HYPERBOLIC FUNCTIONS

Question 1 (**)
A curve is given parametrically by the equations

$$
x=2 \sinh t, y=\cosh ^{2} t, t \in \mathbb{R} .
$$

Find a Cartesian equation of the curve, in the form $y=f(x)$.

a) Use hyperbolic identities to find the exact values of $\sinh w$ and $\cosh w$.
b) Hence find the exact value of w, in terms of natural logarithms.

$$
\sinh w=\frac{4}{3}, \quad \cosh w=\frac{5}{3}, w=\ln 3
$$

Created by T. Madas

Question 3 (**)

$$
f(x)=\operatorname{artanh} x, x \in \mathbb{R},-1<x<1 .
$$

a) Show clearly that

$$
f(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad x \in \mathbb{R},-1<x<1 .
$$

b) Without the use of any calculating aid solve the equation

$$
\operatorname{artanh} x=\ln 3,
$$

showing clearly all the relevant steps in the calculation.

\square

Question 4 (**+)
Find, in exact logarithmic form, the positive root of the equation

Created by T. Madas

Created by T. Madas

Question 5 (**+)
Given that $x>0$ and $y>0$, solve the simultaneous equations

$$
\cosh (4 x-3 y)=1
$$

Coses)

\square $x=\frac{3}{2}, \quad y=2$

$$
y=\frac{1}{x} \mathrm{e}^{\operatorname{arsinh} \frac{4}{3}}
$$

$y=\frac{1}{x}$
$y=\frac{1}{x} e^{\operatorname{arsinh} \frac{4}{3}}$ $x y=e^{\ln \left[\frac{2}{3}+\sqrt{\frac{14}{4}+1}\right]}$
$x y=e^{\ln \left(\frac{5}{5}+\sqrt{\frac{28}{48}}\right)}$ $x y=\frac{4}{3}+\frac{5}{3}$ $x y=3$

Created by T. Madas

Question 6 (**+)
Consider the following hyperbolic equation, given in terms of a constant k.

$$
2 \cosh ^{2} x=3 \sinh x+k
$$

a) Find the range of values of k for which the above equation has no real solutions.
b) Given further that $k=1$, find in exact logarithmic form, the solutions of the above equation.

Created by T. Madas

Question 7 (**+)

$$
f(x)=\operatorname{artanh} x, x \in \mathbb{R},-1<x<1 .
$$

a) Show clearly that

$$
f(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) x \in \mathbb{R},-1<x<1 \text {. }
$$

b) Hence simplify fully

Created by T. Madas

Question 8 (**+)
Solve the following equation, giving each of the answers in exact simplified form, in terms of natural logarithms.

$$
3 \operatorname{coth}^{2} x-8 \operatorname{cosech} x+1=0
$$

$$
x=\ln \left[\frac{1}{2}(1+\sqrt{5})\right], \quad x=\ln \left[\frac{1}{2}(3+\sqrt{13})\right]
$$

Question 9 (**+)
Solve the following equation, giving the solutions as exact simplified natural logarithms.

$$
2 \tanh ^{2} w=1+\operatorname{sech} w, w \in \mathbb{R} .
$$

\square $w= \pm \ln (2+\sqrt{3})$

Created by T. Madas

Question $10 \quad(* *+)$ \square ${ }^{2}$

The figure above shows the graph of the curve with equation

$$
y=35 \operatorname{arcosh} x-12 x, x \in \mathbb{R}, x \geq 1 .
$$

The curve has a single stationary point with coordinates $\left(\frac{a}{b}, c \ln 6-d\right)$, where a, b, c and d are positive integers.

Determine the values of a, b, c and d.
$a=37, b=12, c=35, d=37$

Created by T. Madas

Created by T. Madas

Question 11 (**+)

$$
f(x)=3-\cosh x, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

The graph must include the coordinates of any points where the graph meets the coordinate axes.

$$
g(x)=\sinh x, x \in \mathbb{R}
$$

b) Find the exact coordinates of the point of intersection between the graphs of $f(x)$ and $g(x)$.

Created by T. Madas

$$
x \frac{d y}{d x}+\frac{x y}{\operatorname{coth} x}=\operatorname{sech} x, x>0
$$

Given that $y=0$ at $x=\frac{1}{2}$, show that the solution of the above differential equation is

$$
y=\frac{\ln 2 x}{\cosh x}
$$

Question 13 (**+)
Find in exact logarithmic form the solutions of the following equation.

$$
\cosh ^{2} 2 x+\sinh ^{2} 2 x=2
$$

$$
x= \pm \frac{1}{4} \ln (2+\sqrt{3})= \pm \frac{1}{2} \ln (1+\sqrt{3})
$$

Created by T. Madas

Question $14 \quad(* *+)$
Find, in exact logarithmic form, the solution of the following equation.

$$
3 \sinh (2 w)=13-3 \mathrm{e}^{2 w}, w \in \mathbb{R}
$$

\square

$$
w, w=\frac{1}{2} \ln 3
$$

Created by T. Madas

Question 15 (***)
It is given that

$$
1-\tanh ^{2} x \equiv \operatorname{sech}^{2} x
$$

a) Use the definitions of hyperbolic functions, in terms of exponentials, to prove the validity of the above identity.
b) Hence find in exact logarithmic form the solution of the following equation.
\square , $x=\ln 2$

Created by T. Madas

Created by T. Madas

Question 16 (***)

$$
x \frac{d y}{d x}=\sqrt{y^{2}+1}, x>0
$$

Given that $y=0$ at $x=2$, show that the solution of the above differential equation is

$$
y=\frac{x}{4}-\frac{1}{x}
$$

\square
$\left\{x \frac{d y}{d x}=\left(y^{2}+1\right)^{\frac{1}{2}}\right\}$
Thes $y+\sqrt{y^{2}+1}=\frac{1}{2} x$

Question 17 (***)
The curves C_{1} and C_{2} have respective equation

$$
y=\sinh x \text { and } y=\frac{1}{2} \operatorname{sech} x .
$$

a) Sketch in the same diagram the graphs of C_{1} and C_{2}.

