve with polar equation

$$
r=4(1-\sin \theta), 0 \leq \theta \leq \pi .
$$

The straight line L is a tangent to the curve parallel to the initial line, touching the curve at the points P and Q.
a) Find the polar coordinates of P and the polar coordinates of Q.
b) Show that the area of the shaded region is exactly

$$
15 \sqrt{3}-8 \pi
$$

Created by T. Madas

Created by T. Madas

Question 11 (****)

The diagram above shows the curve with polar equation

$$
r=1+\cos \theta, \quad 0 \leq \theta \leq \pi
$$

The curve meets the initial line at the origin O and at the point Q. The point P lies on the curve so that the tangent to the curve at P is parallel to the initial line.
a) Determine the polar coordinates of P.

The tangent to the curve at Q is perpendicular to the initial line and meets the tangent to the curve at P, at the point R.
b) Show that the area of the finite region bounded by the line segments $P R, Q R$ and the arc $P Q$ is

$$
\frac{1}{32}(21 \sqrt{3}-8 \pi)
$$

Created by T. Madas

Question 12 (****)

The diagram below shows the curves with polar equations

$$
C_{1}: r=\mathrm{e}^{\theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

$$
C_{2}: r=4 \mathrm{e}^{-\theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

The curves intersect at the point A.
a) Find the exact polar coordinates of A.
b) Show that area of the shaded region is $\frac{9}{4}$.

Created by T. Madas

The figure above shows a curve and a straight line with respective polar equations

$$
r=4+4 \cos \theta,-\pi<\theta \leq \pi \quad \text { and } \quad r=3 \sec \theta,-\frac{\pi}{2}<\theta \leq \frac{\pi}{2}
$$

The straight line meets the curve at two points, P and Q.
a) Determine the polar coordinates of P and Q.

The finite region, shown shaded in the figure, is bounded by the curve and the straight line.
b) Show that the area of this finite region is

$$
8 \pi+9 \sqrt{3}
$$

$$
P\left(6, \frac{\pi}{3}\right), Q\left(6,-\frac{\pi}{3}\right)
$$

Created by T. Madas

Created by T. Madas

Question 14 (****)

The figure above shows the curves with polar equations

$$
\begin{aligned}
& r=4 \cos \theta, 0 \leq \theta \leq 2 \pi \\
& r=4 \sin 2 \theta, 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

Show that the area of the shaded region which consists of all the points which are bounded by both curves is

$$
4 \pi-3 \sqrt{3}
$$

\square

Created by T. Madas

Question 15 (****)

The figure above shows the cardioid with polar equation

$$
r=3+2 \cos \theta, 0<\theta \leq \frac{\pi}{2}
$$

The point P lies on the cardioid and its distance from the pole O is 4 units.
a) Determine the polar coordinates of P.

The point Q lies on the initial line so that the line segment $P Q$ is perpendicular to the initial line. The finite region R, shown shaded in the figure, is bounded by the curve, the initial line and the line segment $P Q$.
b) Show that the area of R is

$$
\frac{1}{12}(22 \pi+15 \sqrt{3}) .
$$

Created by T. Madas

Question 16 (****)

The figure above shows the curve with polar equation

$$
r=2+2 \sin \theta, 0 \leq \theta \leq 2 \pi,
$$

intersected by the straight line with polar equation

$$
2 r \sin \theta=3,0<\theta<\pi .
$$

a) Find the coordinates of the points P and Q, where the line meets the curve.
b) Show that the area of the triangle $O P Q$ is $\frac{9}{4} \sqrt{3}$.
c) Hence find the exact area of the shaded region bounded by the curve and the straight line.

Created by T. Madas

Question 17 (****)
The curves C_{1} and C_{2} have respective polar equations

$$
\begin{aligned}
& C_{1}: r=2 \sin \theta, 0 \leq \theta<2 \pi \\
& C_{2}: r=\tan \theta, 0 \leq \theta<\frac{\pi}{2}
\end{aligned}
$$

a) Find a Cartesian equation for C_{1} and a Cartesian equation for C_{2}.

The figure above shows the two curves intersecting at the pole and at the point P.

