# AUSTRALISCOM L.Y.C.B. Madasmans. Madasmans.com L.Y.C.B. Madasmans.com L.Y.C.B. Madasmans.

### Question 1 (\*\*)

A curve is given parametrically by the equations

 $x = 2\sinh t$ ,  $y = \cosh^2 t$ ,  $t \in \mathbb{R}$ .

Find a Cartesian equation of the curve, in the form y = f(x).

Question 2 (\*\*) It is given that

 $\operatorname{cosech} w = \frac{3}{4}$ 

**a**) Use hyperbolic identities to find the exact values of  $\sinh w$  and  $\cosh w$ 

**b**) Hence find the exact value of w, in terms of natural logarithms.

 $\sinh w = \frac{4}{3}$ ,  $\cosh w = \frac{5}{3}$ ,  $w = \ln 3$ 

 $\begin{array}{c} (\operatorname{cond}(w) = \frac{1}{2}, (x, \sqrt{2}w)) \\ \operatorname{Suph}(w) = \frac{1}{2}, (x, \sqrt{2}w), (y, w) \\ \operatorname{Suph}(w) = \frac{1}{2}, (x, \sqrt{2}w), (y, w) \\ \operatorname{Suph}(w) = \frac{1}{2}, (x, \sqrt{2}w), (y, w) \\ \operatorname{Suph}(w) = \frac{1}{2}, (y, w), (y, w) \\ \operatorname{Suph}(w) = \frac{1}{2}, (y, w), (y, w), (y, w) \\ \operatorname{Suph}(w) = \frac{1}{2}, (y, w), (y,$ 

 $y = 1 + \frac{1}{4}x$ 

Question 3 (\*\*)

$$f(x) = \operatorname{artanh} x, \ x \in \mathbb{R}, \ -1 < x < 1.$$

a) Show clearly that

 $f(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) x \in \mathbb{R}, \ -1 < x < 1.$ 

**b**) Without the use of any calculating aid solve the equation

artanh  $x = \ln 3$ ,

showing clearly all the relevant steps in the calculation.

|                                                                                                      | 100 M 100 M                                                                 |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| (a) y=artauha                                                                                        | (b) artanha = his                                                           |
| → tanky = a                                                                                          | $\Rightarrow \frac{1}{2} \ln \left( \frac{1+3\chi}{1-\chi} \right) = \ln 3$ |
| $\Rightarrow \frac{e^3}{e^3+1} = 3$                                                                  | $\Rightarrow h_{1}\left(\frac{1+2}{1-2}\right) = 2h_{2}$                    |
| $\Rightarrow ae^{2y} + a = e^{2y} - 1$                                                               | $\left\langle \implies \ln\left(\frac{1+\chi}{1-\chi}\right) = \ln 9$       |
| $\Rightarrow x + i = e^{24} - xe^{24}$                                                               | $\left\langle \neg \frac{1+\chi}{1-\chi} = g \right\rangle$                 |
| $\Rightarrow \alpha + i = \Theta^{24}(i-\alpha)$<br>$\Rightarrow e^{24} = \frac{1+\alpha}{1-\alpha}$ | > 1+2=9-92                                                                  |
| $\Rightarrow 2q = \ln\left(\frac{1+\chi}{1-\chi}\right)$                                             | > 102 = 8                                                                   |
| $\Rightarrow \qquad \forall = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right)$                        | $\rightarrow \lambda = \frac{\theta}{D}$                                    |
| : arburh = = = = hr (1+2)                                                                            | $z = \frac{1}{2}$                                                           |
|                                                                                                      | 24WEND                                                                      |

 $x = \frac{4}{5}$ 

Question 4 (\*\*+)

Find, in exact logarithmic form, the positive root of the equation

 $3 \tanh^2 \theta = 5 \operatorname{sech} \theta + 1, \ \theta \in \mathbb{R}$ .

 $\theta = \ln(3 +$ 

| tado = Szech0+(<br>- 3sech0=Szech0+(<br>- 3sech0=Szech0+(<br>= 3sech0+Szech0-Z<br>ssech0-(Szech0+2)=0                                                                               | 1 - Lango = sudo<br>1 - Lango = sudo<br>1 - sedio = tungo<br>1 - sedio = tungo                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $\operatorname{Sech} \Theta = \overset{Y_3}{\underset{-2}{\overset{\to}{\longrightarrow}}} \xrightarrow{\operatorname{Cosh}} \overset{3}{\overset{3}{\overset{\to}{\xrightarrow}}}$ | $\Theta = + \operatorname{anad} 3$ ( $\Theta > \circ$ )<br>$\Theta = \ln(3 + \kappa \overline{e}^3)$ |

### (\*\*+) **Question 5**

Given that x > 0 and y > 0, solve the simultaneous equations



### Question 6 (\*\*+)

Consider the following hyperbolic equation, given in terms of a constant k.

 $2\cosh^2 x = 3\sinh x + k .$ 

- a) Find the range of values of k for which the above equation has no real solutions.
- **b**) Given further that k = 1, find in exact logarithmic form, the solutions of the above equation.

 $k < \frac{7}{8}$ 

-4x2x(2-2)2

 $x = \ln\left(1 + \sqrt{2}\right), \ \ln\left(\frac{1 + \sqrt{5}}{2}\right)$ 

$$\begin{split} &| \quad z \quad \forall y \left(1 + \sqrt{z}\right) \\ &| \quad \frac{1}{2} = \forall y \left(\frac{1}{2} + \sqrt{\frac{z}{2}}\right) \end{split}$$

h(1+12)

| 12   | 1          | 20.        | 19                         |
|------|------------|------------|----------------------------|
| mar. |            | Dars       | Crea                       |
| - Us | Question 7 | (**+)      | 0                          |
|      | On         | j          | $f(x) = \operatorname{ar}$ |
| 6    |            | 1. 1. 1. 1 | - T                        |

2

$$f(x) = \operatorname{artanh} x, \ x \in \mathbb{R}, \ -1 < x < 1.$$

a) Show clearly that

Hasillattis Com I. Y. C.  $f(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) x \in \mathbb{R}, -1 < x < 1.$ 

b) Hence simplify fully



| N.C.               | $f(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) x \in \mathbb{R}, -1 < x < 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·G    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| b)                 | ) Hence simplify fully                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| an I               | $g(x) = \operatorname{artanh}\left(\frac{x^2 - 1}{x^2 + 1}\right), \ x > 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mar.  |
| 21/15              | $g(x) = \ln x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                    | (e) $g = art_{-ha}$<br>$\Rightarrow h_{a}h_{b}g = x$<br>$\Rightarrow \frac{d}{c^{2}+1} = x$<br>$\Rightarrow \frac{d}{c^{2}+1} = x$<br>$\Rightarrow \frac{d}{c^{2}+1} = x$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2}$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2}$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}+1} = x^{2}$<br>$\Rightarrow \frac{d}{c^{2}-1} = x^{2} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}-1} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}-1} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}-1} = \frac{d}{c^{2}+1}$<br>$\Rightarrow \frac{d}{c^{2}-1} = \frac{d}{c^{2}-1}$<br>$\Rightarrow \frac{d}{c^{2}-1} = \frac{d}{c^{2}-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1   |
| , ··· Cp           | $ \begin{array}{c} \Rightarrow e^{2}(-x) = i + x \\ \Rightarrow e^{2} = \frac{i + x}{i - x} \\ \Rightarrow a = i + k \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) \\ \Rightarrow y = \frac{1}{2} k \left( \frac{i + x}{i + x} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×.G   |
| 20/28/102 -        | $n_{adash} \sim a_{ash} \sim n_{adash} \sim n_{ada$ | 13500 |
| n and and a second | Com "aths "the son "aths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.    |
| I.V.               | Les Les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
| 1022 S.            | Created by T. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | der 1 |
| -428m              | asp Shar asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND.   |

### Question 8 (\*\*+)

Solve the following equation, giving each of the answers in exact simplified form, in terms of natural logarithms.

 $3\coth^2 x - 8\operatorname{cosech} x + 1 = 0.$ 

 $x = \ln\left[\frac{1}{2}\left(1 + \sqrt{5}\right)\right],$ 



 $x = \ln \left| \frac{1}{2} \left( 3 + \sqrt{13} \right) \right|$ 

Question 9 (\*\*+)

Solve the following equation, giving the solutions as exact simplified natural logarithms.

 $2 \tanh^2 w = 1 + \operatorname{sech} w, \ w \in \mathbb{R}.$ 

 $w = \pm \ln \left( 2 + \sqrt{3} \right)$  $1 + \tan^2 \Theta \equiv \sec^2 \Theta$  $1 - \tanh^2 \Theta \equiv \sec^2 \Theta$  $1 - \sec^2 \Theta = \tan^2 \Theta$ 



The figure above shows the graph of the curve with equation

 $y = 35 \operatorname{arcosh} x - 12x, x \in \mathbb{R}, x \ge 1.$ 

The curve has a single stationary point with coordinates  $\left(\frac{a}{b}, c \ln 6 - d\right)$ , where a, b, c and d are positive integers.

Determine the values of a, b, c and d.

| and the second s |         | The second se | the second se |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| a = 37,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b = 12, | c = 35,                                                                                                         | d = 37                                                                                                          |

nn,

| $e_{\frac{dy}{dx}} = \frac{35}{\sqrt{3^2-1^2}} - 12$     | $\int_{0}^{\infty} \frac{1}{2} = \frac{35}{25} \operatorname{suredn}\left(\frac{51}{12}\right) - \frac{12 \times \frac{37}{12}}{12} = \frac{37}{12}$    |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOWI FOR ZENO                                            | y = 35/06 -37                                                                                                                                           |
| $\Rightarrow \frac{\sqrt{2^2-1}}{\sqrt{2^2-1}} - 15 = 0$ | {                                                                                                                                                       |
| $\Rightarrow \frac{35}{\sqrt{4^2-1^2}} = 12$             | $\left\langle \begin{array}{c} \vdots \\ \left( \frac{37}{12} \right)^{3} \\ 3 \\ \end{array} \right\rangle = \left\langle \frac{37}{12} \right\rangle$ |
| $\Rightarrow \frac{12}{35} = \sqrt{35-1}$                |                                                                                                                                                         |
| $=\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$     | {                                                                                                                                                       |
| $\Rightarrow \chi^2 = \frac{1369}{144}$                  | 3                                                                                                                                                       |
| $\Rightarrow x = \frac{31}{12} / 2 > 0$                  |                                                                                                                                                         |

**Question 11** (\*\*+)

 $f(x) = 3 - \cosh x, \ x \in \mathbb{R}.$ 

a) Sketch the graph of f(x).

The graph must include the coordinates of any points where the graph meets the coordinate axes.

 $g(x) = \sinh x, \ x \in \mathbb{R}.$ 

b) Find the exact coordinates of the point of intersection between the graphs of f(x) and g(x).

 $\left(\ln 3, \frac{4}{3}\right)$ 

**Question 12** (\*\*+)

 $c\frac{dy}{dx} + \frac{xy}{\coth x} = \operatorname{sech} x , x > 0.$ 

Given that y = 0 at  $x = \frac{1}{2}$ , show that the solution of the above differential equation is

 $y = \frac{\ln 2x}{\cosh x}.$ 

| an ather                                                                                                |          |
|---------------------------------------------------------------------------------------------------------|----------|
| $\frac{du}{dx} + \frac{u}{otha} = \frac{sedx}{x}$                                                       |          |
| E = e tota de e lu lada = cual a                                                                        |          |
| [ yusha] = t selaceta                                                                                   |          |
| grasha = J ± da                                                                                         |          |
| y coshx = lna + C                                                                                       |          |
| Apply condition $a = \frac{1}{2}$ $g = 0 \implies 0 = \ln \frac{1}{2} + C$<br>$\implies 0 = -\ln 2 + C$ |          |
| $y_{105hz} = l_{Hz} + l_{Hz}$                                                                           | <b>.</b> |
| g coshx = ln2x                                                                                          |          |
| y usix = 11/2x<br>y = ln2x<br>cosha to Equero                                                           |          |
|                                                                                                         |          |
|                                                                                                         | _        |

a du + au - serti-

proof

### **Question 13** (\*\*+)

Find in exact logarithmic form the solutions of the following equation.

 $\cosh^2 2x + \sinh^2 2x = 2.$ 

 $x = \pm \frac{1}{4} \ln \left( 2 + \sqrt{3} \right) = \pm \frac{1}{2} \ln \overline{\left( 1 + \sqrt{3} \right)}$ 

| $\begin{array}{c} \underline{SWG} \doteq \underline{Cus24} \equiv \underline{cus^2A} - \underline{sus^2A} \\ \overline{P(h)} : \underline{cush24} \equiv \underline{cus^2A} - \underline{sus^2A} \\ \vdots \underline{cush24} \equiv \underline{cus^2A} + \underline{sush^2L} \\ \vdots \underline{cush22a} + \underline{Sush^2} \underline{cus} \\ \underline{cush} (\underline{da}) = \underline{c} \\ \underline{da} = \pm \underline{urush2} \\ \underline{da} = \pm \underline{urush2} \\ \underline{da} = \pm \underline{cus24} \\ \underline{da} = \underline{c} \\ \underline$ | $\Rightarrow \oint_{\mathbb{R}} = \pm \int_{\mathbb{R}} (2 + \sqrt{3})$<br>$\Rightarrow = \pm \frac{1}{4} \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln(2 + \sqrt{3})$<br>$= \int_{\mathbb{R}} (2 + \sqrt{3}) \ln(2 + \sqrt{3}) \ln($ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4\mathfrak{X} = \pm \ln\left(2 + \sqrt{2^2 - 1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### Question 14 (\*\*+)

I.F.G.B

asmaths.com

N.G.B. Madasm

ISM3///S-COM / K-C-P

I.F.G.B.

20

Find, in exact logarithmic form, the solution of the following equation.





I.F.G.B.

Madası

9

6

Created by T. Madas

COM

Question 15 (\*\*\*) It is given that

 $1 - \tanh^2 x \equiv \operatorname{sech}^2 x$ .

- a) Use the definitions of hyperbolic functions, in terms of exponentials, to prove the validity of the above identity.
- **b**) Hence find in exact logarithmic form the solution of the following equation.

 $5\operatorname{sech}^2 x = 11 - 13 \tanh x, x \in \mathbb{R}$ .



 $x = \ln 2$ 

| - | $S(1 - tauh_{\mathcal{X}}) = 11 - 13 tauh_{\mathcal{X}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | 5 - 5 lon/22 = 11-13 tanke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 0 = Stark 3 - 13 lank 2 + 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ⇒ | 0 = (Stanha - 3)(tanha - 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ⇒ | tuha = <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} = \frac{1}{2} \frac{5}{2} \frac{5}$ |

 $\Rightarrow \frac{\alpha + \ln 2}{2}$ 

**Question 16** (\*\*\*)

 $x\frac{dy}{dx} = \sqrt{y^2 + 1} , x > 0.$ 

2

Given that y = 0 at x = 2, show that the solution of the above differential equation is

 $y = \frac{x}{4}$ 2 proof 45 y+1 y= 1-2  $(\overline{y^{2}+1})^{\frac{1}{2}} dy = \frac{1}{2} dy$ = Vy2+1' = fx-9  $+1 = \frac{1}{4}x^2 - xy + y^2$ 422-1 y= 1/2-1x - 1 7 49 REPURID 2017 Y.C.B. I.C.B. 115 F.G.B. nadasm 21/15.1 COM 20 I.C.p I.F.G.B. 12.0 Created by T. Madas

### **Question 17** (\*\*\*)

KR

The curves  $C_1$  and  $C_2$  have respective equation

 $y = \sinh x$  and  $y = \frac{1}{2} \operatorname{sech} x$ .

 $\sqrt{\frac{1}{2}(\sqrt{2}-1)}$ 

**a**) Sketch in the same diagram the graphs of  $C_1$  and  $C_2$ .

The two graphs intersect at the point P.

- **b**) Find the x coordinates of P.
- c) Hence show that the y coordinates of P is.



i.C.B.

m

nadasn.



**Question 18** (\*\*\*)

 $2\cosh^2 x - 1 \equiv \cosh 2x \, .$ 

a) Prove the validity of the above hyperbolic identity by using the definitions of  $\cosh x$  and  $\sinh x$  in terms of exponentials.

