uasmaths.com Created by T. Madas

asmaths.com T. T. C. HIBIRSHERING IN I. Y. C.B. HIBIRSHERING RESERVED F.Y.C.B. MARSHARSON F.Y.C.B. MARAN

ROOTS OF COMPLEX VBERS ARS COM INCOM INCOM INCOM UM. UM. 1. Y.C.B. Malasmanne 1. Y.C.B. Ma TH I.Y.G.B. Madasmanna I.Y.G.B. Manager

Question 1

F.G.B.

. G.P. $z^4 = -16 , \ z \in \mathbb{C} .$

- a) Solve the above equation, giving the answers in the form a + bi, where a and b are real numbers.
- **b**) Plot the roots of the equation as points in an Argand diagram.

2012.81

200

 $z = \sqrt{2} \left(\pm 1 \pm i \right)$

21/2.51

202

C.J.

2

Question 2

 $z^5 = i, z \in \mathbb{C}$.

the CO

- **a**) Solve the equation, giving the roots in the form $re^{i\theta}$, r > 0, $-\pi < \theta \le \pi$.
- b) Plot the roots of the equation as points in an Argand diagram.

Question 3

z = 4 + 4i.

 $\sqrt{2} e^{i\frac{\pi}{20}}, \sqrt{2} e^{i\frac{9\pi}{20}}, \sqrt{2} e^{i\frac{17\pi}{20}}, \sqrt{2} e^{i\frac{17\pi}{20}}$

ŀ.G.p.

madasn.

2010

the CO

R

115

Madasmal

Com

Madası

I.C.B.

COM

 $i\frac{7\pi}{20}$

√2 e

a) Find the fifth roots of z. Give the answers in the form $re^{i\theta}$, r > 0, $-\pi < \theta \leq \pi$.

?0M

Y.C.B.

b) Plot the roots as points in an Argand diagram.

2012.50

.Y.G.B. 11130/281

011

21/15.1

I.G.B.

Question 4

. G.p. $z = 4 - 4\sqrt{3}i.$

:01)

F.G.B.

Mana,

a) Find the cube roots of z.

Give the answers in polar form $r(\cos\theta + i\sin\theta)$, r > 0, $-\pi < \theta \le \pi$.

b) Plot the roots as points in an Argand diagram.

Question 5

The following complex number relationships are given

 $w = -2 + 2\sqrt{3}i$, $z^4 = w$.

- **a**) Express w in the form $r(\cos\theta + i\sin\theta)$, where r > 0 and $-\pi < \theta \le \pi$.
- b) Find the possible values of z, giving the answers in the form x+iy, where x and y are real numbers.

 $z = \frac{1}{2} \left(\sqrt{6} + i\sqrt{2} \right), \ z = \frac{1}{2} \left(-\sqrt{2} + i\sqrt{6} \right), \ z = \frac{1}{2} \left(\sqrt{2} - i\sqrt{6} \right), \ z = \frac{1}{2} \left(-\sqrt{6} - i\sqrt{2} \right)$

(a) $[-2+2\sqrt{2}] = \sqrt{\frac{1}{2}} (\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) = \frac{\pi}{22} - \frac{\pi}{22} + \frac{\pi}{22$

 $\left(\frac{2\pi}{2\pi}\right) + i\sin\left(\frac{2\pi}{2\pi}\right)$

 $w = 2 \cos(1)$

 2π

Z = NZ (los(2)+inn(2)) = -NZ - NZ;

Question 6

Find the cube roots of the imaginary unit i, giving the answers in the form a+bi, where a and b are real numbers.

 $z_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i, \quad z_2 =$ Slil=1 Sougi=王

Created by T. Madas

Question 7

Find the cube roots of the complex number -8i, giving the answers in the form a+bi, where a and b are real numbers.

$$z_1 = \sqrt{3} - i$$
, $z_2 = -\sqrt{3} - i$, $z_3 = 2i$

 $\begin{array}{l} \bullet \quad \overline{Z^{\lambda}} = -8i & [-8i] = 8\\ \Rightarrow \overline{Z^{\lambda}} = -8i & [-8i] = 8\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}} & [-8i] \times e^{\frac{1}{2}}\\ \Rightarrow \overline{Z^{\lambda}} = 8 \times e^{\frac{1}{2}} &$

 $Z_{2} = 2e^{i\frac{\omega}{6}} = 2\left(\log^{2} + i\sin^{2} - \frac{1}{2}\right) = -\sqrt{2} - i$

Question 8

 $z^4 = -8 - 8\sqrt{3}i, \ z \in \mathbb{C}.$

Solve the above equation, giving the answers in the form a+bi, where a and b are real numbers.

 $z = -1 - \sqrt{3}i$ $z = \sqrt{3}$ – $z = 1 + \sqrt{3}i$ $z = -\sqrt{3} + i$

Z ⁴ = -	-8 - 8 K3 °	[-1-8-8/5'] >
⇒Z ⁴ =	;(-2, -2, -2, kπ) 16 €	$\begin{cases} = \sqrt{64 + 192^{1}} \\ = 16 \end{cases}$
$\Rightarrow Z^{4} =$ $\Rightarrow (z^{4})^{\frac{1}{4}} =$	$ \begin{bmatrix} 16 \\ e^{i\frac{\pi}{3}} \left(-1 + 3k\right) \\ \left[16 \\ e^{i\frac{\pi}{3}} \left(3k-1\right) \end{bmatrix}^{\frac{1}{4}} \end{bmatrix} $	$\begin{cases} = \operatorname{outpu}\left(\frac{-\Theta}{-\Theta}\right) - T \end{cases}$
	2e = (3c-1)	= =
HWCF	2e=1== 2(ux=-ism=)=N3-i	2 = - 275
	$2e = 2(a_{\overline{3}} - i_{\overline{3}}m_{\overline{3}}^{2}) = i_{\overline{3}} - i_{\overline{3}}$ $2e^{i_{\overline{3}}} = 2(a_{\overline{3}} + i_{\overline{3}}m_{\overline{3}}^{2}) = i_{\overline{3}} + i_{\overline{3}}i_{\overline{1}}$	
	$2e^{i\frac{ST}{6}} = 2\left(i\alpha\frac{ST}{6} + i\alpha\frac{ST}{6}\right) = -i\frac{1}{3} + i$	
73 =	2e== 2(05(#+izm#)=-1-15i	//

Question 9

 $z^2 = \left(1 + i\sqrt{3}\right)^3, \ z \in \mathbb{C} \ .$

Solve the above equation, giving the answers in the form a+bi, where a and b are real numbers.

 $z = \pm i 2\sqrt{2}$

Question 10

$$z^3 = 32 + 32\sqrt{3}i, \ z \in \mathbb{C}.$$

a) Solve the above equation.

Give the answers in exponential form $z = r e^{i\theta}$, r > 0, $-\pi < \theta \le \pi$.

b) Show that these roots satisfy the equation

 $w^9 + 2^{18} = 0$.

 $4e^{i\frac{7\pi}{9}}$ $z = 4e^{i\frac{\pi}{9}}$ -i<u>5π</u> 9 4e

(a) $\mathcal{L}^{3} = 32 + 32.61^{\circ};$ $\Rightarrow \mathcal{L}^{3} = 40 + 62.61^{\circ};$ $\Rightarrow \mathcal{L}^{3} = 40 + 6^{\circ}(\mathcal{L}^{+2,27});$ $\mathcal{L}\mathcal{L}^{2}$ $\Rightarrow \mathcal{L}^{2} = 4c^{\circ}\mathcal{L}^{\frac{1}{2}(1+2k)};$ $\Rightarrow \mathcal{L}^{2} = 4c^{\circ}\mathcal{L}^{\frac{1}{2}(1+2k)};$ $\mathcal{L}^{2} = 4c^{\circ}\mathcal{L}^{\frac{1}{2}};$ $\mathcal{L}^{2} = 4c^{\circ}\mathcal{L}^{\frac{1}{2}};$ $\mathcal{L}^{2} = 4c^{\circ}\mathcal{L}^{\frac{1}{2}};$	$ \begin{split} \bullet & (32+32\sqrt{3}) \\ \bullet & (32$
(b) $\mathbb{Z}^{q} + 2^{16} = \left[4e^{i\frac{\pi}{2}(1+6k)}\right]^{2}$ = $2^{16}e^{i\pi(6k+1)} + 2$	$\frac{1}{12} = 2^{18} \left[\frac{i\pi(Q_{L}+1)}{2} + 1 \right]$

Question 11

 $z^7 - 1 = 0, \ z \in \mathbb{C} .$

One of the roots of the above equation is denoted by ω , where $0 < \arg \omega < \frac{\pi}{2}$

- **a)** Find ω in the form $\omega = r e^{i\theta}$, r > 0, $0 < \theta \le \frac{\pi}{3}$.
- **b**) Show clearly that

 $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0.$

c) Show further that

 $\omega^2 + \omega^5 = 2\cos\left(\frac{4\pi}{7}\right).$

d) Hence, using the results from the previous parts deduce that

 $\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = -\frac{1}{2}$

(b) $(\underline{\varsigma}_{-l})(\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t}+\underline{s}_{t})$ $z^{c} + z^{s} + z^{d} + z^{s} + z^{2} + z^{1} + 1 = 0$ $w^{5} + w^{5} + w^{6} + w^{3} + w^{5} + w + |= 0$ $\begin{vmatrix} 2 \\ + (e^{\frac{2\pi}{7}i}) \end{vmatrix}^5 = e^{\frac{4\pi}{7}i} + e^{\frac{10\pi}{7}i}$ $\frac{1}{2} = \frac{1}{2} \tan \left(\frac{4\pi i}{7}\right) = 2 \tan \frac{4\pi}{7}$ $\frac{m}{7} + \left(e^{\frac{2\pi i}{7}}\right)^{k} = e^{\frac{2\pi i}{7}} + e^{\frac{2\pi i}{7}} = e^{\frac{2\pi i}{7}} + e^{\frac{2\pi i}{7}}$ $= \left(e^{2m}_{7}\right)^{3} + \left(e^{2m}_{7}\right)^{4} = e^{2m}_{7} + e^{2m}_{7} = e^{2m}_{7} + e^{2m}_{7}$ Quash (m) = 2005 (m) 1 + 2005 4 At 210.

