NUMBER THEORY

Created by T. Madas

Question 1 (**)
Use Euclid's algorithm to find the Highest common factor of 560 and 1169.

Question 2 (**)

$$
f(n)=n^{2}+n+2, n \in \mathbb{N}
$$

Show that $f(n)$ is always even.

proof

Question 3 (**)

Prove that when the square of a positive odd integer is divided by 4 the remainder is always 1 .

Created by T. Madas

Question $4 \quad{ }^{(* *)}$
Use Euclid's algorithm to find the Highest common factor of 3059 and 7728.
\square , 161

SETTNG EUQID's AlGOUTHM FOR 305997728	
7728	$=2 \times 3059+1610$
3059^{4}	$=1 \times 1610^{2}+1449$
1610^{4}	$=1 \times 1449^{2}+161$
1449^{4}	$=9 \times 161^{2}+0$

THE H.CF OF 30599772815161

Question 5 (**)
Prove that the square of a positive integer can never be of the form $3 k+2, k \in \mathbb{N}$.
\square , proof

Question 6 (**)
Show that $a^{3}-a+1$ is odd for all positive integer values of a.
\square , proof

Created by T. Madas

Question $7 \quad(* *+)$
When $a, a \in \mathbb{N}$, is divided by $b, b \in \mathbb{N}$, the quotient is 20 and the remainder is 17 .
a) Find the remainder when a is divided by 5 .

Suppose that when a positive integer is divided by 8 the remainder is 6 , and when the same positive integer is divided by 18 the remainder is 3 .
b) Determine whether the positive integer of part (b) exists.

Created by T. Madas

Question $8 \quad(* *+)$

$$
f(n) \equiv n^{2}+4 n+3, n \in \mathbb{N} .
$$

a) Given that n is odd show that $f(n)$ is a multiple of 8 .

$$
g(n) \equiv\left(n^{2}+15\right)\left(n^{2}+7\right), n \in \mathbb{N}
$$

b) Given that n is odd show that $g(n)$ is a multiple of 128 .

You may assume that the square of an odd integer is of the form $8 k+1, k \in \mathbb{N}$.

Created by T. Madas

Question 9 (***)

$$
f(n)=5^{2 n}-1, n \in \mathbb{N} .
$$

Without using proof by induction, show that $f(n)$ is a multiple of 8 .

Question 10 (***)

Bernoulli's inequality asserts that if $a \in \mathbb{R}, a>-1$ and $n \in \mathbb{N}, n \geq 2$, then

$$
(1+a)^{n}>1+a n
$$

Prove, by induction, the validity of Bernoulli's identity.

Question 11 (***)
When some positive integer N is divided by 4 , the quotient is 3 times as large as the remainder.

Determine the possible values of N.

Question 13 (**+)
It is given that for $a \in \mathbb{N}, b \in \mathbb{N}, c \in \mathbb{N}$,

$$
a^{2}+b^{2}+c^{2}=116
$$

a) Prove that a, b and c are all even.

You may assume that the square of an odd integer is of the form $8 k+1, k \in \mathbb{N}$.
b) Determine the values of a, b and c.

$$
a=8, b=6, c=4 \text { in any order }
$$

\square

IST	2no	3 ED	\leftarrow tow	ORDER
10^{2}	4^{2}	2^{2}	$t s o$ hig	(120)
10^{2}	2^{2}	2^{2}	tos la	(100)
8^{2}	8^{2}	2^{2}	too hi	(132)
8^{2}	6^{2}	6^{2}	to his	(136)
8^{2}	6	4^{2}	is works	

$\therefore a=8, b=6, c=4$ in TNOY ORDNS

Question $14 \quad\left({ }^{* * *}+\right)$

The figure above shows two right angled triangles.

- The triangle, on the left section of the figure, has side lengths of a, b and c,
where c is the length of its hypotenuse.
- The triangle, on the right section of the figure, has side lengths of

$$
a+1, \quad b+1 \text { and } c+1
$$

where $c+1$ is the length of its hypotenuse.

Show that a, b and c cannot all be integers.

Created by T. Madas

Question 15 (***+)
When 165 is divided by some integer the quotient is 7 and the remainder is R.

Determine the possible values of R.

Created by T. Madas

Question $16 \quad\left({ }^{* * *}+\right.$)
It is given that a and b are positive integers, with $a>b$.
Use proof by contradiction to show that if $a+b$ is a multiple of 4 , then $a-b$ cannot be a multiple of 4 .

