COMPLEX
 NUMBERS
 (Exam Questions II)

Question 1 (**)
By finding a suitable Cartesian locus for the complex z plane, shade the region R that satisfies the inequality

a) Determine the solutions of the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.
b) Plot the roots of the equation as points in an Argand diagram.

Created by T. Madas

Question 3 (**)

A transformation from the z plane to the w plane is defined by the complex function

$$
w=\frac{3-z}{z+1}, z \neq-1
$$

The locus of the points represented by the complex number $z=x+\mathrm{i} y$ is transformed to the circle with equation $|w|=1$ in the w plane.

Find, in Cartesian form, an equation of the locus of the points represented by the complex number z.

Question 4 (**)

$$
z^{5}=\mathrm{i}, \quad z \in \mathbb{C}
$$

a) Solve the equation, giving the roots in the form $r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Plot the roots of the equation as points in an Argand diagram.

Created by T. Madas

Question 5 (**)

$$
|z-1-i|=4, z \in \mathbb{C}
$$

a) Sketch, in a standard Argand diagram, the locus of the points that satisfy the above equation.
b) Find the minimum and maximum value of $|z|$ for points that lie on this locus.
\square , $z_{\text {min }}=4-\sqrt{2}, z_{\text {min }}=4+\sqrt{2}$

Question 6 (**)
The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z-1|=2|z+2|
$$

show that the locus of P is given by

Created by T. Madas

Question 8 (**)
The complex number $z=x+\mathrm{i} y$ represents the point P in the complex plane.

Given that

$$
\bar{z}=\frac{1}{z}, z \neq 0
$$

determine a Cartesian equation for the locus of P.

Question 9 (**)
Sketch, on the same Argand diagram, the locus of the points satisfying each of the following equations.
a) $|z-3+i|=3$.
b) $|z|=|z-2 \mathrm{i}|$.

Give in each case a Cartesian equation for the locus.
c) Shade in the sketch the region that is satisfied by both these inequalities

$$
\begin{aligned}
|z-3+\mathrm{i}| & \leq 3 \\
|z| & \geq|z-2 \mathrm{i}|
\end{aligned}
$$

$$
(x-3)^{2}+(y+1)^{2}=9, y=1
$$

Created by T. Madas

Question 10 (**)

The complex function

$$
w=\frac{1}{z-1}, z \neq 1, z \in \mathbb{C}, z \neq 1
$$

transforms the point represented by $z=x+\mathrm{i} y$ in the z plane into the point represented by $w=u+\mathrm{i} v$ in the w plane.

Created by T. Madas

Question 11
(**)
a) Sketch on the same Argand diagram the locus of the points satisfying each of the following equations.
i. $|z-\mathrm{i}|=|z-2|$.
ii. $\quad \arg (z-2)=\frac{\pi}{2}$.
b) Shade in the sketch the region that is satisfied by both these inequalities

Question 12 (**)
The complex function $w=f(z)$ is given by

$$
w=\frac{3-z}{z+1} \text { where } z \in \mathbb{C}, \quad z \neq-1
$$

A point P in the z plane gets mapped onto a point Q in the w plane.

The point Q traces the circle with equation $|w|=3$.

Show that the locus of P in the z plane is also a circle, stating its centre and its radius.

Created by T. Madas

Question 13 (**)
The general point $P(x, y)$ which is represent by the complex number $z=x+\mathrm{i} y$ in the z plane, lies on the locus of

$$
|z|=1
$$

A transformation from the z plane to the w plane is defined by

$$
w=\frac{z+3}{z+1}, z \neq-1,
$$

and maps the point $P(x, y)$ onto the point $Q(u, v)$.

Find, in Cartesian form, the equation of the locus of the point Q in the w plane.

Question $14 \quad\left({ }^{* *}\right)$
The point P represented by $z=x+\mathrm{i} y$ in the z plane is transformed into the point Q represented by $w=u+\mathrm{i} v$ in the w plane, by the complex transformation

$$
w=\frac{2 z}{z-1}, z \neq 1
$$

The point P traces a circle of radius 2 , centred at the origin O.
Find a Cartesian equation of the locus of the point Q.

Question 16 (**+)
The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z-1|=\sqrt{2}|z-\mathrm{i}|
$$

show that the locus of P is a circle, stating its centre and radius.

$$
(x+1)^{2}+(y-2)^{2}=4,(-1,2), r=2
$$

\square

Created by T. Madas

Question 17 (** *)
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q, respectively, in separate Argand diagrams.

The two numbers are related by the equation

$$
w=\frac{1}{z+1}, z \neq-1 .
$$

If P is moving along the circle with equation

$$
(x+1)^{2}+y^{2}=4
$$

find in Cartesian form an equation of the locus of the point Q.

Created by T. Madas

Question $18 \quad\left({ }^{* *}+\right.$)

$$
|z-2 \mathrm{i}|=1, z \in \mathbb{C}
$$

a) In the Argand diagram, sketch the locus of the points that satisfy the above equation.
b) Find the minimum value and the maximum value of $|z|$, and the minimum value and the maximum of $\arg z$, for points that lie on this locus.

Question 19 (**+)

The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z+1|=2|z-2 \mathrm{i}|,
$$

show that the locus of P is a circle and state its radius and the coordinates of its centre.

Created by T. Madas

Created by T. Madas

Question $20 \quad\left({ }^{* *}+\right.$)

A transformation from the z plane to the w plane is defined by the equation

$$
w=\frac{z+2 \mathrm{i}}{z-2}, z \neq 2
$$

Find in the w plane, in Cartesian form, the equation of the image of the circle with equation $|z|=1, z \in \mathbb{C}$.

$$
\left(u+\frac{1}{3}\right)^{2}+\left(v+\frac{4}{3}\right)^{2}=\frac{8}{9}
$$

Question 21 (**+)

Find the cube roots of the imaginary unit i , giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z_{1}=\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}, \quad z_{2}=-\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}, \quad z_{3}=-\mathrm{i}
$$

Question 22 (** *)
Find the cube roots of the complex number -8 i , giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z_{1}=\sqrt{3}-\mathrm{i}, \quad z_{2}=-\sqrt{3}-\mathrm{i}, \quad z_{3}=2 \mathrm{i}
$$

Question 23 (**+)
The complex number z satisfies the relationship

$$
|z-2-\mathrm{i}|=|z+1| .
$$

a) Find a Cartesian equation for the locus of z.
b) Shade in an Argand diagram the region that satisfy the inequality

$$
|z-2-\mathrm{i}| \leq|z+1|
$$

\square

Created by T. Madas

Question $24 \quad\left({ }^{* *}+\right.$)

A transformation from the z plane to the w plane is given by the equation

$$
w=\frac{1+2 z}{3-z}, z \neq 3
$$

Show that the in the w plane, the image of the circle with equation $|z|=1, z \in \mathbb{C}$, is another circle, stating its centre and its radius .

Question 25 (**+)

The complex number z satisfies all three relationships

$$
|z-1| \leq 1, \quad \arg (z+1) \geq \frac{\pi}{12} \quad \text { and } \quad z+\bar{z} \geq 1
$$

Shade in an Argand diagram the region of the locus of z.

Created by T. Madas

Question $26 \mathbf{(* *}^{*}$)
In separate Argand diagrams, the complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} y$ are represented by the points P and Q, respectively.

The two numbers are related by the equation

$$
w=\frac{1}{z}, z \neq 0
$$

If P is moving along the circle with equation

$$
x^{2}+y^{2}=2
$$

find in Cartesian form an equation for the locus of the point Q.

Question 27 (**+)
The complex conjugate of z is denoted by \bar{z}.
The point P represents the complex number $z=x+\mathrm{i} y$ in an Argand diagram.

Given further that
circle, centre at $(-3,0)$, radius 5

Created by T. Madas

Question 28 (***)
Two loci are defined in the complex plane by the relationships

$$
|z-3|=|z-7-2 \mathrm{i}| \quad \text { and } \quad \arg (z-3-2 \mathrm{i})=\frac{\pi}{4}
$$

a) Sketch the two loci in the same Argand diagram.
b) Determine algebraically the complex number which lies on both loci.

Question 29 (***)
Consider the expression $(\sqrt{3}+i)^{n}$, where n is a positive integer.

Find the smallest positive value for n so that the expression is real.

Question 30 (***)
The complex number z satisfies the relationship

$$
|z-5|=2|z-2|
$$

a) Sketch in an Argand diagram the locus of z.
b) State the minimum value of $|z|$ and maximum value of $|z|$, for points which lie on this locus.

Question 31 (***)
If $z=\cos \theta+\mathrm{i} \sin \theta$, show clearly that \ldots
a) $\ldots z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta$.
b) $\ldots 16 \cos ^{5} \theta \equiv \cos 5 \theta+5 \cos 3 \theta+10 \cos \theta$.
proof

Question 32 (***)
The complex number $z=x+\mathrm{i} y$ satisfies the relationship

$$
2 \leq|z-2-3 i|<3
$$

a) Shade accurately in an Argand diagram the region represented by the above relationship.
b) Determine algebraically whether the point that represents the number $4+\mathrm{i}$ lies inside or outside this region.
inside the region

Created by T. Madas

Question 33 (***)
The complex number is defined as $z=\cos \theta+\mathrm{i} \sin \theta,-\pi<\theta \leq \pi$.
a) Show clearly that ...
i. $\ldots z^{n}+\frac{1}{z^{n}}=2 \cos \theta$.
ii. $\ldots z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin \theta$.
iii. .. $8 \sin ^{4} \theta=\cos 4 \theta-4 \cos 2 \theta+3$.
b) Hence solve the equation

Created by T. Madas

Question 34 (***)
It is given that for $z \in \mathbb{C}$ the loci L_{1} and L_{2} have respective equations,

$$
|z+1|^{2}=10 \quad \text { and } \quad \arg (z-1)=\frac{\pi}{4}
$$

a) Sketch L_{1} and L_{2} in the same Argand diagram.
b) Find the complex number that lies on both L_{1} and L_{2}.

Created by T. Madas

Question 35 (***)

$$
z=4+4 \mathrm{i} .
$$

a) Find the fifth roots of z. Give the answers in the form $r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Plot the roots as points in an Argand diagram.
$\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{20}}, \sqrt{2} \mathrm{e}^{\mathrm{i} \frac{9 \pi}{20}}, \sqrt{2} \mathrm{e}^{\mathrm{i} \frac{17 \pi}{20}}, \sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{7 \pi}{20}}, \sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{3 \pi}{4}}$

Question 36 (***)
A straight line L and a circle C are to be drawn on a standard Argand diagram.

The equation of L is $\arg z=\frac{\pi}{3}$.

The centre of C lies on L and its radius is 3 units. The line with equation $\operatorname{Im} z=0$ is a tangent to C.
a) Sketch L and C on the same Argand diagram.
b) Determine an equation for C, giving the answer in the form $|z-\alpha|=k$, where α and k are constants.

The point that represents the complex number z_{0} lies on C.
c) Determine the maximum value of $\arg z_{0}$, fully justifying the answer.

$$
|z-\sqrt{3}-3 i|=3, \quad \arg z_{0}=\frac{2 \pi}{3}
$$

Created by T. Madas

Question 37 (***)
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation $y=x$.

The complex numbers z and w are related by

$$
w=z-z^{2} .
$$

a) Find, in Cartesian form, the equation of the locus of Q in the w plane.
b) Sketch the locus traced by Q.

$$
v=u-2 u^{2} \text { or } y=x-2 x^{2}
$$

Question 38 (***)

$$
z=4-4 \sqrt{3} \mathrm{i} .
$$

a) Find the cube roots of z.

Give the answers in polar form $r(\cos \theta+\mathrm{i} \sin \theta), r>0,-\pi<\theta \leq \pi$.
b) Plot the roots as points in an Argand diagram.

$$
z=2\left(\cos \frac{\pi}{9}-\mathrm{i} \sin \frac{\pi}{9}\right), z=2\left(\cos \frac{5 \pi}{9}+\mathrm{i} \sin \frac{5 \pi}{9}\right), z=2\left(\cos \frac{7 \pi}{9}-\mathrm{i} \sin \frac{7 \pi}{9}\right)
$$

Question 39 (***)
The following complex number relationships are given

$$
w=-2+2 \sqrt{3} \mathrm{i}, \quad z^{4}=w .
$$

a) Express w in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
b) Find the possible values of z, giving the answers in the form $x+i y$, where x and y are real numbers.

$$
w=2\left[\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right],
$$

$$
z=\frac{1}{2}(\sqrt{6}+\mathrm{i} \sqrt{2}), z=\frac{1}{2}(-\sqrt{2}+\mathrm{i} \sqrt{6}), \quad z=\frac{1}{2}(\sqrt{2}-\mathrm{i} \sqrt{6}), \quad z=\frac{1}{2}(-\sqrt{6}-\mathrm{i} \sqrt{2})
$$

Created by T. Madas

Question 40 (***)

Two sets of loci in the Argand diagram are given by the following equations

$$
|z|=|z+2| \quad \text { and } \quad|z|=2, \quad z \in \mathbb{C}
$$

a) Sketch both these loci in the same Argand diagram.