The two graphs intersect at the point P.
b) Find the x coordinates of P.
c) Hence show that the y coordinates of P is.

$$
\sqrt{\frac{1}{2}(\sqrt{2}-1)}
$$

$$
x=\frac{1}{2} \ln (1+\sqrt{2})
$$

Created by T. Madas

Question 18 (***)

$$
2 \cosh ^{2} x-1 \equiv \cosh 2 x
$$

a) Prove the validity of the above hyperbolic identity by using the definitions of $\cosh x$ and $\sinh x$ in terms of exponentials.
b) Hence find

$$
\frac{1}{4} x^{2}+\frac{1}{4} x \sinh 2 x-\frac{1}{8} \cosh 2 x+C
$$

Question 19 (***)
Solve the hyperbolic equation

$$
4+6\left(\mathrm{e}^{2 x}+1\right) \tanh x=11 \cosh x+11 \sinh x
$$

Created by T. Madas

Question 20 (***)
Given that
$9 \sinh x-\cosh x=8$

a) Prove the validity of the above hyperbolic identity by using the definitions of $\cosh x$ and $\sinh x$ in terms of exponentials.
b) Hence solve the equation

$$
10 \cosh ^{2} x+6 \sinh ^{2} x=19
$$

giving the answers as exact natural logarithms.

Created by T. Madas

Created by T. Madas

Question 22 (***)

$$
2 \cosh 3 x \cosh x \equiv \cosh 4 x+\cosh 2 x .
$$

a) Prove the validity of the above hyperbolic identity by using the definitions of $\cosh x$ in terms of exponentials.
a) Hence solye the equation

$$
\cosh 4 x+\cosh 2 x-6 \cosh x=0
$$

giving the answer as an expression involving exact natural logarithms.

$$
x= \pm \frac{1}{3} \ln (3+\sqrt{8})
$$

Created by T. Madas

Question 23 (***)

$$
y=t-(2-\sinh t) \cosh t, t \in \mathbb{R} .
$$

Determine the values of t for which $\frac{d y}{d t}=6$, giving the answers as exact simplified natural logarithms.

Question 24 (***)

$$
\cosh (A-B) \equiv \cosh A \cosh B-\sinh A \sinh B
$$

a) Prove the validity of the above hyperbolic identity by using the definitions of $\cosh x$ and $\sinh x$ in terms of exponentials.
b) Hence solve the equation

$$
\cosh (x-\ln 3)=\sinh x
$$

giving the answer as an exact natural logarithm.

$$
\text { Fe, } x=\frac{1}{2} \ln 6
$$

Created by T. Madas

Question 25 (***)
Find, in exact simplified logarithmic form, the y coordinate of the stationary point of the curve with equation

Detailed workings must be shown.

$\square, 4 \ln 3$

Created by T. Madas

Question 26 (***)

$$
f(x) \equiv 7 x-6 \cosh x-9 \sinh x, x \in \mathbb{R}
$$

Find the exact coordinates of the stationary points of $f(x)$, and determine their nature. Give the coordinates in terms of simplified natural logarithms.
\square $\left[\ln \left(\frac{3}{5}\right),-2+7 \ln \left(\frac{3}{5}\right)\right] \cup\left[\ln \left(\frac{1}{3}\right), 2-7 \ln 3\right]$

Differenafift \& sowt fir zeno
$\Rightarrow f^{\prime}(x)=7-6 \sinh x-9 \cosh x$ $\Rightarrow 0=7-6 \sinh x-9 \cos x$
$\Rightarrow 6 \sinh x+9 \cosh x=7$ $\Rightarrow 6\left(t^{2}-\frac{1}{2}-2\right)=9$
$\Rightarrow 6\left(\frac{1}{2} e^{x}-\frac{1}{2} e^{-2}\right)+9\left(\frac{1}{2} e^{x}+\frac{1}{2} e^{-3}\right)=7$
$\Rightarrow 3 e^{x}-3 e^{-x}+\frac{9}{2} e^{x}+\frac{9}{2} e^{-x}=7$
$\Rightarrow \frac{15}{2} e^{x}+\frac{3}{2} e^{-x}=7$
$\Rightarrow 15 e^{x}+3 e^{-x}=14$
$\Rightarrow 15 e^{2 x}+3=14 e^{x}$
$\Rightarrow 15 e^{2 x}-14 e^{x}+3=0$
$\Rightarrow\left(5 e^{x}-3\right)\left(3 e^{x}-1\right)=0$
$\Rightarrow e^{x}=\ll \sum_{1 / 3}^{3 / 5} \quad x=<\ln _{\ln 3 / 5}^{\ln 1 / 3}$

$\rightarrow f^{\prime \prime}(x)=-6 \cosh x-9 \sinh x$
$\Rightarrow f^{\prime \prime}(x)=-6\left(\frac{1}{2} e^{2}+\frac{1}{2} e^{-x}\right)-9\left(\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}\right)$
$\Rightarrow f^{\prime \prime}(x)=-\frac{15}{2} e^{x}+\frac{3}{2} e^{-x}$