**b**) Hence find

 $x\cosh^2 x \, dx$ .



| (२) ЦЦ ऽ ्<br>= | $ \begin{split} & \partial_{\theta} Gh_{\theta, \alpha}^{(2)} = 2 \left[ \frac{1}{2} e^{i \theta} + \frac{1}{2} e^{i \theta} \right]^{-1} = 2 \left[ \frac{1}{2} e^{i \theta} + \frac{1}{2} + \frac{1}{4} e^{i \theta} \right] - 1 \\ & \frac{1}{2} e^{i \theta} + f + \frac{1}{2} e^{i \theta} + f + \frac{1}{2} \left[ e^{i \theta} + e^{i \theta} \right] = 2 \left[ \frac{1}{4} e^{i \theta} + \frac{1}{2} + \frac{1}{4} e^{i \theta} \right] - 1 \\ & = \frac{1}{2} \left( e^{i \theta} + e^{i \theta} \right) = 2 \left[ \frac{1}{4} e^{i \theta} + \frac{1}{2} + \frac{1}{4} e^{i \theta} \right] - 1 \end{split}$ |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) Jau         | $dx = \int x \left( \frac{1}{2} + \frac{1}{2} \cosh 2x \right) dx = \int \frac{1}{2} x + \frac{1}{2} \cosh 2x dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | 2+ tasuba - tsuba da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - \$1           | $ \begin{array}{c} \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**Question 19** (\*\*\*)

Solve the hyperbolic equation

 $4 + 6(e^{2x} + 1) \tanh x = 11\cosh x + 11\sinh x$ .



 $\begin{array}{c} 4 + 6\left(\frac{d^2}{2}t\right)\frac{1}{2}u_1^{1}z_2 = 11(u_2^{1}u_2 + 11)u_2^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}u_3^{1}$ 

| Question | 20 | (*** |
|----------|----|------|
|          |    |      |

Given that

 $9\sinh x - \cosh x = 8$ 

show clearly that

 $\tanh x = \frac{21}{29}.$ 

| • )                                                                                                                                         |                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $9 \sin h\alpha - \cos \alpha = B \qquad \zeta$                                                                                             | Narry                                                                                      |
| $\Rightarrow \frac{q}{2} e^{-\frac{q}{2}} - \frac{q}{2} e^{-\frac{q}{2}} - \frac{1}{2} e^{-\frac{q}{2}} - \frac{1}{2} e^{-\frac{q}{2}} = 8$ | $t_{aubx} = \frac{\frac{e}{e-1}}{\frac{e^2+1}{e^2+1}}$                                     |
| $94e^{2}-5e^{2}=8$                                                                                                                          | 6.+ 1                                                                                      |
| $94e^{2k} = 5 = 8e^{2k}$                                                                                                                    | taula = (2)2-1<br>(e3)2+1                                                                  |
| 94e <sup>2</sup> -8e <sup>2</sup> -5=0 }                                                                                                    | $t_{mh_{\lambda}} = \frac{\left(\frac{2}{2}\right)^2 - 1}{\left(\frac{2}{2}\right)^2 + 1}$ |
| $\frac{1}{2e^{2}-5}(2e^{2}+1)=0$                                                                                                            |                                                                                            |
| $e^{a_{\pm}} < \frac{5}{2}$                                                                                                                 | $t_{amba} = \frac{\frac{25}{4} - 1}{\frac{25}{4} + 1}$                                     |
| -× (                                                                                                                                        | tanke = 21/45 EGROPED                                                                      |
|                                                                                                                                             |                                                                                            |

proof

Question 21 (\*\*\*

 $\cosh^2 x - \sinh^2 x \equiv 1.$ 

- a) Prove the validity of the above hyperbolic identity by using the definitions of  $\cosh x$  and  $\sinh x$  in terms of exponentials.
- **b**) Hence solve the equation

 $10\cosh^2 x + 6\sinh^2 x = 19$ 

giving the answers as exact natural logarithms.

| 1.00 |             |
|------|-------------|
| x =  | $\pm \ln 2$ |

| (9) $ \begin{aligned} (\omega_{1} S = (\omega_{1} ^{2}x - \omega_{1} ^{2}x = (\omega_{1} x), \\ &= \left(\frac{1}{2}e^{2} + \frac{1}{2}e^{2} - \frac{1}{2}e^{2} + \frac{1}{2}e^{2}\right) \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \begin{array}{l} & \left  1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} = i \\ \\ & \left  0 = \sum_{i=1}^{\infty} \left  1 = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \left  1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left  1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left  1 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} $ | $  \exists x = \pm \operatorname{ancalg} \frac{x}{2}  $ $  \exists x = \pm \ln\left(\frac{x}{2} + \sqrt{\frac{x}{2}}\right) $ $  \exists x = \pm \ln\left(\frac{x}{2} + \frac{x}{4}\right) $ |
| ⇒ cahz = 25<br>⇒ cahz = 12<br>(cahz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Rightarrow$ $3 = \pm \ln(2 + \frac{1}{2})$<br>$\Rightarrow$ $3 = \pm \ln 2$                                                                                                                |

**Question 22** (\*\*\*)

 $2\cosh 3x \cosh x \equiv \cosh 4x + \cosh 2x \,.$ 

- a) Prove the validity of the above hyperbolic identity by using the definitions of  $\cosh x$  in terms of exponentials.
- a) Hence solve the equation

 $\cosh 4x + \cosh 2x - 6\cosh x = 0$ 

giving the answer as an expression involving exact natural logarithms.



+ + h (3+ v8

| Created | by T. | Madas |
|---------|-------|-------|
|---------|-------|-------|

Question 23 (\*\*\*)

 $y = t - (2 - \sinh t) \cosh t$ ,  $t \in \mathbb{R}$ .

Determine the values of t for which  $\frac{dy}{dt} = 6$ , giving the answers as exact simplified natural logarithms.

nn

I.C.B.

I.C.B.

COM

I.F.G.B





2

20/250

12

| $\frac{du}{dt} = 2 \operatorname{sml}^3 t - 2 \operatorname{sml} t + 2.$ |
|--------------------------------------------------------------------------|
| $w \frac{du}{dt} = 6$                                                    |
| 6 = 2sunkt - 2sunht + 2                                                  |
| 3 = smlt - smlt +1                                                       |
| 0 = singlet - singlet - 2                                                |
| 0 = (swht + 1)(smlt- 2                                                   |
| $simht = < \frac{1}{2}$                                                  |
| t= _ arsinh(-1) = - arsinh                                               |

2017

I.C.P.

Question 24 (\*\*\*)

- $\cosh(A-B) \equiv \cosh A \cosh B \sinh A \sinh B$ .
- a) Prove the validity of the above hyperbolic identity by using the definitions of  $\cosh x$  and  $\sinh x$  in terms of exponentials.
- **b**) Hence solve the equation

 $\cosh(x - \ln 3) = \sinh x$ 

giving the answer as an exact natural logarithm.



### a) STATIND ROW THE 2.4.5

|    | Cosht         | GosB—zunhAcsinchB                                     | -  | $\frac{1}{2}\left[e^{1}+e^{-1}\right]\times\frac{1}{2}\left[e^{1}+e^{-1}\right]-\frac{1}{2}\left[e^{1}-e^{-1}\right]\times\frac{1}{2}\left[e^{1}-e^{-1}\right]$                                                                      |  |
|----|---------------|-------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    |               |                                                       | =  | $\frac{1}{4} \begin{pmatrix} e^{AB} & e^{AB} & e^{AB} & e^{AB} \\ e^{A} & e^{A} & e^{A} & e^{A} \end{pmatrix} \xrightarrow{-1} \begin{pmatrix} e^{A+B} & e^{A-B} & e^{A+B} & e^{A+B} \\ e^{A} & e^{A} & e^{A} & e^{A} \end{pmatrix}$ |  |
|    |               |                                                       | =  | 2 2+ e + e + e - s + e + e - e - e - e - e - e - e - e - e                                                                                                                                                                           |  |
|    |               |                                                       | -  | $\frac{1}{2}\left[e^{A-b}+e^{A+b}\right]$                                                                                                                                                                                            |  |
|    |               |                                                       | 2  | $\frac{1}{2}\left(e^{4-\delta}+e^{-(A-\delta)}\right)$                                                                                                                                                                               |  |
|    |               |                                                       | =  | Crah(A-B)                                                                                                                                                                                                                            |  |
|    |               |                                                       |    | AS REPUIRED                                                                                                                                                                                                                          |  |
| P) | -304120       | Phet (a)                                              |    |                                                                                                                                                                                                                                      |  |
|    | $\Rightarrow$ | $= (\mathcal{S}_M - \mathcal{L})  d h  d \mathcal{S}$ | 2. |                                                                                                                                                                                                                                      |  |
|    | $\Rightarrow$ | cosh2 cosh(43)-                                       |    | chriz = (ENJ) hriz chris                                                                                                                                                                                                             |  |
|    |               |                                                       |    | sinha [zelug tenn] = zmha                                                                                                                                                                                                            |  |
|    | $\Rightarrow$ | males [ 3 + t                                         | 7  | suba = [] = [] adva =                                                                                                                                                                                                                |  |

### = maler [ = + = ] - such [ = -

- -> Scolar franks = sinks
- =) Shouth Faither = 3 tauter ) Doubt by aster to acting for
  - = turka = 5
  - artuulo (=) artuulo
  - $\begin{array}{l} \Rightarrow \quad \alpha = \frac{1}{2} \ln \left( \begin{array}{c} 1 + \frac{2}{2} \\ 1 \frac{2}{2} \end{array} \right) \\ \Rightarrow \quad \alpha = \frac{1}{2} \ln \left( \begin{array}{c} \frac{1 + 2}{2} \\ 1 \frac{2}{2} \end{array} \right) \\ \end{array}$ 
    - = 2= ±m6

### **Question 25** (\*\*\*)

Find, in exact simplified logarithmic form, the y coordinate of the stationary point of the curve with equation

 $y = 5 - 12x + 4 \operatorname{arcosh}(4x).$ 

Detailed workings must be shown.

| <b>.</b>                                                          |                                                |
|-------------------------------------------------------------------|------------------------------------------------|
| DIFFERENTIATE & SET EQUAL TO ZEE                                  | 20                                             |
| ⇒ y= s-122+4arcosi42                                              | $\Rightarrow 16x^2 = \frac{16}{2} + 1$         |
| $\implies \frac{du}{d\xi} = -12 + 4x \frac{4}{\sqrt{16\xi - 1}}$  | $\implies 16x^2 = \frac{25}{2}$                |
| $\implies 0 = -12 + \frac{16}{\sqrt{162-1}}$                      | $\Rightarrow \lambda^2 = \frac{25}{144}$       |
| $\implies 12 = \frac{16}{\sqrt{162^2-1}}$                         | $\Rightarrow \alpha = + \frac{5}{12}$          |
| $\implies \sqrt{16\alpha_{-1}^2} = \frac{4}{3}$                   | (OHEQWILE acoust is NOT<br>DHEND File NEGATUR) |
| $= 16a^2 - 1 = \frac{16}{9}$                                      |                                                |
| Now substitute who the epontal                                    |                                                |
| y = 5 - 12x + 4arcah(d)                                           | ( <u>5</u> )                                   |
| $y = 5 - 5 + 4 \operatorname{arcoch}\left(\frac{5}{2}\right)$     |                                                |
| $y = 4 \ln \left(\frac{5}{3} + \sqrt{\frac{5}{3}}\right)$         |                                                |
| $y = 4 \ln \left( \frac{s}{3} + \sqrt{\frac{s}{y} - 1^2} \right)$ |                                                |
| $q = 4\ln\left(\frac{s}{3} + \frac{q}{3}\right)$                  |                                                |
|                                                                   |                                                |

, 4ln3

Question 26 (\*\*\*)

 $f(x) \equiv 7x - 6\cosh x - 9\sinh x, \ x \in \mathbb{R}.$ 

Find the exact coordinates of the stationary points of f(x), and determine their nature. Give the coordinates in terms of simplified natural logarithms.

| $\left[\ln\left(\frac{3}{5}\right), -2 + 7\ln\left(\frac{3}{5}\right)\right] \cup \left[\ln\left(\frac{1}{3}\right), 2 - 7\ln 3\right]$ $\left[\ln\left(\frac{1}{3}\right), 2 - 7\ln 3\right]$ $\left[\ln\left$ | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P      | $\boxed{\qquad}, \boxed{\ln\left(\frac{3}{5}\right), -2 + }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $7\ln\left(\frac{3}{5}\right) \cup \left[\ln\left(\frac{1}{3}\right), 2-7\ln 3\right]$                                                                                                                                                                                                                                                                                        |
| $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5      | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b ();                                                                                                                                                                                                                                                                                                                                                                         |
| $ \implies -\binom{p}{G}_{0} \ll -\frac{15}{2}e^{2k} + \frac{3}{2}e^{2k} $ $ \bullet -\binom{p}{V}\binom{k}{2} \approx -\frac{1}{2}s\frac{k}{2} + \frac{3}{2}e^{2k} = -\frac{1}{2} + \frac{k}{2} = -2 < 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in the | Differentiate of acuse for zero<br>$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{aligned} & \left\{ \left( h_{\frac{1}{2}}^{2} \right) = 7h_{\frac{1}{2}}^{2} - 2 = -2 + 7h_{\frac{1}{2}}^{2} \\ & \left\{ \left( h_{\frac{1}{2}}^{2} \right) = 7h_{\frac{1}{2}}^{2} + 2 = 2 - 7h_{\frac{1}{2}}^{2} \\ & f_{\frac{1}{2}}^{2} \left( h_{\frac{1}{2}}^{2} \right) = 7h_{\frac{1}{2}}^{2} + 7h_{\frac{1}{2}}^{2} \right) + 0.001 - MATINGM \end{aligned}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $ \Rightarrow - \left\{ \begin{matrix} \zeta \\ \zeta \\ \gamma \end{matrix} \right\}_{\alpha} = - \frac{1}{2} \frac{c}{2} e^{\frac{1}{2}} e^{\frac{1}{2}} \\ + \frac{3}{2} e^{\frac{1}{2}} e^{$ |                                                                                                                                                                                                                                                                                                                                                                               |

Question 27 (\*\*\*) Show with detailed workings that

 $\frac{d}{dx}\left[\arctan\left(\sinh x\right)\right] = \frac{d}{dx}\left[\arcsin\left(\tanh x\right)\right]$ 



| DIFFECTUATE EACH SUDE SERAEATELY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{ch_{223}}{c_{1}h_{22}+1} = ch_{233} \times \frac{1}{c_{1}h_{22}+1} = \left[ (c_{1}h_{12}) + c_{1}h_{23} + c_{2}h_{23} + c_{$ |
| $= \frac{(\alpha h x)}{(\alpha h x)} = \frac{1}{(\alpha h x)} = \frac{1}{(\alpha h x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • $\frac{d}{dx} \left[ answith_{ab}(s) \right] = \frac{1}{\sqrt{1-1-bab}} \times sect = \frac{sets}{\sqrt{1-bb}},$<br>$i + \frac{1}{bab} = abb}$<br>i + bab = abbb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $= \frac{\text{sed}\lambda}{\sqrt{\text{sed}\lambda^2}} = \frac{\text{sed}\lambda}{\text{sed}\lambda} = \frac{\text{sed}\lambda}{\text{sed}\lambda}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| This de [ariton (suba)] = de [arison (touba)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### **Question 28** (\*\*\*)

E,

- a) Given that  $\operatorname{arsinh} 7 = k \operatorname{arsinh} 1$  determine the value of k.
- **b**) Solve the following simultaneous equations.