The points P and Q in the Argand diagram satisfy both loci equations.
b) Write the complex numbers represented by P and Q, in the form $a+\mathrm{i} b$, where a and b are real numbers.
c) Find a quadratic equation with real coefficients, whose solutions are the complex numbers represented by the points P and Q.

Created by T. Madas

Question 41 (***)
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation $y=2 x$.

Given that he complex numbers z and w are related by

$$
w=z^{2}+1
$$

find, in Cartesian form, the locus of Q in the w plane.

$$
4 u+3 y=4 \text { or } 4 x+3 y=4
$$

Created by T. Madas

Question 42 (***)

$$
z^{4}=-8-8 \sqrt{3} i, z \in \mathbb{C} .
$$

Solve the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z=\sqrt{3}-\mathrm{i}, z=1+\sqrt{3} \mathrm{i}, z=-\sqrt{3}+\mathrm{i}, z=-1-\sqrt{3} \mathrm{i}
$$

Question 43 (***)
a) Sketch in the same Argand diagram the locus of the points satisfying each of the following equations
i. $|z-3-2 \mathrm{i}|=2$.
ii. $|z-3-2 \mathrm{i}|=|z+1+2 \mathrm{i}|$.
b) Show by a geometric calculation that no points lie on both loci.

Created by T. Madas

Question 44 (***)
A circle C_{1} in the z plane is mapped onto another circle C_{2} in the w plane.

The mapping is defined by the relationship

$$
w=2 \mathrm{i} z+1+\mathrm{i}
$$

Given C_{2} has its centre at the origin and its radius is 4 , find the coordinates of the centre of C_{1} and the size of its radius.

Created by T. Madas

Question 45 (***)
Sketch on a single Argand diagram the locus of the points z which satisfy

$$
|z-5-i|=2 \sqrt{5} \quad \text { and } \quad \arg (z+1-i)=\frac{1}{4} \pi
$$

and hence find the complex numbers which lie on both of these loci.

No credit will be given to solutions based on a scale drawing.
($z_{1}=1+3 \mathrm{i}, z_{2}=3+5 \mathrm{i}$

Created by T. Madas

Question 46 (***)

The point P represents the complex number $z=x+\mathrm{i} y$ in an Argand diagram and satisfies the relationship

$$
\operatorname{Re}\left(z+\frac{\mathrm{i}}{z}\right)=\operatorname{Re}(z+1), z \neq 0 .
$$

Describe mathematically the locus that P is tracing in the Argand diagram.

$$
\text { circle, centre at }\left(0, \frac{1}{2}\right) \text {, radius } \frac{1}{2} \text {, except the origin }
$$

Question 47 (***)

The complex conjugate of z is denoted by \bar{z}.
The point P represents the complex number $z=x+\mathrm{i} y$ in an Argand diagram.

Given that $(z-1)(\bar{z}-\mathrm{i})$ is always real, sketch the locus of P.

Question 48 (***)
The complex number z satisfies the equation

$$
|k z-1|=|z-k|
$$

where k is a real constant such that $k \neq \pm 1$.

Show that for all the allowable values of the constant k, the point represented by z in an Argand diagram traces the circle with Cartesian equation

Created by T. Madas

Question $49 \quad\left({ }^{* * *}+\right.$)
It is given that

$$
\sin 5 \theta \equiv 16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

It is further given that

$$
\sin 5 \theta=5 \sin 3 \theta \text { for } 0 \leq \theta<\pi
$$

giving the solutions correct to 3 decimal places.

$$
\theta=0,1.095^{\mathrm{c}}, 2.046^{\mathrm{c}}
$$

b) Solve the equation

Created by T. Madas

Question 50 (***)
Sketch on a single Argand diagram the locus of the points z and w which satisfy

$$
|z-7-9 \mathrm{i}|=6 \quad \text { and } \quad|w-7-9 \mathrm{i}|=|w+5+7 \mathrm{i}|,
$$

and hence find minimum value for $|z-w|$.

No credit will be given to solutions based on a scale drawing.
\square , $|z-w|_{\min }=4$

Question 51 (***+)
The complex number z is defined as

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show clearly that ...
i. $\quad \ldots z^{n}+\frac{1}{z^{n}}=2 \cos \theta$.
ii. ... $32 \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$.
b) Hence find an exact value for the integral

$$
\int_{0}^{\frac{\pi}{3}} \cos ^{6} x d x
$$

Created by T. Madas

Question 52 (***+)

$$
z_{1}=2 \cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}
$$

a) Verify that z_{1} is a solution of the equation

$$
z^{4}+16=0
$$

and plot the four roots of the equation in an Argand diagram.
b) Find the values of the real constants a and b so that

$$
\left(z-z_{1}\right)\left(z-\bar{z}_{1}\right) \equiv z^{2}+a z+b
$$

where \bar{z}_{1} denotes the complex conjugate of z_{1}.
c) Hence show that

$$
z^{4}+16 \equiv\left(z^{2}+a z+b\right)\left(z^{2}+c z+d\right)
$$

for some real constants c and d.
$a=-2 \sqrt{2}, b=4, c=2 \sqrt{2}, d=4$,

Created by T. Madas

Question 53 (***+)
A transformation T maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $v=u+\mathrm{i} v$ in the w plane, and is defined as

$$
z w=6, z \neq 0
$$

The line with equation $x=k, k \in \mathbb{R}$, is mapped by T onto a circle C in the w plane.
Determine a Cartesian equation for C and sketch its graph in an Argand diagram.

Question 54 (***+)

Find a solution for the following equation

$$
\sinh (\mathrm{i} x)=\mathrm{e}^{\mathrm{i} x}, x \in \mathbb{R}
$$

Created by T. Madas

Question 55 (***+)
Sketch on a standard Argand diagram the locus of the points z which satisfy
and use it to prove that

$$
\frac{1}{12} \pi \leq \arg z \leq \frac{5}{12} \pi
$$

No credit will be given to solutions based on a scale drawings.
\square , proof

Created by T. Madas

Question 56 (***+)
It is given that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{2} \theta+5 \cos \theta
$$

a) Use de Moivre's theorem to prove the above trigonometric identity.
b) By considering the solution of the equation $\cos 5 \theta=0$, show that

Created by T. Madas

Question 57 (***+)

$$
z^{2}=(1+\mathrm{i} \sqrt{3})^{3}, z \in \mathbb{C} .
$$

Solve the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

Created by T. Madas

Question 58 (***+)

A transformation of the z plane to the w plane is given by

$$
w=\frac{1+3 z}{1-z}, z \in \mathbb{C}, z \neq 1,
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The set of points that lie on the y axis of the z plane, are mapped in the w plane onto a curve C.

Show that a Cartesian equation of C is

$$
(u+1)^{2}+v^{2}=4
$$

Question 59 (***+)
The point A represents the complex number on the z plane such that

$$
|z-6 i|=2|z-3|
$$

and the point B represents the complex number on the z plane such that

$$
\arg (z-6)=-\frac{3 \pi}{4}
$$

a) Show that the locus of A as z varies is a circle, stating its radius and the coordinates of its centre.
b) Sketch, on the same z plane, the locus of A and B as z varies.
c) Find the complex number z, so that the point A coincides with the point B.

$$
C(4,-2), r=\sqrt{20}, z=(4-\sqrt{10})+\mathrm{i}(-2-\sqrt{10})
$$

\square

Question 60 (***+)
The complex number z is given by

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta
$$

b) Hence show further that

$$
\cos ^{4} \theta \equiv \frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}
$$

c) Solve the equation

$$
2 \cos 4 \theta+8 \cos 2 \theta+5=0,0 \leq \theta<2 \pi
$$

$$
\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(c) $2 \cos 4 \theta+8 \cos x+5=0$
 $16 \cos ^{4} \theta=z^{4}+4 z^{3} \frac{1}{z}+6 z^{2} \frac{1}{z^{2}}+4 z^{\frac{1}{z^{3}}}+\frac{1}{z^{4}}$ $16 \cos ^{9} \theta=z^{4}+4 z^{2}+6+\frac{4}{z^{2}}+\frac{1}{z^{4}}$
$16 \cos ^{5} \theta-=\left(z^{4}+\frac{1}{z^{4}}\right)+4\left(z^{2}+\frac{1}{z}\right)+6$ $1 . \cos ^{4} \theta=2 \cos 4 \theta+4(2 \cos 2 \theta)+6$ $\cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}$ Is Resurites) $\cos ^{2} \theta=\frac{1}{16}$ $\cos \theta=<-1 / 2$
\square

Created by T. Madas

Question 61 (***+)

The complex number $z=-9 \mathrm{i}$ is given.
a) Determine the fourth roots of z, giving the answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0 \leq \theta<2 \pi$.
b) Plot the points represented by these roots in Argand diagram, and join them in order of increasing argument, labelled as A, B, C and D.

The midpoints of the sides of the quadrilateral $A B C D$ represent the $4^{\text {th }}$ roots of another complex number w.
c) Find w, giving the answer in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}, y \in \mathbb{R}$.

Question 62 (${ }^{* * *+\text {) }) ~}$
The complex numbers z and w, satisfy the relationship

$$
w=z^{2}
$$

Given that in an Argand diagram, z is tracing the curve with equation

$$
x^{2}-y^{2}=8
$$

determine a Cartesian equation of the locus that w is tracing.

Question $63(* * *+)$
The complex numbers z and w, satisfy the relationship

$$
w=2 z+4, z \neq-2 .
$$

Given that z is tracing a circle with centre at $(1,1)$ and radius $\sqrt{2}$ in an Argand diagram, determine a Cartesian equation of the locus that w is tracing.

$$
(u-6)^{2}+(v-2)^{2}=8 \text { or }(x-6)^{2}+(y-2)^{2}=8
$$

Created by T. Madas

Question 64 (***+)
The complex number is defined as $z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi$.
a) Show that ...
i. ... $z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin \theta$.
ii. ... $16 \sin ^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta$.
b) Hence solve the equation

$$
5 \sin 3 \theta=\sin 5 \theta+6 \sin \theta,-\pi<\theta \leq \pi
$$

$$
\theta=0, \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}, \pi
$$

z- $\frac{1}{z=}=2 \operatorname{sismn} \theta$ LSt $n=1$
$2 i \sin \theta=z-\frac{1}{z}$
$(\text { (2isi } \theta)^{5}=\left(z-\frac{1}{z}\right)^{3}$
$\Rightarrow 32 i \sin ^{5} \theta=z^{5}-5 z^{3}+10 z-\frac{10}{z}+\frac{5}{2^{3}}-\frac{1}{z^{5}}$
$\Rightarrow 32 \sin ^{5} \theta=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}\right)$ $\Rightarrow 32 \sin ^{5} \theta=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$ $\Rightarrow 16 \sin ^{5} \theta=5 \sin 5 \theta-5 \sin 3 \theta+10 \sin \theta$
(b) $5 \sin 3 \theta=\sin 5 \theta+6 \sin \theta$ $\rightarrow 0=\sin 5 \theta-5 \sin 3 \theta+6 \sin \theta$ $\rightarrow 4 \sin \theta=16 \sin ^{5} \theta$ $\Rightarrow \sin \theta=4 \sin ^{2} \theta$ $\Rightarrow 0=4 \sin ^{5} \theta-\sin \theta$ $\Rightarrow 0=\sin \theta\left(4 \sin ^{2} \theta-1\right)$ $\Rightarrow 0=\sin \theta\left(2 \sin ^{2} \theta-1\right)\left(2 \sin ^{2} \theta+1\right)$ $\Rightarrow \sin \theta=\sum_{-\sqrt{\frac{1}{2}}}\left(\sin ^{2} \theta=\frac{1}{2}\right)$ (No subtions ar $\sin ^{2} \theta=-\frac{1}{2}$)

Created by T. Madas

Question 65 (***+)

$$
z^{3}=32+32 \sqrt{3} \mathrm{i}, z \in \mathbb{C} .
$$

a) Solve the above equation. Give the answers in exponential form $z=r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Show that these roots satisfy the equation

$$
z=4 \mathrm{e}^{\mathrm{i} \frac{\pi}{9}}, 4 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{9}}, 4 \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{9}}
$$

\square

Created by T. Madas

Question 66 (***+)
The complex function $w=f(z)$ is given by

$$
w=\frac{1}{z}, z \in \mathbb{C}, z \neq 0 .
$$

This function maps a general point $P(x, y)$ in the z plane onto the point $Q(u, v)$ in the w plane.