- $f^{\prime \prime}(h / / 5)=-\frac{15}{2} \times \frac{3}{5}+\frac{3}{2} \times \frac{5}{3}=-\frac{9}{2}+\frac{5}{2}=-2<0$
- $f^{\prime \prime}\left(\ln \frac{1}{3}\right)=-\frac{15}{2} \times \frac{1}{3}+\frac{2}{2} \times 3=-\frac{5}{2}+\frac{9}{2}=2>0$

Show with detailed workings that

$$
\frac{d}{d x}[\arctan (\sinh x)]=\frac{d}{d x}[\arcsin (\tanh x)]
$$

\square
\square
mane
$\begin{aligned}-\frac{d}{d x}[\arctan (\sinh x)] & =\frac{1}{1+\sin ^{2} x} \times \cosh x=\frac{\cosh x}{1+\sinh ^{2} x} \\ & =\frac{\cosh x}{\cos 2}=\frac{1}{\cos x}=\operatorname{sech} x\end{aligned}$

Created by T. Madas

Question 28 (***)
a) Given that $\operatorname{arsinh} 7=k \operatorname{arsinh} 1$ determine the value of k.
b) Solve the following simultaneous equations.

$$
\begin{aligned}
& \sinh x-3 \operatorname{coth} y=1 \\
& 3 \sinh x-\operatorname{coth} y=19
\end{aligned}
$$

Give the answers in simplified logarithmic form.

Created by T. Madas

Question 29 (***)
Solve the following equation, giving the answers as exact logarithms where appropriate.

Created by T. Madas

Question 30
(***)

$$
f(x)=\sinh x \cos x+\sin x \cosh x, x \in \mathbb{R} .
$$

a) Find a simplified expression for $f^{\prime}(x)$.
b) Use the answer to part (a) to find

$$
\int \frac{2}{\tanh x+\tan x} d x
$$

\square , $f^{\prime}(x)=2 \cosh x \cos x$, $\ln |\sinh x \cos x+\sin x \cosh x|+C$

a) $\begin{aligned} f(x) & =\sinh x \cos x+\sin x \cosh x \\ f^{\prime}(x) & =\cosh x \cos x+\sinh x(\sin x)+\end{aligned}$
$f(x)=\cosh x \cos x+\sinh x(-\sin x)+\cos x \cos x+\sin x \sin \sqrt{x} x$
$f^{\prime}(x)=2 \cos n-\cos x$
b) wook wrot "sintes a cosints"
$\int \frac{2}{\tanh x+\tan x} d x=\int \frac{2}{\frac{\sinh x}{\cos \sin x}+\frac{\sin x}{\operatorname{coc} x}} d x$
Munrey "Oop a Butran of The Retaral By cosacoshx
$=\int \frac{2 \cos x \cos x}{\sin x \cos x+\sin x \cos d x} d x$ Whact is of Tiff rerms $\int \frac{f^{(x)}}{f(x)}$ dx

Created by T. Madas

Question 31 (***)
It is given that for all real x

$$
\cosh 2 x \equiv 1+2 \sinh ^{2} x
$$

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.
b) Hence solve the equation

$$
\cosh 2 x=3 \sinh x,
$$

giving the final answers as exact simplified natural logarithms.

Created by T. Madas

Question 32 (***)
It is given that for all real x

$$
\cosh 2 x \equiv 2 \cosh ^{2} x-1
$$

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.
b) Hence solve the equation

$$
5 \cosh x-\cosh 2 x=3,
$$

giving the final answers as exact simplified natural logarithms.

Question 33 (***+)
It is given that for all real x

$$
\cosh 3 x \equiv 4 \cosh ^{3} x-3 \cosh x
$$

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.
b) Hence solve the equation

$$
\cosh 3 x-3 \cosh ^{2} x=14,
$$

giving the final answers as exact simplified natural logarithms,
\square
$\square, x= \pm \ln (2+\sqrt{3})$

Created by T. Madas

Question 34 (****)
A curve C has equation

$$
y=12 \cosh x-8 \sinh x-x, x \in \mathbb{R}
$$

Show that the sum of the coordinates of the turning point of C is 9 .

Created by T. Madas

Question 35 (***+)

$$
y=\operatorname{artanh} x,-1<x<1
$$

a) By using the definitions of hyperbolic functions in terms of exponentials prove that
b) Hence solve the equation

Created by T. Madas

$$
f(x)=\frac{\sinh x}{\cosh x-1}, x \in \mathbb{R}, x \neq 0
$$

a) Find a simplified expression for $f^{\prime}(x)$.
b) Sketch the graph of $f(x)$.

Question 37 (***+)

$$
y=\operatorname{arsinh} x, x \in \mathbb{R} .
$$

a) Show that
b) Solve the equation

$$
\operatorname{arsinh} \frac{3}{4}+\operatorname{arsinh} x=\operatorname{arsinh} \frac{4}{3}
$$

Created by T. Madas

Question 38 (***+)

$$
\cosh 3 x \equiv 4 \cosh ^{3} x-3 \cosh x .
$$

a) Prove the validity of the above hyperbolic identity by using the definition of $\cosh x$ in terms of exponential functions.
b) Hence find in exact logarithmic form the solutions of the equation $\cosh 3 x=17 \cosh x$.

$$
x= \pm \ln (2+\sqrt{5})=\mp \ln (-2+\sqrt{5})
$$

Question 39 (***+)
The curve C has equation

$$
y=7 \sinh x-\sinh 2 x, x \in \mathbb{R}
$$

Find in terms of natural logarithms and/or surds the exact coordinates of the stationary points of C.