 $\sinh x - 3\coth y = 1$  $3\sinh x - \coth y = 19$ 

Give the answers in simplified logarithmic form.

| tions.<br>th $y = 1$<br>th $y = 19$ | 1.1                                                                                                                                                                                                                                                                                                                           | Cp .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1.   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| mic form.                           | 5                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2      |
| k = 3, $k = 3$ ,                    | $[x,y] = \left[3\ln\left(1\right)\right]$                                                                                                                                                                                                                                                                                     | $+\sqrt{2}$ , $\frac{1}{2}\ln 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13510. |
| alls.co                             | a) $(2406-744-1664274406-75640)$<br>• atsubt ~ $h_1(1+\sqrt{1+1}) =$<br>• atsubt ~ $h_2(1+\sqrt{1+1}) =$<br>$(1+62)^{h_1} = 7+512^{h_2}$<br>$(1+62)^{h_1}(1+62)(1+62) = 1+52^{h_2}$<br>$(1+62)^{h_1}(1+62)(1+62) = (1+64)^{h_2}$                                                                                              | $\begin{split} &  h_{1}\left(1+\left(\overline{\lambda}^{-}\right)\right) \\ &  h_{n}\left(\gamma+i\overline{\lambda}^{-}\right) =  h_{n}\left(\gamma+i\overline{\lambda}^{-}\right) \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 10                                  | b) <u>Elimentition</u> OR SUBGRITION<br>Sinha = 1 + 300 hy<br><u>Sinha = 1 + 300 hy</u><br>3(1+30 hy) - 0 hy = 19<br>$\Rightarrow 8 ddg = 10$<br>$\Rightarrow 8 ddg = 2$<br>$\Rightarrow 10 hy = 2$<br>$\Rightarrow 10 hy = 2$<br>$\Rightarrow 10 hy = 2$<br>$\Rightarrow 10 hy = 2$<br>$\Rightarrow 2 hy = \frac{1}{2}h_{3}$ | $\begin{array}{c} \underline{BTUQ(ML, D)} & \mbox{the the contract}\\ Simply = 1 + 3 \mbox{the the contract}\\ Simply = 1 + 3 \mbox{the the the contract}\\ Simply = 1 + 3 \mbox{the the contract}\\ Simply = 2 \mbox{the contract}\\ 3 \mbox{the contract}\\ 3$ | 1.1    |

C.p.

1720

COM

### **Question 29** (\*\*\*)

Solve the following equation, giving the answers as exact logarithms where appropriate.





Question 30 (\*\*\*)

2

ismaths,

I.F.G.B.

Smaths,

I.V.G.B

- $f(x) = \sinh x \cos x + \sin x \cosh x, \ x \in \mathbb{R}.$
- **a**) Find a simplified expression for f'(x).
- **b**) Use the answer to part (a) to find

2 dx. tanh x + tan x

2017

I.G.B.

madasm

COM

 $\ln |\sinh x \cos x + \sin x \cosh x| + C$  $f'(x) = 2\cosh x \cos x \, | \, ,$ 

F.G.B.

The Com

2

14

nadasmal

112023

'adasma,

I.C.P.

2011

Created by T. Madas

madasmaths,

### **Question 31** (\*\*\*)

It is given that for all real x

 $\cosh 2x \equiv 1 + 2\sinh^2 x \,.$ 

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.

**b**) Hence solve the equation

 $\cosh 2x = 3\sinh x$ ,

giving the final answers as exact simplified natural logarithms.

25413 下 h ( 145 4(1+12

 $\bigcup x = \ln |$ 

 $x = \ln\left(1 + \sqrt{2}\right)$ 

1+√5

### **Question 32** (\*\*\*)

It is given that for all real x

 $\cosh 2x \equiv 2\cosh^2 x - 1.$ 

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.

**b**) Hence solve the equation

 $5\cosh x - \cosh 2x = 3,$ 

giving the final answers as exact simplified natural logarithms.



 $x = \pm \ln \left(2 + \sqrt{3}\right)$ 

# Question 33 (\*\*\*+)

It is given that for all real x

 $\cosh 3x \equiv 4\cosh^3 x - 3\cosh x \,.$ 

a) Prove the validity of the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.

**b**) Hence solve the equation

 $\cosh 3x - 3\cosh^2 x = 14,$ 

giving the final answers as exact simplified natural logarithms.

| 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\frac{24464444}{244164} = \frac{24411}{244} (4, \frac{4400}{24}, \frac{24}{24}, $ | $ \Rightarrow (t-2)(4t^2+5t+7) = 0 $ $ \Rightarrow t=2, $ $ \Rightarrow x=2 \text{ ordeg } 2. $ $ \Rightarrow x=\pm \text{ ordeg } 2. $ $ \Rightarrow x=\pm (n(2+\sqrt{2^2-1})) $ $ \Rightarrow x=\pm \ln(2+\sqrt{2}) $ |
|    | $ \begin{array}{l} \Rightarrow & (2x_1^{2})x_{1} - 3(2x_1^{2})x_{2} = N \\ \Rightarrow & 4(2x_1^{2})x_{2} - 3(2x_1^{2})x_{2} - 3(2x_1^{2})x_{2} = N \\ \Rightarrow & 4(2x_1^{2})x_{2} - 3(2x_1^{2})x_{2} - 10 = 0 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
|    | $\Rightarrow 4t^{-1}(t-2) + 5t(t-2) + 7(t-2) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                         |

 $x = \pm \ln \left(2 + \sqrt{3}\right)$ 

4×4×7 <0

### (\*\*\*+) **Question 34**

2

A curve C has equation

madasmaths,

I.C.B.

'smaths.com

I.V.C.B. Madasm

Smaths.com

I.C.p

 $y = 12 \cosh x - 8 \sinh x - x, x \in \mathbb{R}$ .

Show that the sum of the coordinates of the turning point of C is 9.

Madasm

COM

I.G.B.

| $\begin{array}{c} \text{Sd}\mu\in\text{Gr}(360) \\ \Rightarrow  h_1(\frac{1}{2}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $\begin{array}{l} & \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} \Rightarrow b(\frac{1}{2}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}$ | RW |

I.C.B.

madasmaths,

I.F.C.B.

2017

the com

proof

6

madasm.

COM

Madası

Created by T. Madas

Madasmath

COM

| 7222     |    | Ų.   |
|----------|----|------|
| Question | 35 | (*** |
| "Co      |    |      |

 $y = \operatorname{artanh} x, \ -1 < x < 1$ 

a) By using the definitions of hyperbolic functions in terms of exponentials prove that

$$\operatorname{artanh} x = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right).$$

**b**) Hence solve the equation

Y.C.B.

madasm,

011

ŀG.B.

I.F.G.B.

 $x = \tanh\left(\ln\sqrt{6x}\right).$ 

nn

| a) | WORKING IN EXPONENTIALS                                                                        |                                                                  |
|----|------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|    | - g=artanhz                                                                                    | $\Rightarrow e^{2\theta}(1-x) = 1+x$                             |
|    | → tauhy = 2                                                                                    | $\Rightarrow e^{2\lambda} = \frac{1+\lambda}{1-\lambda}$         |
|    | $rightarrow \frac{e^{24}-1}{e^{23}+1} = 0.$                                                    | $-9$ $2y = ln\left(\frac{1+\chi}{1-\chi}\right)$                 |
|    | - e221= xe2 +2                                                                                 | $\rightarrow g = \frac{1}{2} \ln \left( \frac{1+2}{1-2} \right)$ |
|    | $\implies e^{2\theta} - \chi e^{2\theta} = 1 + \chi$                                           | =) artanh a = $\frac{1}{2} \ln \left( \frac{1+2}{1-2} \right) /$ |
|    |                                                                                                |                                                                  |
| )  | USING PART (Q)                                                                                 | -AR BLQUIRHO                                                     |
|    | = a = tanh (Invier)                                                                            |                                                                  |
|    | -> ortunha- Index                                                                              |                                                                  |
|    | $\implies \frac{1}{2} \ln \left( \frac{1+2}{1-2} \right) = \ln \left( 6 \right)^{\frac{1}{2}}$ |                                                                  |
|    | $\Rightarrow \frac{1}{2} \ln \left( \frac{H x}{1-x} \right) = \frac{1}{2} \ln (G_{1})$         |                                                                  |
|    | $\implies \ln\left(\frac{1+\chi}{1+\chi}\right) = \ln(6\chi)$                                  |                                                                  |
|    | $\Rightarrow \frac{1+1}{1-2} = 61$                                                             |                                                                  |
|    | $\implies$ $1+\chi = G_{\lambda} - G_{\lambda}^{2}$                                            |                                                                  |
|    | ⇒ G2-52+1=0                                                                                    |                                                                  |
|    | → (31-1)(21-1)=0                                                                               |                                                                  |
|    | ⇒ a= < ½                                                                                       | 1                                                                |
|    | 3                                                                                              |                                                                  |

200

nadas,

 $x = \frac{1}{2}, \frac{1}{3}$ 

he,

1121/251

I.C.B.

Question 36 (\*\*\*+)

adasmaths.com

 $\frac{\sinh x}{\cosh x - 1}$  $x \in \mathbb{R}, x \neq 0.$ 

nadasn

**a**) Find a simplified expression for f'(x).

madasmaths.com

I.F.G.B.

Smarns com tr

I.C.p

**b**) Sketch the graph of f(x).



I.V.C.B. Madasmaths.Com

Ths.com

Smains.co.

14

6

Madasmal

I.V.C.B. Madası

Created by T. Madas

COM

madasmaths.com

I.V.G.B.

| 120. 435m                     | asp allow asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dars Dars                     | Created by T. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Question 37 (***+)            | co "Con "S.c. "Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                               | $y = \operatorname{arsinh} x, x \in \mathbb{R}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) Show that                  | In the In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N. KO                         | $\operatorname{arsinh} x = \ln \left[ x + \sqrt{x^2 + 1} \right].$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>b</b> ) Solve the equation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 201 10                        | $\operatorname{arsinh} \frac{3}{4} + \operatorname{arsinh} x = \operatorname{arsinh} \frac{4}{3}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| asp. ada                      | $x = \frac{5}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| All Mar                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               | (a) $g = arconha.$<br>$\Rightarrow conha.$<br>$\Rightarrow conha.$                                                                 |
|                               | $ \begin{array}{c} \Rightarrow e^{i\theta} - e^{i\theta} - a_{i\theta} \\ \Rightarrow e^{i\theta} - a_{i\theta} - a$ |
| In the                        | $ \begin{array}{l} (b)  \operatorname{argub} \frac{A}{2} + \operatorname{argub} a_{-} = \operatorname{argub} \frac{d}{2} \\ \Rightarrow \ln \left( \frac{A}{2} + \left( \frac{A}{2} + 1 \right) + \ln \left( x_{1} + \sqrt{x}_{1} \right) \right) = \ln \left( \frac{A}{2} + \sqrt{\frac{A}{2}} + 1 \right) \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \ln \left( \frac{A}{2} + \sqrt{\frac{A}{2}} + 1 \right) = \ln \left( \lambda_{1} \right) \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} + \chi^{2} + \chi^{2} \\ \Rightarrow \int x^{2} \epsilon_{1} = \frac{A}{2} - \lambda_{1} + \chi^{2} + \chi^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cr Cr                         | $ \Rightarrow h(2 + 6x^{-1}) = h\frac{1}{2} \qquad \Rightarrow h(2 + 6x^{-1}) = \frac{1}{2} \qquad \Rightarrow h(2 + 6x^{-1}) = \frac{1}{2} \qquad \Rightarrow h(2 + 6x^{-1}) = \frac{1}{2} \qquad \Rightarrow 2a = \frac{5}{12} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Attremente<br>-> aconty = roanty = roanty =<br>-> aconty = roanty = roanty =<br>-> solverwha_= aconty =<br>-> solverwha_= solverwhy=aconty=<br>-> solverwha=<br>-> solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ada Mada                      | $ \begin{array}{c} (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) \\ (1+1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dars Sim                      | Mar asp asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 12                         | the are are a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | Con Con S.Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I.F. 'Y                       | 2. 1. K. L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GB 4                          | G Gp G I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| m. m.                         | Man in Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1202 AU2                      | Created by T. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18 N N                        | Var. Var. Var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Question 38 (\*\*\*+)

 $\cosh 3x \equiv 4\cosh^3 x - 3\cosh x \,.$ 

- a) Prove the validity of the above hyperbolic identity by using the definition of cosh x in terms of exponential functions.
- **b**) Hence find in exact logarithmic form the solutions of the equation

 $\cosh 3x = 17 \cosh x$ .

(a)  $R_{1}^{1}J_{2} = 4(\omega_{1}^{1}\lambda_{1} - 3\omega\omega_{1}\chi_{2} = \frac{1}{2}\left(\frac{1}{2}e^{2} + \frac{1}{2}e^{2}\right)^{2}_{-1} - 3\left(\frac{1}{2}e^{2} + \frac{1}{2}e^{2}\right)^{2}_{-1} - 3\left(\frac{1}{2}e^{2} + \frac{1}{2}e^{2}\right)^{2}_{-1} - 3\left(\frac{1}{2}e^{2} + \frac{1}{2}e^{2}\right)^{2}_{-1} - \frac{1}{2}e^{2} + \frac{1}{2}$ 

 $x = \pm \ln\left(2 + \sqrt{5}\right) = \mp \ln\left(-2 + \sqrt{5}\right)$ 

 $\begin{array}{l} \Rightarrow 4 \operatorname{tad}_{3} \mathfrak{L} = 2 \operatorname{tad}_{2} \\ \Rightarrow \operatorname{tad}_{3} \mathfrak{L} = 3 \operatorname{tad}_{2} \\ \Rightarrow \operatorname{tad}_{3} \mathfrak{L} = 5 \operatorname{tad}_{2} \mathfrak{L} \\ \Rightarrow \operatorname{tad}_{2} \mathfrak{L} = 4 \operatorname{tad}_{3} \mathfrak{L} \\ \end{array}$ 

Question 39 (\*\*\*+)

¥.C.B.

Ĉ.p

The curve C has equation

 $y = 7 \sinh x - \sinh 2x, x \in \mathbb{R}$ .

'hs.con

 $\pm \left( \ln \left( 2 + \sqrt{3} \right), 3\sqrt{3} \right)$ 

a + 1 / losh

 $\pm \ln(2+\sqrt{3})$ 

21/2.50

Mana.

nha - sinhaa

. 760sha -260sha T.P da =0

- 26032=0

Hicks :

2

Find in terms of natural logarithms and/or surds the exact coordinates of the stationary points of C.

11<sub>20/281</sub>

20



?.ts.

# Question 40 (\*\*\*+)

14

The curves  $C_1$  and  $C_2$  have respective equations

 $y = 18\cosh x, x \in \mathbb{R}$  and  $y = 12 + 14\sinh x, x \in \mathbb{R}$ .

- **a**) Find the exact coordinates of the points of intersection between  $C_1$  and  $C_2$ .
- **b**) Sketch in the same diagram the graph of  $C_1$  and the graph of  $C_2$ .
- c) Show that the finite region bounded by the graphs of  $C_1$  and  $C_2$  has an area of

### $a\ln 2+b$ ,

where a and b are integers to be found.



Question 41 (\*\*\*+)

It is given that

 $\cosh(A+B) \equiv \cosh A \cosh B + \sinh A \sinh B$ .

**a**) Prove the validity of the above hyperbolic identity by using the definitions of the hyperbolic functions in terms of exponential functions.

It is now given that

 $5\cosh x + 4\sinh x \equiv R\cosh(x+\alpha)$ ,

where R and  $\alpha$  are positive constants.

**b**) Determine, in terms of natural logarithms where appropriate, the exact values of R and  $\alpha$ .

c) Hence state the coordinates of the minimum point on the graph of

 $y = 5\cosh x + 4\sinh x \,.$ 

R=3,  $\alpha = \ln 3$ ,  $|(-\ln 3,3)|$ 

| (a) $RH_{2} = capy(reply + \frac{1}{2}c_{1}r_{2}r_{3}) + \frac{1}{2}(c_{1}r_{2}r_{3}) + \frac{1}{2}(c_{1}r_{3}r_{3}) + \frac{1}{2}(c_{1}r_{3}r_{3}) + \frac{1}{2}(c_{1}r_{3}r_{3}) + \frac{1}{2}(c_{1}r_{3}) + \frac{1}{2}($ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rcl} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$                                                                                           |
| 2°(10018x - 349kx) = 9<br>k = 3<br>2 sublar = 4<br>Sublar = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{l} q = 3 \\ q = 5 \\ q = 3 \\$                                                                                          |

(\*\*\*+) **Question 42** 

Given that

asmaths.com

20

0

 $\sinh x = \tan t , \ 0 < t < \frac{\pi}{2},$ 

show clearly that

 $\tanh x = \sin t$ .