The finite region, shown shaded in the figure, is bounded by the two curves.
b) Determine the exact polar coordinates of P.
c) Show that the area of the shaded region is $\frac{1}{2}(2 \pi-3 \sqrt{3})$.

$$
C_{1}: x^{2}+(y-1)^{2}=1, C_{1}: x^{2}+(y-1)^{2}=1, P\left(\sqrt{3}, \frac{\pi}{3}\right)
$$

\square

Created by T. Madas

The figure above shows two overlapping closed curves C_{1} and C_{2}, with respective polar equations

$$
\begin{aligned}
& C_{1}: r=3+\cos \theta, 0 \leq \theta<2 \pi \\
& C_{2}: r=5-3 \cos \theta, 0 \leq \theta<2 \pi .
\end{aligned}
$$

The curves meet at two points, P and Q.
a) Determine the polar coordinates of P and Q.

The finite region R, shown shaded in the figure, consists of all the points which lie inside both C_{1} and C_{2}.
b) Show that the area of R is

$$
\frac{1}{6}(97 \pi-102 \sqrt{3})
$$

$$
P\left(\frac{7}{2}, \frac{\pi}{3}\right), Q\left(\frac{7}{2}, \frac{5 \pi}{3}\right),
$$

Created by T. Madas

Question 19 (****)
The curve C with polar equation

$$
r=\sqrt{6} \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{4}
$$

The straight line l is parallel to the initial line and is a tangent to C.

Find an equation of l, giving the answer in the form $r=f(\theta)$.

Created by T. Madas

Question 20 (****)

The diagram above shows the curves with polar equations

$$
\begin{aligned}
& C_{1}: r=\theta^{2}, 0 \leq \theta \leq \frac{\pi}{2} \\
& C_{2}: r=2-\theta, 0 \leq \theta \leq 2 .
\end{aligned}
$$

1 The curves intersect at the point A.
a) Find the polar coordinates of A.
b) Show that the area of the shaded region is $\frac{16}{15}$.

Created by T. Madas

Question 21 (****)

The figure above shows the curve C with polar equation

$$
r=1-\cos \theta, 0 \leq \theta<\frac{\pi}{2} .
$$

The point P lies on C so that tangent to C is perpendicular to the initial line.
a) Determine the polar coordinates of P.

The finite region R consists of all the points which are bounded by C, the straight line segment $P Q$, the initial line and the line with equation $\theta=\frac{\pi}{2}$.
b) Show that the area of R, shown shaded in the figure above, is exactly

$$
\frac{1}{32}(4 \pi+15 \sqrt{3}-32)
$$

Created by T. Madas

Question 22 (****)

The figure above shows two closed curves with polar equations $C_{1}: r=a(1+\sin \theta), 0 \leq \theta \leq 2 \pi$ and $C_{2}: r=3 a(1-\sin \theta), 0 \leq \theta \leq 2 \pi$,
intersecting each other at the pole O and at the points P and Q.
a) Find the polar coordinates of the points P and Q.
b) Show that the distance $P Q$ is $\frac{3 \sqrt{3}}{2} a$.

The finite region shown shaded in the above figure consists of all the points inside C_{1} but outside C_{2}.
c) Given that the distance $P Q$ is $\frac{3}{2}$, show that the area of the shaded region is

$$
3 \sqrt{3}-\frac{4}{3} \pi
$$

$$
P\left(\frac{3}{2} a, \frac{5 \pi}{6}\right), Q\left(\frac{3}{2} a, \frac{\pi}{6}\right)
$$

Created by T. Madas

Question 23 (****)
The points A and B have respective coordinates $(-1,0)$ and $(1,0)$.

The locus of the point $P(x, y)$ traces a curve in such a way so that $|A P \| B P|=1$.
a) By forming a Cartesian equation of the locus of P, show that the polar equation of the curve is

$$
r^{2}=2 \cos 2 \theta, 0 \leq \theta<2 \pi .
$$

b) Sketch the curve.
\square , proof

Created by T. Madas

The figure above shows a curve C with polar equation

$$
r^{2}=2 \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{4}
$$

The straight line L is parallel to the initial line and is a tangent to C at the point P.
a) Show that the polar coordinates of P are $\left(1, \frac{\pi}{6}\right)$.