Given that P lies on the line with Cartesian equation $y=1$, show that the locus of Q is given by

$$
\left|w+\frac{1}{2}\right|=\frac{1}{2}
$$

Created by T. Madas

Question 67 (***+)

$$
\begin{gathered}
|z-2+i|=5 \\
\arg (z-2)=-\frac{3 \pi}{4}
\end{gathered}
$$

a) Sketch the above complex loci in the same Argand diagram.
b) Determine, in the form $x+\mathrm{i} y$, the complex number z_{0} represented by the intersection of the two loci of part (a).

Question 68 (***+)
The complex number z is given in polar form as

$$
\cos \left(\frac{2}{5} \pi\right)+i \sin \left(\frac{2}{5} \pi\right)
$$

a) Write z^{2}, z^{3} and z^{4} in polar form, each with argument θ, so that $0 \leq \theta<2 \pi$.

In an Argand diagram the points A, B, C, D and E represent, in respective order, the complex numbers

$$
1, \quad 1+z, \quad 1+z+z^{2}, \quad 1+z+z^{2}+z^{3}, \quad 1+z+z^{2}+z^{3}+z^{4}
$$

b) Sketch these points, in the sequential order given, in a standard Argand diagram.
c) State the exact argument of

$$
\arg \left(1+z+z^{2}\right)=\frac{2 \pi}{5}
$$

Created by T. Madas

Created by T. Madas

Question 69 (***+)
The complex number z satisfies the following equation.

$$
|z+8-16 \mathrm{i}|=|z| .
$$

In a standard Argand diagram, the complex numbers represented by the points A and B lie on the real and imaginary axes, respectively.

Given further that A and B satisfy the above equation, determine an equation for the circle which passes though the points A, B and O, where O is the origin of the Argand diagram.

Give the answer in the form $\left|z-z_{0}\right|=r$, where $z_{0} \in \mathbb{C}$ and $r \in \mathbb{R}$.

Created by T. Madas

Created by T. Madas

Question 70 (***+)
The following convergent series C and S are given by

$$
\begin{aligned}
& C=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta \ldots \\
& S=\quad \frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta \ldots
\end{aligned}
$$

a) Show clearly that

$$
C+\mathrm{i} S=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}} .
$$

b) Hence show further that

$$
C=\frac{4-2 \cos \theta}{5-4 \cos \theta}
$$

and find a similar expression for S.

Created by T. Madas

Question 71 (***+)

The complex number z is given by

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show clearly that
b) Hence show further that

$$
z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta
$$

$$
16 \cos ^{5} \theta \equiv \cos 5 \theta+5 \cos 3 \theta+10 \cos \theta
$$

c) Use the results of parts (a) and (b) to solve the equation $\cos 5 \theta+5 \cos 3 \theta+6 \cos \theta=0,0 \leq \theta<\pi$.

Created by T. Madas

Question 72 (***+)
The complex number z lies on the curve with equation

$$
|z+5-12 \mathrm{i}|=6, z \in \mathbb{C}
$$

a) Sketch this curve in a standard Argand diagram.
b) Show that $a \leq|z| \leq b$, where a and b are integers.

The complex number z_{0} lies on this curve so that its argument is the largest for all complex numbers which lie on this curve.
c) Determine the value of $\left|z_{0}\right|$ and the value of $\arg z_{0}$

Created by T. Madas

Question 73 (***+)
The complex number z satisfies

$$
|z-4|=|z+6 \mathrm{i}| .
$$

Determine, as an exact simplified surd, the minimum value of $|z|$.
\square

$$
|z|_{\min }=\frac{5}{\sqrt{13}}
$$

\square

Created by T. Madas

Created by T. Madas

Question 74 (****)
A transformation of the z plane onto the w plane is given by

$$
w=\frac{a z+b}{z+c}, z \in \mathbb{C}, z \neq-c
$$

where a, b and c are real constants.

Under this transformation the point represented by the number $1+2 \mathrm{i}$ gets mapped to its complex conjugate and the origin remains invariant.
a) Find the value of a, the value of b and the value of c.
b) Find the number, other than the number represented by the origin, which remains invariant under this transformation.

Question 75 (****)

$$
z^{7}-1=0, z \in \mathbb{C}
$$

One of the roots of the above equation is denoted by ω, where $0<\arg \omega<\frac{\pi}{3}$.
a) Find ω in the form $\omega=r \mathrm{e}^{\mathrm{i} \theta}, \quad r>0,0<\theta \leq \frac{\pi}{3}$.
b) Show clearly that

$$
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0
$$

c) Show further that

$$
\omega^{2}+\omega^{5}=2 \cos \left(\frac{4 \pi}{7}\right)
$$

d) Hence, using the results from the previous parts, deduce that

Determine the three roots of the above equation.

Give the answers in the form $k \sqrt{2} \mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leq \pi, k \in \mathbb{Z}$.

Created by T. Madas

Question 77 (****)
The complex number is defined as

$$
z=(1+\mathrm{i} \tan \theta)^{3},-\frac{\pi}{2}<\theta<\frac{\pi}{2} .
$$

By considering the real part of z, or otherwise, prove the validity of the following trigonometric identity

Created by T. Madas

Question 78 (****)
Consider the following expression

$$
\frac{\left(\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}\right)^{n}}{\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)^{m}}=\mathrm{i}
$$

The values of n and m are such so that

$$
\{m \in \mathbb{N}: 1 \leq m \leq 9\} \text { and }\{m \in \mathbb{N}: 1 \leq m \leq 9\} .
$$

Determine, by a full mathematical method, the value of n and the value of m.

Question 79 (****)
A transformation T maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $v=u+\mathrm{i} v$ in the w plane, and is defined as

$$
w=\frac{2}{\bar{z}-1}, z \in \mathbb{C}, z \neq 1
$$

where \bar{z} is the complex conjugate of z.
The line with equation $\operatorname{Re} z=2$ is mapped by T onto a circle C in the w plane.
a) Determine the coordinates of the centre of C and the length of its radius.
b) Find an equation of the image in the w plane of the half line with equation

$$
(1,0), \quad r=1, \quad \arg w=\frac{\pi}{3}
$$

Created by T. Madas

Question 80 (****)
A complex function $w=f(z)$ is defined as

$$
w=\frac{a z+b}{z+c}, z \in \mathbb{C}, z \neq-c .
$$

The constants a, b and c are complex.

Under the function f the points $1+\mathrm{i}$ and $-1+\mathrm{i}$ are invariant, while the origin is mapped onto i.

Determine the values of the constants a, b and c.

$$
a=0, b=2, c=-2 \mathrm{i}
$$

- $f(4 i)=1+i$ $\frac{a(1+i)+b}{(1+i)+c}=1+i$ $a+a i+b=(1+i)(1+i+c)$ $a+b+a i=X+i+c+i-X+i c$ $a(1+i)+b-c(1+i)=2 i(t)$	- $f(-1+i)=-1+i$ $\frac{a(-1+i)+b}{(-1+i)+c}=-1+i$ $-a+a i+b=(-1+i)(-1+i+c)$ $-a+b+a i=\gamma-i-c-i-1+i c$ $a(-1+i)+b-c(-1+i)=-2 i$ (II)
$\begin{gathered} \text { Howete } c=-2 x / / \\ b=2 \end{gathered}$	

Created by T. Madas

Question 81 (****)
De Moivre's theorem asserts that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta, \theta \in \mathbb{R}, n \in \mathbb{Q}
$$

a) Use the theorem to prove the validity of the following trigonometric identity.

$$
\cos 6 \theta \equiv 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1
$$

b) Use the result of part (a) to find, in exact form, the largest positive root of the equation

$$
64 x^{6}-96 x^{4}+36 x^{2}-1=0
$$

$$
x=\cos \left(\frac{\pi}{9}\right)
$$

ch $\cos \theta+i s m \theta \equiv \mathrm{C}+$ is
$(\cos \theta+i \sin \theta)^{\sigma}=(c+i \phi)^{6}$
$\cos 6 \theta+i \sin b=c^{6}+6 i c^{5}+1 s c^{42} s^{2}-20 i c^{23}+15 c^{2} s^{4}+6 i c s^{5}-5^{6}$ Ggunfe Prat Phers

$\Rightarrow \cos 9 \theta=c^{6}-15 c^{c}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-(1-c)^{3}$
$\Rightarrow \cos 69=c^{c}-15 c^{6}+1 c^{6}+15^{2}\left(-2 c^{2}+1-\left(1-3 c^{2}\right.\right.$
$\left.\Rightarrow \cos \theta=c^{6}-15 c^{c}+15 c^{6}+15 c^{6}+15 c^{2}-3 c^{2}+c^{4}+15 c^{6}\right)\left(1-3 c^{2}+3 c^{4}-c^{6}\right)$
$\Rightarrow \cos \theta \theta=32 c^{6}-48 c^{2}+18 c^{2}-1$
$\therefore \cos \theta \theta=32 \cos ^{5} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$ As Requicss
(b) $644 x^{6}-96 x^{4}+36 x^{2}-1=0$
$\Rightarrow 32 x^{6}-48 x^{4}+18 x^{2}-\frac{1}{2}=0$
$\Rightarrow 32 x^{6}-48 x^{4}+18 x^{2}-1=-\frac{1}{2}$
LET $x=\cos \theta$
$\Rightarrow 3 \cos ^{2} \theta-48 \cos ^{2} \theta+18 \cos ^{2} \theta-1-\frac{1}{2}$ $\Rightarrow \cos 0 \theta=-\frac{1}{2}$ $\theta \arccos \left(-\frac{1}{2}\right)=\frac{\pi}{3}$
$\left(\begin{array}{l}6 \theta=\frac{2 \pi}{3} \pm 2 n \pi \\ 6 \theta=\frac{4 \pi}{3} \pm 2 \pi \pi\end{array} \quad 4=9,2,3,3\right.$,
$\left(\begin{array}{l}\theta=\frac{\bar{y}}{\theta} \pm 2 n \pi \\ \theta=\frac{2 \pi}{9} \pm 2 \pi \pi\end{array}\right.$

Question 82 (****)
A transformation of the z plane to the w plane is given by

$$
w=\frac{1}{z-2}, z \in \mathbb{C}, z \neq 2
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The line with equation

$$
2 x+y=3
$$

is mapped in the w plane onto a curve C.
a) Show that C represents a circle and determine the coordinates of its centre and the size of its radius.

The points of a region R in the z plane are mapped onto the points which lie inside C in the w plane.
b) Sketch and shade R in a suitable labelled Argand diagram, fully justifying the choice of region.

Created by T. Madas

Question 83 (****)
The locus of the point z in the Argand diagram, satisfy the equation

$$
|z-2+\mathrm{i}|=\sqrt{3} .
$$

a) Sketch the locus represented by the above equation.

The half line L with equation

$$
y=m x-1, \quad x \geq 0, \quad m>0,
$$

touches the locus described in part (a) at the point P.
b) Find the value of m.
c) Write the equation of L, in the form

$$
\arg \left(z-z_{0}\right)=\theta, \quad z_{0} \in \mathbb{C},-\pi<\theta \leq \pi .
$$

Created by T. Madas

Question 84 (****)
If $z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi$, and $w=\frac{1}{z-1}$ show clearly that

Question 85 (****)
a) Simplify fully $\left(z^{n}-\mathrm{e}^{\mathrm{i} \theta}\right)\left(z^{n}-\mathrm{e}^{-\mathrm{i} \theta}\right)$.
b) Hence factorize $z^{4}-z^{2}+1$ into 4 linear complex factors.

$$
z^{2 n}-z^{n}(2 \cos \theta)+1,\left(z+\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}\right)\left(z+\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}\right)\left(z-\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}\right)\left(z-\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}\right)
$$

Question 86 (****)
Let $z=\cos \theta+\mathrm{i} \sin \theta=C+\mathrm{i} S,-\pi<\theta \leq \pi$.
a) Use De Moivre's theorem to show that

$$
\cos 5 \theta \equiv 16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

b) Hence or otherwise find, in exact form where appropriate, 3 distinct solutions of the quintic equation

$$
x=-1, \cos \frac{\pi}{5}, \cos \frac{3 \pi}{5}
$$

Created by T. Madas

Question 87 (****)
Euler's identity states

$$
\mathrm{e}^{\mathrm{i} \theta} \equiv \cos \theta+\mathrm{i} \sin \theta, \theta \in \mathbb{R}
$$

a) Use the identity to show that

$$
\mathrm{e}^{\mathrm{i} n \theta}+\mathrm{e}^{-\mathrm{i} n \theta} \equiv 2 \cos n \theta
$$

b) Hence show further that

$$
32 \cos ^{6} \theta \equiv \cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10
$$

c) Use the fact that $\cos \left(\frac{\pi}{2}-\theta\right) \equiv \sin \theta$ to find a similar expression for $32 \sin ^{6} \theta$.
d) Determine the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \sin ^{6} \theta+\cos ^{6} \theta d \theta
$$$2 \theta+10, \frac{5 \pi}{32}$ Coses)

$$
s^{6} \theta d \theta
$$

$$
32 \sin ^{6} \theta=-\cos 6 \theta+6 \cos 4 \theta-15 \cos 2 \theta+10, \frac{5 \pi}{32}
$$

Created by T. Madas

Question 88 (****)
A transformation of the z plane to the w plane is given by

$$
w=z^{2}, z \in \mathbb{C}
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The straight line with equation $y=1$ is mapped in the w plane onto a curve C.