11303SD

madasmaths.com

I. C.B. Madasmaths.Com

F.C.A

Ismaths.com

I.F.C.B.

|                             |                                       | <u> </u>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| asmaths.                    |                                       | MERTED A                                                                          | METHOD 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| do.                         | -0/25                                 | sinha = tunt                                                                      | Suhastont<br>S⇒suha=tuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 200                         | 12.                                   | $-\frac{\sin h x}{\cosh x} = \frac{\sin h x}{\cosh x}$                            | $\begin{cases} \Rightarrow 1+\sin \lambda = 1+bu^{2}t \\ \Rightarrow \cos^{2}\lambda = su^{2}t \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19.                         | · 972                                 | +xli+sadit<br>= _tant                                                             | $ \begin{array}{c} \Rightarrow \operatorname{sub}_{i2}^{2} = \operatorname{cal}_{i}^{2} \\ \Rightarrow (1 - \operatorname{sub}_{i2}^{2}) = 1 - \operatorname{cal}_{i}^{2} t \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 911                         |                                       | $= \frac{\tan t}{\sqrt{1 + \tan^2 t^2}}$ $= \frac{\tan t}{\sqrt{3 + \tan^2 t^2}}$ | $ \begin{array}{c} 1 + t_{aa}^{2}\theta = s_{a}t_{a}^{2}\theta \\ 1 - t_{aa}\theta = s_{a}t_{a}^{2}\theta \\ 1 - t_{aa}\theta = t_{a}\theta \\ 1 - s_{a}t_{a}^{2}\theta = t_{a}t_{a}^{2}\theta \\ 1 - s_{a}t_{a}^{2}\theta \\ 1 - s_{a}t_{a}^{2}\theta \\ 1 -$ |
| 410                         |                                       | $= \frac{\sin t}{\cos t} \times \log t$                                           | ) = tanka = sinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | n                                     | C2 sut                                                                            | ) == +-tourbx =+sint (o <t<e]< td=""></t<e]<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ۲.                          | <i>n</i> .                            | S                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - <u>.</u>                  | 5                                     | · · · · ·                                                                         | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.                          |                                       |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5 D                         |                                       |                                                                                   | r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                          | I.                                    | · · · · · · · · · · · · · · · · · · ·                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 'G'A                      |                                       |                                                                                   | 1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | · · · · · · · · · · · · · · · · · · · | K                                                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | . <b>(</b>                            | $\boldsymbol{\rho}$                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | ふべく                                   | 5                                                                                 | - ' A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                       | 11303                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9                           | 11/2 ·                                | 100                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathcal{O}_{\mathcal{A}}$ | do.                                   | de                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| do.                         | - C/A                                 | - 42                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100                         | 10 S                                  | . 91                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.                         |                                       | < ×                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 912                         |                                       | 0                                                                                 | dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | y                                     | 20                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · ·                   | 0                                     | (n)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5 1                         | Solution 1                            | 1h                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | SA                                    |                                                                                   | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                       |                                                                                   | naths.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S D                         |                                       |                                                                                   | Ex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                       |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

I.Y.C.B. Madası

L.Y.C.B. Madasmatics.Com

F.G.B.

The Com

proof

ths.co

Question 43 (\*\*\*+)

 $f(x) \equiv \operatorname{artanh} x , x \in \mathbb{R}, |x| < 1$ 

a) Use the definition of the hyperbolic tangent to prove that

 $f(x) \equiv \frac{1}{2} \ln \left[ \frac{1+x}{1-x} \right].$ 

b) Use a method involving complex numbers and the trigonometric identity

$$1 + \tan^2 x \equiv \sec^2 x \,,$$

to obtain the hyperbolic equivalent

$$1 - \tanh^2 x \equiv \operatorname{sech}^2 x \,.$$

c) Hence solve the equation

 $6 \operatorname{sech}^2 x - \tanh x = 4,$ 

giving the two solutions in the form  $\pm \frac{1}{2} \ln k$ , where k are two distinct integers.

|    |                                                                                                          | 100 |     |               |
|----|----------------------------------------------------------------------------------------------------------|-----|-----|---------------|
| a) | Photes to the                                                                                            |     |     | 3             |
|    | LET artauha = ~, lal <1                                                                                  |     |     |               |
|    | - a = touch ac                                                                                           |     |     |               |
|    | $\implies \mathcal{I} = \frac{e^{2k}-1}{e^{2k}+1}$                                                       |     | c)  | 1921N         |
|    | $\implies \Im e^{2n} + \chi = e^{2n} - i$                                                                |     |     |               |
|    | $=$ 1+ $\alpha = e^{2N} - \alpha e^{2N}$                                                                 |     |     | 3             |
|    | $\rightarrow i \vdash x = e^{2k}(i - x)$                                                                 |     |     | $\rightarrow$ |
|    | $\Longrightarrow e^{2x} = \frac{1+\infty}{1-\infty}$                                                     |     |     |               |
|    | $\implies 2\alpha = \ln\left(\frac{1+\alpha}{1-\alpha}\right)$                                           |     |     | ⇒             |
|    | $\Rightarrow \alpha = \frac{1}{2} \ln \left( \frac{1+\alpha}{1-\alpha} \right)$                          |     |     |               |
|    | $\Rightarrow \operatorname{orburb}_{\mathcal{X}} = \frac{1}{2} h \left( \frac{1+\chi}{1-\chi} \right)$   |     |     | =3            |
|    | - Equision                                                                                               | 1   |     | ,             |
| 6) | STARTING ROW THE TERSONOMETERS IDISTOY                                                                   |     | 1   | ISINIG- F     |
|    | $\rightarrow 1 + 4u^2 \theta \equiv sec^2 \theta$                                                        | đ   |     | ⇒ 1           |
|    | $\frac{1}{\sigma_{2ab}} = \frac{\theta_{MR}}{\sigma_{2ab}} + 1 \leftarrow$                               |     |     |               |
|    | LET Q=iaz q NOTE cosia = cosha q smia=ismba                                                              |     | . = | ⇒ ×:          |
|    | $\rightarrow$ $l + \frac{Sh_{1}^{2}(L_{2})}{(c_{2}^{2}C(L_{2})} = \frac{l}{\omega\xi(L_{2})}$            |     |     |               |
|    | $\Rightarrow$   + $\frac{i^2 \sin k_{2x}^2}{\cosh^2 2} = \frac{l}{\cosh^2 2}$                            |     |     |               |
|    | $\frac{1}{t^2 \wp \omega} = \frac{\chi^2 \wp \omega}{\chi^2 \wp \omega} - \downarrow \rightleftharpoons$ |     |     |               |
|    |                                                                                                          | ٩   |     |               |
|    |                                                                                                          |     |     |               |

| = 1- tanka = secta tesporeno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) 7844 - 21124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ⇒ 6secti - buha = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| = 6(1-kayliz) - taukor = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| → 6-6baul2x-bauhx=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| → 0 = 6 burkiz + tankz -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = (3tauhz+2)(2tauhz-1)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\rightarrow$ faulta = $< \frac{12}{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\Rightarrow x = \langle \operatorname{ortwit}(\frac{1}{2}) \\ \operatorname{articula}(\frac{-2}{3}) = -\operatorname{ortwit}(\frac{2}{3}) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{l} \displaystyle \underset{(\underline{k},\underline{k}) \in \mathcal{A}}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k}})}{\underset{(\underline{k},\underline{k})}{\underset{(\underline{k},\underline{k})}{($ |
| $\Rightarrow x = <_{\frac{1}{2} p 2}^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| : <u>k=3 or k=5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

 $x = \frac{1}{2} \ln 3$ 

 $\frac{1}{2}\ln 5$ 

#### Question 44 (\*\*\*+)

Ke,

a) Sketch a detailed graph of the curve with equation

 $y = \operatorname{artanh} x$ ,

defined in the largest real domain.

**b**) Obtain a simplified expression for  $\frac{dy}{dx}$ , in terms of x only.

c) Use integration and the answer of part (b) to show that

 $\operatorname{artanh} x = \frac{1}{2} \ln \left[ \frac{1+x}{1-x} \right].$ 

No credit will be given for any alternative methods used in part (c).



 $\frac{dy}{dx} = \frac{1}{1-x}$ 

 $\frac{dy}{dx} = \frac{1}{1-x^2}$ 

 $dy = \frac{1}{1-x^2} dx$ 

04 = 10 1-22

 $\begin{array}{l} \left(\frac{1}{2}\right) & = \int_{0}^{1} \frac{1}{1+2} + \frac{1}{1+2} dt \\ \left[ \int_{0}^{1} \int_{0}^{1} & = \left[ \frac{1}{2} t_{0} \right] h(1+2) \\ \int_{0}^{1} & = \left[ \frac{1}{2} t_{0} \right] \left[ \frac{1}{1+2} \\ \int_{0}^{1} \int_{0}^{1} dt \\ \left[ \int_{0}^{1} \frac{1}{1+2} \right] - \frac{1}{2} h(1+2) \\ \int_{0}^{1} dt \\ \left[ \int_{0}^{1} \frac{1}{1+2} \right] \left[ \int_{0}^{1} \frac{1}{1+2} \\ \left[ \int_{0}^{1} \frac{1}$ 

#### Question 45 (\*\*\*+)

a) Starting from the definitions of  $\cosh x$  and  $\sinh x$ , in terms of exponentials, show that

 $\cos(i\varphi) \equiv \cosh(\varphi)$  and  $\sin(i\varphi) \equiv i\sinh(\varphi)$ .

**b**) Use the results of part (**a**) to deduce

 $\operatorname{sech}^2 \varphi + \tanh^2 \varphi \equiv 1.$ 

c) Hence find, in exact logarithmic form, the solutions of the following equation.

 $10 \operatorname{sech} y = 5 + 3 \tanh^2 y \,.$ 





g = ± h[=+ 4]

 $3 + \sqrt{5}$ 

 $\overline{2}$ 

 $y = \pm \ln l$ 

Question 46 (\*\*\*+)

1.

 $f(w) \equiv 5\sinh w + 7\cosh w, \ w \in \mathbb{R}$ 

- a) Express f(w) in the form  $R \cosh(w+a)$ , where R and a are exact constants with R > 0.
- **b**) Use the result of part (**a**) to find, in exact logarithmic form, the solutions of the following equation.

 $5\sinh w + 7\cosh w = 5$ .

 $R = \sqrt{24} = 2\sqrt{6}$ ,  $a = \frac{1}{2}\ln 6 = \ln \sqrt{6}$ ,  $w = -\ln 2 \cup w = -\ln 3$ 

a) Placeed as Rouaus 55unhw + 7cashw ≡ Rcah(W+a) ≡ Rcashwaasha + Runhwusnha ≡ (Rcusha)cashw + (Risnha)sunhw SIDES WE OBTAIN  $\begin{array}{l} \mbox{Riasha}=7 \\ \mbox{Riasha}=5 \end{array} \Longrightarrow \begin{array}{l} \mbox{R}^2 (a k^2 a = 49 \\ \mbox{R}^2 b k^2 a = 25 \end{array} \Longrightarrow \begin{array}{l} \mbox{R}^2 (a k^2 a - s k k^2) = 24 \end{array}$  $\rightarrow R^2 = 24$ -> R = + 2 \6 AND BY DIVIDING THE SPORTIONS ABODE  $\frac{2 \operatorname{smhq}}{p \operatorname{mhq}} = \frac{s}{7}$ -> tauha = 5 ⇒ a = arbanh \$  $\implies \alpha = \frac{1}{2} \ln \left( \frac{1+\frac{2}{2}}{1-\frac{2}{2}} \right) = \frac{1}{2} \ln \left( \frac{1+2}{2-2} \right) = \frac{1}{2} \ln \varepsilon$ = <u>q= ln s</u> i. SsinhW + 7coshW ≡ 246 cosh(W + ln46) b) Nou SOWING THE OPUATION VSING THE DESOLT OF PHOT (a)

 $\Rightarrow 5 \operatorname{sen}(h_{U} + 7 \operatorname{cost}(w) = 5$  $\Rightarrow 27 \operatorname{cost}(w + |m/E^{2}|) = 5$  $\Rightarrow \operatorname{cost}(w + |m/E^{2}|) = \frac{5}{24E^{2}} = \frac{54E^{2}}{12}$  $\Rightarrow w + |m/E^{2}| = \pm \operatorname{cosst}(\frac{5E^{2}}{22})$ 



#### Question 47 (\*\*\*+)

By using suitable hyperbolic identities, or otherwise, show that

 $\frac{1}{4} \left[ \cosh 4x + 2\cosh 2x + 1 \right] \equiv \cosh 2x \cosh^2 x \,.$ 

proof

Question 48 (\*\*\*\*)

a) By expressing  $\cosh x$  and  $\sinh x$  in terms of exponentials, show that

 $\cosh^2 x - \sinh^2 x \equiv 1$ .

- **b**) Simplify  $(\cosh x + \sinh x)^3$ , writing the final answer as a single exponential.
- c) Hence express  $\sinh 3x$  in terms of  $\sinh x$

 $(\cosh x + \sinh x)^3 = e^{3x}$ ,  $\sinh 3x = 3\sinh x + 4\sinh^4 x$ 

- $$\begin{split} & (1+\sum_{i=1}^{i} \cos(i\lambda_{i} \sin(i\lambda_{i} \sin(i\lambda_{i} \sin(i\lambda_{i}))))) \\ & = \left(\frac{1}{2}e^{i\lambda_{i}} + \frac{1}{2}e^{i\lambda_{i}} + \frac{1}{2}e^{$$
  - $=e^{\lambda} \times e^{\lambda} = e^{0} = 1 = 2H_{2}$
- b)  $\left( (\operatorname{acs}_{h\mathcal{X}} + \operatorname{Sin}_{h})_{D} \right)^{3} = \left( \frac{1}{2} e^{2} + \frac{1}{2} e^{2} + \frac{1}{2} e^{2} \frac{1}{2} e^{2} \right)^{3} = \left( e^{2} \right)^{3} = e^{32}$
- c)  $\left( \left( \operatorname{losh}_{2} \operatorname{Suh}_{2} \right)^{3} = \left( \frac{1}{2} e^{2s} + \frac{1}{2} e^{2s} \frac{1}{2} e^{2s} + \frac{1}{2} e^{2s} \right)^{3} = \left( e^{-2s} \right)^{4} = e^{-3t}$ 

  - = 3 coshis sinha + sinhiac
  - =  $3 \sinh \alpha (1 + \sinh^2 \alpha) + \sinh^3 \alpha$ =  $3 \sinh \alpha + 4 \sinh^3 \alpha$

#### Question 49 (\*\*\*\*)

The curve C has equation

 $y = \cosh(2 \operatorname{arsinh} x), x \in \mathbb{R}.$ 

**a**) Find an expression for  $\frac{dy}{dx}$ .

**b**) Show clearly that

$$\frac{d^2 y}{dx^2} = \frac{4}{1+x^2} \cosh(2 \operatorname{arsinh} x) - \frac{2x}{\left(1+x^2\right)^{\frac{3}{2}}} \sinh(2 \operatorname{arsinh} x)$$

A

c) Hence show further that

F.C.S.

i.C.p.

$$(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - ky = 0,$$

for some value of the constant k.

| dy_      | $2\sinh(2\operatorname{arsinh} x)$ | k=4                                |
|----------|------------------------------------|------------------------------------|
| $dx^{-}$ | $\sqrt{1+x^2}$                     | $, \left[ \frac{k - 4}{2} \right]$ |
| 1.       |                                    |                                    |

COM

Madasn.

is.com

6

i Gp

- y = cash (zansula a)
- $\frac{d\overline{z}}{d\overline{z}} = \frac{\sin((2 \sin \omega h_2) \times \frac{1}{\sqrt{1+\chi^2}})}{\sqrt{1+\chi^2}} = \frac{\cos \sin((2 \sin \omega h_2))}{\sqrt{1+\chi^2}}$ (b)  $\frac{du}{d\overline{z}} = 2(1+\overline{z})^{\frac{1}{2}} \sinh((2 \sin \omega h_2))$
- $\frac{d^2}{dt^2} = 2(1+2t^2)^2(-2) \cosh(2a\pi uhx) + 2(1+2t^2)^{\frac{1}{2}} \cosh(2a\pi uhx) \times \frac{2}{2}$
- $\frac{\partial^2 y}{\partial \alpha^2} = -\frac{2\epsilon \sinh(2\alpha \epsilon_0 h_x)}{(1+2^4)^{3/2}} + \frac{4\cosh(2\alpha \epsilon_0 h_x)}{C(1+2^4)}$
- $\operatorname{Vew}\left((H_{2}^{2})\right[\frac{4(\operatorname{coh}\left[2\operatorname{mod}_{2n}\right]_{n}}{(H_{2}^{2})}-\frac{2\operatorname{righ}\left[2\operatorname{mod}_{2n}\right]_{n}}{(H_{2}^{2})^{2}}+2\left[\frac{2\operatorname{soh}\left(2\operatorname{mod}_{2n}\right)_{n}}{(H_{2}^{2})^{2}}\right]$
- = 4uch(2anusha) 22ah(2anusha) + 22anh(2anusha) + 22 + 42