Created by T. Madas

Question $17 \quad(* * *+)$
When a positive integer N is divided by 4 the remainder is 3 .

When N is divided by 5 the remainder is 2 .

Show that the remainder of the division of N by 20 is 5 .

Question 18
$(* * *+)$
a) Show that $9^{40}+3^{40}+6$ is a multiple of 8 .
b) Show further that $3^{40}+2$ divides $9^{40}+3^{40}-2$.

Created by T. Madas

Question 19 (***+)

Suppose that when a positive integer is divided by 6 the remainder is 4 , and when the same positive integer is divided by 12 the remainder is 8 .
a) Determine whether such positive exists.

Suppose next that when a positive integer is divided by 6 , the quotient is q and the remainder is 1 . When the square of the same positive integer is divided by q, the quotient is 984 and the remainder is 1.
b) Determine whether the positive integer of part (b) exists.

Question 20 (***+)
In the following question A, B and C are positive odd integers.

Show, using a clear method, that ...
a) $\ldots A^{2}+B^{2}+C^{2}+5$ is a multiple of 8 .
b) $\ldots A^{2}\left(A^{2}+6\right)-7$ is divisible by 128 .
c) $\ldots A^{4}-B^{4}$ is a multiple of 16 .

Created by T. Madas

Question 21 (****)
It is given that

$$
a^{2}+b^{2}=c^{2}, a \in \mathbb{N}, b \in \mathbb{N} .
$$

Show that a and b cannot both be odd.

Question 22 (****)
Let $a \in \mathbb{N}$ with $\frac{1}{5} a \notin \mathbb{N}$.
a) Show that the remainder of the division of a^{2} by 5 is either 1 or 4 .
b) Given further that $b \in \mathbb{N}$ with $\frac{1}{5} b \notin \mathbb{N}$, deduce that $\frac{1}{5}\left(a^{4}-b^{4}\right) \in \mathbb{N}$.
\square , proof

- $a^{4}-b^{4}=(5 k+4)^{2}-(5 l+4)^{2}=25 t^{2}+40 k+16-25 l^{2}-40 \lambda-16$
$=25 k^{2}-25 l^{2}+40 k-40 l=5\left(5 k^{2}-5 l^{2}+8 k+8 l\right)$
 $a^{4}-b^{4}$ wue Be Duvarcie By 5

Question 23 ($* * * * *)$
It is given that k is a positive integer.
a) If $k-2$ divides $k^{2}+4$, determine the possible values of k.

It is further given that a and b are positive integers.
b) Show that $8 a^{2}-b^{2}$ cannot equal 2017 .
\square
b $, k=3,4,6,10$

Created by T. Madas

Question 24 (****)
Prove by induction that if $n \in \mathbb{N}, n \geq 3$, then

Question 25 (****)
i. The function f is defined as

$$
f(n) \equiv n\left(n^{3}+2 n+1\right), n \in \mathbb{N} .
$$

Show that f is even for all $n \in \mathbb{N}$.
ii. The positive integer k divides both $2 a+5 b$ and $3 a+7 b$, where $a \in \mathbb{N}, b \in \mathbb{N}$.

Show that k must then divide both a and b.

Question 26 (****)
It is given that k is a positive integer.
a) If $k-7$ divides $k+5$, determine the possible values of k.

The second part of this question is unrelated to the first part.
b) By showing a detailed method, find the remainder of the division of $6^{26}+26^{6}$ by 5 .

Question 27 (****)
i. The function f is defined as

$$
f(n) \equiv\left(n^{2}+n\right)(n+5), n \in \mathbb{N}
$$

Show that f is multiple of 6 for all $n \in \mathbb{N}$.
ii. The function g is defined as

$$
g(m, n) \equiv m^{3} n-m n^{3}, m \in \mathbb{N}, n \in \mathbb{N}
$$

Show that g is divisible by 3 for all $m \in \mathbb{N}, n \in \mathbb{N}$.
\square

$f(n)=\left(n^{2}+n\right)(n+5)=n(n+1)(n+2+3)$ $=n(n+1)[(n+2)+3]$
$=n(n+1)(n+2)+3(n+1)(n+2)$
Now $n(n+1)(n+2)$ is $7 t$-prodor of 3 consanint intitutes.

