Created by T. Madas

DIFFERENTIATION
from first principles

Created by T. Madas

Question 1 (**)

$$
f(x)=x^{2}, x \in \mathbb{R}
$$

Use the formal definition of the derivative as a limit, to show that

Question 2 (**)

$$
f(x)=x^{4}, x \in \mathbb{R}
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=4 x^{3}
$$

\square , proof

THe Prowatuat is formatuy Gwaw ry $f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(a)}{h}\right]$

W THES CASE WE HNE
$f(x)=x^{4}$
$f(x+h)=(x+h)^{4}$
EapAnDing - BNONMAUY wt that
$(x+h)^{4}=1 x^{4} h^{0}+4 x^{3} h^{\prime}+6 x^{2} h^{2}+4 x^{1} h^{3}+1 x^{2} h^{4}$ $(x+h)^{4}=x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}$
TIDYNSOP NEXT
$f(x+h)-f(x)=(x+h)^{4}-2^{4}=\left(x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x^{3}+h^{4}\right)-\not x^{4}$ BNAMY we thNE $f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(a)}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{4 x^{2} h+6 x^{2} x^{2}+b h^{3}+b^{4}}{h}\right]$ $=\operatorname{Lim}_{h \rightarrow 0}\left[4 x^{3}+6 x^{2} h+4 y^{2}+h^{2}\right]$

Created by T. Madas

Question 3 (**)

$$
f(x)=x^{2}-3 x+7, x \in \mathbb{R}
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=2 x-3
$$

\square , proof
\square
N

$$
f(x+h)=(x+h)^{2}-3(x+h)+7
$$

$$
=x^{2}+2 x h+h^{2}-3 x-3 h+7
$$

- OSing the formac dofingion of tite dervative

$$
f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]
$$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left[\frac{\left(x^{2}+2 x^{2}+t^{2}-3(x-3 x+7)-\left(x^{2}-2 x[4]\right)\right.}{h}\right]
$$

$$
f^{\prime}(2)=\lim _{h \rightarrow 0}\left[\frac{2 x_{h}+h^{2}-3 h}{h}\right]
$$

$$
\left.t^{\prime}(0)=\ln =\left[\begin{array}{ll}
{[2 x+2}
\end{array}\right)-3\right]
$$

$$
f_{(0)}=x-3 / \text { maxemo }
$$

Question $4 \quad\left({ }^{* *}+\right.$)

$$
y=x^{3}-4 x+1, x \in \mathbb{R} .
$$

Use the formal definition of the derivative as a limit, to show that

$$
\frac{d y}{d x}=3 x^{2}-4
$$

\square , proof

Question $5 \quad(* *+)$

$$
f(x)=x^{3}+2, x \in \mathbb{R}
$$

a) State the value of $f(-1)$.
b) Find a simplified expression for $f(-1+h)$.
c) Use the formal definition of the derivative as a limit, to show that

$$
\begin{aligned}
& f^{\prime}(-1)=3 . \\
& \text { ? } f(-1)=1, f(-1+h)=1+3 h-3 h^{2}+h^{3}
\end{aligned}
$$

$f(x)=x^{3}+2$
a) $f(-1)=(-1)^{3}+2=-1+2=1$
b) $f(-1+h)=(-1+h)^{3}+2=(h-1)^{3}+2=(h-1)\left(h^{2}-2 h+1\right)+2$ $=h^{3}-2 h^{2}+h$

$$
=h^{3}-3 h^{2}+3 h+1
$$

c) $f^{\prime}(-1)=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{f(-1+h)-f(-1)}{h}\right]$
$=\lim _{h \rightarrow 0}\left[\frac{\left(h^{3}-3 h^{2}+3 h+1\right)-(1)}{h}\right]$
$=\lim _{h \rightarrow 0}\left[\frac{h^{3}-3 h^{2}+3 h}{h}\right]$
$=\lim _{h \rightarrow 0}\left[h^{2}-3 h+3\right]$
TALING RIf UNIT NOW, $九 h \rightarrow 0$
$=3 / 48$ sevintas

Created by T. Madas

Created by T. Madas

Question 6 (***)

$$
f(x)=x^{4}-4 x, x \in \mathbb{R} .
$$

a) Find a simplified expression for

$$
f(2+h)-f(2)
$$

b) Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(2)=28
$$

$$
\text { ㅈ. } f(2+h)-f(2)=28 h+24 h^{2}+8 h^{3}+h^{4}
$$

a)	$f(x)=x^{4}-4 x$ $f(2+h)-f(2)=$ $=\left[(2+h)^{4}-4(2+h)\right]-\left[2^{4}-4 \times 2\right]$$=(2+h)^{4}-8-4 h-16+8$$=(2+h)^{4}-4 h-16$$=(2+h)^{2}(2+h)^{2}-4 h-16$$=\left(4+4 h+h^{2}\right)\left(4+4 h+h^{2}\right)-4 h-16$$=$$16+16 h+4 h^{2}$ $k h^{2}+16 h^{2}+4 h^{3}$ $+4 h^{2}+4 h^{3}+h^{4}-4 h-16$ $h^{6}+32 h+24 h^{2}+8 h^{3}+h^{4}-4 h-16$ $h^{4}+8 h^{3}+24 h^{2}+29 h$
	$f^{(a)}=\underline{L}$
	$f(0)$

Created by T. Madas

Question 7 (***)
A reciprocal curve has equation

$$
y=\frac{1}{x}, x \neq 0 .
$$

Use the formal definition of the derivative as a limit, to show that

Created by T. Madas

Question 8 (***)

$$
\frac{d}{d x}(\sin x)=\cos x
$$

Prove by first principles the validity of the above result by using the small angle approximations for $\sin x$ and $\cos x$.