 $\omega = e^{i\frac{2\pi}{7}}$

ths.co

The Com

Question 12

2

 $z^{3} = (1+i\sqrt{3})^{8}(1-i)^{5}, z \in \mathbb{C}.$

Find the three roots of the above equation, giving the answers in the form $k\sqrt{2}e^{i\theta}$ where $-\pi < \theta \le \pi$, $k \in \mathbb{Z}$.

 $\frac{31\pi}{36}$ $\frac{17\pi}{36}$ $z = 8\sqrt{2} e^{i\theta}$, 7π $\theta = -$ 36] nadasn $g(i-\tilde{i}) = \operatorname{onlew}\left(\frac{-1}{\tilde{i}}\right) = -\frac{\pi}{4}$ nn I.C.B. I.C.B. Ĉ, F.G.B. Madasman Madasma, nadasm. 011 2017 I.G.B. I.C.p Madası Created by T. Madas

Created by T. Madas Madas TRIGOIN IDENTITIES QUESTIONS IN CIR MARINE COM JUES IN INCOMINATION INCOMINATIONI INCOMINATION INTERVINATION INTERVINATION INCOMINATION INCOMINATION INCOMINATION INCOMINATION INCOMINATION INTERVINATI INCOMINATIONI INTERVI INTERVINATION INTERVINATI TI I.Y.C.B. Madasmanna I.Y.C.B. Manager

Question 1

If $z = \cos\theta + i\sin\theta$, show clearly that ...

a) ... $z^n + \frac{1}{z^n} \equiv 2\cos n\theta$.

I.F.G.p ... $16\cos^5\theta \equiv \cos 5\theta + 5\cos 3\theta + 10\cos \theta$.

· J	b) $16\cos^5\theta \equiv \cos 5\theta +$	$-5\cos 3\theta + 10\cos \theta$.	S.A.	1.0
· · 67	5 48	-6	proof	- S.
· · · ·		m. I	7. 47	st i
adasmaths	Inadasmark	nadasmari	$\begin{array}{llllllllllllllllllllllllllllllllllll$	20.
"Sh	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ash.	$\frac{d}{dt} = \frac{1}{2^{n}} = (\text{Lease} + \frac{1}{2^{n}} + (\text{Lease} + \frac{1}{2^{n}}) + (\text{Lease} + \frac{1}{2^{n}}) = 2 \cos n\theta$ (b) $\frac{1}{2^{n} + \frac{1}{2^{n}}} = 3\cos n\theta$	no.
212	Sin	1217	$\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & + \frac{1}{2} & 2 & 2 & 2 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	
15	all all	20	$\begin{array}{llllllllllllllllllllllllllllllllllll$	10
2.	On VS.	$\sim -$	Kuzy = Gasy + Sasy + Kasy - Ka	L.
6		Op X	7 4	
1	1.1	× .	l. r.	1.1
· · ·	C.	· · ·	· . O.	1
. G	0 °0	· · G'A	48	1
$n \cdot \cdot$	i h	17. 5	· ' //	
1202 V	222	A05 4	no va	201
		Madasmari	nadasma.	
20	1 12	. 91%	TOD .	12
	Sec. 40		ath.	- 4
20-	Op "	Co. Co	m Sec.	
	· · · · ·			3
1.1.	· · /·	Str.	1. jr	×),
· · · /	γ (4)	o Kn	· 6's	~ ~ J
9	B V			1
h	' In	12.	m 9	22.
Van	×1201	Created by T. Madas	×1217	42
28	dsp.	· CDs-	asn.	~ D.

I.V.C.B.

Whs.com

Smains.co

I.C.

Question 2

It is given that

 $\sin 5\theta \equiv 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta \,.$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

It is further given that

 $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta \, .$

b) Solve the equation

 $\sin 5\theta = 5\sin 3\theta$ for $0 \le \theta < \pi$,

giving the solutions correct to 3 decimal places.

 $\theta = 0, 1.095^{\circ}, 2.046^{\circ}$

6)	$(\alpha_{i0}\theta_{+i}S_{N}\theta_{-i}\Xi_{-}C_{+i}S)$
	$(\cos\theta + i \sin\theta) = (C + i \beta)^{S}$ 14 + 6 + 1 5 + 10 + 10 + 10
	60570 + 19950 = 105 + 504 5-10 035-1010253+5 054 + 1155
	GRUATE RIAL & IMAGINARY; PIOK IMAGINARY
	$\approx SMS0 = SC^{4} \pm -10C^{2} \pm^{3} \pm \pm^{5}$
	\Rightarrow SIMSO = S\$ $(1-5^{2})^{2}-105^{3}(1-5^{2})+5^{5}$
	\Rightarrow SMSO = $\Im(1-2s^{2}+s^{4})-10s^{2}+10s^{5}+s^{5}$
	\implies SINSO = 5\$ - 1053 + 255 - 1053 + 1083 + 255
	$\Theta_{ni2}Z + \Theta_{ni2}G = \Theta_{ni2}G = \Theta_{ni2}$
(h	SINSO = SSINSO
	= 1521-35- = 1521-9 - 2021-9 + 52110 = 5 (32110-451170)
	9 16anto - 20anto + Jano = 15ano - 20anto
-	$\circ = \Theta a a 0 = 0$
\Rightarrow	$2 \sin \theta (\theta \sin^4 \theta - s) = 0$
	2=0°4128 ♥) 0=019€
	0=0 SM2 = #
	$\circ \leq \theta < \pi$ ($Sm\theta = \sum_{n=0}^{\infty} 0.8891$
	-0.889 We solutions in name
	0 = 1.095°
	0 = _ 2045°
	2046

Question 3

The complex number z is given by

$$z = e^{i\theta}, -\pi < \theta \le \pi.$$

a) Show clearly that

$$z^n + \frac{1}{z^n} \equiv 2\cos n\theta \,.$$

b) Hence show further that

$$\cos^4\theta \equiv \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}\cos 2\theta + \frac{3}{8}$$

c) Solve the equation

I.C.B.

ŀG.p.

$2\cos 4\theta + 8\cos 2\theta + 5 = 0, \ 0 \le \theta < 2\pi.$

COM

nadasn.

2

F.C.B.

 $\begin{array}{c} \operatorname{arcm}(f_1) \stackrel{\mathcal{A}_{n-1}}{=} & \vdots & \varphi = \widehat{\mathbb{P}} \stackrel{\mathcal{A}_{n-1}}{=} \stackrel{$

F.G.B.

202

Question 4

KQ,

C.P.

The complex number z is given by

$$z = e^{i\theta}, -\pi < \theta \le \pi.$$

a) Show clearly that

 $z^n + \frac{1}{z^n} \equiv 2\cos n\theta \,.$

b) Hence show further that

 $16\cos^5\theta \equiv \cos 5\theta + 5\cos 3\theta + 10\cos \theta$.

c) Use the results of part (a) and (b) to solve the equation

 $\cos 5\theta + 5\cos 3\theta + 6\cos \theta = 0, \ 0 \le \theta < \pi \ .$

nadasn.

29

GB

$ \begin{array}{l} (\widehat{\mathfrak{gl}}_{NM}) + ($
(b) @ LET Hal IN (b)
$\Rightarrow 2 \log = 2 + \frac{1}{2}$
$= (2 + \frac{1}{2})^{2}$
$\Rightarrow 326x^{5}\Theta = z^{2} + 5z^{3} + 10z + \frac{10}{2} + \frac{5}{2^{3}} + \frac{1}{2^{5}}$
$\Rightarrow 3265^{2}\Theta = (2^{2} + 1) + 5(2^{3} + 1) + 16(-1) \qquad 14641$
$ z \text{ of of } z = (2z_{23}) + (2z_{23}) + (2z_{23}) = (2z_{23}) + (2z_{23}) = (2z_{23}) + (2z_{23}) = (2z_{23}) + (2z_{23}) = (2z_{23}) + (2z_{23})$
OUSTUPH TH- ORANGI + ORANGI = ORANGI (=
(c) $(0250 + 36030 + 36030 = 0)$
\Rightarrow Casso + Scusso + 10 caso = 4 caso
⇒ lbuss = 4buss
=) 4658 = 6058
⇒ 46050 - 6050 =0
$\Rightarrow \cos\theta \left(4 \tan^2 \theta \right) \Rightarrow \qquad \cos \cos \theta = \frac{1}{4} < \cos \theta = \frac{1}{\sqrt{2}},$ $= \frac{1}{\sqrt{2}},$ $= \frac{1}{\sqrt{2}},$
$\log o \leq \Theta \leq \pi$

日三茶1茶13年

Question 5

De Moivre's theorem asserts that

 $(\cos\theta + i\sin\theta)^n \equiv \cos n\theta + i\sin n\theta, \ \theta \in \mathbb{R}, \ n \in \mathbb{Q}.$

a) Use the theorem to prove the validity of the following trigonometric identity.