Sketch the graph of C, marking clearly the coordinates of all points where the graph of C meets the coordinate axes.

Question 89 (*****)
De Moivre's theorem asserts that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta, \theta \in \mathbb{R}, n \in \mathbb{Q}
$$

a) Use the theorem to prove validity of the following trigonometric identity

$$
\sin 5 \theta=\sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)
$$

b) Hence, or otherwise, solve the equation

$$
\sin 5 \theta=10 \cos \theta \sin 2 \theta-11 \sin \theta, 0<\theta<\pi
$$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

Created by T. Madas

Question 90 (****)
A transformation of points from the z plane onto points in the w plane is given by the complex relationship

$$
w=z^{2}, \quad z \in \mathbb{C}
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

Show that if the point P in the z plane lies on the line with equation

$$
y=x-1
$$

the locus of this point in the w plane satisfies the equation

$$
v=\frac{1}{2}\left(u^{2}-1\right)
$$

Question 91 (****)
It is given that

$$
\sin 5 \theta \equiv \sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)
$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

Consider the general solution of the trigonometric equation

$$
\sin 5 \theta=0
$$

b) Find exact simplified expressions for

$$
\cos ^{2}\left(\frac{\pi}{5}\right) \text { and } \cos ^{2}\left(\frac{2 \pi}{5}\right)
$$

fully justifying each step in the workings.

Question 92 (****)
The complex number z is given by

$$
z=\cos \theta+\mathrm{i} \sin \theta,-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta
$$

b) Hence show further that if $z=\cos \theta+\mathrm{i} \sin \theta$, the equation

$$
3 z^{4}-5 z^{3}+8 z^{2}-5 z+3=0
$$

transforms into the equation

$$
6 \cos ^{2} \theta-5 \cos \theta+1=0
$$

c) Hence find in exact surd form the four roots of the equation

$$
3 z^{4}-5 z^{3}+8 z^{2}-5 z+3=0
$$

$$
z=\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}, z=\frac{1}{3} \pm \frac{2}{3} \sqrt{2} \mathrm{i}
$$

Created by T. Madas

Question 93 (****)

A complex transformation from the z plane to the w plane is defined by

$$
w=\frac{z+\mathrm{i}}{3+\mathrm{i} z}, z \in \mathbb{C}, z \neq 3 \mathrm{i} .
$$

The point $P(x, y)$ is mapped by this transformation into the point $Q(u, v)$.

It is further given that Q lies on the real axis for all the possible positions of P.

Show that the P traces the curve with equation

Question 94 (****)
The complex number z is given by $z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi$
a) Show clearly that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

b) Hence solve the equation

$$
\begin{gathered}
z^{4}-2 z^{3}+3 z^{2}-2 z+1=0 \\
2
\end{gathered}
$$

\square Acreviqua- wandor curptxis $\begin{aligned} & z^{4}-2 z^{2}+3 z^{2}-2 z+1=0 \\ \Rightarrow & z^{2}-2 z+3-\frac{2}{z}+\frac{1}{z^{2}}=0\end{aligned}$ $\Rightarrow\left(z^{2}+\frac{1}{z^{2}}\right)+3-2\left(z+\frac{1}{z}\right)=0$ wao $\begin{aligned}\left(z+\frac{1}{z}\right)^{2}=z^{2}+2+\frac{1}{z^{2}} \\ z^{2}+1\end{aligned} \quad \Rightarrow \begin{aligned} & z^{2}-z+1=0 \\ & \end{aligned}\left(4 z^{2}-4 z+1\right)+3=0$ $z^{2}+\frac{1}{z^{2}}=\left(z+\frac{1}{z}\right)^{2}-2$
$4 T t=z+\frac{1}{z}$ $\therefore\left(t^{2}-2\right)+3-2 t=0$
$t^{2}-2 t+1=0$

Created by T. Madas

Question 95 (****)
A transformation of the z plane to the w plane is given by

$$
w=\frac{2 z+1}{z}, z \in \mathbb{C}, z \neq 0
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The circle C_{1} with centre at $\left(1,-\frac{1}{2}\right)$ and radius $\frac{\sqrt{5}}{2}$ in the z plane is mapped in the w plane onto another curve C_{2}.
a) Show that C_{2} is also a circle and determine the coordinates of its centre and the size of its radius.

The points inside C_{1} in the z plane are mapped onto points of a region R in the w plane.
b) Sketch and shade R in a suitably labelled Argand diagram, fully justifying the choice of the region.

Question 96 (****)
The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=1+\mathrm{i} \sqrt{3} \quad \text { and } \quad z_{2}=\mathrm{i} z_{1} .
$$

a) Label accurately the points representing z_{1} and z_{2}, in an Argand diagram.
b) On the same Argand diagram, sketch the locus of the points z satisfying ...
i. $\quad \ldots\left|z-z_{1}\right|=\left|z-z_{2}\right|$.
ii. $\quad \ldots \arg \left(z-z_{1}\right)=\arg z_{2}$.
c) Determine, in the form $x+\mathrm{i} y$, the complex number z_{3} represented by the intersection of the two loci of part (b).

Created by T. Madas

Question 97 (****)
a) Use De Moivre's theorem to show that

$$
\sin 5 \theta \equiv 16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
$$

b) By considering the solutions of the equation $\sin 5 \theta=0$, find in exact surd form the values of $\sin \left(\frac{n \pi}{5}\right)$, for $n=1,2,3,4$.

$$
\sin \frac{\pi}{5}=\sin \frac{4 \pi}{5}=\sqrt{\frac{5-\sqrt{5}}{8}}, \sin \frac{2 \pi}{5}=\sin \frac{3 \pi}{5}=\sqrt{\frac{5+\sqrt{5}}{8}}
$$

Created by T. Madas

Created by T. Madas

Question 98 (****)
A transformation of the z plane to the w plane is given by

$$
w=z+\frac{1}{z}, z \in \mathbb{C}, z \neq 0
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The locus of the points in the z plane that satisfy the equation $|z|=2$ are mapped in the w plane onto a curve C.

By considering the equation of the locus $|z|=2$ in exponential form, or otherwise, show that a Cartesian equation of C is

$$
36 u^{2}+100 v^{2}=225
$$

\square

Created by T. Madas

Question 99 (****)
a) Use De Moivre's theorem to show that

$$
\sin 5 \theta \equiv 16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
$$

b) By considering the solutions of the equation $\sin 5 \theta=0$, find in trigonometric form the four solutions of the equation

$$
16 x^{4}-20 x^{2}+5=0
$$

c) Hence show, with full justification, that

$$
\sin ^{2}\left(\frac{\pi}{5}\right)=\frac{5-\sqrt{5}}{8}
$$

\square

$$
x=\sin \left(\frac{1}{5} k \pi\right), \quad k=1,2,6,7
$$

AlSO BY Letina $x=\sin \theta$, THE R.H.S Yituos $x\left(160 x^{4}-20 x^{2}+5\right)=0$ $\sin \theta\left(16 \sin ^{2} \theta-20 \sin ^{2} \theta+5\right)=0$

- $\theta=0$ is from the ractopzio $\operatorname{sm} \theta($ OR $\theta=\pi)$
- $x=\sin \frac{\pi}{5} ; x=\sin \frac{2 \pi}{5}, x=\sin \frac{6 \pi}{5}, x=\sin \frac{\pi \pi}{5}$ 을 $\left(\sin \frac{\pi}{5}\right) \quad\left(\sin \frac{3 \pi}{5}\right) \quad\left(x=\sin \frac{4 \pi}{5}\right)\left(x=\sin \frac{8 \pi}{5}\right)$
C) SOCNING THE QUARTIC BY THE quADAATKC FORRMLA - $16 x^{4}-20 x^{2}+5=0 \Rightarrow x^{2}=\frac{20 \pm \sqrt{80}}{32}=\frac{20 \pm 4 \sqrt{5}}{32}$
$\Rightarrow x^{2}=\frac{5+\sqrt{5}}{8}$
- $\left(x-\sin \frac{\pi}{5}\right)\left(x-\sin \frac{64}{5}\right)\left(x-\sin \frac{2 \pi}{5}\right)\left(x-\sin \frac{\pi}{5}\right)=0$ $\left(x-\sin \frac{\pi}{5}\right)\left(x-\sin \left(-\frac{5}{5}\right)\left(x-\sin \frac{\pi}{5}\right)\left(x-\sin \left(-\frac{\pi}{5}\right)\right)=0\right.$ $\left(x-\sin \frac{\pi}{5}\right)\left(x+\sin \frac{\pi}{5}\right)\left(x-\sin \frac{2 \pi}{5}\right)\left(x+\sin \frac{2 \pi}{5}\right)=0$
$\left(x^{2} \sin ^{2} \pi\right)\left(x^{2}-\sin ^{2} 2 \pi\right)=0$
- $\operatorname{sen}^{2} \frac{\pi}{5}=\frac{5+\sqrt{3}}{5}$

BOT $\sin \pi \frac{\frac{5-\sqrt{3}}{8}}{\frac{0}{5}}$

$\begin{aligned} \sin \frac{\pi}{6} & <\sin \frac{\pi}{3}<\sin \frac{7}{2} \\ \sin ^{2} \frac{\pi}{6} & <\sin ^{2} \frac{\pi}{5}<\sin ^{2} \frac{\pi}{4}\end{aligned}$
$\frac{1}{4}<\sin ^{2} \frac{\pi}{6}<\frac{1}{2}$
$\therefore \sin ^{2} \frac{\pi}{5} \neq \frac{5}{8}+\frac{\pi}{8}>\frac{1}{2}$
$\sin ^{2} \frac{\pi}{5}=\frac{5}{8}-\frac{1}{8} \sqrt{5}$

Created by T. Madas

Question 100 (****)
The complex function $w=f(z)$ is given by

$$
w=\frac{1}{1-z}, z \neq 1 .
$$

The point $P(x, y)$ in the z plane traces the line with Cartesian equation

$$
y+x=1
$$

Show that the locus of the image of P in the w plane traces the line with equation

Question 101 (****)
By considering the binomial expansion of $(\cos \theta+\mathrm{i} \sin \theta)^{4}$ show that

$$
\tan 4 \theta \equiv \frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

\square

In an Argand diagram which represents the z plane, the complex number $z=x+\mathrm{i} y$ satisfies the relationship

$$
\arg \left(\frac{z-2 \mathrm{i}}{z-4}\right)=\frac{\pi}{2}
$$

Sketch the curve that the locus of z traces.

Created by T. Madas

Question 103 (****)
A transformation from the z plane to the w plane is defined by the equation

$$
w=\mathrm{i} z-1, z \in \mathbb{C}
$$

Sketch in the w plane, in Cartesian form, the equation of the image of the half line with equation

Created by T. Madas

Question 104 (****)
The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{iv}$ in the w plane.

It is given that

$$
f(z)=z^{2}, z \in \mathbb{C}
$$

The line with equation $\operatorname{Im} z=2$ in the z plane is mapped onto the curve C in the w plane.
a) Find a Cartesian equation for C.
b) Sketch the graph of C.

Created by T. Madas

Question 105 (****)
The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{iv}$ in the w plane.

It is given that

$$
\left(x+\frac{4}{3}\right)^{2}+y^{2}=\frac{32}{9}
$$

are mapped onto the region R in the w plane.