Ĉŀ,

: k=4

#### Question 50 (\*\*\*\*)

A function is defined in terms of exponentials by

$$f(x) = \frac{2}{e^x + e^{-x}}, x \in \mathbb{R}.$$

- **a**) Sketch the graph of f(x).
- **b**) Show clearly that

$$f''(x) = \operatorname{sech} x \left( \tanh^2 x - \operatorname{sech}^2 x \right).$$

It is given that the graph of f(x) has two points of inflection.

c) Show further that the coordinates of these points are

 $\left(\pm\ln\left(1+\sqrt{2}\right),\frac{1}{\sqrt{2}}\right).$ 



| (b) $f(x) = sdy_x$<br>$f'(x) = -sdy_x$<br>$f'(x) = -sdy_x buy_x$<br>$f'(x) = -sdy_x buy_x$<br>$f'(x) = -sdy_x buy_x = -sdy_x$<br>$f'(x) = -sdy_x = -sdy_x$<br>$f'(x) = -sdy_x$<br>$f'(x) = -sdy_x$<br>$f'(x) = -sdy_x$<br>$f'(x) = -sdy_x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) $f(x) = \frac{2}{c^{2}} \frac{1}{c^{2}} + \frac{1}{2(c^{2} + c^{2})} = \frac{1}{baba} = 5bbba.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{cases} c_{1}(x) = -(s_{1}c_{1}c_{2}c_{3}c_{3}c_{3}c_{4}c_{3}) \\ c_{2}(x) = -s_{2}c_{3}c_{3}c_{3}c_{4}c_{3}c_{4}c_{4}c_{4}c_{4}c_{4}c_{4}c_{4}c_{4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) -f(x) = sed1x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{aligned} f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{sub}(\alpha - \operatorname{sub}(\alpha$ | AG) =-sector tamba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{aligned} f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{selex} b \operatorname{sub}(\alpha - \operatorname{selex}) \\ f(\alpha) &= & \operatorname{sub}(\alpha - \operatorname{sub}(\alpha$ | f (a) =- (-sechatsuha) (taylo) - secha (secha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c) $ \begin{array}{c} (f_{1}) = 0 \\ (f_{2}) = 0 \\ (f_{2}) = 0 \\ (f_{1}) = 0 \\ (f_{2}) = 0 \\ (f_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f(a) = sechx town has - section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} (c) & f_{(2)}^{(0)} = 0 \\ & to b_{2}^{-1} = sd_{2}^{-1} = 0 \\ & (t+t_{1}) = tod_{2}^{-1} = 0 \\ & (t+t_{1}) = tod_{2}^{-1} \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f(a) = secha (burha-secha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} (c) & \psi_{1}^{(c)} = 0 \\ & \psi_{1}^{(c)} = 0 \\ & \psi_{1}^{(c)} = -\operatorname{sd}(f_{\lambda} = 0) \\ & (\operatorname{id}(\lambda + 0)) \\ &$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Question 51 (\*\*\*\*)

It is given that

 $\cosh(A+B) \equiv \cosh A \cosh B + \sinh A \sinh B$ .

a) Prove the validity of the above hyperbolic identity by using the definitions of the hyperbolic functions in terms of exponential functions.

It is now given that

 $\cosh(x+1) = \cosh x \,,$ 

- **b**) Show clearly that ...
  - **i.** ...  $\tanh x = \frac{1-e}{1+e}$ .

**ii.** ...  $x = -\frac{1}{2}$ .

proof

| (4) KHS = coshficial B + smhA smhB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= \left(\frac{1}{2}e^{A} + \frac{1}{2}e^{A}\right)\left(\frac{1}{2}e^{B} + \frac{1}{2}e^{B}\right) + \left(\frac{1}{2}e^{A} - \frac{1}{2}e^{-A}\right)\left(\frac{1}{2}e^{B} - \frac{1}{2}e^{-B}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $=\frac{1}{4}(e^{A}_{+}\bar{e}^{A}_{-})(e^{B}_{-}+\bar{e}^{B}_{-})+\frac{1}{4}(e^{A}_{-}-\bar{e}^{A}_{-})(e^{B}_{-}-\bar{e}^{B}_{-})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $=\frac{1}{4}\left(e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}\right)+\frac{1}{4}\left[e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}+e^{4+2}$ |
| $= \frac{1}{2} e^{A+B} + \frac{1}{2} e^{-A-B} = \frac{1}{2} \left( e^{A+B} + e^{(A+B)} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \cosh(A+B) = LHS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (b) (I) cash(2+1) = vasha ( = tamba - (e-1)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| => cahavadhi +anhuanhi = caha (E-i)(E+i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| satureshi + saloreshi = idar = - e-1<br>sature = - e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = (rshi + tanha sinhi = 1 ) = tanha = 1-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = touhar = 1- Lach / Etpice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| = tanks = 1-(1=e'+te') (II) ac arranh (1-e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{1}{2}e^{i}-\frac{1}{2}e^{i}$ $\Rightarrow \lambda = \frac{1}{2}h_{0}\left[\frac{1+\frac{1-e}{1+e}}{1-\frac{1-e}{2}}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Rightarrow \tanh_{2} = \frac{2 - (e^{i} + e^{i})}{e^{i} - e^{-i}} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Rightarrow \tan h_2 = \frac{2 - e^{t} - e^{-t}}{2 - e^{-t}} \Rightarrow 2 = \frac{1}{2} \ln \left( \frac{1+e^{-t} - e^{-t}}{2} + e^{-t} - e^{-t} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 Lang = 2-e'-e'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

 $\Rightarrow t_{mh_2} = -\frac{e^2 - 2e + 1}{e^2 - 1} \qquad \Rightarrow x = \frac{1}{2} \ln \frac{1}{e^2}$ 



Question 54 (\*\*\*\*)

 $\cosh 2x \equiv 2\cosh^2 x - 1$ 

a) Prove the validity of the above identity by using the definitions of  $\cosh x$  and  $\sinh x$ , in terms of exponentials.

The curve C has equation

 $y = \cosh x - 1, x \in \mathbb{R}$ .

**b**) Sketch the graph of C.

The region bounded by C, the x axis and the line with equation  $x = \ln 9$  is rotated through  $2\pi$  radians about the x axis to form a volume of revolution S.

c) Show that the volume *S* is

 $\pi \left(3\ln 3 + \frac{100}{81}\right).$ 

proof

2 (12 + + + e") - 1 = + e + + + e"  $\frac{1}{2}(e^{\alpha}+e^{\alpha}) = LHS$ (1)  $= \pi \int (\hat{q}(a))^2 da$ T [ Cosha-1)2 de iosliz - zusla +1 th  $\left(\frac{1}{2}+\frac{1}{2}\log \ln 2\alpha\right)-2\log \ln \alpha+1$  de \* = + = tost 2x - 2105/22 dr [ == + == sinh= - 2sinha \_\_\_\_ hig  $V = \frac{1}{2} \left[ \left( \frac{3}{2} \ln q + \frac{1}{4} \operatorname{sud}(2 \ln q) - 2 \operatorname{sub}(\ln q) \right) - (0) \right]$  $V = \pi \left[ 3h_{\eta}^{\frac{1}{2}} + \frac{1}{4} \left( \frac{1}{2} e^{\ln \theta_{1}} \frac{1}{2} e^{\ln \frac{1}{2}} - 2 \left[ \frac{1}{2} e^{\ln \theta_{1}} - \frac{1}{2} e^{\ln \frac{1}{2}} \right] \right]$  $\bigwedge = \Pi \left[ \Im^{p_3} + \frac{8}{T} \left( \frac{8I}{8I} - \frac{8I}{I} \right) - \left( 4 - \frac{1}{I} \right) \right]$  $V = \pi \left[ 3 \ln 3 + \frac{100}{81} \right]$ 



Kr.



The figure above shows the graphs of  $y = \tanh x$  and  $y = \operatorname{sech} x$ , in the first quadrant.

Show that the area shown shaded in the figure for which  $x \ge 0$  is exactly  $\frac{1}{4} [\pi + \ln 4]$ .



Mana

proof

Question 56 (\*\*\*\*)

The Com y • x 0

The figure above shows the graph of  $y = \operatorname{arsech} x$ ,  $0 < x \le 1$ .

a) Show clearly that

arsech 
$$x = \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right).$$

**b**) Show further that

Ĉ.B.

$$\frac{d}{dx}(\operatorname{arsech} x) = -\frac{1}{x\sqrt{1-x^2}}$$

| (a) $y = \operatorname{ansch}_{2}$<br>$\Rightarrow \operatorname{Soly}_{2} = \infty$<br>$\Rightarrow \operatorname{Soly}_{3} = \infty$<br>$\Rightarrow \operatorname{Soly}_{3} = \frac{1}{2}$<br>$\Rightarrow \operatorname{Soly}_{3} = \frac{1}{2}$<br>$\Rightarrow \operatorname{Sol}_{3} = \frac{1}{2}$ | $\left\{\begin{array}{c} \Rightarrow \left( \frac{e^{4}}{2}, \frac{1}{3} \right)^{5}  \frac{1}{3k} - 1 \\ \Rightarrow \left( \frac{e^{4}}{2}, \frac{1}{3} \right)^{5}  \frac{1-\lambda^{2}}{2k} \\ \Rightarrow \left( \frac{e^{4}}{2}, \frac{1}{k} \right)^{2}  \frac{e^{4}}{2k} \\ \Rightarrow e^{4} - \frac{1}{k}  \equiv 0 \frac{e^{4}}{2k} \frac{1}{2k} \\ \Rightarrow e^{4} = \frac{1}{k} \bigoplus \frac{e^{4}}{2k} \frac{1}{2k} \\ \Rightarrow \frac{e^{4}}{2k} = \frac{1}{k} \bigoplus \frac{e^{4}}{2k} \frac{1}{2k} \\ \Rightarrow \frac{e^{4}}{2k} = \frac{1}{k} \bigoplus \frac{1}{k} \frac{1}{2k} \frac{1}{2k} \\ \Rightarrow \frac{e^{4}}{2k} = \frac{1}{k} \bigoplus \frac{1}{k} \frac{1}{2k} \frac{1}{2k} \\ \Rightarrow \frac{1}{k} \bigoplus \frac{1}{k} \frac{1}{2k} \frac{1}{2k} \\ \Rightarrow \frac{1}{k} \bigoplus \frac{1}{k} \frac{1}{2k} \frac{1}{k} \frac{1}{2k} \\ \Rightarrow \frac{1}{k} \bigoplus \frac{1}{k} \frac{1}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\left[h\left(\frac{1+\sqrt{1-\gamma^{2/3}}}{2\kappa}\right)\right] = \frac{d}{d\kappa}\left[h\left(1+C(-N^{2})^{\frac{1}{2}}\right) - h_{1/2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= \frac{-\alpha}{1+\frac{1}{1+\alpha}} = \frac{-\alpha}{1+\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \frac{1}{x} = \frac{\sqrt{2}(r_{1}r_{1})(x) \times \sqrt{\kappa_{r-1}}}{\frac{1}{x}} \\ \frac{1}{x} = \frac{1}{\sqrt{(r_{r-1})^{2}}} \\ \frac{1}{x} = \frac{1}{\sqrt{(r_{r-1})^{2}}} \\ \frac{1}{\sqrt{(r_{r-1})^{2}}} = \frac{1}{\sqrt{(r_{r-1})^{2}}} \\ \frac{1}{\sqrt{(r_{r-1})^{2}}} = \frac{1}{\sqrt{(r_{r-1})^{2}}} \\ \frac{1}{\sqrt{(r_{r-1})^{2}}} = \frac{1}{\sqrt{(r_{r-1})^{2}}} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \left( -\frac{1}{2}\right)^{\frac{1}{2}} \\ \left( -\frac{1}{2}\right)^{\frac{1}{2}} \\ \left( -\frac{1}{2}\right)^{\frac{1}{2}} \\ \left( -\frac{1}{2}\right)^{\frac{1}{2}} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} = \begin{array}{c} \left( -\frac{1}{2}\right)^{\frac{1}{2}} \\ \frac{1}{2} \\ \frac$                                                                           |
| - /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-\frac{(1-2t)^2}{2}$ $-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| HITHCARTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c 1. 1                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Let y= arsishis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >> du = - interpretation                                                                         |
| => Sechig = 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( THE GRADIES OF THE GRAPH IS NEGATIVE                                                           |
| = 2= sediy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ) dy                                                                                           |
| = dy = - sody burly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | () and a many of                                                                                 |
| -> da = - arting tanky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Rightarrow \frac{d_1}{d\lambda} = -\frac{1}{\lambda \sqrt{1-\lambda^2}}$                       |
| $\left(1 + \frac{1}{1 - 6}\right) = \frac{1}{2} + $ | $\Rightarrow \frac{d}{dl} \left( a g_{2x} h_{2k} \right) = - \frac{1}{2 \sqrt{(-\lambda_{2k})}}$ |
| hand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ts expuneuo                                                                                      |

proof

**Question 57** (\*\*\*\*)

The figure above shows the graph of the curve with equation

y

0

 $y = 3\sinh x - 2\cosh x, x \in \mathbb{R}.$ 

The finite region bounded by the curve and the coordinate axes, shown shaded in the figure above, is revolved by  $2\pi$  about the x axis to form a solid S.

Show that the volume of *S* is

 $\frac{1}{4}\pi(12-5\ln 5).$ 

proof

| $\begin{array}{l} \label{eq:result} \text{RETCy}  y = 0 \\ \text{D} = 3 \text{subs}_2 - 2 \text{code} \\ \text{Result} = 3 \text{curle} \\ \frac{3}{2} = 4 \text{curle} \\ \frac{3}{2} = \frac{1}{2} \ln \left( \frac{3}{1-\frac{3}{2}} \right) \\ \frac{3}{2} = \frac{1}{2} \ln \left( \frac{3}{1-\frac{3}{2}} \right) \\ \frac{3}{2} = \frac{1}{2} \ln \left( \frac{3}{1-\frac{3}{2}} \right) \\ \frac{3}{2} = \frac{1}{2} \ln S \end{array}$ | $\begin{array}{c} \eta_{4,5} \\ V = \pi \int_{0}^{\frac{1}{2}M_{5}} (2sohz - 2sohz)^{2} ds = \eta \int_{0}^{\frac{1}{2}M_{5}} (2sohz - 2sohz)^{2} ds + \frac{1}{2} ds + \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= u \left[ \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right]$ $= u \left[ \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} +$ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

#### Question 58 (\*\*\*\*)

- a) Sketch the graph of  $y = \operatorname{arsech} x$ , defined for  $0 < x \le 1$ .
- **b**) Show clearly that

$$\frac{dy}{dx} = -\frac{1}{x\sqrt{1-x^2}} \,.$$

c) Hence evaluate

arsech x dx.

Give the answer in the form  $\lambda \left[ 2\pi - 3\ln(2 + \sqrt{3}) \right]$ , where  $\lambda$  is a rational number

to be found.

I.Y.C.

| KINO | FOR ONLY TO ON                                          | E PURPUSES THE | POSITIVA | BRANDH |  |
|------|---------------------------------------------------------|----------------|----------|--------|--|
| 4    | 1                                                       |                |          |        |  |
|      | $\langle \cdot \rangle$                                 |                |          |        |  |
|      | 9:                                                      | = anseda       |          |        |  |
|      |                                                         | \              |          |        |  |
|      |                                                         | (lio) > 2      | /        |        |  |
|      |                                                         | · /            |          |        |  |
| USON | 295001 9HT 4                                            | E RULL         |          |        |  |
|      |                                                         |                |          |        |  |
|      |                                                         |                |          |        |  |
|      | y = ansede                                              |                |          |        |  |
|      | g = anxedio<br>Sedig = 2                                |                |          |        |  |
|      | g = ancedo<br>sedyg = 2<br>2 = sedyg                    |                |          |        |  |
|      | g = anxedio<br>Sedig = 2                                |                |          |        |  |
|      | y = ansecho<br>seelig = 2<br>2 = seelig<br>dg = -seelig | lanky          |          |        |  |
|      | g = ancedo<br>sedyg = 2<br>2 = sedyg                    | lanky          |          |        |  |

| $\int_{\pm}^{1} \operatorname{arsech}_{2} x  dx = \int_{\pm}^{1} \frac{1}{2} x \operatorname{arsech}_{2} x  dx$ $\begin{cases} \frac{1}{2} \\ \frac{1}{2$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $= \left[2 \operatorname{arseh} \lambda \right]_{\underline{\lambda}}^{1} - \int_{\underline{\lambda}}^{1} \frac{z_{\lambda}}{\lambda (t-2)} dt$ $= \left[2 \operatorname{arseh} \lambda \right]_{\underline{\lambda}}^{1} + \int_{\underline{\lambda}}^{1} \frac{1}{\sqrt{(t-2)}} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                       |
| $= \left[ 2 \operatorname{orsek} x + \operatorname{orsen} \right]_{\underline{x}}^{\underline{x}}$ $= \left[ 2 \operatorname{orsek} x + \operatorname{orsen} \right] - \left( \underline{x} \operatorname{orsek} \frac{x}{2} + \operatorname{orsen} \frac{x}{2} \right)$ $= \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| $= \frac{\pi}{3} - \frac{1}{2} \operatorname{orsel}_{\frac{1}{2}} $ Findury we that $E = \operatorname{orsel}_{\frac{1}{2}}$ Such $E = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| $k = \ln(z + \sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| $\therefore \int_{\underline{z}}^{1} \operatorname{speed}_{\lambda} \ bx = \frac{\mathbb{T}}{\underline{z}} - \frac{1}{2} \ln(2x \sqrt{x}')$ $= \frac{1}{4} \left[ \frac{2\pi - 3h(2x \sqrt{x}')}{1 + \lambda + \frac{1}{6}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |

·C.B.