 $\cos 6\theta = 32\cos^6 \theta - 48\cos^4 \theta + 18\cos^2 \theta - 1.$

b) Use the result of part (a) to find, in exact form, the largest positive root of the equation

 $64x^6 - 96x^4 + 36x^2 - 1 = 0.$

$\cos\theta + ism\theta = C + is$

- $(\cos\theta + i\alpha w\theta)^{\theta} = (c + i\beta)^{4}$ $los60 + i sub = C^{4} + 6iC^{4} - (SC^{4})^{2} + 20iC^{3} + 15C^{3} + 6iC^{4} - 5^{4}$ -1508+2 - Isch $-15C^{6} + 15C^{6} + 15C^{2}(1 - 2C^{2} + C^{4}) - (1 - 3C^{2} + 3C^{4} - C^{6})$
- -15c4+15c6+15c2-30c4+15c6-1+3c2-3c4+c6 x68 = 32c⁶-18c⁴ + 18c²-1 : COSCO = 32COSO - 48COSO + 18COSO - 1 45 REPUISO
- $\begin{array}{l} \text{GA}x^6 96x^4 + 36x^2 1 = 0\\ 32x^6 48x^4 + 18x^2 \frac{1}{2} = 0 \end{array}$
- $2x^6 48x^4 + 18x^2 1 = -\frac{1}{2}$

- $\operatorname{Orc}_{CO}(-\frac{1}{2}) = \frac{2\pi}{3}$
- $\begin{pmatrix} 6\theta = \frac{2\pi}{3} \pm 2n\pi \\ 6\theta = 4\pi \pm 2n\pi \end{pmatrix}$

Question 6

Y.C.

I.C.B.

Euler's identity states

 $e^{i\theta} \equiv \cos\theta + i\sin\theta$, $\theta \in \mathbb{R}$.

a) Use the identity to show that

 $e^{in\theta} + e^{-in\theta} \equiv 2\cos n\theta$.

b) Hence show further that

 $32\cos^6\theta \equiv \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$.

- c) Use the fact that $\cos\left(\frac{\pi}{2} \theta\right) \equiv \sin\theta$ to find a similar expression for $32\sin^6\theta$.
- d) Determine the exact value of

 $\int_0^{\overline{4}} \sin^6\theta + \cos^6\theta \ d\theta.$

 $32\sin^6\theta = -\cos 6\theta + 6\cos 4\theta - 15\cos 2\theta + 10$

$\left(\begin{array}{c} e^{i\eta} \\ e^$	(eig)"= eine	Amei+ Greei+ 6 ?= Ormei+ Greeo = 0 Ormei-Oreco =	adding	ino -ino e + e =	210SHD
--	--------------	--	--------	---------------------	--------

i GB

IF N=1	
=9 2ωsθ =	e + e 0
Co. al	610 :016

- $\Rightarrow 64 \log^{60} = (e^{i\theta_{0}} + e^{i\theta_{0}}) + (e^{i\theta_{0}} + e^{i\theta_{0}}) + (s(e^{i\theta_{0}} + e^{i\theta_{0}}) + s) + s)$ $\Rightarrow 64 \log^{60} = 2 \cos(0 + 6(2 \log 0) + 15(2 \log 0) + s)$
- $\Rightarrow 64650 = 260600 + 6(26840) + 15(26820) + 20$ $\Rightarrow 3266^{6}0 = 66660 + 666840 + 156620 + 10$

 $sm^6\theta + cos^6\theta d\theta = \frac{1}{20} \int_{-\infty}^{\infty} 32a y^6\theta + 32cos^6\theta d\theta$

 $= \frac{1}{22} \int_{0}^{\frac{1}{2}} 126_{0} d\Theta + 20 \quad d\Theta = \frac{1}{32} \left[3 a_{0} d\Theta + 20 \Theta \right]_{0}^{\frac{1}{2}}$

 $=\frac{1}{32}\left[\left(0+5\pi\right)\div\left(0\right)\right]$

Question 7

De Moivre's theorem asserts that

 $(\cos\theta + i\sin\theta)^n \equiv \cos n\theta + i\sin n\theta, \ \theta \in \mathbb{R}, \ n \in \mathbb{Q}.$

a) Use the theorem to prove validity of the following trigonometric identity

 $\sin 5\theta = \sin \theta \left(16\cos^4 \theta - 12\cos^2 \theta + 1 \right).$

b) Hence, or otherwise, solve the equation

 $\sin 5\theta = 10\cos\theta\sin 2\theta - 11\sin\theta, \ 0 < \theta < \pi.$

a) LET COSD + ism0 = C + iS

 $(\cos\theta + i \sin\theta)^2 = (C + i g)^2$ 6550 + 151MSD = C+ 51C45-10C32-101C23+5C54+155

(6)

- $\begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \leftarrow \varphi_{MRT} \; | \mbox{line}_{MP} \; \varphi_{RCI} \\ \\ \displaystyle \rightarrow \; SmSB = \; Scl_{3}^{*} \; 10c_{3}^{*} \; + \; \beta^{*} \\ \displaystyle \Rightarrow \; SmSB = \; \beta^{*} \left[Sc_{-10}^{*} c_{3}^{*} \; + \; \beta^{*} \right] \\ \\ \displaystyle \Rightarrow \; SmSB = \; \beta^{*} \left[Sc_{-10}^{*} c_{3}^{*} \; + \; (1-c_{3}^{*})^{*} \right] \\ \displaystyle \Rightarrow \; SmSB = \; \beta^{*} \left[Sc_{-10}^{*} c_{3}^{*} \; + \; (1-c_{3}^{*})^{*} \right] \\ \\ \displaystyle \Rightarrow \; SmSB = \; \beta^{*} \left[Sc_{-10}^{*} \; c_{3}^{*} \; + \; (1-c_{3}^{*})^{*} \right] \\ \\ \displaystyle \Rightarrow \; SmSB = \; \beta^{*} \left[Sc_{-10}^{*} \; c_{3}^{*} \; + \; (1-c_{3}^{*})^{*} \right] \\ \end{array}$
- SM 50 = \$ [160-1202+1]
- LE. SW 50 = SM0 [16050 12050+1] +5 2501210

SM50 = 10 castsm20 - 11 sm0 $\sin\theta \left[6\cos^2\theta - 12\cos^2\theta + 1 \right] = 10\cos\theta (2\sin\theta \cos\theta) - 11\sin^2\theta$ to a sump of grie The same in

Question 8

It is given that

 $\sin 5\theta \equiv \sin \theta \left(16\cos^4 \theta - 12\cos^2 \theta + 1 \right).$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

Consider the general solution of the trigonometric equation

 $\sin 5\theta = 0.$

b) Find exact simplified expressions for

 $\cos^2\left(\frac{\pi}{5}\right)$ and $\cos^2\left(\frac{\pi}{5}\right)$ 2π

fully justifying each step in the workings.

 $\left|\cos^{2}\right|\frac{\pi}{2}$ $3 + \sqrt{5}$ $\sqrt{5}$ 2π \cos^2 3. 5 8 8

(e) East+isme (Ct is 3		1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1	
) = ² (0nei+@w) = 02mei+@w)= 02nei+02w ←	C ⁵ + Si C ⁴ % - C ⁵ - 10C ³ % ² +	2051e)+!(ZC		
z = 62mie ∴ k = 02miz ← k = 02miz ← k = 02miz ← k = 62miz ←	[sc#- 10c3; [sc#- 10c0 [sc#- 10c0	$(2^{2} + 5^{4})$ $(-C^{2}) + (1-C^{2})$ $(+10C^{4} + 1-2)$	$\left[\sum_{c^2 + C_{c^2}}^{2} \right]$	
= = 021912 € = 21920 € @SIN50=0 @COMO=0	mÐ[KasH- • si	- 12605 ² 0+1] MO(16605 ⁴ 0-1	43 124401940 260538 +1) =	
$ \begin{array}{c} (9) = 0 \pm 2\pi \\ (9) = 7 \pm 2\pi \end{array} $		140=0 → 0= 1203 1203 1203 1203 1203 1203 1203 1203	20 +1=0 ± 10 60 32	•••ر#
$\theta = 0_1 \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} A_i$	Γ, π ₂	$\frac{\varepsilon}{2} = \theta_{AD}^{2}$	LAS - C	
		$> \frac{\pi^2}{\frac{2}{5}}$	Goz #	

 $\begin{array}{c} \displaystyle \underset{\alpha}{\operatorname{cos}} & \underset{\alpha}{\operatorname{cos}}$

Question 9

lasmarns.com By considering the binomial expansion of $(\cos\theta + i\sin\theta)^4$ show that

àsillàths.co

Question 10

By using de Moivre's theorem followed by a suitable trigonometric identity, show clearly that ...

- **a**) ... $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$.
- **b**) ... $\cos 6\theta = (2\cos^2 \theta 1)(16\cos^4 \theta 16\cos^2 \theta + 1)$

Consider the solutions of the equation.

