LINEARIZATION OF GRAPHS
Question 1 (**)

The table below shows experimental data connecting two variables \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>12.0</td>
<td>14.4</td>
<td>17.3</td>
<td>20.7</td>
<td>27.0</td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = ab^x,
\]

where \(a \) and \(b \) are non zero constants.

a) Find an equation of a straight line, in terms of well defined constants, in order to investigate the validity of this assumption.

b) Plot a suitable graph to show that the assumption of part (a) is valid.

c) Use the graph of part (b) to estimate, correct to 1 decimal place, the value of \(a \) and the value of \(b \).

d) Estimate the value of \(y \) when \(x = 2.5 \).

\[
\log y = x \log b + \log a, \quad a \approx 9.5, \quad b \approx 1.2, \quad y \approx 15.0
\]
Question 2 (***)

The table below shows experimental data connecting two variables \(t \) and \(W \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W)</td>
<td>2.0</td>
<td>4.0</td>
<td>6.5</td>
<td>19.0</td>
<td>34.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

It is assumed that \(t \) and \(W \) are related by an equation of the form

\[
W = ab^t,
\]

where \(a \) and \(b \) are non zero constants.

a) Find an equation of a straight line, in terms of well defined constants, in order to investigate the validity of this assumption.

b) Plot a suitable graph to show that the assumption of part (a) is valid.

c) Use the information from the graph to estimate, correct to 2 decimal places, the value of \(a \) and the value of \(b \).

d) Estimate the value of \(W \) when \(t = 20 \).

\[
\log W = t \log b + \log a, \quad a \approx 1.26, \quad b \approx 1.48, \quad W \approx 3200
\]
Question 3 (**)

The following table shows some experimental data.

<table>
<thead>
<tr>
<th>x</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.7</td>
<td>4.5</td>
<td>11.0</td>
<td>26.0</td>
<td>70.0</td>
<td>160.0</td>
</tr>
</tbody>
</table>

It is assumed that the two variables x and y are related by the formula

$$y = ab^x,$$

where a and b are non-zero constants.

a) Use a graphical method to show that the data is consistent with this assumption.

b) Find estimates for the values of a and b, correct to one decimal place.

c) Use the estimated values of a and b, to find an estimate for the value of y when $x = 60$.

$\quad, a \approx 0.7, \quad b \approx 1.2, \quad y \approx 39000$
Question 4 (**)

The following table shows some experimental data.

<table>
<thead>
<tr>
<th>t</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>20</td>
<td>64</td>
<td>110</td>
<td>180</td>
<td>260</td>
<td>320</td>
<td>420</td>
</tr>
</tbody>
</table>

It is assumed that the two variables t and P are related by the formula

$$P = at^b,$$

where a and b are non-zero constants.

a) Use a graphical method to show that the data is consistent with this assumption.

b) Determine estimates for the value of a and the value of b, correct to one decimal place.

c) Use the estimated values of a and b, to find an estimate for the value of P when $t = 20$.

\[a \approx 6.3, \quad b \approx 1.6, \quad P \approx 760 \]
Question 5 (**)

The table below shows experimental data connecting two variables t and H.

<table>
<thead>
<tr>
<th>t</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.1</td>
<td>8.5</td>
<td>18.0</td>
<td>42.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

It is assumed that t and H are related by an equation of the form

$$H = kt^n,$$

where k and n are non zero constants.

a) Find an equation of a straight line, in terms of well defined constants, in order to investigate the validity of this assumption.

b) Plot a suitable graph to show that the assumption of part (a) is valid.

c) Use the graph to estimate, correct to 2 significant figures, the value of k and the value of n.

\[
\log H = n \log t + \log k, \quad k \approx 0.66, \quad n \approx 1.1
\]
Question 6 (**+)**

The table below shows experimental data connecting two variables \(x \) and \(y \).

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>57</td>
<td>73</td>
<td>96</td>
<td>135</td>
<td>175</td>
</tr>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = Ax^2 + B,
\]

where \(A \) and \(B \) are non zero constants.

By plotting accurately the equation of a suitable straight line, estimate correct to 1 significant figure the value of \(A \) and the value of \(B \).

\[
A \approx 0.2, \quad B \approx 50
\]
Question 7 (***+)

The table below shows experimental data connecting two variables \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>6</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>6</td>
<td>34</td>
<td>46</td>
<td>85</td>
<td>92</td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = Ax^2 + Bx,
\]

where \(A \) and \(B \) are non zero constants.

By plotting accurately the equation of a suitable straight line, estimate correct to 1 decimal place the value of \(A \) and the value of \(B \).

\[A \approx 0.6, \quad B \approx -1.9 \]
Question 8 (**+)
The table below shows experimental data connecting two variables x and y.

<table>
<thead>
<tr>
<th>x</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>66</td>
<td>36</td>
<td>22</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

It is assumed that x and y are related by an equation of the form

$$y = \frac{A}{x^2} + B,$$

where A and B are non-zero constants.

By plotting accurately the equation of a suitable straight line, estimate correct to 2 significant figures the value of A and the value of B.

$[A \approx 800], \quad B \approx 13$
Question 9 (**+)**

The variables \(x \) and \(y \) are thought to obey a law of the form

\[
y = ax^n,
\]

where \(a \) and \(n \) are non zero constants.

Let \(X = \log_{10} x \) and \(Y = \log_{10} y \).

a) Show there is a linear relationship between \(X \) and \(Y \).