Shade the region R in a clearly labelled Argand diagram.
sketch
The points from the z plane, except the origin, which lie inside and on the boundary of the circle with equation

Created by T. Madas

Question 106 (****)

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show that ...
i. $\ldots z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$.
ii. ... $z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta$.
b) Hence show further that

$$
\cos ^{4} \theta \sin ^{2} \theta=\frac{1}{16}+\frac{1}{32} \cos 2 \theta-\frac{1}{16} \cos 4 \theta-\frac{1}{32} \cos 6 \theta \text {. }
$$

\square proof

$\Rightarrow\left(16 \cos ^{4} \theta\right)\left(-4 \sin ^{2} \theta\right)=\left(z-\frac{1}{z}\right)^{2}\left(z+\frac{1}{z}\right)^{4}$
$\Rightarrow-64 \cos ^{2} \theta \sin ^{2} \theta=\left(z-\frac{1}{2}\right)^{2}\left(z+\frac{1}{z}\right)^{2}\left(z+\frac{1}{z}\right)^{2}$
$\Rightarrow-64 \cos ^{4} \theta \sin ^{2} \theta=\left(z^{2}-\frac{1}{z^{2}}\right)^{2}\left(z+\frac{1}{z}\right)^{2}$
$\Rightarrow-64 \cos ^{4} \theta \sin ^{2} \theta=\left(z^{4}-2+\frac{1}{z^{4}}\right)\left(z^{2}+2+\frac{1}{z^{2}}\right)$
$\begin{aligned} \Rightarrow-\operatorname{th}^{4} \cos ^{4} \theta \sin ^{2} \theta=z^{6}+2 z^{4} & +z^{2} \\ & -2 z^{2}-4-\frac{2}{z^{2}}\end{aligned}$
$\Rightarrow-64 \cos ^{4} \theta \sin ^{2} \theta=\frac{+\frac{1}{z^{2}}+\frac{2}{z^{4}}+\frac{1}{z^{5}}}{z^{6}+2 z^{4}-z^{2}-4-\frac{1}{z^{2}}+\frac{2}{z^{4}}+\frac{1}{z^{4}}}$
$\Rightarrow-\operatorname{ctc}^{4} \cos ^{2} \theta \sin ^{2} \theta=\left(z^{6}+\frac{1}{z^{6}}\right)+2\left(z^{4}+\frac{1}{z^{4}+}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)-4$
$\Rightarrow-64 \cos ^{2} \theta \sin ^{2} \theta=(2 \cos \theta \theta)+2(2 \cos 4 \theta)-(2 \cos 2 \theta)-4$
$\Rightarrow-64 \cos ^{2} \theta \sin ^{2} \theta=-4-2 \cos 2 \theta+4 \cos 4 \theta+2 \cos 6 \theta$
$\Rightarrow \frac{\cos ^{4} \theta \sin ^{2} \theta=\frac{1}{16}+\frac{1}{32} \cos 2 \theta-\frac{1}{16} \cos 4 \theta-\frac{1}{32} \cos 6 \theta / \text { AB Refurens }}{\text { / }}$

Created by T. Madas

Created by T. Madas

Question 107 (****)
The locus of a point, represented by the complex number z, satisfies the relationship

$$
|z+1+\mathrm{i}|=|z-1+2 \mathrm{i}|
$$

When this locus is transformed by the complex function

$$
f(z)=k z+\mathrm{i}, k \in \mathbb{R}
$$

the image of the locus traces the straight line with Cartesian equation

Created by T. Madas

Question 108 (****)
The point P represents the number $z=x+\mathrm{i} y$ in an Argand diagram and further satisfies the equation

$$
\arg \left(\frac{1-\mathrm{i} z}{1-z}\right)=\frac{\pi}{4}, z \neq-\mathrm{i}
$$

Use an algebraic method to find an equation of the locus of P and sketch this locus accurately in an Argand diagram.

$$
u^{2}+v^{2}=1, \text { such that } v>u-1
$$

Created by T. Madas

Question 109
$(* * * *)$
The complex function $w=f(z)$ satisfies

$$
w=\frac{1}{z}, z \in \mathbb{C}, z \neq 0
$$

This function maps the point $P(x, y)$ in the z plane onto the point $Q(u, v)$ in the w plane.

It is further given that P traces the curve with equation

$$
\left|z+\frac{1}{2} \mathrm{i}\right|=\frac{1}{2}
$$

Find, in Cartesian form, the equation of the locus of Q.

Created by T. Madas

Question 110 (****)
Use De Moivre's theorem to show that

Created by T. Madas

Question 111 (****)

A transformation T from the z plane to the w plane is defined by

$$
w=\frac{z-\mathrm{i}}{z+1}, z \in \mathbb{C}, z \neq-1
$$

T transforms the circle with equation $|z|=1$ in the z plane, into the straight line L in the w plane.
a) Find a Cartesian equation for L.
T transforms the y axis in the z plane, into the curve C in the w plane.
b) Find a Cartesian equation for C.

The region R in the z plane, satisfies $|z| \leq 1$ such that $-\frac{\pi}{2} \leq \arg z \leq \frac{\pi}{2}$.
c) Shade the image of R under T in the w plane.

Question 112 (****)
A transformation T maps the point $x+\mathrm{i} y$ from the z plane to the point $u+\mathrm{i} v$ in the w plane, and is defined by

$$
w=\frac{z+\mathrm{i}}{z}, z \in \mathbb{C}, z \neq 0
$$

T transforms the line with equation $y=x$ in the z plane, except the origin, into the straight line L_{1} in the w plane.
a) Find a Cartesian equation for L_{1}.
T transforms the circle C_{1} in the z plane, into the circle C_{2} in the w plane.
b) Find the coordinates of the centre of C_{1} and the length of its radius, given the Cartesian equation of C_{2} is

$$
u^{2}+v^{2}=4 u
$$

$$
y=x-1 \text { or } v=u-1,\left(0,-\frac{1}{3}\right), r=\frac{2}{3}
$$

\square
$\left\{\begin{array}{l}\text { Now } z=\frac{1}{u+i v-1}=\frac{i}{(u-i)+i v}=\frac{i((u-i)-i v]}{[(u-i)+i \overline{[u-i)-i]}} \\ \text { so } x+i y=\frac{y+(u-i) i}{(u-i)^{2}+v^{2}}=\frac{v}{\left.(u-1)+v^{2}\right)^{2}}+i \frac{i\left(\frac{1-1}{\left.(u-i)^{2}+v\right)}\right.}{}\end{array}\right.$ Bor $\dot{x}=y$

$$
]
$$

Created by T. Madas

Question 113 (****)
The complex number z satisfies the relationship

$$
\left(\frac{2 z+1}{z+2}\right)^{n}=\frac{1}{3}+\frac{2 \sqrt{2}}{3} \mathrm{i}, \quad z \neq-2, \quad n \in \mathbb{N}
$$

Show that the point represented by z in an Argand diagram represents a circle, stating the coordinates of its centre and the size of its radius.

Question 114 (****)
The numbers z and w satisfy the relationship

$$
w=\frac{z+9 \mathrm{i}}{1+\mathrm{i} z}, z \neq \mathrm{i}
$$

a) Given that $w \in \mathbb{R}$, find the possible values of z.
b) Given instead that $z \in \mathbb{R}$, find a Cartesian equation of the locus of the point represented by w, in an Argand diagram.

$$
z= \pm 3, \text { or } x= \pm 3, u^{2}+(v-4)^{2}=25
$$

Created by T. Madas

Question 115 (****)
The numbers z and w satisfy the relationship

$$
w=z+\frac{4}{z}, z \in \mathbb{C}, z \neq 0
$$

Given that w is always real sketch in a suitably labelled Argand diagram the locus of the possible positions of z.

Created by T. Madas

Question 116 (****)
A transformation from the z plane to the w plane is defined by the equation

$$
f(z)=\frac{\mathrm{i} z}{z-\mathrm{i}}, z \in \mathbb{C}
$$

Find, in Cartesian form, the equation of the image of straight line with equation

$$
|z-\mathrm{i}|=|z-2|, \quad z \in \mathbb{C}
$$

$$
\left(u+\frac{2}{5}\right)^{2}+\left(v-\frac{4}{5}\right)^{2}=\frac{1}{5}
$$

Created by T. Madas

Question 117 (****)
The complex numbers z_{1} and z_{2}, satisfy the relationship

$$
z_{1} z_{2}=2 z_{2}+1, z_{2} \neq 0
$$

Given that z_{1} is tracing a circle with centre at $(1,0)$ and radius 1 in an Argand diagram, determine a Cartesian equation of the locus that z_{2} is tracing.

Question 118 (****)

$$
z^{3}+4=4 \sqrt{3} i
$$

By considering the sum of the three roots of the above cubic equation show clearly that

Created by T. Madas

Question 119 (****)

$$
z^{3}-3 z^{2}+3 z-65=0, z \in \mathbb{C} .
$$

By considering the binomial expansion of $(a-1)^{3}$, or otherwise, find in exact form where appropriate the three solutions of the above equation.
\square $z=5,-1 \pm \mathrm{i} \frac{\sqrt{3}}{2}$

Created by T. Madas

Question 120 ($* * * *+$)
The complex number w is the point of intersection of the following two loci in a standard Argand diagram

$$
\arg (z-4 \mathrm{i})=\frac{\pi}{6} \quad \text { and } \quad \arg (z-12 \mathrm{i})=-\frac{\pi}{3}
$$

Determine the equation of the circle which passes though w and the origin of the Argand diagram.

Give the answer in the form $|z-w|=r$, where w and r must be stated.

Created by T. Madas

Question 121 ($* * * *+$)
The complex number $17+k \mathrm{i}$, where k is a real constant, satisfies the locus

$$
\arg (z-1-i)=\theta,
$$

where

$$
\theta=\arctan \frac{3}{4}
$$

a) Determine the value of k.
b) Find the complex number z which satisfies the locus $\arg (z-1-i)=\theta$ so that $|z-22+2 \mathrm{i}|$ is least.

Created by T. Madas

Created by T. Madas

Question 122 (****+)
The quadratic equation

$$
x^{2}-2 x(t+6)+12 t+40=0
$$

where t is a parameter such that $-2 \leq t \leq 2$, has complex roots.

Show that for all t such that $-2 \leq t \leq 2$, the roots of this quadratic equation lie on a circle in an Argand diagram.

Created by T. Madas

Question 123 (****+)
The complex function $w=f(z)$ is defined by

$$
w=\frac{3 z+\mathrm{i}}{1-z}, z \in \mathbb{C}, z \neq 1 .
$$

The half line with equation $\arg z=\frac{3 \pi}{4}$ is transformed by this function.
a) Find a Cartesian equation of the locus of the image of the half line.

Question 124 (****+)
It is given that

$$
\cot 4 \theta=\frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}
$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.
b) Deduce that $x=\cot ^{2}\left(\frac{\pi}{8}\right)$ is one of the two solutions of the equation

$$
x^{2}-6 x+1=0
$$

c) Show further that

Question 125 (****+)
In an Argand diagram which represents the z plane, the complex number $z=x+\mathrm{i} y$ satisfies the relationship

$$
\arg \left(\frac{z-2 \mathrm{i}}{z-4}\right)=\frac{\pi}{2}
$$

a) Sketch the curve that the locus of z traces.

The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{i} v$ in the w plane.

It is given that

$$
f(z)=\frac{2-\mathrm{i}}{z-4}, z \in \mathbb{C}, z \neq 4
$$

The points in the z plane which lie on the locus described in part (a) are mapped onto a line in the w plane.
b) Sketch this line in an Argand diagram representing the w plane.

Question 126 (****+)
The following convergent series S is given below

$$
S=\sin \theta-\frac{1}{3} \sin 2 \theta+\frac{1}{9} \sin 3 \theta-\frac{1}{27} \sin 4 \theta \ldots
$$

By considering the sum to infinity of a suitable geometric series involving the complex exponential function, show that

$$
S=\frac{9 \sin \theta}{10+6 \cos \theta}
$$

$\sin \theta-\frac{1}{3} \sin 2 \theta+\frac{1}{4} \sin 3 \theta-\frac{1}{27} \sin 4 \theta+\frac{1}{81} \sin 5 \theta-$
(C) $C=\cos \theta-\frac{1}{3} \cos 2 \theta+\frac{1}{4} \cos 3 \theta-\frac{1}{27} \cos 4 \theta+\cdots$
$S=\sin \theta-\frac{1}{3} \sin 2 \theta+\frac{1}{y} \sin 3 \theta-\frac{1}{2} \sin 4 \theta+\ldots$
\qquad
$c+i\}-e^{i \theta} \cdot \frac{1}{3} e^{2 i \theta}+\frac{1}{9} e^{3 i \theta}-\frac{1}{2 T} c^{d i \theta}+\ldots$.
\qquad
(3) Sum roinfinty $={ }^{" 1} \frac{a}{1-r}{ }^{"}=\frac{e^{i \theta}}{1+\frac{1}{3} e^{i \theta}}=\frac{3 e^{i \theta}}{3+e^{i \theta}}=\frac{3 e^{i \theta}\left(3+e^{-i \theta}\right)}{\left(3+e^{i \theta}\right)\left(3+e^{-i \theta}\right)}=\frac{9 e^{i \theta}+3}{9+3 e^{i \theta}+3 e^{i \theta}+1}$ $=\frac{9[\cos \theta+i \sin \theta]+3}{10+6\left(\frac{1}{2} e^{i \theta}+\frac{1}{2} e^{-i \theta}\right)}=\frac{[9 \cos \theta+3]+i[9 \sin \theta]}{10+6 \cos h i \theta)}=\frac{[9 \cos \theta+3]+i[9 \sin \theta]}{10+6 \cos \theta}$

Created by T. Madas

Question 127 (****+)

$$
f(z)=z^{6}+8 z^{3}+64, z \in \mathbb{C} .
$$

a) Given that $f(z)=0$, show that

$$
z^{3}=-4 \pm 4 \sqrt{3} \mathrm{i}
$$

b) Find the six solutions of the equation $f(z)=0$, giving the answers in the form $z=r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leq \pi$.
c) Show further that ...
i. ... the sum of the six roots is zero.
ii. $\quad \ldots \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{6 \pi}{9}+\cos \frac{8 \pi}{9}=-\frac{1}{2}$.
\square

$$
z=2 \mathrm{e}^{\mathrm{i} \varphi}, \varphi= \pm \frac{2 \pi}{9}, \pm \frac{4 \pi}{9}, \pm \frac{8 \pi}{9}
$$

Created by T. Madas

Question 128 (****+)

$$
z=\cos \theta+\mathrm{i} \sin \theta,-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
\frac{2}{1+z}=1-\mathrm{i} \tan \frac{\theta}{2}
$$

The complex function $w=f(z)$ is defined by

$$
w=\frac{2}{1+z}, z \in \mathbb{C}, z \neq-1 .
$$

The circular $\operatorname{arc}|z|=1$, for which $0 \leq \arg z<\frac{\pi}{2}$, is transformed by this function.
b) Sketch the image of this circular arc in a suitably labelled Argand diagram.