Question 40 (***+)
The curves C_{1} and C_{2} have respective equations

$$
y=18 \cosh x, x \in \mathbb{R} \quad \text { and } \quad y=12+14 \sinh x, x \in \mathbb{R} .
$$

a) Find the exact coordinates of the points of intersection between C_{1} and C_{2}.
b) Sketch in the same diagram the graph of C_{1} and the graph of C_{2}.
c) Show that the finite region bounded by the graphs of C_{1} and C_{2} has an area of

$$
a \ln 2+b
$$

where a and b are integers to be found.

$$
\left(\ln 2, \frac{45}{2}\right) \&\left(\ln 4, \frac{153}{4}\right), 12 \ln 2-8
$$

Question 41 (***+)
It is given that

$$
\cosh (A+B) \equiv \cosh A \cosh B+\sinh A \sinh B .
$$

a) Prove the validity of the above hyperbolic identity by using the definitions of the hyperbolic functions in terms of exponential functions.

It is now given that

$$
5 \cosh x+4 \sinh x \equiv R \cosh (x+\alpha)
$$

where R and α are positive constants.
b) Determine, in terms of natural logarithms where appropriate, the exact values of R and α.
c) Hence state the coordinates of the minimum point on the graph of

$$
y=5 \cosh x+4 \sinh x .
$$

$$
R=3, \alpha=\ln 3,(-\ln 3,3)
$$

\square

Created by T. Madas

Created by T. Madas

Question $43 \quad(* * *+)$

$$
f(x) \equiv \operatorname{artanh} x, x \in \mathbb{R},|x|<1
$$

a) Use the definition of the hyperbolic tangent to prove that

$$
f(x) \equiv \frac{1}{2} \ln \left[\frac{1+x}{1-x}\right] .
$$

b) Use a method involving complex numbers and the trigonometric identity

$$
1+\tan ^{2} x \equiv \sec ^{2} x
$$

to obtain the hyperbolic equivalent

$$
1-\tanh ^{2} x \equiv \operatorname{sech}^{2} x
$$

c) Hence solve the equation

$$
6 \operatorname{sech}^{2} x-\tanh x=4
$$

giving the two solutions in the form $\pm \frac{1}{2} \ln k$, where k are two distinct integers.

$$
\square, x=\frac{1}{2} \ln 3, x=-\frac{1}{2} \ln 5
$$

Created by T. Madas

Question $44 \quad(* * *+)$
a) Sketch a detailed graph of the curve with equation

$$
y=\operatorname{artanh} x
$$

defined in the largest real domain.
b) Obtain a simplified expression for $\frac{d y}{d x}$, in terms of x only.
c) Use integration and the answer of part (b) to show that

$$
\operatorname{artanh} x=\frac{1}{2} \ln \left[\frac{1+x}{1-x}\right]
$$

No credit will be given for any alternative methods used in part (c).
\square , $\frac{d y}{d x}=\frac{1}{1-x^{2}}$

Question 45 (***+)
a) Starting from the definitions of $\cosh x$ and $\sinh x$, in terms of exponentials, show that

$$
\cos (\mathrm{i} \varphi) \equiv \cosh (\varphi) \quad \text { and } \quad \sin (\mathrm{i} \varphi) \equiv \mathrm{i} \sinh (\varphi)
$$

b) Use the results of part (a) to deduce

$$
\operatorname{sech}^{2} \varphi+\tanh ^{2} \varphi \equiv 1
$$

c) Hence find, in exact logarithmic form, the solutions of the following equation.

$$
10 \operatorname{sech} y=5+3 \tanh ^{2} y
$$

\square

$$
y= \pm \ln \left(\frac{3+\sqrt{5}}{2}\right)
$$

 $\Rightarrow \cos ^{2}(i \phi)+\sin ^{2}(i \phi)=1$
$\Rightarrow \cos (i \phi) \cos (i \phi)+\sin (i \phi) \sin (i \phi)=1$ $\Rightarrow \cosh ^{2} \phi-\sin ^{2} \phi=1$
$\Rightarrow \frac{\cos ^{2} \phi}{\cos ^{2} \phi}-\frac{\sin ^{2} k^{2} \phi}{\cos ^{2} \phi}=\frac{1}{\cos ^{2} \phi}$
$\rightarrow 1-\tan ^{2} \phi=\sec ^{2} \phi$
$\Rightarrow \operatorname{sech}^{2} \phi+\tanh ^{2} \phi=1$ सि Repevere
c) Fintuy dasing past (b)
$\Rightarrow 10 \operatorname{sech} y=5+3 \tanh ^{2} y$
$\Rightarrow 10 \operatorname{sech} y=5+3\left(1-\operatorname{sech}^{2} y\right)$
$\Rightarrow 10 \operatorname{sech} y=8-3 \operatorname{sech}^{2} y$
$\Rightarrow 3 \operatorname{sen} 2 y+10 \operatorname{sech} y-8=0$
$\Rightarrow(3 \operatorname{coch} y-2)(\operatorname{sech} y+4)=0$ $\Rightarrow \operatorname{sech} y-<{ }_{\frac{2}{3}}^{-4}$
$\Rightarrow \cosh y=<\frac{-3 / 2}{\frac{2}{3}}(\cosh y>1)$
$\Rightarrow y= \pm \operatorname{arccosh} \frac{3}{2}$
$\Rightarrow y= \pm \ln \left[\frac{3}{2}+\sqrt{\left(\frac{3}{2}\right)^{2}-1}\right]$
$\rightarrow y= \pm \ln \left[\frac{3}{2}+\frac{\sqrt{3}}{2}\right]$ $\Rightarrow 9= \pm \ln \left(\frac{3+\sqrt{5}}{2}\right)$