$\Rightarrow n(n+1)(n+2)$ is DuISIBLE $8 y \quad 2 \times 3=6$
Simutail: $(n+1)(n+2)$ is nte Prodict of 2 confenivt initites
\Rightarrow One of ThoA whe Be forn, it A alletint of 2
$\Rightarrow 3(n+1)(n+2)$ is DUusibe BY $2 \times 3=6$
$\therefore f(n)$ is a untipit of 6 vie $+u$ e $n \in \mathbb{N}$
Iㅏ
$g(m, y) \equiv M_{1}^{3} n-m y^{3}$
WE GN ARGE THE CAEE AE RNOWS
$g(m, n)=m n\left(m^{2}-v_{1}\right)=m n(m-n)(m+n)$
Proctio sy Exifnustow.
 WUL ASD BE DWIGIBLE BY: 3

or $g\left(m_{1}, 4\right)=(31+2)(3 p+1)[(3 \lambda+2)-(3 p+1)][(3 \lambda+2)-(3 p+1)]$ $=(3 \lambda+2)(2 \mu+1)(3 \lambda+3 \mu+3)(3 \lambda-3 \mu+1)$
i. ϵ in matin of Tifete cases gemul is pivisibu by 3
$\therefore B y$ Exttustion $g(m, m) \equiv M^{3} n-h^{3} m, m \in \mathbb{N}, n \in \mathbb{N}$, Wul AwAYS BE DNisible By 3

Created by T. Madas

Question 28 (*****)
It is given that

$$
f(m, n) \equiv 2 m\left(m^{2}+3 n^{2}\right)
$$

where m and n are distinct positive integers, with $m>n$.

By using the expansion of $(A \pm B)^{3}$, prove that $f(m, n)$ can always be written as the sum of two cubes.

Question 29 (*****)
Prove that the sum of the squares of two distinct positive integers, when doubled, it can be written as the sum of two distinct square numbers

Created by T. Madas

Question 30 (*****)
Show that the square of an odd positive integer greater than 1 is of the form
where T is a triangular number.

$$
8 T+1
$$

Question 31 ($* * * * * *)$
The product operator \prod, is defined as

$$
\prod_{r=1}^{k}\left[u_{r}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

The integer Z is a square number and defined as

$$
Z=\prod_{r=1}^{20}\left(\frac{r!}{n!}\right),\{n \in \mathbb{N}: 1 \leq n \leq 20\}
$$

By considering the terms inside the product operator in pairs, or otherwise, determine a possible value of n.

You must show a detailed method in this question.
\square , $n=10$

Question 32 (*****)
Prove by induction that if $n \in \mathbb{N}, n \geq 3$, then

$$
n^{n+1}>(n+1)^{n}
$$

and hence deduce that if $n \in \mathbb{N}, n \geq 3$, then

$$
\sqrt[n]{n}>\sqrt[n+1]{n+1}
$$

\square , proof

RETURNWG TO THE MAN UNT OF THE INDOCTUUE HYYPTHESIS

- if $k^{k+1}>(k+1)^{k}$
- HeN $(k+1)^{k+2}>\frac{(k+1)^{2 k+2}}{k^{k+1}}>(k+2)^{k+1}$
l.e $(k+1)^{[k+k+1]}>[(k+1)+1]^{k+1}$
conceusial
If THe regir thos for $n=k \in \mathbb{N}$, what $n \geqslant 3$ THtin π As THe resout Hous for $n=3$, Tithe it must ple for Ale $n \in \mathbb{N}$, wrot $n \geqslant 3$ Fintruy we thane ($n^{n+1}>(n+1)^{n} \quad n \in \mathbb{N}, n \geqslant 3$ $\Rightarrow\left(n^{\frac{1}{n}}\right)^{n(n+1)}>\left[(n+1)^{\frac{1}{n+1}}\right]^{(n+1) n}$ $\Rightarrow\left[n^{\frac{1}{n}}\right]^{n^{2}+2 n}>\left[(n+1)^{\frac{1}{n+1}}\right]^{n^{2}+n}$ $\Rightarrow \sqrt[n]{n}>\sqrt[n+1]{n+1}$

Question 33 (*****)
It is given that $11 a+13 b$ is a multiple of $13-a$, where $a \in \mathbb{N}, b \in \mathbb{N}$.

It is then asserted that $(13+a)(11+b)$ is also a multiple of $13-a$.

Prove the validity of this assertion.