Question 129 (****+)
De Moivre's theorem states that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta, n \in \mathbb{Q}
$$

a) Use De Moivre's theorem to show that

$$
\tan 5 \theta \equiv \frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
$$

b) Use part (a) to find the solutions of the equation

$$
t^{4}-10 t^{2}+5=0
$$

giving the answers in the form $t=\tan \varphi, 0<\varphi<\pi$.
c) Show further that

$$
\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}
$$

$$
t=\tan \frac{\pi}{5}, \tan \frac{2 \pi}{5}, \tan \frac{3 \pi}{5}, \tan \frac{4 \pi}{5}
$$

Finduy Tite Resus fowows
$\tan \frac{\pi}{5} \operatorname{bin} \frac{2 \pi}{5}=(5-2 \sqrt{5})(s+2 \sqrt{5})=25-20=$

Vheifion esina poumbimit rats Retationsties
$\operatorname{tr}^{4} \theta-106 x^{2} \theta+t=0$
$T^{2}-10 T^{2}+5=0$
 $\tan ^{2} \frac{\pi}{5} \tan \frac{2 \pi}{3}=\frac{" c t}{a}=\frac{5}{1}$
$\operatorname{sen}^{2} \frac{1}{5} \operatorname{ban}^{2} \frac{2 \pi}{3}=5$
$\tan \frac{\pi}{5} \operatorname{ban} \frac{4 \pi}{5}=+\sqrt{5}$

Created by T. Madas

Created by T. Madas

Question 130 (****+)
The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{iv}$ in the w plane.

It is given that

$$
f(z)=\frac{z}{z-\mathrm{i}}, z \in \mathbb{C}, z \neq \mathrm{i}
$$

A circle C_{1} with centre at $z=\mathrm{i}$ and radius 1 is mapped onto the circle C_{2} in the w plane.
a) Find the coordinates of the centre of C_{2}, and the length of its radius.

The straight line $z=\mathrm{i}$ is mapped onto another line L in the w plane.
b) Find an equation for this line.

The region R in the z plane lies outside C_{1} such that $\operatorname{Im} z \geq 1$.

Question 131 (****+)

$$
z^{5}-1=0, \quad z \in \mathbb{C},-\pi<\arg z \leq \pi
$$

a) By considering the four complex roots of the above equation show clearly that

$$
z^{2}+z+1+\frac{1}{z}+\frac{1}{z^{2}}=\left[z+\frac{1}{z}-2 \cos \left(\frac{2 \pi}{5}\right)\right]\left[z+\frac{1}{z}-2 \cos \left(\frac{4 \pi}{5}\right)\right]
$$

b) Use the substitution $w=z+\frac{1}{z}$ in the above equation, to find in exact surd form the values of

$$
4
$$

$$
\cos \left(\frac{2 \pi}{5}\right) \text { and } \cos \left(\frac{4 \pi}{5}\right)
$$

$$
\cos \left(\frac{2 \pi}{5}\right)=\frac{-1+\sqrt{5}}{4}, \cos \left(\frac{4 \pi}{5}\right)=\frac{-1-\sqrt{5}}{4}
$$

促

Created by T. Madas

Question 132 (****+)
The complex number $x+\mathrm{i} y$ in the z plane of an Argand diagram satisfies the inequality

$$
x^{2}+y^{2}+x>0 .
$$

a) Sketch the region represented by this inequality.

A locus in the z plane of an Argand diagram is given by the equation

$$
\arg \left(\frac{z+1}{z}\right)=\frac{\pi}{4}
$$

b) Sketch the locus represented by this equation.

Created by T. Madas

Question 133 (****+)
The following finite sums, C and S, are given by

$$
\begin{aligned}
& C=1+5 \cos 2 \theta+10 \cos 4 \theta+10 \cos 6 \theta+5 \cos 8 \theta+\cos 10 \theta \\
& S=5 \sin 2 \theta+10 \sin 4 \theta+10 \sin 6 \theta+5 \sin 8 \theta+\sin 10 \theta
\end{aligned}
$$

By considering the binomial expansion of $(1+A)^{5}$, show clearly that

$$
C=32 \cos ^{5} \theta \cos 5 \theta
$$

and find a similar expression for S

$$
S=32 \cos ^{5} \theta \sin 5 \theta
$$

Question 134 (****+)
The complex function with equation

$$
f(z)=\frac{1}{z^{2}}, z \in \mathbb{C}, z \neq 0
$$

maps the complex number $x+\mathrm{i} y$ from the z plane onto the complex number $u+\mathrm{i} v$ in the w plane.

The line with equation

$$
y=m x, x \neq 0
$$

is mapped onto the line with equation

$$
v=M u,
$$

where m and M are the respective gradients of the two lines.

Given that $m=M$, determine the three possible values of m.

Created by T. Madas

Question 135 (****+)
The point P represents the number $z=x+\mathrm{i} y$ in an Argand diagram and further satisfies the equation

$$
\arg \left(\frac{z+1}{z+2}\right)=\frac{\pi}{2}, z \neq-2
$$

Use an algebraic method to find an equation of the locus of P and sketch this locus accurately in an Argand diagram.
$\left(x+\frac{3}{2}\right)^{2}+y^{2}=\frac{1}{4}, \quad$ such that $y>0$

Created by T. Madas

Question 136 (****+)

$$
z^{n}=1, z \in \mathbb{C}, n \in \mathbb{N}
$$

a) Solve the above equation, giving the general solution in terms of n and any suitably defined parameters.
b) Hence solve the equation

$$
z^{7}-z^{4}-z^{3}+1=0, z \in \mathbb{C}
$$

giving the answers in the form $x+\mathrm{i} y, x, y \in \mathbb{R}$, where appropriate.

Created by T. Madas

Question 137 (****+)
Given that $a \in \mathbb{R}, b \in \mathbb{R}, a>b>0$, show that in an Argand diagram, the roots of the quadratic equation

$$
a z^{2}+2 b z+a=0
$$

lie on the circle with equation $x^{2}+y^{2}=1$.

Created by T. Madas

Question 138 (****+)
The point P represents the number $z=x+\mathrm{i} y$ in an Argand diagram and further satisfies the equation

$$
\arg (z-1)-\arg (z+3)=\frac{3 \pi}{4}, z \neq-3 .
$$

Use an algebraic method to find an equation of the locus of P and sketch this locus accurately in an Argand diagram.

$$
(x+1)^{2}+(y+2)^{2}=8, \text { such that } y>0
$$

Created by T. Madas

Created by T. Madas

Question 139
(****+)

$$
z^{3}=(2 z-1)^{3}, z \in \mathbb{C} .
$$

Find in the form $x+\mathrm{i} y$ the exact solutions of the above equation.

$$
z=1, \frac{1}{14}(5 \pm \mathrm{i} \sqrt{3})
$$

Question 140
$(* * * *+)$

$$
f(z) \equiv \frac{(z-2) \mathrm{i}}{\mathrm{z}}, z=x+\mathrm{i} y, x \in \mathbb{R}, y \in \mathbb{R} .
$$

The complex function f maps complex numbers onto complex numbers, which can be graphed in two separate Argand diagrams.
a) Given that $\operatorname{Im} z=\frac{1}{2}$, determine an equation of the locus of the image of the points under f.
b) Hence determine a complex function $g(z)$, which maps $\operatorname{Im} z=\frac{1}{2}$ onto a unit circle, centre at the origin O.

$$
|w+2-\mathrm{i}|=2, \quad g(z)=w=\frac{z-\mathrm{i}}{\mathrm{z}}
$$

Created by T. Madas

Question $141 \quad(* * * *+)$

$$
f(z)=(z-4)^{3}, z \in \mathbb{C}
$$

a) Solve the equation $f(z)=8 \mathrm{i}$, giving the answers in the form $x+\mathrm{i} y$.

The points A, B and C represent in an Argand diagram the roots of the equation $f(z)=8$ i. The points A and B represent the roots whose imaginary parts are positive and the point A represents the root with the smaller real part.
b) Show that the area of the quadrilateral $O A B C$, where O is the origin, is

Created by T. Madas

Question 142 (****+)
The complex number z satisfies the relationship

$$
\arg (z-2)-\arg (z+2)=\frac{\pi}{4}
$$

Show that the locus of z is a circular arc, stating ...

- ... the coordinates of its endpoints.
- ... the coordinates of its centre.
- ... the length of its radius.

Created by T. Madas

Question 143 (****+)
An equilateral triangle T is drawn in a standard Argand diagram. The origin O is located at the centre of T. One of the vertices of T is represented by the complex number 2-6i .
a) Find, in exact simplified form the complex number represented by another vertex of T.
b) Calculate, in exact surd form, the area of T.
$(3 \sqrt{3}-1)+\mathrm{i}(3+\sqrt{3}), \quad$ area $=\sqrt{120}$
\square
 Takt vietex at $2-6 i$
b) Lovertof SDAE $=|[(3 \sqrt{3}-1)+i(3+\sqrt{3})]-[2-6 i]|$
$=|(3 \sqrt{3}-3)+i(9+\sqrt{3})|$
$=\sqrt{(3 \sqrt{3}-3)^{2}+(9+\sqrt{3})^{2}}$
$=\sqrt{2 \pi-18 \sqrt{3}+9+81+18 \sqrt{3}+3}$

Created by T. Madas

Question 144 (****+)
The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{iv}$ in the w plane.

It is given that

$$
f(z)=\frac{z^{2}-4}{z}, z \in \mathbb{C}, z \neq 0
$$

The circle C with equation $x^{2}+y^{2}=4$ in the z plane is mapped onto a line segment $A B$ in the w plane.

Find a Cartesian equation for $A B$, stating the coordinates of its endpoints.

Created by T. Madas

Question 145 (****+)
The complex number z satisfies the relationship

$$
|z-2|+|z-6|=10
$$

Determine a simplified Cartesian equation for the locus of z, giving the final answer in the form

$$
f(x, y)=1
$$

$$
\frac{(x-4)^{2}}{25}+\frac{y^{2}}{21}=1
$$

Created by T. Madas

Question 146 (****+)

$$
f(z) \equiv(z+2 \mathrm{i})^{2}, z \in \mathbb{C} .
$$

The complex function f maps points, of the form $x+\mathrm{i} y$, from the z plane onto points, of the form $u+\mathrm{i} v$, in the w plane.

The straight line L lies in the z plane and has Cartesian equation

$$
y=x-1 .
$$

Find an equation of the image of L in the w plane, giving the answer in the form

$$
\nu=g(u),
$$

where g, is a real function to be found.

Created by T. Madas

Question 147 (****+)
Use de Moivre's theorem followed by a suitable trigonometric identity, to show that ...
a) $\ldots \cos 3 \theta \equiv 4 \cos ^{3} \theta-3 \cos \theta$.
b) $\ldots \cos 6 \theta \equiv\left(2 \cos ^{2} \theta-1\right)\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+1\right)$

Consider the solutions of the equation.

$$
\cos 6 \theta=0,0 \leq \theta \leq \pi
$$

c) By fully justifying each step in the workings, find the exact value of

$$
\cos \frac{\pi}{12} \cos \frac{5 \pi}{12} \cos \frac{7 \pi}{12} \cos \frac{11 \pi}{12}
$$

\square

Created by T. Madas

Question 148 (****+)

A transformation T maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $v=u+\mathrm{i} v$ in the w plane, and is defined as

$$
w=\frac{z+1}{z+\mathrm{i}}, \quad z \neq-\mathrm{i}
$$

The points that lie on the half line with equation $\arg z=\frac{\pi}{4}$ are mapped by T onto points which lie on a circle.
a) Determine a Cartesian equation for this circle.
\rightarrow
b) Show that the image of the half line with equation $\arg z=\frac{\pi}{4}$ is not the entire circle found in part (b).