Question 46 (***+)

$$
f(w) \equiv 5 \sinh w+7 \cosh w, w \in \mathbb{R}
$$

a) Express $f(w)$ in the form $R \cosh (w+a)$, where R and a are exact constants with $R>0$.
b) Use the result of part (a) to find, in exact logarithmic form, the solutions of the following equation.

$$
5 \sinh w+7 \cosh w=5 .
$$

, $R=\sqrt{24}=2 \sqrt{6}, \quad a=\frac{1}{2} \ln 6=\ln \sqrt{6}, w=-\ln 2 \bigcup w=-\ln 3$

Question 47 (***+)
By using suitable hyperbolic identities, or otherwise, show that

$$
\frac{1}{4}[\cosh 4 x+2 \cosh 2 x+1] \equiv \cosh 2 x \cosh ^{2} x
$$

a) By expressing $\cosh x$ and $\sinh x$ in terms of exponentials, show that

$$
\cosh ^{2} x-\sinh ^{2} x \equiv 1
$$

b) Simplify $(\cosh x+\sinh x)^{3}$, writing the final answer as a single exponential.
c) Hence express $\sinh 3 x$ in terms of $\sinh x$

$$
(\cosh x+\sinh x)^{3}=\mathrm{e}^{3 x}, \sinh 3 x=3 \sinh x+4 \sinh ^{4} x
$$

Question 49 (****)
The curve C has equation

$$
y=\cosh (2 \operatorname{arsinh} x), x \in \mathbb{R} .
$$

a) Find an expression for $\frac{d y}{d x}$.
b) Show clearly that

$$
\frac{d^{2} y}{d x^{2}}=\frac{4}{1+x^{2}} \cosh (2 \operatorname{arsinh} x)-\frac{2 x}{\left(1+x^{2}\right)^{\frac{3}{2}}} \sinh (2 \operatorname{arsinh} x)
$$

c) Hence show further that

$$
\int\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-k y=0
$$

for some value of the constant k.

Question 50 (****)
A function is defined in terms of exponentials by

$$
f(x)=\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.
b) Show clearly that

$$
f^{\prime \prime}(x)=\operatorname{sech} x\left(\tanh ^{2} x-\operatorname{sech}^{2} x\right)
$$

It is given that the graph of $f(x)$ has two points of inflection.
c) Show further that the coordinates of these points are

$$
\left(\pm \ln (1+\sqrt{2}), \frac{1}{\sqrt{2}}\right)
$$

Question 51 (****)
It is given that

$$
\cosh (A+B) \equiv \cosh A \cosh B+\sinh A \sinh B
$$

a) Prove the validity of the above hyperbolic identity by using the definitions of the hyperbolic functions in terms of exponential functions.

It is now given that
b) Show clearly that ...
i. $\quad \cdots \tanh x=\frac{1-\mathrm{e}}{1+\mathrm{e}}$.
ii. $\ldots x=-\frac{1}{2}$.

Question 52 (****)
Given that $y=\arctan \left(3 \mathrm{e}^{2 x}\right)$, show clearly that

$$
\frac{d y}{d x}=\frac{3}{5 \cosh 2 x+4 \sinh 2 x}
$$

Question 53 (****)
Find in exact simplified form the value of $\sinh (2 \operatorname{arsinh} 3)$.

Created by T. Madas

Question 54 (****)

$$
\cosh 2 x \equiv 2 \cosh ^{2} x-1
$$

a) Prove the validity of the above identity by using the definitions of $\cosh x$ and $\sinh x$, in terms of exponentials.

The curve C has equation

$$
y=\cosh x-1, x \in \mathbb{R} .
$$

b) Sketch the graph of C.

The region bounded by C, the x axis and the line with equation $x=\ln 9$ is rotated through 2π radians about the x axis to form a volume of revolution S.
c) Show that the volume S is

$$
\pi\left(3 \ln 3+\frac{100}{81}\right)
$$

Created by T. Madas

Question 55 (****)

The figure above shows the graphs of $y=\tanh x$ and $y=\operatorname{sech} x$, in the first quadrant.

Show that the area shown shaded in the figure for which $x \geq 0$ is exactly $\frac{1}{4}[\pi+\ln 4]$.

Created by T. Madas

Question 56 (****)
σ

The figure above shows the graph of $y=\operatorname{arsech} x, 0<x \leq 1$.
a) Show clearly that
\qquad

$$
\operatorname{arsech} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)
$$

b) Show further that

$$
\frac{d}{d x}(\operatorname{arsech} x)=-\frac{1}{x \sqrt{1-x^{2}}}
$$

\square

$=\frac{-x\left[\left(1-x^{2}\right)^{-1}-1\right)}{1-\left(1-2^{2}\right)^{\frac{1}{2}}}-\frac{1}{x}$ $\frac{4}{3}-\frac{\left(1-x^{2}\right)^{-2}}{x}-\frac{1}{x}$
$-\overline{x\left(1-x^{2}\right)^{1 / 2}}$

Created by T. Madas

Question 57 (****)
$(* * * *)$

The figure above shows the graph of the curve with equation

$$
y=3 \sinh x-2 \cosh x, x \in \mathbb{R} .
$$

The finite region bounded by the curve and the coordinate axes, shown shaded in the figure above, is revolved by 2π about the x axis to form a solid S.