Created by T. Madas

Question 9 (***)
If x is in radians

$$
\frac{d}{d x}(\sin x)=\cos x
$$

Prove the validity of the above result from first principles.

You may assume that if h is small and measured in radians, then as $h \rightarrow \infty$

$$
\frac{\cos (h)-1}{h} \rightarrow 0 \quad \text { and } \quad \frac{\sin (h)}{h} \rightarrow 1
$$

Question $10 \quad(* * *+)$

$$
\begin{aligned}
\cos (A+B) & \equiv \cos A \cos B-\sin A \sin B \\
\cos (A-B) & \equiv \cos A \cos B+\sin A \sin B
\end{aligned}
$$

a) By using the above identities show that

$$
\cos P-\cos Q \equiv-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)
$$

b) Hence, prove by first principles that

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

\square

Question 11 (***+)
Differentiate from first principles

Created by T. Madas

Question $12 \quad(* * *+)$
Differentiate $\frac{1}{2-x}$ from first principles.

Question 13 (***+)

$$
f(x)=\frac{x-2}{x+2}, x \in \mathbb{R} .
$$

$$
\%
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=\frac{4}{(x+2)^{2}}
$$

, proof

Question $14 \quad\left({ }^{* * *}+\right.$)
Differentiate from first principles

$$
\frac{x}{x+1}, x \neq-1
$$

\square

$$
\begin{aligned}
& =\lim _{h \rightarrow \infty}\left[\frac{\frac{2 x}{2+1}-\frac{x}{2+1}}{h}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0}\left[\frac{1}{(2+4)} \text { (ext) }\right] \\
& =\frac{1}{(2 \pi)^{\prime}(z x)} \\
& \frac{1}{2(1)^{2}}
\end{aligned}
$$

Created by T. Madas

Question $15 \quad\left({ }^{* * *+}\right)$
Differentiate $\frac{1}{2+x^{2}}$ from first principles.

Created by T. Madas

Question $16 \quad(* * *+)$
Differentiate $\frac{1}{x^{2}-2 x}$ from first principles.

Created by T. Madas

Question 17 (***+)

$$
f(x)=\frac{1}{x^{3}}, x \in \mathbb{R}, x \neq 0 .
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=-\frac{3}{x^{4}}
$$

\square , proof

Created by T. Madas

$$
f(x)=\frac{1}{5 x+3}, x \in \mathbb{R}, x \neq-\frac{3}{5}
$$

Use the formal definition of the derivative as a limit, to show that

Created by T. Madas

Question 19 (***+)

$$
f(x)=\frac{3}{4 x-1}, x \in \mathbb{R}, x \neq-\frac{1}{4}
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=-\frac{12}{(4 x-1)^{2}}
$$

Created by T. Madas

Question 20 (***+)

$$
\frac{d}{d x}(\sin x)=\cos x
$$

Prove the validity of the above result by ...
a) \ldots using $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1$
and the trigonometric identity

$$
\sin A-\sin B \equiv 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} .
$$

b) ... using small angle approximations for $\sin x$ and $\cos x$.

Created by T. Madas

Question 21 (***+)

$$
f(x) \equiv \frac{x^{2}}{x-1}, x \in \mathbb{R}, x \neq-\frac{1}{4} .
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=\frac{x(x-2)}{(x-1)^{2}}
$$

\square , proof

Question 22 (****)
Prove by first principles, and by using the small angle approximations for $\sin x$ and $\cos x$, that

Question 23 (****)
Prove by first principles, and by using the small angle approximations for $\sin x$ and $\cos x$, that

$$
\frac{d}{d x}(\sec x)=\sec x \tan x
$$

\square proof
\square

Created by T. Madas

Question 24 (****+)

$$
f(x)=\sqrt{1+x^{2}}, x \in \mathbb{R}
$$

Use the formal definition of the derivative as a limit, to show that

Created by T. Madas

Question 25 (****+)

$$
f(x)=\frac{1}{\sqrt{x^{2}-1}}, x \in \mathbb{R},|x|>1
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=-\frac{x}{\left(x^{2}-1\right)^{\frac{3}{2}}}
$$

Created by T. Madas

Question 26 (****+)
The limit expression shown below represents a student's evaluation for $f^{\prime}(x)$, for a specific value of x.

$$
\lim _{h \rightarrow 0}\left[\frac{2(1+h)^{2}+3(1+h)-5}{h}\right]
$$

Determine an expression for $f(x)$ and once obtained, differentiate it directly to find the value of $f^{\prime}(x)$, for the specific value of x the student was evaluating.

No credit will be given for evaluating the limit directly.

Question 27 (*****)
Use the formal definition of the derivative to prove that if

$$
y=f(x) g(x)
$$

then $\frac{d y}{d x}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
You may assume that
\square

- $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c}[f(x)]+\lim _{x \rightarrow c}[g(x)]$
- $\lim _{x \rightarrow c}[f(x) \times g(x)]=\lim _{x \rightarrow c}[f(x)] \times \lim _{x \rightarrow c}[g(x)]$

Created by T. Madas

Created by T. Madas

Question $28(* * * * *)$

$$
f(x)=\sqrt{\frac{1-x}{1+x}}, x \in \mathbb{R},|x|<1
$$

Created by T. Madas

Question 29 (*****)
Use the formal definition of the derivative of a suitable expression, to find the value for the following limit

$$
\lim _{x \rightarrow 4}\left[\frac{\sqrt{x^{3}}+2 \sqrt{x}-12}{x-4}\right] \text {. }
$$

No credit will be given for using L'Hospital's rule.