The finite region R, shown shaded in the figure above, is bounded by C, L and the half line with equation $\theta=\frac{\pi}{2}$.
b) Show that the area of R is

$$
\frac{1}{8}(3 \sqrt{3}-4)
$$

Created by T. Madas

Created by T. Madas

$$
\begin{aligned}
& \Rightarrow \frac{d y / d \theta}{\partial y / d \theta}=0 \\
& \Rightarrow d y / d \theta=0 \\
& \Rightarrow \frac{d}{d x}(y)=0 \\
& \Rightarrow \frac{d}{d \theta}(r \sin \theta)=0 \\
& \Rightarrow \frac{d}{d \theta}\left(r^{2} m^{2} \theta\right)=0 \\
& \Rightarrow \frac{d}{d \theta}\left(2 \cos 2 \theta \sin ^{2} \theta\right)=0 \\
& \Rightarrow-4 \sin 2 \theta \sin ^{2} \theta+4 \cos 2 \theta \sin \theta \cos \theta=0 \\
& \rightarrow-8 \sin ^{3} \theta \cos \theta+4 \cos 8 \theta \sin \theta \cos \theta=0 \\
& \text {) } \sin 2 \theta=2 \sin \theta \cos \theta \\
& \rightarrow \cos 2 \theta-1+\cos 2 \theta=0 \\
& \Rightarrow 2 \cos 2 \theta=1 \\
& \rightarrow \cos 2 \theta=\frac{1}{2} \\
& \begin{array}{l}
\Rightarrow 2 \theta=\frac{\pi}{3}, \frac{\pi}{3}, \frac{7 \pi}{3}, \frac{1 \pi}{3}, \ldots \\
\Rightarrow \quad \theta=\frac{\pi}{6} \quad 0 \leqslant \theta<\frac{\pi}{4}
\end{array} \\
& x=\operatorname{bp} \left\lvert\, \cos \frac{\pi}{6}=1 \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}\right. \\
& y=\operatorname{lop} \left\lvert\, \sin \frac{\pi}{6}=1 \times \frac{1}{2}=\frac{1}{2}\right. \\
& \text { OQिP } \operatorname{Aen} A=\frac{1}{2} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{8} \\
& \text { Now THE "SHABED BUE Rest" of ponR SEETOR is avial By } \\
& \begin{aligned}
& =\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta=\frac{1}{2} \int_{\frac{\pi}{6}}^{\pi / 4} 2 \cos 2 \theta d \theta \\
& =\left[\frac{1}{2} \sin 2 \theta\right]^{\pi / 4}=1(\sin \pi-\sin \pi)
\end{aligned} \\
& =\left[\frac{1}{2} \sin 2 \theta\right]_{\pi / 6}^{\pi / 4}=\frac{1}{2}\left(\sin \frac{\pi}{2}-\sin \frac{\pi}{3}\right) \\
& =\frac{1}{2}\left(1-\frac{\sqrt{3}}{2}\right)=\frac{1}{2}-\frac{\sqrt{3}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{3}}{8}-\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right)=\frac{\sqrt{3}}{8}-\frac{1}{2}+\frac{\sqrt{3}}{4} \\
& =\frac{3}{8} \sqrt{3}-\frac{1}{2} \\
& =\frac{\frac{1}{8}(3 \sqrt{3}-4)}{\text { APPureno }}
\end{aligned}
$$

Created by T. Madas

Question 25 (****)

The figure above shows the curve C, with Cartesian equation

$$
(2 x-1)^{2}+(2 y-1)^{2}=2, x \geq 0, y \geq 0
$$

a) Find a polar equation for C, in the form $r=f(\theta)$.
b) Show that the area bounded by C and the coordinate axes is $\frac{1}{4}(\pi+2)$.
c) Determine, in exact simplified form, the polar coordinates of the point on C, where the tangent to C is parallel to the x axis.

$$
s=\frac{1}{4} \sqrt{5}+\ln \left[\frac{1}{4}(1+\sqrt{5})\right]
$$

Created by T. Madas

Created by T. Madas

Question 26 (****)
A curve has polar equation

$$
r=\frac{\cos \theta+\sin \theta}{\cos ^{2} \theta+\sin 2 \theta+1}, 0 \leq \theta<2 \pi
$$

Find a Cartesian equation of the curve giving the answer in the form $f(x, y)=0$.