COM

112/28

 $\lambda =$ 

·G.B.

#### Question 59 (\*\*\*\*)

It is given that for all real x

 $8\sinh^2 x \equiv \cosh 4x - 4\cosh 2x + 3.$ 

- a) Prove the above hyperbolic identity, by using the definitions of the hyperbolic functions in terms of exponentials.
- **b**) Hence, or otherwise, show that  $x = \pm \ln(1 + \sqrt{2})$  are the solutions of the equation

 $2\cosh 4x - 15\cosh 2x + 11 = 0$ 

proof

| ) | $8 \Im M_{\pi}^{4} = 8 \left( \frac{1}{2} e^{2} - \frac{1}{2} e^{2} \right)^{4} = 8 \times \left( \frac{1}{2} e^{2} \times \left( e^{2} - e^{2} \right)^{4} \right)^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $=\frac{1}{2}(e^2-\bar{e}^2)^{\psi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $= \frac{1}{2} \left( e_{j}^{\chi} - e_{j}^{\chi} \right), \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $= \frac{1}{2(e^{4x} + e^{4k})} = \frac{1}{2} \left( \frac{1}{e^{2x}} + \frac{1}{e^{2k}} + \frac{1}{e^{2k}} \right) + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | = coshiba - Glosphaza + 3 the Republic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 | 2 cashlar - 15 cash2a + 11 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 2005/12- 8005/22+6 = 7005/22-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 165mha = 7(1+25mha)-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 1000000 = 7(1+2000000) = 5<br>1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 16sm/12-14sm/12-2=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 8=1/2 - 7.5m/2 -1 =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $(8 \operatorname{sun}_{2k+1})(\operatorname{sun}_{2k-1}) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | sinha= < y sinha= <'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\alpha = -\operatorname{anamh} I = \ln(1+\sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\alpha_{z} \sim \frac{\alpha_{z}}{\alpha_{z}} \left( \frac{1}{\alpha_{z}} = \frac{1}{\alpha_{z}} \left( \frac{1}{\alpha_{z}} + \frac{1}{\alpha_{z}} \right) - \frac{1}{\alpha_{z}} \left( \frac{1}{\alpha_{z}} + \frac{1}{\alpha_{z}} + \frac{1}{\alpha_{z}} \right) - \frac{1}{\alpha_{z}}$ |
|   | AUTIONATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3 | $\begin{array}{l} \mbox{$\lambda$(adultz-1)(adultz+1)=0$} & \mbox{$\zeta \Rightarrow 2\pi \approx \pm$ analogs} \\ \mbox{$\lambda$(adultz-1)-1(adultz+1)=0$} & \mbox{$\zeta \Rightarrow 2\pi \approx \pm$ ln(3+\sqrt{6})$} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 4institue - 5institue + 9 = 0<br>$3 = \pm \frac{1}{2} lm(1 + 2x)xt(z' + ((z')^2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Э | (4noshia-3)(ushia-3)=0 > x=+ 1/2 (1+12)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| cash2a = 3 | Ja a. | = ± ln(HAZ)2 |
|------------|-------|--------------|
| X          |       | At BEQU      |

#### **Question 60** (\*\*\*\*)

5

A curve C has equation

 $y = \cosh 2x + \sinh x, x \in \mathbb{R}.$ 

a) Show that the x coordinate of the turning point of C is

# $-\ln\left(\frac{1+\sqrt{17}}{4}\right).$

**b**) Using the definitions of  $\cosh x$  and  $\sinh x$ , in terms of exponentials, prove that

#### $\cosh 2x \equiv 1 + 2\sinh^2 x$ .

- c) Hence show that the y coordinate of the turning point of C is  $\frac{r}{8}$
- d) Determine the nature of the turning point.

min



Question 61 (\*\*\*\*)

It is given that

 $A\cosh x + B\sinh x \equiv R\cosh(x+\alpha)$ ,

where the A, B, R and  $\alpha$  are constants with A > B > 0, R > 0.

a) Show clearly that ...

i. ... 
$$\alpha = \frac{1}{2} \ln \left( \frac{A+B}{A-B} \right)$$

**ii.** ...  $R = \sqrt{A^2 - B^2}$ 

b) Use the above result to determine the exact solution of the equation

 $5\cosh x + 3\sinh x = 4$ 

 $x = -\ln 2$ 

21/28

| (a) $+(\operatorname{trady}_{U_{2}+} B_{Subs}) \equiv B(\operatorname{trady}_{U_{2}+m})$<br>$= \operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}}+} + \operatorname{Bady}_{U_{2}\operatorname{trady}_{U_{2}}}$<br>$\equiv (\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}}}) \operatorname{crady}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{crady}_{U_{2}\operatorname{trady}_{U_{2}}}$<br>$= \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}}}} = \operatorname{Constant}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}\operatorname{trady}_{U_{2}trad$ | { <b>b</b> }                            | Stacka + 33mha = 4<br>fush(a+ln2) = 4<br>ush(a+ln2) = 1<br>a+ln2 = 0<br>a = -ln2 | $\begin{array}{c} A = 5\\ B = 3\\ \bullet & 2 \propto \sqrt{s 2 \cdot s^2} = 4\\ \bullet & \alpha = \frac{1}{2} \left  h + h \right _2 \end{array}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} U^2 = A^2 - B^2 \\ \hline U = \int A^2 - B^2 \\ \hline U = \int A^2 - B^2 \\ \hline B \\ \frac{B}{2 \text{ cudex}} = \frac{B}{4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                  |                                                                                                                                                     |
| $ \begin{aligned} t_{\text{add}} & < \sum_{k=1}^{k} \\ & \propto = \operatorname{articule}_{k} \left( \frac{k}{2} \right) \\ & \ll = \frac{1}{2} \operatorname{b} \left( \frac{1+\frac{k}{2}}{1-\frac{k}{2}} \right) = \left( \operatorname{Retrieved}_{k} \text{ or } \frac{1}{2} \operatorname{Retrieved}_{k} \text{ or } \frac{1}{2} \operatorname{Retrieved}_{k} \right) \\ & \forall = \frac{1}{2} \operatorname{b} \left( \frac{1+\frac{k}{2}}{2} \right) = \left( \operatorname{Retrieved}_{k} \text{ or } \frac{1}{2} \operatorname{Retrieved}_{k} \right) \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                  |                                                                                                                                                     |

Question 62 (\*\*\*\*)

 $f(x) \equiv \cosh 2x - 8 \cosh x , \ x \in \mathbb{R}.$ 

a) Determine, in exact logarithmic form, the solutions of the equation

### f(x) = -1.

- **b)** If k is a real constant, determine the value, values or range of values of k, so that the equation f(x) = k has...
  - i. ... one repeated real root.
  - ii. ... more than one repeated real root.
  - iii. ... two distinct real roots.
  - iv. ... four distinct real roots.
    - v. ... no real roots.



 $x = \pm \ln \left( 4 + \sqrt{1} \right)$ 

**Question 63** (\*\*\*\*)

Show that

 $\left(\sqrt{5}-2\right)\ln\left(\sqrt{5}-2\right)+\left(\sqrt{5}+2\right)\ln\left(\sqrt{5}+2\right),$ 

can be written in the form  $a \operatorname{arsinh} b$ , where a and b are positive integers to be found.



**Question 65** (\*\*\*\*)

 $5\cosh x + 3\sinh x = 12$ 

Express the left side of the above equation in the form  $R \cosh(x+\alpha)$ , where R and  $\alpha$ are positive constants, and use it to show that

 $x = \ln\left(A \pm \sqrt{B}\right)$ 

where A and B are constants to be found.



 $x = \ln\left(\frac{3}{2}\pm\right)$ 

 $\ln[3+\sqrt{3^2-1}]$ 

142 + 1/n(3+2N2)

- 142 + 1/ (3-212)

 $l_{n}\left(\frac{3+2\sqrt{2}}{2}\right)$ 

 $b_1\left(\frac{3-2\sqrt{2}}{2}\right)$ 

1h ( 3+12)

 $\ln\left(\frac{3}{2}-\sqrt{2}\right)$ 

 $-\ln(3+2\sqrt{2})$ 

/2

 $= h_{1}\left(\frac{1}{3+2t_{1}^{2}}\right)$   $= h_{1}\left(\frac{3-2t_{1}^{2}}{(3+2t_{1}^{2})(3-2t_{2}^{2})}\right)$   $= 2t_{1}^{2}$ 

 $= \left| H\left( \frac{3-262}{q-8} \right) \right|$ 

= ln (3-2v2)

#### Question 66 (\*\*\*\*+)

2

I.C.B.

200

. G.B.

The curve C has equation

 $y = a \cosh x - \sinh x$ , where a > 1.

Show that C has a minimum turning point with coordinates

20

Y.C.B.

 $\left(\frac{1}{2}\ln\left(\frac{a+1}{a-1}\right), \sqrt{a^2+1}\right).$ 



I.C.P.

nana

27

hs.com

proof

Question 67 (\*\*\*\*+)

 $f(x) = \operatorname{arsinh} x + \operatorname{arsinh} \left(\frac{1}{x}\right), x \in \mathbb{R}, x \neq 0.$ 

**a**) Show clearly that  $f'(x) = \frac{x^2 - |x|}{x^2 \sqrt{x^2 + 1}}$ 

The graph of f(x), for x > 0 is shown in the figure below.



- **b**) Determine, in terms of natural logarithms where appropriate, the coordinates of the stationary point of f(x), labelled as point A in the figure.
- c) Sketch the graph of f(x), fully justifying its shape for x < 0, and state its range.

 $A\left[1,2\ln\left(1+\sqrt{2}\right)\right], \quad f(x) \ge 2\ln\left(1+\sqrt{2}\right) \cup f(x) \le -2\ln\left(1+\sqrt{2}\right)$ 

 $\frac{1}{\sqrt{Ol}} = \frac{1}{\sqrt{2^2 + 1^2}} + \frac{1}{\sqrt{1 + \frac{1}{32^2}}} \times \left(-\frac{1}{2^2}\right)$  $f(\lambda) = \frac{1}{\sqrt{\lambda^2 + 1}} + \frac{1}{\sqrt{\frac{\lambda^2 + 1}{\lambda^2}}} \left( -\frac{1}{\lambda^2} \right)$  $f(x) = \frac{1}{\sqrt{x^2_H}} + \frac{1}{\sqrt{x^2_H^2}} \left(-\frac{1}{x^2}\right)$  $\int_{1}^{1} \left( \int_{1}^{1} \int$  $\sqrt{x^2} \equiv |x|^2$  $f(\alpha) = \frac{1}{\sqrt{\alpha^2 + 1^2}} \sim \frac{|\alpha|}{\alpha^2 \sqrt{\alpha^2 + 1}}$  $f(\lambda) = \frac{\chi^2 - |\chi|}{\chi^2 \sqrt{\chi^2 + \iota^2}} \frac{1}{k} \text{ lequily}$ (x - Sign x) = 2-Sign 2 EV2=+1 = 2123-1 (b) SOUT FOR ZEND O

#### Question 68 (\*\*\*\*+)

The curve C has equation

 $y = \sinh 2x - 14 \sinh x + 8x.$ 

Find the exact coordinates of the turning points of C and determine their nature.

 $\left[2\ln(1+\sqrt{2}), -16\sqrt{2}+16\ln(1+\sqrt{2})\right], \left[-2\ln(1+\sqrt{2}), 16\sqrt{2}-16\ln(1+\sqrt{2})\right]$ 



#### Question 69 (\*\*\*\*+)

Find, in exact surd form the solution of the equation

 $\operatorname{arsinh} x - \operatorname{arcosh} x = \ln 2$ .



Question 70 (\*\*\*\*+)

$$\cosh x \equiv \frac{1}{2} \left( e^x + e^{-x} \right)$$
 and  $\sinh x \equiv \frac{1}{2} \left( e^x - e^{-x} \right)$ .

- a) Use the above definitions to show that ...
  - i.  $\dots \cosh^2 x \sinh^2 x \equiv 1$ .
  - ii. ...  $4\cosh^3 x + 3\cosh x \equiv \cosh 3x$ .
- **b**) Hence show that the real root of the equation

 $12y^3 - 9y - 5 = 0,$ 

can be written as

F.G.B.

Ĉ.p

 $\frac{1}{6} \left( \sqrt[3]{81} + \sqrt[3]{9} \right).$ 

proof

È

11.2das,

#### (a) **T** U(5 = $(\omega l_{2}^{2} - s_{2} u l_{1}^{2}x)$ = $((\omega la_{2} - s_{2} u l_{2}^{2}x)$ = $[\frac{1}{2}(c^{2}+c^{2}) - \frac{1}{2}(c^{2}-c^{2})][\frac{1}{2}(b^{2}+c^{2}) + \frac{1}{2}(c^{2}-c^{2})]$ = $[\frac{1}{2}b^{2}(c^{2}+c^{2}) - \frac{1}{2}(c^{2}-c^{2})][\frac{1}{2}(b^{2}+c^{2}+c^{2}) - \frac{1}{2}c^{2}]$ = $c^{2}x + c^{2} - s^{2} - s^{2} - s^{2} - 1 = 2 + \frac{1}{2}$ (II) U(5 = $\frac{1}{4}(u l_{2}^{2} - s_{2}) - s^{2}]$ = $(\omega l_{2}\alpha - \frac{1}{4}(c^{2}+c^{2}) - s^{2}]$ = $(\omega l_{2}\alpha - \frac{1}{4}(c^{2}+c^{2}) - s^{2}]$ = $(\omega l_{2}\alpha - \frac{1}{4}(c^{2}+c^{2}) - s^{2}]$ = $(\frac{1}{2}c^{2}+\frac{1}{2}c^{2})(c^{2}+c^{2}-c^{2})$ = $(\frac{1}{2}c^{2}+\frac{1}{2}c^{2})(c^{2}+c^{2}-1)$ = $(\frac{1}{2}c^{2}+\frac{1}{2}c^{2})(c^{2}+c^{2}-1)$ = $\frac{1}{2}c^{2}x + \frac{1}{2}c^{2}-\frac{1}{2}c^{2}x + \frac{1}{2}c^{2}-\frac{1}{2}c^{2}x^{2}$

 $\Rightarrow \exists \mathbf{z} = b\left[\frac{\mathbf{x}}{\mathbf{y}}, \left[\frac{\mathbf{x}}{\mathbf{y}}^{-1}\right]\right]$   $\Rightarrow \exists \mathbf{x} = b\left[\frac{\mathbf{x}}{\mathbf{y}}, \left[\frac{\mathbf{x}}{\mathbf{y}}^{-1}\right]\right]$   $\Rightarrow \exists \mathbf{z} = b\left[\mathbf{x}\right]$   $\Rightarrow \mathbf{z} = \frac{1}{2}b^{3}$   $\therefore \quad \mathbf{y} = 6bd\mathbf{z} = \frac{1}{2}e^{\frac{1}{2}}b^{3}$   $\mathbf{y} = \frac{1}{2}e^{\frac{1}{2}}b^{3} + \frac{1}{2}e^{\frac{1}{2}}b^{3}$   $\mathbf{y} = \frac{1}{2}e^{\frac{1}{2}}b^{3} + \frac{1}{2}e^{\frac{1}{2}}b^{3}$  $\mathbf{y} = \frac{1}{2}(3^{\frac{1}{2}}, \frac{1}{2})^{\frac{1}{2}}$ 

Ĝ.Ŗ

#### $y = \frac{1}{6} \left[ \frac{3x3^3 + 3^3}{3} \right] = \frac{1}{3} \left[ \frac{3x3^3 + 3^3}{3} \right]$

C.5.