The figure below shows the graph of \(Y \) against \(X \).

\[
\begin{align*}
A(0,2) & \\
B(6,0) & \\
\end{align*}
\]

b) Determine the value of \(a \) and the value of \(n \).

\[
\begin{align*}
n = \frac{1}{3}, & \quad a = 100
\end{align*}
\]
Question 10 (**+)**

The variables x and y are thought to obey a law of the form

$$y = a \times k^x,$$

where a and k are positive constants.

Let $Y = \log_{10} y$.

a) Show there is a linear relationship between x and Y.

The figure below shows the graph of Y against x.

![Graph of Y against x](image)

b) Determine the value of a and the value of k.

$$\boxed{a = 1000, \quad k = 100}$$
The figure above shows a set of axes where $\log_{10} y$ is plotted against $\log_{10} x$.

A straight line passes through the points $A(2,3)$ and $B(8,21)$.

Express y in terms of x.

\[y = \frac{1}{1000} x^3 \]
The figure above shows a set of axes where \(\ln y \) is plotted against \(t \).

A straight line passes through the points \(A(0, 2\ln 5) \) and \(B(2, 4\ln 5) \).

Express \(y \) in terms of \(t \).

\[
\boxed{y = 5^{t+2}}
\]
The figure above shows a set of axes where $\log_4 y$ is plotted against $\log_4 x$.

A straight line passes through the points $A\left(0, -\frac{1}{2}\right)$ and $B\left(\frac{1}{2}, 0\right)$.

Find a relationship, not involving logarithms between x and y.

\[4y^2 = x^5\]
Question 14 (***)

In each of the following equations x and y are variables, and A, B and k are non-zero constants.

a) \[y = Ax^2 + Bx \]

b) \[y = \frac{A}{B+x} \]

c) \[y = Ae^{kx} + x \]

d) \[x^2 \left(y^2 - A \right) = B \]

Express each of these equations in “straight line form” and state

- ... the variables to be plotted in the x and y axis.
- ... the gradient and the y intercept of the straight line.
Question 15 (***)

The following table shows some experimental data.

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>66</td>
<td>36</td>
<td>34</td>
<td>30</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = Ax + \frac{B}{x},
\]

where \(A \) and \(B \) are non zero constants.

By plotting accurately the equation of a suitable straight line estimate the value of \(A \) and the value of \(B \):

\[
A \approx 2, \quad B \approx 120
\]
Question 16 (***)

The following table shows some experimental data.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>420</td>
<td>218</td>
<td>158</td>
<td>137</td>
<td>134</td>
<td>142</td>
<td>158</td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = Ax^2 + \frac{B}{x},
\]

where \(A \) and \(B \) are non zero constants.

By plotting accurately the equation of a suitable straight line estimate the value of \(A \) and the value of \(B \).

\[
A \approx 2, \quad B \approx 420
\]
Question 17 (***)
The following table shows some experimental data.

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.6</td>
<td>3.2</td>
<td>4.2</td>
<td>5.0</td>
<td>5.6</td>
<td>6.2</td>
</tr>
</tbody>
</table>

It is assumed that \(x \) and \(y \) are related by an equation of the form

\[
y = Ax + B \ln x,\]

where \(A \) and \(B \) are non-zero constants.

By plotting accurately the equation of a suitable straight line estimate the value of \(A \) and the value of \(B \).

\[A \approx 0.10, \quad B \approx 2.0\]
Question 18 (***)

A financial advisor wants to model the annual growth of a certain investment, based on the growth of this investment in the past seven years.

<table>
<thead>
<tr>
<th>(n), number of years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V), in £1000</td>
<td>44</td>
<td>48</td>
<td>55</td>
<td>63</td>
<td>75</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

He assumes the formula

\[
V = 40 \left(1 + \frac{r}{100}\right)^n,
\]

where \(r \) represent the **constant** annual percentage growth and \(n \) represents the number of full years that elapsed since the start of the investment.

a) State the initial value of this investment.

b) Show that the data is consistent with his assumption by using a graphical method, involving logarithms.

c) Determine an estimate for the annual percentage growth of this investment, correct to two significant figures.

d) Estimate the value of this investment after 10 years, briefly commenting on the reliability of this estimate.

\[
\boxed{\text{£40,000}, \quad r \approx 11, \quad \text{£114,000}}
\]
The figure above shows a set of axes where $\log_2 y$ is plotted against $\log_2 x$.

A straight line passes through the points $A(2,8)$ and $B(5,2)$.

Determine the value of y at the point where $y = x$.

\[\boxed{y = 16} \]
Question 20 (***)

The following table shows some experimental data.

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.51</td>
<td>0.54</td>
<td>0.59</td>
<td>0.68</td>
<td>0.86</td>
<td>1.25</td>
</tr>
</tbody>
</table>

It is assumed that x and y are related by an equation of the form

$$y = \frac{A}{B + Cx^2},$$

where A, B and C are non-zero constants.

By plotting accurately the equation of a suitable straight line, estimate correct to 2 significant figures the value of A, B and C:

$A \approx 2500$, $B \approx 5000$, $C \approx -21$
Question 21 (*****)

The table below shows experimental data connecting two variables \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>30</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>181</td>
<td>158</td>
<td>145</td>
<td>127</td>
<td>107</td>
</tr>
</tbody>
</table>

It is assumed that \(t \) and \(P \) are related by an equation of the form

\[P = A \times t^k, \]

where \(A \) and \(k \) are non-zero constants.

By linearizing the above equation, and using partial differentiation to obtain a line of least squares determine the value of \(A \) and the value of \(k \).

\[A \approx 250, \quad k \approx -0.2 \]