Created by T. Madas

Created by T. Madas

Question 1 (****+)
Show that the polar equation of the top half of the parabola with Cartesian equation

$$
y=\sqrt{2 x+1}, x \geq-\frac{1}{2}
$$

Created by T. Madas

Question 2 (****+)

The figure above shows the curve with polar equation

$$
r=\sin ^{2} \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

The point P lies on the curve so that the tangent to the curve at P is perpendicular to the initial line.
a) Find, in exact form, the polar coordinates of P

The point Q lies on the half line $\theta=\frac{\pi}{2}$, so that $P Q$ is parallel to the initial line.

The finite region R, shown shaded in the above figure, is bounded by the curve and the straight line segments $P Q$ and $O Q$, where O is the pole.
b) Determine the area of R, in exact simplified form.

$$
P\left(\frac{2}{3}, \arctan \sqrt{2}\right), \quad \text { area }=\frac{1}{2} \arctan \sqrt{2}-\frac{7}{432} \sqrt{2} \approx 0.1562
$$

Question 3 (****+)
A curve C has polar equation

$$
r=\frac{2}{1+\cos \theta}, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation for C.
b) Sketch the graph of C.
c) Show that on any point on C with coordinates (r, θ)

$$
\frac{d y}{d x}=-\cot \frac{\theta}{2}
$$

$$
y^{2}=4(1-x)
$$

(a) $r=\frac{2}{1+\cos \theta}$ $\Rightarrow r+\pi \cos 1 \theta=2$ $\Rightarrow r=2-x$

Question 4 (****+)

The figure above shows a hyperbola and a circle with respective Cartesian equations

$$
y=\frac{6}{x}, x>0
$$

and $\quad x^{2}+y^{2}=8, x>0, y>0$.

The points P and Q are the points of intersection between the hyperbola and the circle, and the point R lies on the hyperbola so that the distance $O R$ is least.
a) Determine the polar coordinates of P, Q and R.
b) Calculate in radians the angle $P R Q$, correct to 3 decimal places.

$$
P\left(\sqrt{24}, \frac{5 \pi}{12}\right), Q\left(\sqrt{24}, \frac{\pi}{12}\right), R\left(\sqrt{12}, \frac{\pi}{4}\right), \measuredangle A B C \approx 2.526^{c}
$$

Question 5 (****+)
The curve C has Cartesian equation

$$
\left(x^{2}+y^{2}\right)(x-1)^{2}=x^{2}
$$

a) Find a polar equation of C in the form $r=f(\theta)$.
b) Sketch the curve in the Cartesian plane.
c) State the equation of the asymptote of the curve.

$$
r=1+\sec \theta, x=1
$$

Created by T. Madas

Question 6 ($* * * *+$)
The following polar equations are given.

$$
\begin{aligned}
& r_{1}=\cos \theta, \quad 0 \leq \theta \leq \pi \\
& r_{2}=\frac{1}{\cos \theta-\sin \theta}, \quad-\frac{1}{4} \pi \leq \theta \leq \frac{5}{4} \pi
\end{aligned}
$$

Find, in exact simplified form, the area of the smaller of the two finite regions, bounded by r_{1} and r_{2}.

Question $7 \quad(* * * *+$)

The figure above shows the rectangle $A B C D$ enclosing the curve with polar equation

$$
r^{2}=\cos 2 \theta, \quad \theta \in\left[0, \frac{1}{4} \pi\right] \cup\left[\frac{3}{4} \pi, \frac{5}{4} \pi\right] \cup\left[\frac{7}{4} \pi, 2 \pi\right)
$$

Each of the straight line segments $A B$ and $C D$ is a tangent to the curve parallel to the initial line, while each of the straight line segments $A D$ and $B C$ is a tangent to the curve perpendicular to the initial line.