Question 71 (\*\*\*\*+)

Show clearly that

 $-\ln(1-\tanh x) \equiv x + \ln(\cosh x).$ 

proof

$$\begin{split} & \frac{1}{\sum_{i=1}^{l} \frac{1}{e^{i \lambda_{i}}} - 1} \right] e^{i \lambda_{i}} & = \frac{1}{\sum_{i \neq i} \frac{1}{e^{i \lambda_{i}}} - 1} \int e^{i \lambda_{i}} & = \sum_{i \neq i} \frac{1}{e^{i \lambda_{i}}} \int e^{i \lambda_{i}} & = \sum_{i=1}^{l} \frac{1}{e^{i \lambda_{i}}} \int e^{i \lambda_{i}} & = \sum_{i=1$$

 $= \ln \left[ e^{\alpha} \left( \frac{1}{2} e^{\alpha} + \frac{1}{2} e^{\alpha} \right) \right] = \ln \left[ e^{\alpha} \left( \frac{1}{2} e^{\alpha} + \frac{1}{2} e^{\alpha} \right) \right]$  $= \alpha + \ln \left( \cosh \alpha \right) = \text{piff}$ 

Question 72 (\*\*\*\*+) A curve *C* has equation

 $y = 3\sinh x - 2\cosh x , \ x \in \mathbb{R}$ 

Sketch the graph of C.

The sketch must include ...

- $\dots$  the coordinates of any points where the graph of C meets the coordinates axes.
- ... the coordinates of any stationary or non stationary turning points.

... the behaviour of the curve for large positive and large negative values of x

graph







The figure above shows part of the curve C with parametric equations

$$x = t + \frac{1}{4t}$$
,  $y = t - \frac{1}{4t}$ ,  $t > 0$ .

The curve crosses the x axis at P.

a) Determine the coordinates of P.

**b**) By considering x + y and x - y find a Cartesian equation for C.

The region R bounded by C, the straight line with equation  $x = \frac{5}{3}$  and the x axis is shown shaded in the figure.

c) Show that the area of R is given by

 $x^2-1 dx$ .

P(1,0)

d) Hence calculate an exact value for the area of R.

| $\frac{2}{y^2} = \frac{y^2}{y^2} = 1$ , A                                                                                                                                                       | Area = $\frac{10}{9} - \frac{1}{2} \ln 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u></u>                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| () ()=0<br>t-4t=0                                                                                                                                                                               | () By support a calles da support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| t= t                                                                                                                                                                                            | Dial to Bao<br>Dias - 6-concest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $4t^2 = 1$<br>$t^2 = \frac{1}{4t}$                                                                                                                                                              | THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t= 1 (t>0)                                                                                                                                                                                      | Here Junior Share - Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} \underset{\mathcal{T}}{\text{Howe:}} & x + \frac{1}{4\epsilon} = \frac{1}{2} \leftarrow \frac{1}{4\epsilon p} \\ \xrightarrow{\mathcal{T}} & z = 1 \\ & z = 1 \\ \end{array}$ | $= \int_{0}^{\infty} \frac{1}{2} c dx 2D - \frac{1}{2} dy = \left(\frac{1}{2} c m + 2D - \frac{1}{2} b\right)_{0}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (b) 3+y= to +t-+===================================                                                                                                                                             | $= \left[\frac{1}{2} \operatorname{supp}(\operatorname{supp}) - \frac{1}{2} \operatorname{supp}$ |
| 2-9=大+和大+是=主                                                                                                                                                                                    | mat -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (249)(2-9)= 20(±)                                                                                                                                                                               | $\begin{array}{c} conside = A \\ constant = A \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 <sup>2</sup> -y <sup>2</sup> =1                                                                                                                                                               | (calif-l=le-lamanast=tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c) $\int_{x_1}^{x_2} y(y) dx = \int_{x_1}^{x_2} \sqrt{x^2 - 1} dy$                                                                                                                             | $= \frac{1}{2} \times \frac{1}{3} \times \frac{5}{3} - \frac{1}{2} \ln \left[ \frac{5}{3} + \sqrt{\frac{25}{3}} - 1 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ey= 22-22                                                                                                                                                                                       | $=\frac{20}{16}-\frac{1}{2}h_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{cases} y = +\sqrt{x^2} & y > 0 \end{cases}$                                                                                                                                             | $=\frac{10}{9}-\frac{1}{2}\ln 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - AL                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Question 74 (\*\*\*\*+)

The function f is defined

$$T(t) \equiv \ln(1 + \sin t), \quad \sin t \neq \pm 1$$

a) Show clearly that ...

- i. ...  $f(t) f(-t) = 2\ln(\sec t + \tan t)$ .
- **ii.** ...  $2\ln(\sec t + \tan t) = -2\ln(\sec t \tan t)$

A curve C is given parametrically by

$$x = f(t) + f(-t), \quad y = f(t) - f(-t).$$

- **b**) Show further that ...
  - i. ...  $\sec t = \cosh \frac{y}{2}$
  - **ii.** ... a Cartesian equation of C can be written as

 $\cosh \frac{y}{2} = e^{-\frac{y}{2}}$ 

a) (+) f(+)-f(-+)= (1+Sant)f(+) - f(-+) = - In (sect + tunl) 1 (1+ SWH # = sect + tant f(t) - f(-t) = -2/n (sect - but) (1+SHE) (sect - but) (1+ smt) tost + SWA 4(2) (1) DWG = In[CI+SI = IN cost +)]= ln[1-sm?t] ( sect - tert : way y =

nadasn.

proof

### Question 75 (\*\*\*\*+)

The function f is given by

 $f(x) \equiv \mathrm{e}^{2x+2} \left( \mathrm{e}^{2x} - 4 \right),$  $x \in \mathbb{R}$ .

Show that

I.V.C.B. Mad

21/15.1

I.V.G.B.

COM

20

 $f\left[\ln\left(2\cosh\frac{1}{2}\right)\right] = \left(e^2-1\right)^2$ 

2017

11202

I.F.G.P.

K.C.F.

### 2.

proof

hs.com

#### $\left\{ \begin{array}{c} -\left( \left( \lambda \right) = -e^{2\chi +2} \left( e^{2\chi} - i \right) \right), \chi \in \mathbb{R} \end{array} \right\}$

#### $IF \quad \mathfrak{A} = \ln \left( \operatorname{clash} \frac{1}{2} \right)$

 $\begin{array}{l} \displaystyle \mathop{\mathfrak{S}}^{2n} = & \displaystyle \mathop{\mathbb{C}}^{2h}(\mathrm{fixal}^{h}\underline{k}) = & \displaystyle \mathop{\mathrm{e}}^{\ln(2\mathrm{auk}\underline{k})^{2}} = \displaystyle \mathop{\mathrm{c}}^{\ln(4\mathrm{auk}^{2}\underline{k})} = \mathrm{fix}^{2} \\ \displaystyle \mathop{\mathbb{C}}^{2n+2} = & \displaystyle \mathop{\mathrm{e}}^{2}\left(\mathrm{fixal}^{n}\underline{k}\underline{k}\right) = & \displaystyle \mathrm{fix}^{2} \\ \displaystyle \mathrm{cut}^{2}\underline{k} \end{bmatrix} = & \displaystyle \mathrm{cut}^{2} \\ \end{array}$ 

#### thrice we three

20

F.C.B.

 $+(\ln(2\cosh \frac{1}{2})) = 4e^{2}\cosh^{2}\frac{1}{2}(4\cosh^{2}\frac{1}{2}-4)$ 

- $= \log^{2} \cosh^{2} \frac{1}{2} \left( \cosh^{2} \frac{1}{2} 1 \right) \qquad (\cosh^{2} \frac{1}{2} 1) = \log^{2} \cosh^{2} \frac{1}{2} = 1$ 
  - = 16=2 (codizt (sunhizt) = 4=2 (4sunhizt (coshizt)
  - =  $4e^2 (4sink^2 tosk^2 t)$ =  $4e^2 (2sink^2 tosk t)^2 \dots$
  - $= 4e^{2} \left( 2\sinh \frac{1}{2} \cosh \frac{1}{2} \right)^{2} \qquad \text{sink} 2a \equiv 2 \text{ middent}$  $= 4e^{2} \left( \sinh \left(2x \frac{1}{2}\right) \right)^{2} \qquad \text{for all } a = 2 \text{ middent}$

I.F.G.B.

na

- $= 4e^{2} \sinh^{2} \frac{1}{2}$
- $= (2esinh1)^2$
- $= \left(2e \times \frac{1}{2}(e' e^{-1})\right)^2$
- $= \left( e^2 1 \right)^2$

Question 76 (\*\*\*\*+) It is given that for suitable values of x

$$y = \ln\left[\tan\left(\frac{1}{4}\pi + \frac{1}{2}x\right)\right]$$

Show, with detailed workings, that

1.0

 $\sinh y = \tan x \,,$ 

and hence deduce a simplified expression for  $e^y$  in terms of x.

| $e^{y} = \tan x + \sec x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PROCEED AS FOLLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MULTIRY TOP AND BOTTOM OF THE RUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ⇒ y= ln[t=y(\\$+\$)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BY (===++)2 YHLDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $\Rightarrow e^{3} = \sqrt{(\mp + \frac{1}{2})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\implies - \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{2(e_{i-1}^{2})(e_{i+1}^{n})}{(e_{i}^{n}+1)(e_{i-1}^{n})^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| => == ===========================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\implies \downarrow_{u_1 \lambda} = \frac{2(e^{2s}-1)}{e^{2s}+2e^{2s}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}+2e^{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2s}}}f^{-\frac{2s}{2$ |  |
| =) e <sup>U</sup> = <u>1 + h</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =) for = 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 =                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| -> e4= 1+T while T=ton 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\implies p_{MX} = \frac{1}{2}e_{2} - \frac{1}{2}e_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| MAKE I THE SUBJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - bura - smarty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ⇒ e <sup>3</sup> -Te <sup>3</sup> = I+T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FINTLY Cally - sight = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $\implies e^3 - I = T + Te^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = cochy = + \ 1 + sintz 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $rightarrow e^3 - 1 = T(1 + e^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - cooling = V 1+ tryn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $T = \frac{e^3 - 1}{e^3 + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - why = sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Now White Jay 200 - 2tan B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BOT coshy + simbly = = = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $\rightarrow 4 \mu \eta \chi = \frac{2 t_{\eta} \chi}{1 - t_{\eta} \chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -> only tooly = faux + secs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\rightarrow \frac{TC}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}{1-\frac{T}$ | -> e <sup>3</sup> = forma + arta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $l \sim \left(\frac{d^2-1}{d^2+1}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

(\*\*\*\*+) Question 77

adasmaths,

I.C.B.

Madasmaths.

00

Ismaths.com

I.C.B.

I.F.G.p

 $\frac{3\tan 2x}{\tanh x} = 5\tanh x - 3.$  $5 \tanh 2x -$ 

Madasmaths,

ŀ.G.p.

madasmaths,

Com

Find, as an exact natural logarithm, the real solution of the above equation.

2017

| · · · ·                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USING OSBORING'S 2015 FRET                                                                                                                                                                                                                         |
| $\tan 2x \equiv \frac{2\tan x}{1-\tan^2 x} \implies \tan 2x \equiv \frac{2\tan^2 x}{1+\tan^2 x}$                                                                                                                                                   |
| THUS WE NOW HAVE                                                                                                                                                                                                                                   |
| → Sturk2 - 3turk2 = Sturk2 -3                                                                                                                                                                                                                      |
| $\Rightarrow$ $S\left(\frac{2bayla}{1+bayla}\right) = \frac{3}{bayla}\left(\frac{2bayla}{1+bayla}\right) = 5bayla - 3$                                                                                                                             |
| $\Rightarrow \frac{10^{-1}}{(+)^{+}} - \frac{6}{(+)^{+}} = 57 - 3 \qquad \qquad$                                                   |
| $-5  10T - 6 = (ST - 3)(1 + T^2)$                                                                                                                                                                                                                  |
| ⇒ 107 - 6 = 5T + ST <sup>3</sup> - 3 - 3T <sup>2</sup>                                                                                                                                                                                             |
| $\implies$ 0 = ST <sup>3</sup> -3T <sup>2</sup> -ST + 3                                                                                                                                                                                            |
| FACTORIZE IN PATIEL BY INSPECTION                                                                                                                                                                                                                  |
| $\implies 0 \leftarrow T^{2}(5T-3) - (5T-3)$                                                                                                                                                                                                       |
| $\implies (ST-3)(T^{k-1}) = 0$                                                                                                                                                                                                                     |
| $\implies$ $(ST-3)(T-1)(T+1) = 0$                                                                                                                                                                                                                  |
| -) T = toula =                                                                                                                                                                                                                                     |
| → tanha = 3                                                                                                                                                                                                                                        |
| $\implies \mathcal{X} = \operatorname{arburk} \frac{3}{5} = \frac{1}{2} \ln \left( \frac{1+3\varsigma}{1-1\varsigma} \right) = \frac{1}{2} \ln \left( \frac{\varsigma+3}{2-3} \right) = \frac{1}{2} \ln \frac{1}{4} = \frac{1}{2} \ln \frac{1}{2}$ |
| $artauly Q_{n} = \frac{1}{2} I_{0} \left( \frac{1+\chi}{1-\chi} \right)$                                                                                                                                                                           |

Madasmaths,

I.F.G.B.

2011

The Com

 $x = \ln 2$ 

Madasmal

madası

2

nains.co

Madasma,

madası

The Com

Ð

adasmana

I.Y.G.B.

2017

proof

Question 78 (\*\*\*\*\*) Sketch the graph of

20331127/15-CON

Smaths.com

I.C.B.

 $\left[x + \sqrt{x^2 + 4}\right] \left[y + \sqrt{y^2 + 1}\right] = 2, \quad x \in (-\infty, \infty), \quad y \in (-\infty, \infty)$ 

You must show a detailed method in this question

- 34



Created by T. Madas

madasmaths

COM

### Question 79 (\*\*\*\*\*)

Determine, as exact simplified natural logarithms, the solutions of the following simultaneous equations

and

| $\cosh x + \cosh x$ | y = 4 |
|---------------------|-------|
|---------------------|-------|

 $\sinh x + \sinh y = 2$ .

 $[x, y] = \left[\ln\left(3 - \sqrt{6}\right), \ln\left(3 + \sqrt{6}\right)\right] = \left[\ln\left(3 + \sqrt{6}\right), \ln\left(3 - \sqrt{6}\right)\right]$ 

| coshx +coshy=4 } ==<br>sinhx +sinhy=2 }     | © cashac = 4-cashag } ⇒<br>simha = 2-sunky J ⇒                          |
|---------------------------------------------|-------------------------------------------------------------------------|
|                                             | icalia= 16-8caby+catig?<br>subia= 4-4suby+subju]                        |
|                                             | SUBTRACTING-                                                            |
|                                             | p 1 = 12−Broshy+4sinhy +1                                               |
|                                             | 9 Booshy-4samhy-12 =⊙                                                   |
|                                             |                                                                         |
|                                             | 2e <sup>y</sup> +2e <sup>y</sup> -(e <sup>y</sup> -e <sup>y</sup> )-6=0 |
|                                             | e"+3e"-6=0 )xe"                                                         |
|                                             | $e^{24} - 6e^{3} + 3 = 0$                                               |
|                                             |                                                                         |
| S THE QUEDRATIC DOC NOT                     | PHOTODARE "NIGHT", COMPLETE THE SPURIE                                  |
| $\Rightarrow (e^{9}-3)^{2}-6=0$             |                                                                         |
| $\Rightarrow (e^{\underline{u}} - 3)^2 = C$ |                                                                         |
| = e <sup>4</sup> -3= ± NE                   |                                                                         |
| ⇒ e <sup>2</sup> = 3±√6                     |                                                                         |
|                                             |                                                                         |

|                                                                                                                                        | 1F C = 3-15                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| $\frac{1}{2}e^{\frac{3}{2}} + \frac{1}{2}e^{-\frac{3}{2}} = \frac{1}{2}\left[3+4e^{\frac{3}{2}} + \frac{1}{3+4e^{\frac{3}{2}}}\right]$ |                                                              |
| $= \frac{1}{2} \left[ 3 + \sqrt{c} + \frac{3 - \sqrt{c}}{1 - 6} \right]$                                                               | SALUTELY GIGPT<br>FOLTHE MINULS                              |
| $= \frac{1}{2} \left[ 3 + 4\hat{k} + \frac{3 - 6\hat{k}}{3} \right]$                                                                   | $=\frac{1}{2}\left[3+6^{2}+\frac{3+6^{2}}{3}\right]$         |
| = + [3+40+1-14]                                                                                                                        | $=\frac{1}{2}\left[3-6c^{2}+1+\frac{1}{2}6c^{2}\right]$      |
| = ±[4+3+6]                                                                                                                             | $= \frac{1}{2} \left[ 4 - \frac{2}{3} 6 \right]$             |
| = 2+ 1/4 >1                                                                                                                            | = 2- 313 >1                                                  |
| 60sha = 4 - 60shy<br>60sha = 4 - (2+\$16)                                                                                              | $cash x = 4 - coshy  cash x = 4 - (2 - \frac{1}{2}\sqrt{3})$ |
| $c_{abla} = 2 - \frac{1}{2}c_{abla}$                                                                                                   | $cosinc = 2 + \frac{1}{2} e_{c}$                             |
|                                                                                                                                        |                                                              |
|                                                                                                                                        | FROM EARLOSE WORKING IN M                                    |
| ROM GARLIE WORKING MIG                                                                                                                 | tion therefor more and the                                   |
|                                                                                                                                        | 1                                                            |
| :<br>FOU (ALLIC WOLLING MY<br>:<br>C = 3 - 46<br>2 = 10 (3-66)                                                                         | €= 3+16<br>∞= 1/(3+17)                                       |



P.C.P.

mada



2

Determine the general solution of the following equation.