 $\cos 6\theta = 0 , \ 0 \le \theta \le \pi .$

c) By fully justifying each step in the workings, find the exact value of

 $\cos\frac{\pi}{12}\cos\frac{5\pi}{12}\cos\frac{7\pi}{12}\cos\frac{11\pi}{12}.$

$ \begin{array}{l} (2) & (2) $	$\begin{array}{rcl} (-\frac{1}{2} \frac{1}{2} \frac{1}{2} & = -\frac{1}{2} \frac{1}{2} \frac{1}{2$
(b) $23\alpha^2 = (6x_1(2)x_2) = 2(\alpha^2 x_3) = (1 - (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3))^2 + (1 - (1 - 1)x_3) + (1 - (1 - 1)x_3))^2 $	• Findul $\begin{array}{l} & \text{findul} \\ & \text{findul} $
$\begin{array}{rcl} u_{21,22} &=& \int_{21,22} - \frac{1}{\sqrt{2}} dx + u_{21} & & & & \\ u_{22,22} &=& \int_{21,22} - \frac{1}{\sqrt{2}} dx + u_{21} & & & \\ u_{22,22} &=& \int_{21,22} - \frac{1}{\sqrt{2}} (\int_{21,22} dx + u_{22} - \int_{21,22} d$	$\begin{array}{c} \underbrace{ Automote}_{Automote} & \Theta = \left(\left(\begin{array}{c} \Theta & \Theta \\ \Theta & \Theta \\ Automote} \\ Automote & \Theta \\ Autom$

 $\frac{1}{16}$

Created by COMPLEX LOCI T. T. C.B. HIRDINGSHRAUSSCON T. T. C.B. HIRDINGSHRAUSSCON T. T. C.B. HIRDINGSHRAUSSCON T. T. C.B. HIRDINGSHRAUSSCON T. T. T. RUSSINGIN I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MARIASM

Question 1

Kal

K.C.B.

. Gp ·C.P.

By finding a suitable Cartesian locus in the complex z plane, shade the region R that satisfies the inequality

 $\left|z-3\right| \le \left|z+3\mathrm{i}\right|.$

C.4.

20

Question 2

P.C.

. R.B. |z-1-i|=4, $z \in \mathbb{C}$.

- a) Sketch the locus of the points that satisfy the above equation in a standard Argand diagram.
- **b**) Find the minimum and maximum values of |z| for points that lie on this locus.

20,

R.A.

Question 3

The complex number z represents the point P(x, y) in the Argand diagram.

Given that

|z-1| = 2|z+2|

 $(x+3)^2 + y^2 = 4.$

show that the locus of P is given by

 $\begin{array}{c|c} & & \\ \hline proof \\ \hline \\ = 2[2+2] \\ = 2x ig \\ -1 [= 2[2+2] + ig] \\ +ig] = 2([2+2) + ig] \\ \frac{1}{2} \cdot g^2 = 2\sqrt{(2+2)^3} \cdot g^{12} \\ \frac{1}{2} \cdot g^2 = 2\sqrt{(2+2)^3} \cdot g^{12} \\ + y^2 = 4\sqrt{(2+2)^3} \cdot g^{12} \\ + y^2 = 4\sqrt{(2+2)^3} \cdot g^{12} \\ \end{array}$

Question 4

The complex number z = x + iy represents the point P in the complex plane.

Given that

 $= \frac{1}{z}, z \neq 0$

determine a Cartesian equation for the locus of P.

 $\begin{array}{l} \displaystyle = \frac{l}{2} & \bullet l\&r & \exists = \alpha + ig\\ \displaystyle (2r - ig) = \frac{l}{(2r + ig)}\\ \displaystyle (2r - ig)(2r + ig) = 1\\ \displaystyle a^{L} + g^{L} = 1 \end{array}$

y) - A NUIT GROLE CONTRE AT (DO)

Question 5

Sketch, on the same Argand diagram, the locus of the points satisfying each of the following equations.

a)
$$|z-3+i|=3$$
.

b) |z| = |z - 2i|.

Give in each case a Cartesian equation for the locus.

c) Shade in the sketch the region that is satisfied by both these inequalities

 $|z-3+i| \le 3$

 $|z| \ge |z - 2\mathbf{i}|$

 $(x-3)^2 + (y+1)^2$

Z-3+11=3

[2-3+i |≤3 |7|>|2-2) =9

y =1

Question 6

I.C.B.

in C.B.

- a) Sketch on the same Argand diagram the locus of the points satisfying each of the following equations.
 - **i.** |z-i| = |z-2|.
 - **ii.** $\arg(z-2) = \frac{\pi}{2}$.

b) Shade in the sketch the region that is satisfied by both these inequalities

 $\left|z-i\right| \le \left|z-2\right| \qquad \text{and} \qquad$

 $\frac{\pi}{2} \le \arg(z-2) \le \frac{2\pi}{3}$

sketch

12.50

F.G.B.

Question 7

The complex number z represents the point P(x, y) in the Argand diagram.

Given that

 $|z-1| = \sqrt{2}|z-i|,$

show that the locus of P is a circle, stating its centre and radius.

 $(x+1)^2 + (y-2)^2 = 4$, (-1,2),i

Question 8

 $|z-2\mathbf{i}|=1, z \in \mathbb{C}$

- In the Argand diagram, sketch the locus of the points that satisfy the above a) equation.
- **b**) Find the minimum value and the maximum value of |z|, and the minimum value and the maximum of $\arg z$, for points that lie on this locus.

 2π , $|\arg z_{\min}| =$ arg $z_{\rm max}$ $|z|_{\min} = 1$ $|z|_{\text{max}} = 3$ 3

1.000		100 March 100 Ma	1000
(y)	[S = (0+2)] = (the line	
	Callale Cristile (0,2) Rhisius (Care o	
୯୭	(ZI MIN (DIMNEFOA)	-2 -1 0 1 2 3	212
	$\left[\frac{2}{M_{K}}\right]_{M_{K}}^{MN} = \frac{3}{2} \left(\frac{1}{M_{K}} \left(\frac{1}{M_{K}} \right) \left(\frac{1}{M_$		~
	e= z -4nx ($\left[\frac{\pi 2}{3}\right]_{\text{Had}} = \frac{\pi}{3}$	
	e de F	mg.s.)weix = 3 (st sum	4784)

3

Question 9

The complex number z represents the point P(x, y) in the Argand diagram.

Given that

ŀ.G.p

Ĝ.p.

|z+1| = 2|z-2i|,

show that the locus of P is a circle and state its radius and the coordinates of its centre.

12.8m

24

2017

 $\left(\frac{1}{3},\frac{8}{3}\right)$ $\frac{2}{3}$

 $\begin{array}{l} (\operatorname{Gent} (\operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{sour} \frac{\pi}{2} d_1^{i_2})\\ = (\operatorname{Gent} (\operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{sour} \frac{\pi}{2} d_1^{i_2})\\ = (\operatorname{Gent} (\operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}^{i_2}\})\\ = (\operatorname{Gent} (\operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}^{i_2}\})\\ = (\operatorname{Gent} (\operatorname{Gent} (\{J_1_{i_2}^{i_2}\}) \operatorname{Gent} (\{J_1_{i_2}$

C.J.

21/2.51

Question 10

The complex number z = x + iy satisfies the relationship

 $2 \leq |z-2-3i| < 3.$

- a) Shade accurately in an Argand diagram the region represented by the above relationship.
- **b**) Determine algebraically whether the point that represents the number 4+i lies inside or outside this region.

inside the region

Question 11

Two sets of loci in the Argand diagram are given by the following equations

$$|z| = |z+2|$$
 and $|z| = 2, z \in \mathbb{C}$

a) Sketch both these loci in the same Argand diagram.

The points P and Q in the Argand diagram satisfy both loci equations.

- **b**) Write the complex numbers represented by *P* and *Q*, in the form a+ib, where *a* and *b* are real numbers.
- c) Find a quadratic equation with real coefficients, whose solutions are the complex numbers represented by the points P and Q.

2z + 4 = 0

 $z = -1 \pm \sqrt{3}$

Question 12

a) Sketch in the same Argand diagram the locus of the points satisfying each of the following equations

- **i.** |z-3-2i|=2.
- **ii.** |z-3-2i| = |z+1+2i|.
- **b**) Show by a **geometric** calculation that no points lie on both loci.

Question 13

The point A represents the complex number on the z plane such that

$$\left|z-6\mathbf{i}\right|=2\left|z-3\right|,$$

and the point B represents the complex number on the z plane such that

$$\arg(z-6) = -\frac{3\pi}{4}.$$

- a) Show that the locus of A as z varies is a circle, stating its radius and the coordinates of its centre.
- **b**) Sketch, on the same z plane, the locus of A and B as z varies.
- c) Find the complex number z, so that the point A coincides with the point B.

 $C(4,-2), r = \sqrt{20}$

 $z = (4 - \sqrt{10}) + i(-2 - \sqrt{10})$

Question 14

F.G.B.

Ĉ.Ŗ

 $\left|z-2+i\right|=5.$

 $\arg(z-2) = -\frac{3\pi}{4}$

- a) Sketch each of the above complex loci in the same Argand diagram.
- **b**) Determine, in the form x+iy, the complex number z_0 represented by the intersection of the two loci of part (a).

2

dasmal.

Madası

C.4.