Show with detailed calculations that the total area enclosed between the curve and the rectangle $A B C D$ is $\sqrt{2}-1$.
\qquad , proof

Question 8 (****+)
The curves C_{1} and C_{2} have polar equations

$$
\begin{aligned}
& C_{1}: r=2 \cos \theta-\sin \theta, \quad 0<\theta \leq \frac{\pi}{3} \\
& C_{2}: r=\sqrt{2}+\sin \theta, \quad 0 \leq \theta<2 \pi
\end{aligned}
$$

The point P lies on C_{1} so that the tangent at P is parallel to the initial line.
a) Show clearly that at P

$$
\tan 2 \theta=2
$$

b) Hence show further that the exact distance of P from the origin O is

$$
\sqrt{\frac{5-\sqrt{5}}{2}}
$$

The point Q is the point of intersection between C_{1} and C_{2}.
c) Find the value of θ at Q.

$$
\theta=\frac{\pi}{12}
$$

Created by T. Madas

Created by T. Madas

Question 9 ($* * * *+$)
The curve C has polar equation

$$
r=\tan \theta, 0 \leq \theta<\frac{\pi}{2}
$$

Find a Cartesian equation of C in the form $y=f(x)$.

Question 10 (****+)
The curve C has polar equation

$$
r=\frac{4}{4-3 \cos \theta}, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation of C in the form $y^{2}=f(x)$.
b) Sketch the graph of C.

$$
y^{2}=\frac{1}{16}\left(16+24 x-7 x^{2}\right)
$$

Created by T. Madas

Question 1 (*****)
Two curves, C_{1} and C_{2}, have polar equations

$$
\begin{aligned}
& C_{1}: r=12 \cos \theta,-\frac{\pi}{2}<\theta \leq \frac{\pi}{2} \\
& C_{2}: r=4+4 \cos \theta,-\pi<\theta \leq \pi
\end{aligned}
$$

One of the points of intersection between the graphs of C_{1} and C_{2} is denoted by A. The area of the smallest of the two regions bounded by C_{1} and the straight line segment $O A$ is

$$
6 \pi-9 \sqrt{3}
$$

The finite region R represents points which lie inside C_{1} but outside C_{2}.

Show that the area of R is 16π.
\square , proof

Created by T. Madas

Question 2 (*****)
A curve has polar equation

$$
r=1+\tan \theta, \quad 0 \leq \theta \leq \frac{1}{2} \pi
$$

The point P lies on the curve where $\theta=\frac{1}{3} \pi$

The point Q lies on the initial line so that the straight line L, which passes through P and Q meets the initial line at right angles.

Determine, in exact simplified form, the area of the finite region bounded by the curve and L.

Question 3 (******)
A set of cartesian axes is superimposed over a set of polar axes, so that both set of axes have a common origin O, and the positive x axis coincides with the initial line.

A parabola P has Cartesian equation

$$
y^{2}=8(2-x), \quad x \leq 2
$$

A straight line L has polar equation

$$
\tan \theta=\sqrt{3},-\pi<\theta \Leftrightarrow \pi .
$$

a) Use polar coordinates to determine, in exact simplified form, the area of the finite region bounded by P and L.
b) Verify the answer of part (a) by using calculus in cartesian coordinates
\square
3

Created by T. Madas

Question 4 (******)
A curve has polar equation

$$
r=1+\tan \theta, \quad 0 \leq \theta \leq \frac{1}{2} \pi
$$

meets the initial line at the point P.
Another curve has polar equation

$$
r=4 \cos ^{2} \theta, \quad 0 \leq \theta \leq \frac{1}{2} \pi
$$

The two curves meet at the point Q.

Determine, in exact simplified form, the area of the finite region bounded by the straight line through P and Q, and the curve with equation $r=1+\tan \theta$.

Give the answer in the form $\frac{1}{k}[1-\sqrt{k}+\ln k]$, where k is a positive integer.

Created by T. Madas

Question 5 (*****)
A cardioid has polar equation

$$
r=4(1+\cos \theta), \quad 0 \leq \theta \leq \frac{1}{2} \pi
$$

A tangent to the curve at some point P has gradient -1 .

Find, in the form $r=f(\theta)$, the polar equation of this tangent.
\square

$$
r=\frac{5+3 \sqrt{3}}{\cos \theta+\sin \theta}
$$

Created by T. Madas

Question 6 (*****)

The figure above shows the curve C with polar equation

$$
r=\tan \left(\frac{1}{2} \theta\right), 0 \leq \theta<\frac{\pi}{2}
$$

The point P lies on C so that tangent to C is perpendicular to the initial line.

The half line with equation $\theta=\alpha$ passes through P.