Show that the volume of S is

Question 58 (****)
a) Sketch the graph of $y=\operatorname{arsech} x$, defined for $0<x \leq 1$.
b) Show clearly that

$$
\frac{d y}{d x}=-\frac{1}{x \sqrt{1-x^{2}}}
$$

c) Hence evaluate

$$
\int_{\frac{1}{2}}^{1} \operatorname{arsech} x d x
$$

Give the answer in the form $\lambda[2 \pi-3 \ln (2+\sqrt{3})]$, where λ is a rational number to be found.
\square ,$\lambda=\frac{1}{6}$

Question 59 (****)
It is given that for all real x

$$
8 \sinh ^{2} x \equiv \cosh 4 x-4 \cosh 2 x+3
$$

a) Prove the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.
b) Hence, or otherwise, show that $x= \pm \ln (1+\sqrt{2})$ are the solutions of the equation proof

Question 60 (****)
A curve C has equation

$$
y=\cosh 2 x+\sinh x, x \in \mathbb{R} .
$$

a) Show that the x coordinate of the turning point of C is

$$
-\ln \left(\frac{1+\sqrt{17}}{4}\right)
$$

b) Using the definitions of $\cosh x$ and $\sinh x$, in terms of exponentials, prove that

$$
\cosh 2 x \equiv 1+2 \sinh ^{2} x
$$

c) Hence show that the y coordinate of the turning point of C is $\frac{7}{8}$.
d) Determine the nature of the turning point.

It is given that

$$
A \cosh x+B \sinh x \equiv R \cosh (x+\alpha)
$$

where the A, B, R and α are constants with $A>B>0, R>0$.
a) Show clearly that ...
i. $\quad \ldots \alpha=\frac{1}{2} \ln \left(\frac{A+B}{A-B}\right)$.
ii. $\ldots R=\sqrt{A^{2}-B^{2}}$.
b) Use the above result to determine the exact solution of the equation

$$
5 \cosh x+3 \sinh x=4
$$

$$
x=-\ln 2
$$

Question 62 (****)

$$
f(x) \equiv \cosh 2 x-8 \cosh x, x \in \mathbb{R} .
$$

a) Determine, in exact logarithmic form, the solutions of the equation

$$
f(x)=-1 .
$$

b) If k is a real constant, determine the value, values or range of values of k, so that the equation $f(x)=k$ has...
i. ... one repeated real root.
ii. ... more than one repeated real root.
iii. P... two distinct real roots.
iv. ... four distinct real roots.
v. ... no real roots.
\square $x= \pm \ln (4+\sqrt{15})$

Question 63 (****)
Show that

$$
(\sqrt{5}-2) \ln (\sqrt{5}-2)+(\sqrt{5}+2) \ln (\sqrt{5}+2)
$$

can be written in the form $a \operatorname{arsinh} b$, where a and b are positive integers to be found.

\square
$4 \operatorname{arsinh}(2)$

Question 64 (****+)
Show clearly that

$$
\frac{d}{d x}\left[\operatorname{artanh}\left(\frac{\cos x+1}{\cos x-1}\right)\right]=-\frac{1}{2} \tan x
$$

Question 65 (****)
$5 \cosh x+3 \sinh x=12$

Express the left side of the above equation in the form $R \cosh (x+\alpha)$, where R and α are positive constants, and use it to show that

$$
x=\ln (A \pm \sqrt{B}),
$$

where A and B are constants to be found.

\square $x=\ln \left(\frac{3}{2} \pm \sqrt{2}\right)$

Created by T. Madas

Question 66 (****+)
The curve C has equation
$y=a \cosh x-\sinh x$, where $a>1$.

Show that C has a minimum turning point with coordinates

Question 67 (****+)

$$
f(x)=\operatorname{arsinh} x+\operatorname{arsinh}\left(\frac{1}{x}\right), x \in \mathbb{R}, x \neq 0 .
$$

a) Show clearly that $f^{\prime}(x)=\frac{x^{2}-|x|}{x^{2} \sqrt{x^{2}+1}}$.

The graph of $f(x)$, for $x>0$ is shown in the figure below.
b) Determine, in terms of natural logarithms where appropriate, the coordinates of the stationary point of $f(x)$, labelled as point A in the figure.
c) Sketch the graph of $f(x)$, fully justifying its shape for $x<0$, and state its range.

$$
A[1,2 \ln (1+\sqrt{2})], f(x) \geq 2 \ln (1+\sqrt{2}) \cup f(x) \leq-2 \ln (1+\sqrt{2})
$$

Question 68 (****+)
The curve C has equation

$$
y=\sinh 2 x-14 \sinh x+8 x
$$

Find the exact coordinates of the turning points of C and determine their nature.

$$
[2 \ln (1+\sqrt{2}),-16 \sqrt{2}+16 \ln (1+\sqrt{2})],[-2 \ln (1+\sqrt{2}), 16 \sqrt{2}-16 \ln (1+\sqrt{2})]
$$