Question 15

The locus of the point z in the Argand diagram, satisfy the equation

 $\left|z-2+\mathbf{i}\right|=\sqrt{3}.$

a) Sketch the locus represented by the above equation.

The half line L with equation

 $y = mx - 1, \quad x \ge 0, \quad m > 0,$

touches the locus described in part (a) at the point P.

- **b**) Find the value of m.
- c) Write the equation of L, in the form

 $\operatorname{arg}(z-z_0) = \theta, \ z_0 \in \mathbb{C}, -\pi < \theta \le \pi.$

d) Find the complex number w, represented by the point P.

 $m = \sqrt{3}$, $\left| \arg(z+i) \right| =$ dry(2+1) = T 2 6(20

π

 $\sqrt{3}$

-1

Question 16

The complex numbers z_1 and z_2 are given by

 $z_1 = 1 + i\sqrt{3}$ and $z_2 = iz_1$.

- **a**) Label accurately the points representing z_1 and z_2 , in an Argand diagram.
- **b**) On the same Argand diagram, sketch the locus of the points z satisfying ...
 - **i.** ... $|z-z_1| = |z-z_2|$.

ii. ... $\arg(z-z_1) = \arg z_2$.

c) Determine, in the form x + iy, the complex number z_3 represented by the intersection of the two loci of part (b).

 $z_3 = (1 - \sqrt{3}) + i(1 + \sqrt{3})$

Question 17

The complex number z lies in the region R of an Argand diagram, defined by the inequalities

 $\frac{\pi}{3} \le \arg(z-4) \le \pi$ and $0 \le \arg(z-12) \le \frac{5\pi}{6}$

a) Sketch the region R, indicating clearly all the relevant details.

The complex number w lies in R, so that |w| is minimum.

b) Find |w|, further giving w in the form u + iv, where u and v are real numbers.

|w| = 3

 $w = 3 + 3\sqrt{3}i$

Question 18

The point *P* represents the number z = x + iy in an Argand diagram and further satisfies the equation

 $\operatorname{arg}\left(\frac{1-iz}{1-z}\right) = \frac{\pi}{4}, \ z \neq -i.$

Use an algebraic method to find an equation of the locus of P and sketch this locus accurately in an Argand diagram.

Question 19

2

The complex number x + iy in the z plane of an Argand diagram satisfies the inequality

 $x^2 + y^2 + x > 0$.

 $\operatorname{arg}\left(\frac{z+1}{z}\right) = \frac{\pi}{4}$

a) Sketch the region represented by this inequality.

A locus in the z plane of an Argand diagram is given by the equation

b) Sketch the locus represented by this equation.

sketch

Question 20

KQ,

. G.p.

The complex number z satisfies the relationship

$$\arg(z-2)-\arg(z+2)=\frac{\pi}{4}.$$

Show that the locus of z is a circular arc, stating ...

- ... the coordinates of its endpoints.
 - ... the coordinates of its centre.
 - ... the length of its radius.

2

COM

 $\Rightarrow ang\left(\frac{2-2}{2+2}\right) = \frac{1}{4}$ $\Rightarrow ang(\frac{x+iy-2}{x+iy+2}) = \frac{1}{4}$

- $\operatorname{reg}\left(\frac{(\underline{a}_{1}-2)+i\underline{y}}{(\underline{a}_{2}+2)+i\underline{y}}\right) = \frac{1}{4}$
- $\begin{bmatrix} (a-2)+iy_1](a+2)-iy_1\\ [(a+2)+iy_2](a+2)-iy_1 \end{bmatrix} = \frac{1}{4}$
- $ny\left[\frac{(3-2)(3+2)+y^2+iy(3+2)-iy(3-2)}{(3+2)^2+y^2}\right] = \frac{11}{4}$
- $\arg\left[\frac{x^2+y^2-4}{(x+z)^N+y^2}+i\frac{yx+2y-yx+2y}{(x+z)^N+y^2}\right]=\frac{\pi}{4}$ $\left[\frac{x^2+y^2-4}{(2x^2)^2+y^2}+i,\frac{dy}{(2x^2)^2+y^2}\right] =$

F.G.B.

Madası

AGSTRATISCOM I.Y.C.B. MARGASMANS.COM I.Y.C.B. MARGASMANS.COM I.Y.C.B. MARGASMANS.COM I.Y.C.B. MARGASMANS.COM

Question 1

A transformation from the z plane to the w plane is defined by the complex function

$$w = \frac{3-z}{z+1}, \ z \neq -1$$

The locus of the points represented by the complex number z = x + iy is transformed to the circle with equation |w| = 1 in the w plane.

Find, in Cartesian form, an equation of the locus of the points represented by the complex number z.

1.11	
$W = \frac{3-2}{2+1}$ $\Rightarrow W = \frac{(3-2i)}{(2+1)}$ $\Rightarrow z = \frac{(3-2i)}{(2+1)}$ $\Rightarrow z + i = 3-2i $	$ \begin{cases} \text{let } \mathfrak{F} = x_{A}i_{B} \\ \Rightarrow [x_{A}i_{B}i_{A}i_{A}] = [3-(x_{A}i_{B})] \\ \Rightarrow [(x_{A}i_{B}i_{A}i_{A}] = (x_{A}i_{A})-i_{B}] \\ \Rightarrow (x_{A}i_{B}i_{A}i_{A}) = \sqrt{(x_{A}i_{B}i_{A}i_{A})} \\ \Rightarrow (x_{A}i_{B}i_{A}i_{B}i_{A}) = \sqrt{(x_{A}i_{B}i_{A}i_{A})} \\ \Rightarrow (x_{A}i_{B}i_{A}i_{B}i_{A}) = (x_{A}i_{B}i_{A}i_{B}i_{A}) \\ \Rightarrow \mathfrak{B}_{A} = \mathfrak{B} \end{cases} $
	(⇒ 2=1

x = 1

Question 2

Find an equation of the locus of the points which lie on the half line with equation

$$\arg z = \frac{\pi}{4}, \ z \neq 0$$

after it has been transformed by the complex function

 $v = \frac{1}{7}$.

1		π
arg	$w = \cdot$	
0		-4

= 1/2	=) 2 = <u> </u>	
	$\Rightarrow any 2= ang(\frac{1}{m})$	
	=) = angt- angr	HE year
	⇒ orgiv = -#	

Question 3

The complex function

 $w = \frac{1}{z-1}, \ z \neq 1, z \in \mathbb{C}, \ z \neq 1$

transforms the point represented by z = x + iy in the z plane into the point represented by w = u + iv in the w plane.

Given that z satisfies the equation |z|=1, find a Cartesian locus for w.

 $u = -\frac{1}{2}$

$W = \frac{1}{2-1}$	$\sum_{i=1}^{n} u_{i+1} = u_{i+1} = \sum_{i=1}^{n} u_{$
2-1 = 1	$\langle \rightarrow u+iv = (u+i)+iv $
2= 1+1	$\left\{ \implies \sqrt{\mu_{5}^{2} + \lambda_{7}} = \sqrt{(n+1)_{5}^{2} + \Lambda_{2}} \right\}$
Z = <u>w+1</u>	$\langle \longrightarrow u^2 + v^2 = (u+i)^2 + v^2$
$ \mathcal{Z} = \left\lfloor \frac{W+1}{W} \right\rfloor$	$\begin{cases} \longrightarrow 10^{2} + 10^{2} = 10^{2} + 2u + 1 + 10^{2} \end{cases}$
$l = \frac{ w+i }{ w+i }$	2
[w] = [w+1]	$ = \frac{1}{2} \qquad (1 + 74e \text{ unf} \text{ and } \frac{1}{2}) $

Question 4

KC.

The complex function w = f(z) is given by

 $w = \frac{3-z}{z+1}$ where $z \in \mathbb{C}$, $z \neq -1$.

A point P in the z plane gets mapped onto a point Q in the w plane.

The point Q traces the circle with equation |w| = 3.

Show that the locus of P in the z plane is also a circle, stating its centre and its radius.

COM

2

20251

● W= <u>3-7</u> Z+1	$\begin{cases} \implies 3\sqrt{2^{2}+2x+1+y^{2}} = \sqrt{2^{2}-6x+q+g^{2}} \end{cases}$
$\Rightarrow W = \left \frac{3-2}{2+1}\right $	$\int \Rightarrow q(a^2 + 2x + 1 + y^2) = (a^2 - 6x + 9 + y^2)$
= 3 = (3-2)	$2 \Rightarrow 93^{2} + 99^{2} + 182 + 9 = 3^{2} + 9^{2} - 62 + 9^{2}$
=======================================	$\langle = 8a^2 + 6y^2 + 24a = 0$
$\Rightarrow 3 a+iy+i = s-(a+iy) $	$\int = \int \chi^2 + 3\alpha + y^2 = 0$
	$\rangle \Rightarrow (\alpha + \frac{3}{2})^2 - \frac{\alpha}{4} + \frac{\alpha}{4}^2 = 0$
\Rightarrow $3 (2+1)+iy = (3+2)-iy $	$\left\langle \xrightarrow{\rightarrow} \left(2 + \frac{3}{2} \right)^2 + y^2 = \frac{q}{4} \right\rangle$
$\Rightarrow 3\sqrt{(x+1)^2+9^x} = \sqrt{(2-x)^2+9^x}$	(NDEED + CRELF, CHUTE+ (-320) RADIUS =
	2//

20

I.C.B.