Find, in exact simplified form, the area of the finite region bounded by C and the above mentioned half line.
\square , $\operatorname{area}=\sqrt{-2+\sqrt{5}}-\arctan \sqrt{-2+\sqrt{5}}$

Created by T. Madas

Question 7 (*****)

The figure above shows the curves C_{1} and C_{2} with respective polar equations

$$
r_{1}=\sec \theta\left(1-\tan ^{2} \theta\right) \quad \text { and } \quad r_{2}=\frac{1}{2} \sec ^{3} \theta, \quad 0 \leq \theta<\frac{1}{4} \pi
$$

The points P and Q are the respective points where C_{1} and C_{2} meet the initial line, and the point A is the intersection of C_{1} and C_{2}.
a) Find the exact area of the curvilinear triangle $O A Q$, where O is the pole.

The angle $O A P$ is denoted by ψ.
b) Show that $\tan \psi=-3 \sqrt{3}$.

You may assume without proof

$$
\int \sec ^{6} x d x=\frac{1}{15}\left(8+4 \sec ^{2} x+3 \sec ^{4} x\right) \tan x+C
$$

Created by T. Madas

Created by T. Madas
Question 8 (*****)

The figure above shows the curves C_{1} and C_{2} with respective polar equations

$$
r_{1}=3+2 \cos \theta, 0 \leq \theta<2 \pi \quad \text { and } \quad r_{2}=2
$$

The two curves intersect at the points P and Q.

A straight line passing through P and the pole O intersects C_{1} again at the point R.

Show that $R Q$ is a tangent of C_{1} at Q.

Question 9 (******)
The curves C_{1} and C_{2} have respective polar equations

$$
r=1+\sin \theta, 0<\theta<\frac{1}{2} \pi \quad \text { and } \quad r=1+\cos 2 \theta, 0<\theta<\frac{1}{2} \pi
$$

The point P is the point of intersection of C_{1} and C_{2}.

A straight line, which is parallel to the initial line, passes through P and intersects C_{2} at the point Q.

Show that

$$
|P Q|=\frac{1}{32}\left[24 \sqrt{3}-(2+2 \sqrt{13})^{\frac{3}{2}}\right]
$$

\square proof

$\Rightarrow q=16 r^{2}-8 r^{3}$
$\Rightarrow 8 r^{3}-16 r^{2}+9$

- A $r=\frac{3}{2}$ is A soumon, fectierace By insfetion
$\Rightarrow(2 r-3)\left(4 r^{2}+A r-3\right)=0$
$-6 r-3 A r=0$
$-3 r(z+A)=0$
\qquad
 $\Rightarrow 4 r^{2}-2 r-3=0$ $\Rightarrow r=\frac{2 \pm \sqrt{4-4 \times 4 \times(-3)}}{2 \times 4}=\frac{2 \pm \sqrt{52}}{8}$ $\Rightarrow \quad r=\frac{2 \pm 2 \sqrt{13}}{8}$ $\Rightarrow r=\ll \frac{\frac{1}{4}+\frac{1}{4} \sqrt{13}}{\frac{1}{4}-\frac{1}{4} \sqrt{11}} \quad r>0$ To find The ofwe of θ, AS $Q u E S$ ON $r \operatorname{sm} \theta=\frac{3}{4}$ $\Rightarrow r \sin \theta=\frac{3}{4}$ $\Rightarrow\left(\frac{1}{4}+\frac{1}{4} \sqrt{3}\right)=\operatorname{sm\theta } \theta=\frac{3}{4}$ $\Rightarrow(1+\sqrt{3}) \sin \theta=3$
$\Rightarrow(\sqrt{3}+1)(\sqrt{3}-1) \sin \theta=3(\sqrt{3}-1)$ $\Rightarrow 12 \sin \theta=3(\sqrt{3}-1)$

Created by T. Madas

Question 10 (*****)
A straight line L, whose gradient is $-\frac{3}{11}$, is a tangent to the curve with polar equation

$$
r=25 \cos 2 \theta, 0 \leq \theta \leq \frac{1}{2} \pi
$$

Show that the area of the finite region bounded by the curve, the straight line L and the initial line is

$$
\frac{25}{12}\left[46-75 \arctan \frac{1}{3}\right]
$$

Created by T. Madas