Created by T. Madas

Question 150 (****+)
The complex function $w=f(z)$ maps points of the form $z=x+\mathrm{i} y$ from the z plane onto points of the form $w=u+\mathrm{iv}$ in the w plane.

It is given that

$$
f(z)=\frac{z-\mathrm{i}}{z-2}, z \in \mathbb{C}, z \neq 2
$$

The points of a region R in the z plane are mapped onto points of a region R^{\prime} in the w plane. The region R^{\prime} consists of points such that $u \geq 0$ and $v \geq 0$.

Shade, with justification, in an accurate Argand diagram the region R.

Created by T. Madas

Question 151 (****+)

$$
f(\theta)=(\cos \theta+\mathrm{i} \sin \theta)^{4}+(\cos \theta-\mathrm{i} \sin \theta)^{4}
$$

a) By considering a simplified expression of $f(\theta)$, show that

$$
(\cot \theta+i)^{4}+(\cot \theta-i)^{4}=\frac{2 \cos 4 \theta}{\sin ^{4} \theta}
$$

b) Find in the form $z=\cot \left(\frac{k \pi}{8}\right)$, the four solution of the equation

$$
(z+i)^{4}+(z-i)^{4}=0 .
$$

c) Hence, show clearly that $\cot ^{2}\left(\frac{\pi}{8}\right)=3+2 \sqrt{2}$.

Created by T. Madas

Question 152 (****+)

The complex number z lies in the region R of an Argand diagram, defined by the inequalities

$$
\frac{\pi}{3} \leq \arg (z-4) \leq \pi \quad \text { and } \quad 0 \leq \arg (z-12) \leq \frac{5 \pi}{6}
$$

a) Sketch the region R, indicating clearly all the relevant details.

The complex number w lies in R, so that $|w|$ is minimum.
b) Find $|w|$, further giving w in the form $u+\mathrm{i} v$, where u and v are real numbers.

Created by T. Madas

Question 153 (****+)

The figure above shows in a standard Argand diagram, the five roots of the equation $z^{5}+32=0$, indicated by the points A to E on a circle of radius r.
a) State the value of r.
b) State the five roots of the equation

$$
z^{5}+32=0
$$

giving the answers in the form $z=r(\cos \theta+\mathrm{i} \sin \theta),-\pi<\theta \leq \pi$.
c) Show that a quadratic equation satisfied by the roots indicated by B and D is

$$
z^{2}+4 z \cos \left(\frac{2 \pi}{5}\right)+4=0
$$

d) Find a similar quadratic satisfied by the roots indicated by A and E.
[continued from overleaf]

Consider the coefficients of z^{4} in the following equations

$$
z^{5}+32=0 \quad \text { and } \quad\left(z-z_{C}\right)\left[\left(z-z_{B}\right)\left(z-z_{D}\right)\right]\left[\left(z-z_{A}\right)\left(z-z_{E}\right)\right]=0
$$

e) Show that $\cos \left(\frac{\pi}{5}\right)=\frac{1}{4}+\frac{1}{4} \sqrt{5}$.
(you may find the cosine double angle formula useful)

$$
r=2, z=2(\cos n \theta+\mathrm{i} \sin n \theta), n=-2,-1,0,1,2 \text {, }
$$

$$
z^{2}-4 z \cos \left(\frac{\pi}{5}\right)+4=0
$$

\square
\square

Created by T. Madas

Question 154 (****+)

$$
z^{4}+z^{3}+z^{2}+z+1=0, z \in \mathbb{C}
$$

By using the identity

$$
a^{n}-1 \equiv(a-1)\left(a^{n}+a^{n-1}+a^{n-2}+\ldots+a^{2}+a+1\right)
$$

or otherwise, find in exact trigonometric form the four solutions of the above equation.

$$
z=\cos \frac{2 \pi}{5} \pm \mathrm{i} \sin \frac{2 \pi}{5}, \cos \frac{4 \pi}{5} \pm i \sin \frac{4 \pi}{5}
$$

Question 155 (****+)

$$
f(z) \equiv z^{2}, z \in \mathbb{C}
$$

The complex function f maps points, of the form $x+\mathrm{i} y$, from the z plane onto points, of the form $u+\mathrm{i} v$, in the w plane.

The curve C lies in the z plane and has Cartesian equation

$$
x^{2}-3 y^{2}=1
$$

Find an equation of the image of C in the w plane, giving the answer in the form

$$
v^{2}=A u^{2}+B u+C,
$$

where A, B and C are real constants to be found.

Created by T. Madas

Question 156 (****+)
a) Show that

$$
\sin 7 \theta \equiv 7 \sin \theta-56 \sin ^{3} \theta+112 \sin ^{5} \theta-64 \sin ^{7} \theta
$$

b) By considering a suitable polynomial equation based on the result of part (a) show further

$$
\operatorname{cosec}^{2}\left(\frac{1}{7} \pi\right)+\operatorname{cosec}^{2}\left(\frac{2}{7} \pi\right)+\operatorname{cosec}^{2}\left(\frac{3}{7} \pi\right)=8
$$

Question 157 (****+)
The following equation has no real solutions

$$
25 z^{4}+10 z^{3}+2 z^{2}+10 z+25=0
$$

Find the four complex solution of the above equation, giving the answer in the form $a+b \mathrm{i}$, where $a \in \mathbb{C}$ and $b \in \mathbb{C}$.

$$
z=\frac{3}{5}+\frac{4}{5} \mathrm{i}, \quad z=\frac{3}{5}-\frac{4}{5} \mathrm{i}, \quad z=-\frac{4}{5}+\frac{3}{5} \mathrm{i}, \quad z=-\frac{4}{5}-\frac{3}{5} \mathrm{i}
$$

Question 158 (****+)

$$
f(z)=\frac{2-\mathrm{i}}{z+\mathrm{i}}, z \in \mathbb{C}, z \neq-\mathrm{i} .
$$

Find the greatest value of the modulus of z, given further that

$$
|1+f(z)|=2 .
$$

\square ,$|z|_{\max }=\frac{4}{3} \sqrt{5}$

Created by T. Madas

Question 159 (****+)
The complex function $w=f(z)$ is defined by

$$
w=\frac{1}{z-1}, z \in \mathbb{C}, z \neq 1
$$

The half line with equation $\arg z=\frac{\pi}{4}$ is transformed by this function.
a) Find a Cartesian equation of the locus of the image of the half line.
b) Sketch the image of the locus in an Argand diagram.

$$
\left(u+\frac{1}{2}\right)^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{1}{2}, v<0, u^{2}+v^{2}+u>0
$$

\square

Created by T. Madas

Question 160 (****+)

$$
\tan 3 \theta \equiv \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

a) Use De Moivre's theorem to prove the validity of the above trigonometric identity.
b) Hence find in exact trigonometric form the solutions of the equation

$$
t^{3}-3 t^{2}-3 t+1=0
$$

c) Use the answer of part (b) to show further that

$$
\tan ^{2} \frac{\pi}{12}+\tan ^{2} \frac{5 \pi}{12}=14
$$

Question 161 (****+)
The locus L_{1} of a point in an Argand diagram satisfies

$$
\arg (z-2)-\arg (z-2 \mathrm{i})=\frac{3 \pi}{4}, z \in \mathbb{C} .
$$

a) Find a Cartesian equation for L_{1}.
b) Show that all the points which lie on L_{1} satisfy

$$
\left|\frac{z-4}{z-1}\right|=k
$$

where k is an integer to be found.

The locus L_{2} of a different point in the same Argand diagram satisfies

$$
|z-1|+|z-4|=6, z \in \mathbb{C}
$$

The point P lies on L_{1} and L_{1}.
c) Find the complex number represented by P.

$$
L_{1}: x^{2}+y^{2}=4, x>0, y>0, k=2, \quad P: \frac{1}{2}+\frac{1}{4} \mathrm{i} \sqrt{15}
$$

Created by T. Madas

Question 162 (****+)
Solve the equation

$$
z^{\frac{3}{4}}=-4 \sqrt{3}+4 \mathrm{i}, z \in \mathbb{C}
$$

Give each of the roots in exponential form.
\square
$z=16 \mathrm{e}^{\frac{8}{9} \pi \mathrm{i}}=16 \mathrm{e}^{-\frac{62}{9} \pi \mathrm{i}}$ \square $z=16 \mathrm{e}^{\frac{58}{9} \pi \mathrm{i}}=16 \mathrm{e}^{-\frac{14}{9} \pi \mathrm{i}}$
\square
$E_{0}^{2} z^{2}=-\boldsymbol{w}+4 i$
(2)
$\arg \left(-4 \sqrt{3}+4 i^{i}\right)=\arctan \left(\frac{4}{-4 \sqrt{3}}\right)+\pi=-\frac{\pi}{6}+\pi=\frac{3 \pi}{6}$ $z^{\frac{3}{4}}=8 e^{i\left(\frac{3 \pi}{6}+2 k \pi\right)}$ $z^{\frac{3}{4}}=8 e^{i \frac{\pi}{6}(5+4 k)}$ $z=\left[8 e^{i(15(D k+5)}\right]^{\frac{4}{3}}$ $z=8^{4} e^{i \frac{\pi}{9}(i k+5)}$ $z=16 e^{i \frac{2 \pi}{3}(12 h+5)}$

Question 163 (****+)
The complex number w is defined as $w=\mathrm{e}^{\frac{2}{5} \pi \mathrm{i}}$.
a) Prove that

$$
1+w+w^{2}+w^{3}+w^{4}=0
$$

b) Derive a quadratic equation with integer coefficients whose roots are $\left(w+w^{4}\right)$ and $\left(w^{2}+w^{3}\right)$, and hence show with full justification that

Created by T. Madas

Question 164 (****+)
A complex transformation of points from the z plane onto points in the w plane is defined by the equation

$$
w=z^{2}, z \in \mathbb{C}
$$

The point represented by $z=x+\mathrm{i} y$ is mapped onto the point represented by $w=u+\mathrm{i} v$.

Show that if z traces the curve with Cartesian equation
(2) $y^{2}=2 x^{2}-1$,
the locus of w satisfies the equation

$$
v^{2}=4(u-1)(2 u-1)
$$

Question 165 (*****)
Find a solution of the equation

Question 166 (****+)
The complex number z lies in the region R of an Argand diagram, defined by the inequalities

$$
-\frac{1}{4} \pi \leq \arg z \leq \frac{2}{3} \pi \quad \text { and } \quad|z| \leq 1
$$

Determine, in exact surd form, the maximum value of $|w-z|^{2}$, where $w=1+\mathrm{i} \sqrt{3}$.

Created by T. Madas

Question 167 (****+)
It is required to find the principal value of i^{i}, in exact simplified form, where i is the imaginary unit.
a) Show, with detailed workings, that

$$
\mathrm{i}^{\mathrm{i}}=\mathrm{e}^{-\frac{1}{2} \pi}
$$

b) Use a different method to that used in part (a), to verify the exact answer given in part (a).

Created by T. Madas

Question 168 (*****)
The finite sum C is given below.

$$
C=\sum_{r=0}^{n}\left[\binom{n}{r}(-1)^{n} \cos ^{n} \theta \cos n \theta\right]
$$

Given that $n \in \mathbb{N}$ determine the 4 possible expressions for C.

Give the answers in exact fully simplified form.

$$
\begin{array}{r}
n, n=4 k, k \in \mathbb{N}: C=\cos n \theta \sin ^{n} \theta, n=4 k+1, k \in \mathbb{N}: C=\sin n \theta \sin ^{n} \theta \\
n=4 k+2, k \in \mathbb{N}: C=-\cos n \theta \sin ^{n} \theta, n=4 k+3, k \in \mathbb{N}: C=-\sin n \theta \sin ^{n} \theta
\end{array}
$$

The complex number w is defined as $w=z^{z}$, where $z=1+\mathrm{i}$.

Show, with details workings, that

$$
w=\mathrm{e}^{-\frac{1}{4} \pi}[(1+\mathrm{i}) \cos (\ln k)+(-1+\mathrm{i}) \sin (\ln k)]
$$

where $(1+i) \cos (\ln k)+$ is an exact real constant to be found.