Question 5

The general point P(x, y) which is represent by the complex number z = x + iy in the z plane, lies on the locus of

|z|=1.

A transformation from the z plane to the w plane is defined by

 $w = \frac{z+3}{z+1}, \ z \neq -1,$

and maps the point P(x, y) onto the point Q(u, v).

Find, in Cartesian form, the equation of the locus of the point Q in the w plane.

0	W= = = = = = = = = = = = = = = = = = =	S OLET W= u+iv
- 	12 + W = 2+3 12 - 2 = 3-W 2(W-1) = (3-W) 2 - 3-W	$\begin{cases} \Rightarrow u+iv-1 = u+iv-5 \\ \Rightarrow (u-1)+iv = (u-3)+iv \\ \Rightarrow \sqrt{ (u-1)^2+v^3 } = \sqrt{ (u-5)^2+v^3 } \\ \Rightarrow \sqrt{ (u-1)^2+v^2} = (u-5)^2+v^2 \end{cases}$
9١	$E = \frac{3-W}{W-1}$ $E = \left \frac{3-W}{W-1} \right $ $I = \left \frac{W-3}{W-1} \right $	$ \Rightarrow \mu^2 - 2u + 1 = \mu^2 - 6u + 9 $ $ \Rightarrow 4u = 8 $ $ \Rightarrow u = 2 $
	$\left[W - I \right]$ $\left[W - I \right] = \left[W - 2 \right]$	(l+ ユ=2)

u = 2

Question 6

K.C.

The point P represented by z = x + iy in the z plane is transformed into the point Q represented by w = u + iv in the w plane, by the complex transformation

 $w = \frac{2z}{z-1}, z \neq 1.$

The point P traces a circle of radius 2, centred at the origin O.

Find a Cartesian equation of the locus of the point Q.

<u>(</u> u	$\frac{1}{-\frac{8}{3}}^{2} + v^{2} = \frac{16}{9}$	1350
CNJRF (CID) ⇒ [Z]= RABIUS 2 ⇒ [Z]=	$= 2 \begin{cases} \implies 2 = \frac{ u+iv }{ (u-2)+iv } \end{cases}$	
2-1	$\Rightarrow = \frac{\sqrt{U_2 + V_2}}{\sqrt{(V - \Sigma)^2 + V_2}}$	
$-M = \Im S$	\Rightarrow $\psi = \frac{u^2 + v^2}{u^2 - q_4 + 4 + v^2}$	
-22 = W (-2) = W	$\begin{cases} \Rightarrow 4u^{2} - 16u + 16 + 14u^{2} = u^{2} + v^{2} \\ \Rightarrow 3u^{2} - 16u + 3v^{2} + 16 = 0 \end{cases}$	
- /	ζ⇒ 3u -16u + 3v2+16=0	

K.C.A

Question 7

The complex numbers z = x + iy and w = u + iv are represented by the points P and Q, respectively, in separate Argand diagrams.

The two numbers are related by the equation

$$w = \frac{1}{z+1}, \ z \neq -1.$$

If P is moving along the circle with equation

$$(x+1)^2 + y^2 = 4,$$

find in Cartesian form an equation of the locus of the point Q.

$ {\color{black} { \color{black} \bigotimes}} \left({{\left\langle {x + t} \right\rangle}_{{\color{black} { { \color{black} \sum } } }} \right)_{{\color{black} { { \color{black} \sum } } } } } { \color{black} { \color{black} j }} = { \color{black} 4 } \\ { \color{black} { \color{black} \sum } } { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ { \color{black} j } = { \color{black} 1 } \\ \\ { \color{black} 1 } \\ { \color{black} 1 } \\ { \color{black} 1 } \\ \\ \end{array} 1 } \\ \\ { \color{black} 1 } \\ \\ \end{array} 1 } \\ \\ { \color{black} 1 } \\ \\ \end{array} 1 } \\ \\ 1 } \\ \\ \end{array} 1 } \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Chunkt (-1 ₁ 0) 840104 2	$\begin{cases} \rightarrow 2 = \frac{1}{ W } \end{cases}$
⇒ (z+1)=2		$ = \frac{ W }{2} = \frac{1}{2} $ $ = \frac{ U }{2} + \frac{ V }{2} = \frac{1}{2} $
$\#_{NACE}$ $\implies \forall V = \frac{1}{2+1}$		$ \left. \begin{array}{l} \Rightarrow \sqrt{u^2 + v^2} = \frac{1}{2} \\ \Rightarrow d_1^2 + v^2 = \frac{1}{4} \end{array} \right $
$\Rightarrow S+I = M $ $\Rightarrow S+I = M$		*

Question 8

A transformation from the z plane to the w plane is defined by the equation

$$w = \frac{z+2i}{z-2}, \ z \neq 2$$

Find in the w plane, in Cartesian form, the equation of the image of the circle with equation $|z|=1, z \in \mathbb{C}$.

$$\left(u + \frac{1}{3}\right)^2 + \left(v + \frac{4}{3}\right)^2 = \frac{8}{9}$$

= 2+21	$\leq \Rightarrow (u+iv-1) = 2[u+iv+1]$
12-24=2+21	$\begin{cases} \implies (u-1)+iv = 2 u+i(v+n) \end{cases}$
2-2= 2v+2;	$ = \sqrt{(u-i)^2 + v^2} = 2\sqrt{u^2 + (v+i)^2} $
(w-1) = 2(w+1)	$\begin{cases} \implies u_{1}^{2}-2u+1+v_{2}^{2} = 4(u_{1}^{2}+v_{1}^{2}+2u+1) \end{cases}$
$= \frac{2(N+1)}{2}$	$ = u^{2} - 2u + 1 + v^{2} = 4u^{2} + 4v^{2} + 8v + 4 $
Jul -1	$\left\{ \implies 0 = 3u^2 + 3v^2 + 2u + 8v + 3 \right\}$
$= \left \frac{\Im(W+1)}{W-1} \right $	$3 \rightarrow u^{2} + \frac{2}{3}u + v^{2} + \frac{2}{3}v + 1 = 0$
$l = \frac{2(w+1)}{(w-1)}$	$\left\{ \begin{array}{c} \Rightarrow \left(u + \frac{1}{2} \right)^2 + \left(v + \frac{u}{2} \right)^2 - \frac{1}{2} - \frac{u}{2} + l = 0 \end{array} \right.$
N-1] = 2]N+1]	$ = (u + \frac{1}{2})^2 + (v + \frac{1}{2})^2 = \frac{B}{2} $
T W=U+iv	5 3//

Question 9

A transformation from the z plane to the w plane is given by the equation

$$w = \frac{1+2z}{3-z}, \ z \neq 3.$$

Show that the in the w plane, the image of the circle with equation |z| = 1, $z \in \mathbb{C}$, is another circle, stating its centre and its radius.

and the second		I II II.
$\left(u-\frac{5}{8}\right)^2+$	$v^2 = \frac{49}{64}$, cen	$\operatorname{tre}\left(\frac{5}{8},0\right), \ r = \frac{7}{8}$
~	Co.	18
Į,	$\begin{split} & \bigvee_{i=1}^{i=1} \frac{1+2\varepsilon_{i}}{3-\varepsilon_{i}} \\ \Rightarrow & \Im_{i=1}^{i=0} \sum_{i=1}^{i=1} \frac{1+2\varepsilon_{i}}{3-\varepsilon_{i}} \\ \Rightarrow & \Im_{i=1}^{i=1} \sum_{i=1}^{i=1} \frac{1+2\varepsilon_{i}}{2\varepsilon_{i}} \\ \Rightarrow & [I_{i=1}^{i=1} \sum_{i=1}^{i=1} 1+2\varepsilon$	$ \begin{array}{l} \begin{array}{l} \displaystyle \Rightarrow \ & \sqrt{(\omega_2)^4 + \sqrt{2^4}} = \ & \sqrt{(\omega_{-1})^5_{+}} + \sqrt{(\omega_{-1})^5_{+}} + \sqrt{2^4} \\ \\ \displaystyle \Rightarrow \ & 0^4 \sqrt{(\omega_2)^4 + \sqrt{2^4}} = \sqrt{(\omega_{-1})^5_{+}} + \sqrt{2^4} \\ \\ \displaystyle \Rightarrow \ & 0^4 - 8 \sqrt{(\omega_2)^4 + \sqrt{2^4}} = \frac{35}{8} = 0 \\ \\ \displaystyle \Rightarrow \ & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} = \frac{5}{8} = 0 \\ \\ \displaystyle \Rightarrow \ & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} = \frac{5}{8} = 0 \\ \\ \displaystyle \Rightarrow \ & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} = \frac{5}{8} \\ \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} = \frac{5}{8} \\ \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} \\ \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} \\ \\ \hline \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} \\ \\ \hline \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 + \sqrt{^2} - \frac{35}{64} \\ \\ \hline \\ \displaystyle & (\omega_{-} - \frac{5}{8})^4 \\ \\ \hline \end{array} $

|(u+2)+iy| = |(3u-1)+3iy|

Question 10

The complex numbers z = x + iy and w = u + iv are represented by the points P and Q, respectively, in separate Argand diagrams.

The two numbers are related by the equation

 $w=\frac{1}{7}, z\neq 0$.

If P is moving along the circle with equation

 $x^2 + y^2 = 2,$

find in Cartesian form an equation for the locus of the point Q.