Question 69 (****+)
Find, in exact surd form the solution of the equation

$$
\operatorname{arsinh} x-\operatorname{arcosh} x=\ln 2 .
$$

Question 70
$(* * * *+)$

$$
\cosh x \equiv \frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \quad \text { and } \quad \sinh x \equiv \frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) .
$$

a) Use the above definitions to show that ...
i. $\ldots \cosh ^{2} x-\sinh ^{2} x \equiv 1$.
ii. ... $4 \cosh ^{3} x-3 \cosh x \equiv \cosh 3 x$.
b) Hence show that the real root of the equation

$$
12 y^{3}-9 y-5=0
$$

can be written as

$$
\frac{1}{6}(\sqrt[3]{81}+\sqrt[3]{9})
$$

Show clearly that

$$
-\ln (1-\tanh x) \equiv x+\ln (\cosh x)
$$

Question 72 (****+)
A curve C has equation

$$
y=3 \sinh x-2 \cosh x, x \in \mathbb{R} .
$$

Sketch the graph of C.
The sketch must include ...
... the coordinates of any points where the graph of C meets the coordinates axes.
... the coordinates of any stationary or non stationary turning points.
... the behaviour of the curve for large positive and large negative values of x

Question $73 \quad(* * * *+)$

σ

The figure above shows part of the curve C with parametric equations

$$
x=t+\frac{1}{4 t}, \quad y=t-\frac{1}{4 t}, t>0
$$

The curve crosses the x axis at P.
a) Determine the coordinates of P.
b) By considering $x+y$ and $x-y$ find a Cartesian equation for C.

The region R bounded by C, the straight line with equation $x=\frac{5}{3}$ and the x axis is shown shaded in the figure.
c) Show that the area of R is given by

$$
\int_{1}^{\frac{5}{3}} \sqrt{x^{2}-1} d x
$$

d) Hence calculate an exact value for the area of R.

Question 74 (****+)
The function f is defined

$$
f(t) \equiv \ln (1+\sin t), \quad \sin t \neq \pm 1
$$

a) Show clearly that ...
i. $\quad \ldots f(t)-f(-t)=2 \ln (\sec t+\tan t)$.
ii. ... $2 \ln (\sec t+\tan t)=-2 \ln (\sec t-\tan t)$

A curve C is given parametrically by

$$
x=f(t)+f(-t), \quad y=f(t)-f(-t) .
$$

b) Show further that ...
i. $\ldots \sec t=\cosh \frac{y}{2}$
ii. $\quad .$. a Cartesian equation of C can be written as

$$
\cosh \frac{y}{2}=\mathrm{e}^{-\frac{1}{2} x}
$$

Created by T. Madas

Question 75 (****+)
The function f is given by

$$
f(x) \equiv \mathrm{e}^{2 x+2}\left(\mathrm{e}^{2 x}-4\right), \quad x \in \mathbb{R}
$$

Show that

Question 76 (****+)
It is given that for suitable values of x

$$
y=\ln \left[\tan \left(\frac{1}{4} \pi+\frac{1}{2} x\right)\right]
$$

Show, with detailed workings, that

$$
\sinh y=\tan x
$$

and hence deduce a simplified expression for e^{y} in terms of x.
\square $\mathrm{e}^{y}=\tan x+\sec x$

Procteo as fonowis $\begin{aligned} & \Rightarrow y=\ln \left[\tan \left(\frac{\pi}{3}+\frac{x}{2}\right)\right] \\ & \Rightarrow e^{y}=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \\ & \Rightarrow e^{y}=\frac{\tan \frac{T}{4}+\tan \frac{1}{2}}{1-\tan \frac{\pi}{4} \tan \frac{x}{2}} \\ & \Rightarrow e^{y}=\frac{1+1-x}{1-\tan \frac{x}{2}} \\ & \Rightarrow e^{y}=\frac{1+T}{1-T} \text { Whtar } T-\tan \frac{x}{2} \end{aligned}$ Malct 1 The Subjet $\begin{aligned} & \Rightarrow e^{y}-T e^{y}=1+T \\ & \Rightarrow e^{y}-1=T+T e^{y} \\ & \Rightarrow e^{y}-1=T\left(1+e^{y}\right) \\ & \Rightarrow T=\frac{e^{y}-1}{e^{x}+1} \end{aligned}$ 	Munfy TDe now zotoy of THF Retulon) By $\left(E^{4}+1\right)^{2}$ YITLDS Gintuy $\cosh ^{2} y-\sinh ^{2}=1$ $\begin{aligned} & \Rightarrow \quad \cosh h y=+\sqrt{1+\tan 2 y} \\ & \Rightarrow \quad \cosh y=\sqrt{1+\tan ^{2} x} \\ & \Rightarrow \quad \cos y=\operatorname{stx} \end{aligned}$ 30π coshy + suny $y=e^{y}$ $\Rightarrow \sinh y+\cos y=\tan x+\sec 2$ $\Rightarrow c^{y}=\tan x+\cot x$

Question $77 \quad(* * * *+)$
$5 \tanh 2 x-\frac{3 \tan 2 x}{\tanh x}=5 \tanh x-3$.

Find, as an exact natural logarithm, the real solution of the above equation.