Created by T. Madas

Question 170 (*****)
Use complex numbers to prove that

$$
\cos \left(\frac{2}{5} \pi\right)=-\frac{1}{4}+\frac{1}{4} \sqrt{5}
$$

A detailed method must support this proof.
\square , proof

Question 171 (*****)
Use De Moivre's theorem to find a multiple angle cosine expression and use this expression to show that

$$
\cos 36^{\circ}=\frac{1}{4}(1+\sqrt{5})
$$

Created by T. Madas

Question 172 (******)

$$
w=\frac{2-\mathrm{i} z}{z}, z \in \mathbb{C}, z \neq 0 .
$$

The complex function $w=f(z)$, maps the point $P(x, y)$ from the z complex plane onto the point $Q(u, v)$ on the w complex plane.

The curve C in the z complex plane is mapped in the w complex plane onto the curve with equation

$$
\arg w=\frac{1}{3} \pi
$$

Determine a Cartesian equation of C, and hence find an exact simplified value for the area of the finite region bounded by C, and the y axis.

$$
\square,(x+\sqrt{3})^{2}+(y+1)^{2}=4 \cup x>0, \frac{2}{3} \pi-\sqrt{3}
$$

Question 173 (*****)
a) Show that

$$
(1+i \tan \theta)^{4}+(1-i \tan \theta)^{4} \equiv \frac{2 \cos 4 \theta}{\cos ^{4} \theta}
$$

b) By considering a suitable polynomial equation based on the result of part (a) show further
i. $\quad \tan ^{2}\left(\frac{1}{8} \pi\right) \tan ^{2}\left(\frac{3}{8} \pi\right)=1$
ii. $\tan ^{2}\left(\frac{1}{8} \pi\right)+\tan ^{2}\left(\frac{3}{8} \pi\right)=6$

Created by T. Madas

Question 174 (*****)

$$
\tan \left(3 \theta^{\circ}\right) \equiv \tan \left(\theta^{\circ}\right) \times \tan \left(60^{\circ}-\theta^{\circ}\right) \times \tan \left(60^{\circ}+\theta^{\circ}\right)
$$

Prove the validity of the above trigonometric identity and hence show that

Question 175 (*****)

$$
I=\int \cos (\ln x) d x \quad \text { and } \quad J=\int \sin (\ln x) d x
$$

a) Use an appropriate method to find expressions for I and J.
b) Use the integral $\int x^{\mathrm{i}} d x$, where i is the imaginary unit, to verify the answers given in part (a).
c) Find an exact simplified value for

$$
\int_{1}^{\mathrm{e}^{\frac{\pi}{2}}} 2 x^{\mathrm{i}} d x
$$

\square $I=\frac{1}{2} x[\sin (\ln x)+\cos (\ln x)], \quad J=\frac{1}{2} x[\sin (\ln x)-\cos (\ln x)]$,

$$
\int_{1}^{\mathrm{e}^{\frac{\pi}{2}}} 2 x^{\mathrm{i}} d x=\left(\mathrm{e}^{\frac{1}{2} \pi}-1\right)+\left(\mathrm{e}^{\frac{1}{2} \pi}+1\right) \mathrm{i}
$$

b) Stert by ansiorewa x^{i}
$a^{i}=e^{\ln x^{i}}=e^{i \ln x}=\cos (\ln x)+i \sin (\ln x)$
$x^{\prime}=\cos (m x)+i \sin \left(\tan ^{x}\right\}$
$\int x^{i} d x=\frac{1}{1+i} x^{1+i}+c$
$\int \cos (\ln x)+i \sin (\ln x) d x=\frac{1-i}{2} x x^{i}+c$
$\int \cos (\ln x) d x+i \int \operatorname{sen}(\ln x) d x=\frac{x}{2}(1-i) x^{i}+c$
$I+i J=\frac{x}{2}(6-i)[\cos (\ln x)+i \sin (\ln x)]+c$
$I+i J=\frac{x}{2}[\cos (\ln x)+\sin (\operatorname{lx} x)]+\frac{x}{2}[-\cos (\max)+\sin (\ln x)] i$
$I+i J=\frac{1}{2} x[\cos (\ln x)+\sin (\ln x)]+\frac{1}{2} x[\sin (\min x)-\cos (m x)] i$
$\left.\therefore I-\frac{1}{2} x[\cos (4 x)+\sin (4 x x)] \quad a \quad\right]=\frac{1}{2} x[\sin (m x)-\cos \cos x]$
c) finaty (sine Pper (b)
$\int_{1}^{e^{\pi / 2}} 2 x^{i} d x=2 \int_{1}^{e^{T / 2}} x^{i} d x$
$=2\left[\frac{1}{2} x[\cos (6 x)+\sin (\ln x)]+\frac{1}{2} x[\sin (4 x)-\cos (h x)] i\right]_{1}^{e^{\pi / 2}}$
$=\left[x[\cos (\ln x)+\sin (\ln x)+i[\sin (\ln x)-\cos (\ln x)]]_{1}^{2 / 2}\right.$
$=e^{\pi / 2}[(0+1)+i(1-0)]-1[(1+0)+(0-1) i]$
$=e^{0 / 2}(1+i)-1+i$
$=\left(e^{\pi / 2}-1\right)+i\left(e^{\frac{\pi}{t}}+1\right)<$

Created by T. Madas

Question 176 (*****)
The complex number z has unit modulus and $\arg z=\theta,-\pi<\theta \leq \pi$.

The complex conjugate of z is denoted by \bar{z}.
Using a detailed method, show that

Question 177 (*****)
The complex number $z=z_{1}+z_{2}$ where

$$
z_{1}=3+4 \mathrm{i} \quad \text { and } z_{2}=4 \mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Sketch in an Argand diagram the locus of z.

The complex number z_{3} lies on the locus of z such that the argument of z_{3} takes its maximum value.
b) State the value of $\left|z_{3}\right|$.
c) Show clearly that

$$
\arg z_{3}=\pi-\arctan \frac{24}{7}
$$

d) Find z_{3} in the form $x+\mathrm{i} y$.

Created by T. Madas

Question 178 (*****)
In a standard Argand diagram the complex number $\sqrt{3}+\mathrm{i}$, represents one of the vertices of a regular hexagon, with centre at the origin O.

The complex numbers that represent these 6 vertices are all raised to the power of 4 , creating a closed shape S, whose sides are straight line segments.

Determine the area of S.
\square proof

Created by T. Madas

Question 179 (*****)
The complex number z is given by

$$
z=\frac{2(a+b)(1+\mathrm{i})}{a+b \mathrm{i}}, a+b \neq 0,
$$

where a and b are real parameters.

Show, that for all allowable values of a and b, the point represented by z is tracing a

Created by T. Madas

Question 180 (*****)
Show clearly that the general solution of the equation

$$
\sin z=2, z \in \mathbb{C},
$$

can be written in the form

Question 181 (*****)
Use complex numbers to prove that $\cos \left(\frac{2}{7} \pi\right)$ is a solution of the cubic equation

$$
x^{3}+x^{2}-2 x-1=0
$$

You may not use verification in this proof.
\square , proof

\square

+ (hnct wot obstin
$\Rightarrow\left(\omega^{3}+\frac{1}{\omega^{2}}\right)+\left(\omega^{2}+\frac{1}{w^{2}}\right)+\left(w+\frac{1}{\omega}\right)+1=0$
$\rightarrow\left[\left(\omega+\frac{1}{\omega}\right)^{3}-3\left(\omega+\frac{1}{\omega}\right)\right]+\left[\left(\omega+\frac{1}{\omega}\right)^{2}-2\right]+\left(\omega+\frac{1}{\omega}\right)+1=0$
$\Rightarrow\left(\omega+\frac{1}{\omega}\right)^{3}+\left(\omega+\frac{1}{\omega}\right)^{2}-2\left(\omega+\frac{1}{\omega}\right)-1=0$
finauy
$\begin{aligned} & \omega+\frac{1}{\omega}-\omega+\omega^{-1}-\cos \frac{2 \pi}{7}, i \sin \pi \frac{\pi}{7}+\left(\cos \frac{2 \pi}{2}+i \sin \cdot \frac{2 \pi}{2}\right)^{-1} \\ &=\cos \frac{2 \pi}{2}+i \sin \frac{2 \pi}{7}+\cos \left(-\frac{2 \pi}{2}\right)+i \sin \left(-\frac{\pi}{7}\right)\end{aligned}$ $=\cos \frac{\pi}{7}+i \sin \frac{2 \pi}{7}+\cos \frac{2 \pi}{7}-i \sin \frac{\pi}{7}$
$\therefore x=2 \cos \frac{2 \pi}{7}$ is A Sowtion of Tit coblc fovation $x^{3}+x^{2}-2 x-1=0$

Question 182 (*****)
Solve the following equation

$$
3|z| z+20 z \mathrm{i}=125, \quad z \in \mathbb{C}
$$

Give the answer in the form $x+\mathrm{i} y$, where x and y are real.
\square , $z=3-4 \mathrm{i}$

The following convergent series S is given below

$$
S=\frac{\sin \theta}{1!}-\frac{\sin 2 \theta}{2!}+\frac{\sin 3 \theta}{3!}-\frac{\sin 4 \theta}{4!}+\ldots
$$

By considering the sum to infinity of a suitable series involving the complex exponential function, show that

Question 184 (*****)
The point P in an Argand diagram represents the complex number z, which satisfies

$$
\arg \left[\frac{z-1-\mathrm{i}}{z-2 \mathrm{i}}\right]=\frac{\pi}{3}, z \neq 2 \mathrm{i}
$$

It further given that P lies on the arc $A B$ of a circle centred at C and of radius r.
a) Sketch in an Argand diagram the circular arc $A B$, stating the coordinates of C and the value of r.
b) Given further that $|P A|=|P B|$, find the complex number represented by P.
\qquad

$$
C\left[\frac{1}{2}\left(1+\frac{1}{3} \sqrt{3}\right), \frac{1}{2}\left(3+\frac{1}{3} \sqrt{3}\right)\right], r=\sqrt{\frac{2}{3}},
$$

$$
\frac{1}{2}(1+\sqrt{3})+\frac{1}{2}(3+\sqrt{3}) \mathrm{i}
$$

\square

Created by T. Madas

Question 185 (*****)
Find, in exact trigonometric form where appropriate, the real solutions of the following polynomial equation

$$
x^{7}-7 x^{6}-21 x^{5}+35 x^{4}+35 x^{3}-21 x^{2}-7 x+1=0 .
$$

$$
x=\tan \left(\frac{\pi}{28}\right), x=\tan \left(\frac{5 \pi}{28}\right), x=\tan \left(\frac{9 \pi}{28}\right)
$$

$$
x=\tan \left(\frac{13 \pi}{28}\right)
$$

$$
x=\tan \left(\frac{17 \pi}{28}\right), x=\tan \left(\frac{3 \pi}{4}\right)=-1, x=\tan \left(\frac{25 \pi}{28}\right)
$$

- $\tan \pi=$

$7 \theta=\frac{\pi}{4}(1+4+4)$
$\theta=\frac{\pi}{x}(1+4.4)$

- $\frac{7 T-35 x^{2}+2 T T^{s}+T^{2}}{1-2 \pi T^{2}+35 T^{2}+-\pi^{s}}=1$
\qquad
\qquad
\qquad

Question 186 (*****)
By showing a detailed method involving complex numbers, sum the following series.

$$
\sum_{n=0}^{\infty}\left[\frac{\cos ^{2}\left(\frac{1}{6} n \pi\right)}{2^{n}}\right]
$$

$$
\begin{aligned}
& =1+\operatorname{Re}\left[\frac{2-e^{-3 \pi^{\prime}}}{\left(2-e^{j \pi \pi}\right)\left(2-e^{t \pi n+1}\right.}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =1+\operatorname{ke}\left[\frac{2--5 \pi i}{S-4\left(2 e^{2 \pi}+\frac{2}{2} e^{-5 \pi i}\right)}\right] \\
& =1+R E\left[\frac{2-\left(\cos 5-i \sin \frac{\pi}{4}\right)}{5-4 \cosh \left(\frac{5}{\pi} i\right)}\right] \\
& \left.=1+D_{E}\left[\frac{2-\cos \frac{\pi}{3}+i \sin m \frac{\pi}{3}}{5-4 \cos \frac{\pi}{3}}\right] \underset{\sim}{\cosh (i z)=\cos z}\right\} \\
& =1+R_{t}\left[\frac{\frac{3}{2}+i \frac{\sqrt{3}}{2}}{3}\right] \\
& =1+\frac{3 / 2}{3} \\
& =1+\frac{1}{2} \\
& \therefore \quad \sum_{n=0}^{\infty}\left(\frac{\cos ^{2}\left(\frac{3 n}{3} \pi\right)}{2^{n}}\right)=\frac{3}{2}
\end{aligned}
$$