	S AUTHWATUH
=> W= L	$\begin{cases} w = \frac{1}{2} \\ \Rightarrow u + iv = \frac{1}{2 + iu} = \frac{x - iy}{(x + iy)(x - iy)} \end{cases}$
$\Rightarrow W = \frac{1}{ Z }$	$\begin{cases} \Rightarrow u + iv = \frac{a - iy}{a^2 + y^2} \end{cases}$
$\implies w = \frac{1}{\sqrt{2}}$	$\zeta \implies u + iv = \frac{a - iy}{2}$
$\implies w = \frac{\sqrt{2}}{2}$	5 2 (2)
⇒ lu+ivl= €	$\begin{cases} \qquad \underbrace{\Pi_{U}}_{V = -\frac{Q}{2}} \qquad $
$\Rightarrow \sqrt{w^2 + v^2} = \frac{\sqrt{2}}{2}$ $\Rightarrow \sqrt{v^2 + v^2} = \frac{1}{2}$	$\begin{cases} 4u^2 = \alpha^2 \\ 4v^2 = y^{2-} \end{cases} \hbar DD \end{cases}$
$(14 x^2 + y^2 = \frac{1}{2})$	$\begin{cases} \Rightarrow 4u^2 + 4v^2 = x^2 + y^2 \\ \Rightarrow 4u^2 + 4v^2 = 2 \end{cases}$
C 9 21	$\Rightarrow 4u + 4v = 2$ $\Rightarrow u^2 + v^2 = \frac{1}{2}$

Question 11

The complex numbers z = x + iy and w = u + iv are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation y = x

The complex numbers z and w are related by

 $w = z - z^2 \, .$

a) Find, in Cartesian form, the equation of the locus of Q in the w plane.

b) Sketch the locus traced by Q.

(a)	$\begin{array}{l} \begin{split} & \mathbb{W} = \mathcal{Z} - \mathbb{Z}^{2} \\ & \mathbb{U} + \mathbb{I}_{V} = \left(\mathcal{L} + \mathrm{i} \mathcal{G} \right) - \left(\mathcal{L} + \mathrm{i} \mathcal{G} \right)^{2} \\ & \mathbb{U} + \mathbb{I}_{V} = \left(\mathcal{L} + \mathrm{i} \mathcal{G} \right) - \left(\mathcal{L} + \mathrm{2} \mathcal{G} \mathrm{i} - \mathrm{i} \mathcal{G} \right) \\ & \mathbb{U} + \mathbb{I}_{V} = \left(\mathcal{L} - \mathbb{Z}^{2} + \mathrm{i} \mathrm{G} \right) - \left(\mathcal{L} + \mathrm{2} \mathcal{G} \mathrm{i} \mathrm{G} \right) \\ & \mathbb{N} \mathrm{GO} \left(\mathcal{G} - \mathcal{L} + \mathrm{i} \mathrm{G} \right) \\ & \mathbb{U} + \mathbb{I}_{V} = \left(\mathcal{L} - \mathbb{Z}^{2} + \mathrm{i} \mathrm{G} \right) \\ & \mathbb{U} + \mathbb{I}_{V} = \left(\mathcal{L} + \mathrm{i} + \mathrm{i} + \mathrm{i} + (\mathcal{L} - \mathbb{Z}^{2} + \mathrm{i} \right) \\ & \mathbb{I}^{1} \left(\mathcal{U} = \mathcal{L} \\ & \mathbb{U} + \mathcal{L} - \mathbb{Z}^{2} \right) \Rightarrow \mathbb{V} = \mathcal{U} - \mathrm{i} \mathrm{i}^{2} \\ \end{split}$	(b) $v = u(1-2h)$
	We L-2Fe / 1	

Question 12

The complex numbers z = x + iy and w = u + iv are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation y = 2x.

Given that he complex numbers z and w are related by

 $w = z^2 + 1$

find, in Cartesian form, the locus of Q in the w plane.

70. aug	
W= 2 ² +1	5 (3H=1-4) ×4
$= \sqrt{(x+i)^2} = \sqrt{(x+i)^2}$	$\begin{cases} 3t^{2} = t-q \\ 4t^{2} = v \end{cases} \times 4 \\ \times 3 \end{cases}$
$= u + iv = x^2 + 2igi - g^2 + 1$	$\sqrt{12t^2} = 4 - 4u$
$\Rightarrow u+iv = (x^2-y^2+1)+i(2xg)$	$\left(12t^2 = 3v \right)$
Naw y=2x.	2
$\Rightarrow u+iv = (2^{2}-u_{2}^{1}+i)+i(4x^{2})$	(** 3v=4-44
$\Rightarrow u + iv = (1 - 3\alpha^2) + 4\alpha^2 i$	3×+44=4
$l = \begin{pmatrix} u = 1 - 3t^2 \\ V = 4t^2 \end{pmatrix}$	1 + 3y + 4z = 4
() = 4(-	

Question 13

1.

A transformation of the z plane to the w plane is given by

$$y = \frac{1+3z}{1-z}, \ z \in \mathbb{C}, \ z \neq 1,$$

where z = x + iy and w = u + iv.

The set of points that lie on the y axis of the z plane, are mapped in the w plane onto a curve C.

Show that a Cartesian equation of C is

 $\left(u+1\right)^2+v^2=4\,.$

$\begin{split} & W \simeq \frac{ +32c}{ -2} \\ \Rightarrow W - V \gtrsim w + V \ge w + V = W = W = W = W = W = W = W = W = W =$	$\begin{array}{c} \Rightarrow x_{1}^{+} \underbrace{(\underline{b}_{1} - (\underline{b}_{2} - \underline{b}_{2} + \underline{b}_{2})_{1} + \underbrace{(\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2}}{(\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2})_{2}} \\ \Rightarrow x_{1} x_{2} x_{2} x_{2} x_{2} x_{2} \\ \Rightarrow x_{1} x_{2} x_{2} x_{2} x_{2} x_{2} \\ & (\underline{b}_{1} - \underline{b}_{2} - \underline{b}_{1} + \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{1} - \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{1} + \underline{b}_{2} + \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2})_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} + \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} - \underline{b}_{2} \\ & (\underline{b}_{2} - \underline{b}_{2} $
$\Rightarrow z = \frac{[(u+)+iv][0]}{[(u+3)+iv][0]}$	

	C	NDW)
ACTIVENATIVE BY PATERNULTERCS	2	
W= 1+32	2	$(1+uy^2=1-3y^2) = \sqrt{2} = \frac{(6g^2)}{(1+g^2)^2}$
$u + iv = \frac{1 + 3(\alpha + iy)}{1 - (\alpha + iy)}$	ζ	$y^{2}(3+y)=1-y$ (= $y^{2} = \frac{16(\frac{1-y}{3+y})}{1-y}$
BUT & AXUS IS 2=0	(
$u + iv = \frac{1+3iy}{1-iy}$	5	$\langle \Rightarrow V^2 = \frac{ 6(\frac{1-u}{h+u})}{(\frac{3+u+u}{h+u})^2}$
$= U_{i+1v} = \frac{(1+iy)(1+iy)}{(1-iy)(1+iy)}$	2	$V^{2} = \frac{l(\frac{1-i_{1}}{3+i_{1}})}{(\frac{1}{3+i_{1}})^{2}}$
$= u + iv = -\frac{1 + 4iy - 3y^2}{1 + y^2}$	5	/
$ \begin{pmatrix} u &= \frac{1-3y^2}{1+y^2} \\ V &= \frac{4y}{1+y^2} \end{cases} $	5	$ \bigvee^{2} = \frac{l_{0}^{\ell}\left(\frac{1-\omega}{3+\omega}\right)}{\frac{l_{0}^{\ell}}{(3+\omega)^{2}}} $
$V = \frac{4y}{1+y^2}$		MULTIPOY TO P/BOTTERN BY (3+4) ²
EUMINATIE Y BETWEEN	($\Rightarrow V^2 = \frac{k(1-k)(3+k)}{k}$
THE PARALHTICS	($\implies \sqrt{2}_{n} 3 + u - 3u - u^{2}$
	($\implies \sqrt{2} + 4 + 2w = 3$
		$\implies V^{2} + (\underline{u} + 1)^{2} - 1 = 3$
		\implies V ² +(u+1) ² =4 +5 346084
		2 · · · · · · · · · · · · · · · · · · ·

proof

Question 14

The complex function w = f(z) is given by

 $w = \frac{1}{z}, z \in \mathbb{C}, z \neq 0.$

This function maps a general point P(x, y) in the z plane onto the point Q(u, v) in the w plane.