#### Question 83 (\*\*\*\*\*)

I.V.G.

Use inverse hyperbolic functions to show that

 $\frac{d}{dx}\left[\ln\left(\cos x + \sin x + \sqrt{\sin 2x}\right)\right] = \sqrt{\frac{1}{2}\cot x} - \sqrt{\frac{1}{2}\tan x}.$ 

11adası



Con

| THE ARSVAINST OF THE WGG WORKS WERE AN arrange or arange                                                       |
|----------------------------------------------------------------------------------------------------------------|
| $q = \ln \left[ \cos 2 + \sin 2 + \sqrt{\sin 2^2} \right] = \ln \left[ \cos 4 + \sqrt{1 + \sin 2} - 1 \right]$ |
| $y = \ln \left[ \cos 2 + \sin 2 + \sqrt{\cos 2 + \sin 2 + 2 \sin 2 \cos 2 - 1} \right]$                        |
| $\int \frac{1}{1-z(z_{0}(z_{0}+z_{0}))} \sqrt{1-z_{0}(z_{0}+z_{0})} = 0$                                       |
| y= arcash(un2+sm2)                                                                                             |
| DIFFERENTIATE WITH EASPECT TO a                                                                                |
| $\frac{dy}{dz} = \frac{loz_{1} - z_{1}nz_{1}}{\sqrt{(c\alpha_{1} + a_{1}nz_{1})^{2} - l^{1}}}$                 |
| dy = (cox-sinx)<br>dy = Vioittant + 20023002-P                                                                 |
| $\frac{du_{s}}{d\lambda} = \frac{\sqrt{2costrum}}{\sqrt{2costrum}} - \frac{smr}{\sqrt{2costrum}}$              |
| de = Varian - Varian                                                                                           |
| $\frac{dy}{d\lambda} = \sqrt{\frac{2c_{MA}}{2c_{MA}}} = \sqrt{\frac{5y_{MA}}{2c_{MA}}}$                        |
| du = Jziota" - Jztana"                                                                                         |

Question 84 (\*\*\*\*\*)

I.F.C.P.

Show, with detailed workings, that

5.

 $\sinh 2x = 2 \implies \cosh^6 x - \sinh^6 x = 4$ 

| , proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zaugurog 24 FTHUGHUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\epsilon_{(x^{2})} = \epsilon_{(x^{2})} = x^{3}  _{MZ} - x^{3}  _{ZZ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathcal{A}^{3}_{-}\mathcal{B}^{3} \equiv (\mathcal{A} - \mathcal{B})(\mathcal{A}^{2} + \mathcal{A}\mathcal{B} + \mathcal{B}^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{l} = \left( x_{1}^{\mu}   x_{2} + x_{1}^{\mu}   x_{2} + x_{3}^{\mu}   x_{3} + x_{3}^{\mu}   x$ |
| $\left[\frac{1}{2}\left(x_{1}^{2}h_{1}x_{2}^{2}\right) + \left(x_{1}^{2}h_{2}x_{2}^{2}\right) + \frac{1}{2}\left(x_{1}^{2}h_{2}x_{2}^{2}\right)\right) \times 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| W MANIPULATE IND THE IDISTITY $(A-B)^2 \equiv A^2 - 2AB + B^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathcal{G}_{Mal})(\mathcal{G}_{lad}) \mathcal{S} + (\mathcal{G}_{Mal}) + (\mathcal{G}_{Mal})(\mathcal{G}_{lad}) \mathcal{S} - (\mathcal{G}_{lad}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $= \left[ (ash^2 - swh^2 x)^2 + 3((ash^2 x)(swh^2 x)) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= 1^2 + 3(\cos \theta_0, \sin \theta_0)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 1 + 3 \times \frac{1}{4} (coopersuba)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 1 + \frac{3}{4} (\sinh 2\alpha)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $= 1 + \frac{3}{4} \times 2^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = 4<br>AS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



Question 86 (\*\*\*\*\*)



The figure above shows the curve C whose parametric equations are

 $x = \operatorname{artanh}(\sin t), \quad y = \sec t \, \tan t, \quad -\frac{1}{2}\pi < t < \frac{1}{2}\pi.$ 

Find the area of the finite region bounded by the x axis, the curve and the straight line with equation  $x = \ln(1+\sqrt{2})$ .

| • STRET SHELL OF A PROMITE<br>UNITEGRAL FOR THE LOT A FERSE<br>U = arbady (ont) at $a = act bartsfeith = \int_{-x_{1}}^{x_{2}} g(x) dx = \int_{-t_{1}}^{t_{1}} g(x) dx dxfeith = \int_{-x_{1}}^{x_{2}} g(x) dx = \int_{-t_{1}}^{t_{1}} g(x) dx dxfeith = \int_{-x_{1}}^{x_{2}} g(x) dx = \int_{-t_{1}}^{t_{1}} g(x) dx dxfeith = \int_{-x_{1}}^{x_{2}} g(x) dx = \int_{-t_{1}}^{t_{1}} g(x) dx dxfeith = \int_{-t_{1}}^{t_{2}} (acts bart) dxfeith = 0gdx = acdx^{2}gdx = acdx^{2}gdx = 1 - ba^{2}gdx = 1 - ba^{2}gdx = 1 - a^{2}gdx = 1 - a^$ | $\Rightarrow \frac{11304}{1-001} = 1+2+2x^{2} = 2+2x^{2}$ $\Rightarrow 1+304t = (3+2x^{2})(1-304t)$ $\Rightarrow 1+304t = (3+2x^{2})(1-304t)$ $\Rightarrow 1+304t = (3+2x^{2})(1-304t)$ $\Rightarrow 504t + (2x^{2})(204t = (3+2x^{2})-1)$ $\Rightarrow 504t = \frac{2x+2x^{2}}{4+2x^{2}} = \frac{114x^{2}}{2+x^{2}} = \frac{(14x^{2})(2-x^{2})}{4-x^{2}}$ $\Rightarrow 504t = \frac{2x+2x^{2}}{2+x^{2}} = \frac{114x^{2}}{2} = \frac{(14x^{2})(2-x^{2})}{4-x^{2}}$ $\Rightarrow 504t = \frac{2x+2x^{2}}{2-x^{2}} = -\frac{x^{2}}{2}$ $\Rightarrow 504t = \frac{2x+2x^{2}}{2-x^{2}} = -\frac{x^{2}}{2}$ $\Rightarrow 504t = \frac{1}{2}$ $\Rightarrow 504t = \int_{-\infty}^{\infty} 5x^{2} + \frac{1}{1-x^{2}} = \frac{1}{2}$ $A04t = \int_{-\infty}^{\infty} 5x^{2} + \frac{1}{1-x^{2}} = \frac{1}{2}$ $A04t = \int_{-\infty}^{\infty} 5x^{2} + \frac{1}{1-x^{2}} = \frac{1}{2}$ $A04t = \int_{-\infty}^{\infty} \frac{1-x^{2}}{1-x^{2}} = \frac{1}{2}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

area =  $\frac{1}{2}$ 



The figure above shows the curve C whose parametric equations are

 $x = \operatorname{artanh}(\sin^2 t), \quad y = \sin t, \quad -\frac{1}{2}\pi < t < \frac{1}{2}\pi.$ 

a) Use integration in Cartesian coordinates to find the exact area of the finite region bounded by the curve and the straight line with equation  $x = \frac{1}{2} \ln 3$ .

**b**) Use integration in parametric to verify the validity of the result of part (**a**).

| 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\ln\left(1+\sqrt{2}\right)-2\arctan\left(\frac{1}{\sqrt{2}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) • <u>ETVER BY CERTINALLY &amp; QUERRANA QUATICAL</u><br>$2 = orthological g = sintle 3 = orthological trutes = g^2g = + V trutes' (SE GAR)• THE ACIM CAN BE FORD & Y+QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL +QUATE = 2 \int_{0}^{12} V trute' de BI SERTITIONAL $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • $6 \sim 2$ , $k \in [k(2n)] + (1 \times 6n) \times 6 ] \rightarrow 3(2 \subset 2)$<br>$k \in 15 - 5 - 5C + 6$<br>C = 0<br>• <u>Extrements to the Barbook</u><br>$-\frac{1}{1 - 4} + \frac{1}{1 - 4} = -\frac{1}{1 - 4} d_{11}$<br>$= \left[ b_{1} \left[ \frac{1 - 4}{1 - 4} \right] - 2 \operatorname{cort} b_{11} \frac{1}{2} \int_{0}^{10} b_{11} - 0 \right]$<br>$= \left[ b_{1} \left[ \frac{1 - 4}{1 - 1 + 6} \right] - 2 \operatorname{cort} b_{11} \frac{1}{2} \int_{0}^{10} b_{11} - 0 \right]$<br>$= \left[ b_{1} \left[ \frac{1 - 4}{1 - 1 + 6} \right] - 2 \operatorname{cort} b_{11} \frac{1}{2} \int_{0}^{10} b_{11} - 0 \right]$<br>$= \left[ b_{1} \left[ \frac{1 - 4}{1 - 1 + 1} \right] - 2 \operatorname{cort} b_{11} \frac{1}{2} \int_{0}^{10} b_{11} - 0 \int_{0}^{10} b_{11} - 0$                                                                                                                                                                                                                                                                                                                                                                                                                       | • Finding the limits, locking, at the two there<br>$a_1 \circ i \rightarrow \frac{b_1 \circ \circ}{b_1 \circ \circ}$ (W instema)<br>$a_1 \circ \frac{b_1 \circ}{b_1 \circ \circ}$ (W instema)<br>$a_2 \circ \frac{b_1 \circ}{b_1 \circ \circ}$ ( $\frac{b_1 \circ}{b_1 \circ \circ}$ )<br>$a_2 \circ \frac{b_1 \circ}{b_1 \circ \circ}$<br>$a_3 \circ \frac{b_1 \circ}{b_1 \circ \circ}$<br>$a_3 \circ \frac{b_1 \circ}{b_1 \circ \circ}$<br>$a_3 \circ \frac{b_1 \circ}{b_1 \circ \circ}$<br>$a_4 \circ \frac{b_1 \circ}{b_1 \circ \circ}$ |
|   | $\begin{split} & \psi_{i} = \int_{0}^{1} \frac{du^{2}}{du^{2}} & $ | $= 2h(\underline{C}_{+}) - 2antba(\frac{1}{22})$ $= 2h(\underline{C}_{+}) - 2antba(\frac{1}{22})$ $= 4646 - \int_{-1}^{22} \underline{q}(\underline{x}) dx = \int_{+1}^{1} \underline{q}(\underline{x}) d\underline{x} dx$ $= \frac{1}{4} \int_{0}^{1} \frac{1}{2} \frac{1}{4} \int_{0}^{1} \underline{q}(\underline{x}) d\underline{x} dx$ $= \frac{1}{4} \int_{0}^{1} \frac{1}{2} \frac{1}{4} \int_{0}^{1} \frac{1}{4} \frac{1}{4} \int_{0}^{1} \frac{1}{4} \int_{0}^{1$ | $\begin{aligned} & + \frac{1}{2} \frac{du^{2}}{du^{2}} \frac{du^{2}}{1-u^{2}} \frac{du}{du} \frac{du}{du} \frac{du}{du} \frac{du}{du} \frac{du}{du} \\ & = \int_{0}^{\frac{1}{2}} \frac{du^{2}}{1-u^{2}} \frac{du}{du} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### (\*\*\*\*) **Question 88**

5

Given that p and q are positive, show that the natural logarithm of their arithmetic mean exceeds the arithmetic mean of their natural logarithms by

 $\sum_{r=1} \left\lfloor \frac{2}{2r-1} \left( \frac{\sqrt{p} - \sqrt{q}}{\sqrt{p} + \sqrt{q}} \right)^{4r-2} \right\rfloor$ 

You may find the series expansion of  $\operatorname{artanh}(x^2)$  useful in this question.

 $\sum_{l=1}^{\infty} \left[ \frac{\chi^{dr-2}}{2r-1} \right] = \frac{1}{2} \ln \left[ \frac{1+\chi^2}{1-\chi^2} \right]$  $arbanh x = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right) = \frac{1}{2} \left[ \ln (1+x) - \ln (1-x) \right]$ 23 \_ 24 + 25 \_ 26 + 23  $\sum_{n=1}^{\infty} \left[ \frac{1}{2r-1} \left( \frac{\sqrt{p^{n}} - \sqrt{q^{n}}}{\sqrt{p^{n}} - \sqrt{q^{n}}} \right)^{4r-2} \right] = \frac{1}{2} \ln \left( \frac{p+q}{2\sqrt{pq^{n}}} \right)$  $\frac{1^2}{2} - \frac{1^2}{3} - \frac{1^4}{4} - \frac{1^4}{5} - \frac{1^4}{5} - \frac{1^7}{5} - \frac{1^$ article =  $\frac{1}{2} \left[ 2x + \frac{2}{3}x^2 + \frac{2}{3}x^5 + \frac{2}{3}x^7 + \dots \right]$  $2\sum_{n=1}^{\infty} \left[ \frac{1}{2r-1} \left( \frac{(p-(q))^{4r_2}}{(q+(q))} \right)^{2r_2} = \ln \left[ \frac{p+q}{2(pq)} \right]$  $\sum_{n=1}^{\infty} \left[ \frac{2}{2r-i} \left( \frac{ip-iq^2}{ip+iq^2} \right)^{4r-2} \right] \implies \ln \left( \frac{p+q}{2} \right) - \ln \sqrt{pq^2}$  $anh(x^2) = x^2 + \frac{1}{2}x^6 + \frac{1}{2}x^6 + \frac{1}{2}x^{16} + .$  $\sum_{n=1}^{\infty} \left[ \frac{2}{2n-1} \left( \frac{\sqrt{p}-\sqrt{q}}{\sqrt{p}+\sqrt{q}} \right)^{\frac{q}{2}-2} \right] = \ln\left( \frac{p+q}{2} \right) - \frac{1}{2} \ln(pq)$  $\therefore \operatorname{artauh}(\chi^2) = \sum_{r=1}^{\infty} \left[ \frac{\chi^{4r_2}}{2r_1} \right] = \frac{1}{2} \ln \left( \frac{1+\chi^2}{1-\chi^2} \right)$ NOT LET 2 = JP'-JA' IN THE ADDIMNT OF THE LOS E FINACLY HAVE THE DESTRED RESOLT  $\left| h\left(\frac{p+q}{2}\right) - \frac{\left| h \frac{p}{p} + h \right| q}{2} \right| = \sum_{l=1}^{\infty} \left[ \frac{2}{2^{l-1}} \left( \frac{q^{l-1}-q^{l}}{q^{l}} \right)^{q_{l-1}} \right]$  $\frac{1+\chi^2}{1-\chi^2} = \frac{2p+2q}{4\sqrt{pq'}} = \frac{p+q}{2\sqrt{pq}}$ 

proof