Question 78 (*****)
Sketch the graph of

$$
\left[x+\sqrt{x^{2}+4}\right]\left[y+\sqrt{y^{2}+1}\right]=2, \quad x \in(-\infty, \infty), y \in(-\infty, \infty)
$$

You must show a detailed method in this question

Question 79 (*****)
Determine, as exact simplified natural logarithms, the solutions of the following simultaneous equations

$$
\begin{aligned}
& \cosh x+\cosh y=4 \quad \text { and } \quad \sinh x+\sinh y=2 \\
& {[x, y]=[\ln (3-\sqrt{6}), \ln (3+\sqrt{6})]=[\ln (3+\sqrt{6}), \ln (3-\sqrt{6})]}
\end{aligned}
$$

\square

Created by T. Madas

Question 80 (*****)
If $0<k<\sqrt{2}-1$ prove that

$$
\int_{k}^{\frac{1-k}{1+k}} \frac{\ln x}{x^{2}-1} d x=\int_{k}^{\frac{1-k}{1+k}} \frac{\operatorname{artanh} x}{x} d x
$$

You need not evaluate these integrals.

Question 81 (*****)
Determine the general solution of the following equation.

$$
\sinh (x+\mathrm{i} y)=\mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}, \quad x \in \mathbb{R}, \quad y \in \mathbb{R}
$$

$$
\square,(x, y)=\left[\ln \left(\frac{\sqrt{6}+\sqrt{2}}{2}\right), \frac{\pi}{4}+2 k \pi\right], k \in \mathbb{Z}
$$

Fintay cootange at ashasiny $=\frac{\sqrt{3}}{2}$
$\Rightarrow \cosh x \sin y=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{\sqrt{4}}{2} \sin y=\frac{\sqrt{3}}{2}$
$\Rightarrow \sqrt{6} \sin y=\sqrt{3}$
$\Rightarrow \quad s m y=\sqrt{\frac{3}{6}}-\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$
$\Rightarrow y=\left\{\begin{array}{l}\frac{\pi}{4}+2 k \pi \\ \frac{2 \pi}{4}+2 k \pi\end{array} \quad k \in \mathbb{Z}\right.$
Looting AT THE Oet Gime guations suhe cosy $=\frac{1}{2}$ $\cosh x \sin y=\frac{\sqrt{3}}{2}$
Tilt Gsineta sourton is
$(x, y)=\ll\left(\begin{array}{l}\left(\operatorname{arcch} \sqrt{\frac{3}{2}} 1 \frac{\pi}{4}+2 k \pi\right) \\ \left(-\operatorname{arcos} n \sqrt{\frac{1}{2}}+\frac{\pi}{4}+2 k \pi\right)\end{array} \quad k \in \mathbb{Z}\right.$ $(x, y)=\left[\ln \left(\frac{\sqrt{6}+\sqrt{2}}{2}\right), \frac{\pi}{4}+2 \pi\right] \quad k \in \mathbb{Z}$

Question 82 (*****)

$$
x=4 \operatorname{arcosh}\left(\frac{1}{2} \sqrt{y}\right)+\sqrt{y^{2}-4 y}, y \geq 4 .
$$

Use differentiation to show that

$$
\frac{d^{2} y}{d x^{2}}=\frac{2}{y^{2}}
$$

\square proof

$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{y^{2}} \sqrt{1-\frac{4}{y}}}{y} \quad[A s y>4>0]$
$\Rightarrow\left[\frac{d y}{d x}=\left(1-\frac{y}{y}\right)^{\frac{1}{2}}\right]$
DIFfGetmlate now w. R. x

$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{2}{y^{2}}$
सिक्य en

Question 83 (*****)
Use inverse hyperbolic functions to show that

$$
\frac{d}{d x}[\ln (\cos x+\sin x+\sqrt{\sin 2 x})]=\sqrt{\frac{1}{2} \cot x}-\sqrt{\frac{1}{2} \tan x}
$$

Question 84 (*****)
Show, with detailed workings, that

$$
\sinh 2 x=2 \Rightarrow \cosh ^{6} x-\sinh ^{6} x=4
$$

\square , proof

Question 85 (*****)

Determine the value of $f^{\prime}(\ln 2)$.
\square $f^{\prime}(\ln 2)=-\frac{145}{256}$

Question 86 (*****)

$$
x=\ln (1+\sqrt{2})
$$

The figure above shows the curve C whose parametric equations are

$$
x=\operatorname{artanh}(\sin t), \quad y=\sec t \tan t, \quad-\frac{1}{2} \pi<t<\frac{1}{2} \pi .
$$

Find the area of the finite region bounded by the x axis, the curve and the straight line with equation $x=\ln (1+\sqrt{2})$.

Created by T. Madas

Question 87 (*****)

The figure above shows the curve C whose parametric equations are

$$
x=\operatorname{artanh}\left(\sin ^{2} t\right), \quad y=\sin t, \quad-\frac{1}{2} \pi<t<\frac{1}{2} \pi .
$$

a) Use integration in Cartesian coordinates to find the exact area of the finite region bounded by the curve and the straight line with equation $x=\frac{1}{2} \ln 3$.
b) Use integration in parametric to verify the validity of the result of part (a).

$$
\square, \text { area }=2 \ln (1+\sqrt{2})-2 \arctan \left(\frac{1}{\sqrt{2}}\right)
$$

\square

Question 88 (*****)
Given that p and q are positive, show that the natural logarithm of their arithmetic mean exceeds the arithmetic mean of their natural logarithms by

$$
\sum_{r=1}^{\infty}\left[\frac{2}{2 r-1}\left(\frac{\sqrt{p}-\sqrt{q}}{\sqrt{p}+\sqrt{q}}\right)^{4 r-2}\right]
$$

You may find the series expansion of $\operatorname{artanh}\left(x^{2}\right)$ useful in this question.
\square , proof