Given that P lies on the line with Cartesian equation y=1, show that the locus of Q is given by

2

 $w + \frac{1}{2}i$

$W = \frac{1}{Z}$	$\zeta \Rightarrow u^2 + v$
$\Rightarrow Z = \frac{1}{w}$	$\begin{cases} \Rightarrow u^2 + v^2 \\ \Rightarrow u^2 + v^2 \end{cases}$
$\Rightarrow x + iy = \frac{1}{u + iv}$ (consumption)	$\left\{ \Rightarrow u^2 + ($
$\Rightarrow x + iy = \frac{u - iv}{u^2 + v^2}$	$\Rightarrow u^2 +$
$\Rightarrow x + iy = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2}$	{ lt Geo
Bot y=1	{ · \w. w
$\int_{-\infty}^{\infty} - \frac{\sqrt{2}}{u^2 + \sqrt{2}} = 1$) (**

(ALTHEN ATTULE)	
PLIESON 9=1	V= - 1 V= - 1 V= V V= V= V V= V V= V V= V V V= V
1+x=5	$V = -\frac{1}{\frac{U^2}{2}+1} \begin{pmatrix} U \text{UTR} Y \text{ Is } $
$\Rightarrow W = \frac{1}{x_{+}}$ (consumption)	> *-
$W = \frac{x-i}{x^2+1}$	$\begin{cases} \Rightarrow V = -\frac{V^2}{U^2+V^3}, & \text{Bruce support} \\ BY V & V \\ \end{array}$
$u + iv = \frac{x}{x^{2}+1} - \frac{1}{x^{2}+1}$	$\langle \longrightarrow 1 = -\frac{v}{u^2+v^2}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$ \Rightarrow u^2 + v^2 = -v$
If ( u= to ) Durot QUATIANS	$ \Rightarrow u^2 + v^2 + v = 0 $ $ \Rightarrow u^2 + (v + \underline{v})^2 - \underline{4} = 0 $
V= ++++ SUDE BY SUDE TO GUNINATE	$ \implies u^2 + (v + \xi)^2 = \frac{1}{4} $
⇒ <u>u</u> :-t	CIECUT, CHITEL (01-2) PADIUL 2
	$\left  W - \left(0 - \frac{L}{2}\right) \right  = \frac{L}{2}$
	=> (w+ 1/2 = 1/2 21201660

proof

### Question 15

A transformation of the z plane onto the w plane is given by

 $w = \frac{az+b}{z+c}, z \in \mathbb{C}, z \neq -c$ 

where a, b and c are real constants.

Under this transformation the point represented by the number 1+2i gets mapped to its complex conjugate and the origin remains invariant.

- a) Find the value of a, the value of b and the value of c.
- **b**) Find the number, other than the number represented by the origin, which remains invariant under this transformation.



z = 5

 $a = \frac{5}{2}$ , b = 0,  $c = -\frac{5}{2}$ 

### Question 16

A transformation of the z plane to the w plane is given by

$$v = \frac{1}{z-2}, \ z \in \mathbb{C}, \ z \neq 2$$

where z = x + iy and w = u + iv.

The line with equation

### 2x + y = 3

is mapped in the w plane onto a curve C.

a) Show that C represents a circle and determine the coordinates of its centre and the size of its radius.

The points of a region R in the z plane are mapped onto the points which lie inside C in the w plane.

**b**) Sketch and shade R in a suitable labelled Argand diagram, fully justifying the choice of region.

 $(-1,\frac{1}{2})$ 

, radius =

centre at

# Question 17

A transformation of the z plane to the w plane is given by

 $w = z^2, z \in \mathbb{C}$ ,

where z = x + iy and w = u + iv.

The line with equation y = 1 is mapped in the w plane onto a curve C.

Sketch the graph of C, marking clearly the coordinates of all points where the graph of C meets the coordinate axes.



W= 22 , while z= atig	
THE UNIF y=1 CAN BE WERTING AS Z=2	1.+ Î
Thus w= Cx+i)2	
4+iv = 22+24-1	
$(l+i) = (3i \rightarrow) + (3i)i$	
SD IN PARAMETRIC	
$\begin{array}{c} u = 2^{2} - 1 \\ v = 22 \end{array} \xrightarrow{d} \begin{array}{c} 4u = 4z^{2} - 4z^{2} \\ v^{2} = 4z^{2} \end{array} \xrightarrow{d} \begin{array}{c} 4u + 4z^{2} \\ \end{array}$	=V2
	(U+1) IE A-SIMULARD PARABOLA
(h.a)	Sheara
(-1.0)	bu
(g.2)	- //

### Question 18

A transformation of points from the z plane onto points in the w plane is given by the complex relationship

 $w = z^2, z \in \mathbb{C},$ 

where z = x + iy and w = u + iv.

Show that if the point P in the z plane lies on the line with equation

y = x - 1,

 $v = \frac{1}{2} \left( u^2 - \frac{1}{2} \right) \left( u^2 - \frac{1$ 

the locus of this point in the w plane satisfies the equation

 $\begin{array}{c} & & \\ & & \\ & \downarrow_{ET} & z = \alpha_{1} \downarrow_{1} \\ \Rightarrow & \forall_{V} = 2^{2} \end{array} \begin{array}{c} & & \\ & & \\ & & \downarrow_{V} = 3^{2} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

	$\begin{cases} u = 2x - i \\ V = 2x^2 - 2x  (x_2) \end{cases}$
y2	$\begin{cases} 2u = 0 + 1 \\ \exists v = 4u^2 - 4u \\ \forall hout \in UMINATI- \infty. \end{cases}$
	$\begin{cases} \Rightarrow 2_V = (2\chi)^2 - 2(2\chi) \\ \Rightarrow 2_V = (U+1)^2 - 2(U+1) \end{cases}$
	$\Rightarrow 2V = u^2 + 2u + 1 - 2u - 2$ $\Rightarrow 2V = u^2 - 1$
	$\Rightarrow v = \frac{1}{2}(u^2 - 1)$ is showing

proof

# Question 19

A complex transformation from the z plane to the w plane is defined by

$$v = \frac{z+i}{3+iz}, z \in \mathbb{C}, z \neq 3i$$

|z-i|=2.

The point P(x, y) is mapped by this transformation into the point Q(u, v).

It is further given that Q lies on the real axis for all the possible positions of P

Show that the P traces the curve with equation

Y	<u>k</u>
$W = \frac{Z + \tilde{l}}{3 + \tilde{l} Z}$	NOW Q MOVESON BY
$\Rightarrow (u+iv) = \frac{\alpha+iy+i}{3+i(\alpha+iy)}$	< THE (44)(3-4)-2
$\Rightarrow (l+i) = \frac{2+i(\underline{y}+l)}{2-\underline{y}+ix}$	$\begin{cases} \implies 3y - y^2 + 3 - y - 3 \\ \implies 0 = y^2 - 2y + x^3 \end{cases}$
CONTRACT SEARCH	$\langle \implies 0 = \lambda^2 + (y-1)$
$\Rightarrow (u+i)v = \underbrace{[2u+i(y+i)][(3-y)-i]}_{(3-y)^2+2^2}$	$\Rightarrow \alpha^2 + (y-i)^2 =$
$\Rightarrow U + iv = \frac{x(z \cdot y) \cdot z(y_{H})}{(z \cdot y)^2 + x^2} + i \frac{(y_{H})(z \cdot y) - x^2}{(z \cdot y)^2 + x^2}$	+ creat, chnet RADUL 2-(0+1) =
	1 1 1 -

$\frac{4\pi}{3} \frac{1}{2} 1$	$ \left \{ \begin{array}{c} \bullet  \underbrace{g_{l+q}t^2 = 3t^2_{-1}}_{2+l} = 0  \widehat{\mathcal{I}}^{t} = \frac{16t^2}{(l+l^2)^l} \\ \bullet  \underbrace{g_{l+l} = 3t^2_{-q}t^2}_{2-q} \\ \bullet  \underbrace{f_{l+q} = \frac{1}{2-q}}_{2-q} \end{array} \right. $
$ \exists w_{-1} = \Xi(1 - iw) $ $ \exists w_{-1} = \frac{\Im w_{-1}}{1 - iw} $	$ \Rightarrow \mathcal{J}_{x} = \frac{\left(1 + \frac{2-2i}{2+i}\right)}{\operatorname{Hexc}} $
$\begin{aligned} & \mathcal{W}_{\text{L}} = \mathcal{W}_{\text{L}} = \mathcal{W}_{\text{L}} \\ & \mathcal{W}_{\text{L}} = \mathcal{W}_{\text{L}} \\ & \mathcal{W}_{\text{L}} = \mathcal{W}_{\text{L}} \\ & \mathcal{W}_{\text{L}} = \mathcal{W}_{\text{L}} \end{aligned}$	$ \Rightarrow \lambda^{2} = \frac{\left 6\left(\frac{3+y}{3-y}\right)\right }{\left(\frac{3-y+y+1}{3-y}\right)^{2}} $
$\Rightarrow z = \frac{3t-1}{1-1t}$ $\Rightarrow z = \frac{(3t-1)(1+it)}{(1-1t)(1+it)}$	$ \Rightarrow \lambda^{2} = \frac{l(\frac{(y+1)}{3-y})}{\left(\frac{d}{3-y}\right)^{2}} $ Muting the batter by $(3-y)^{2}$
$\Rightarrow 2 = \frac{3t+3t^2-i+t}{1+t^2}$ $\Rightarrow \alpha + iy = \frac{4t}{1+t^2} + i\frac{3t^2-i}{1+t^2}$	$ \begin{array}{c} \begin{array}{c} \Rightarrow & z^2 = & \frac{i \left( \left( \frac{1}{2} + i \right) \left( \frac{3}{2} - \frac{1}{2} \right)}{k} \\ \end{array} \\ \begin{array}{c} \Rightarrow & z^2 = & 3 \underbrace{f_1 - y^2 + 3 - y} \end{array} \end{array} $
$D = \frac{4t}{1+t^2}  \left[ Q = \frac{3t^2 - 1}{1+t^2} \right]$	$ \begin{array}{c} \implies 2^{2} = -y^{2} + 2y + 3 \\ \implies 3^{2} + y^{2} + 2y = 3 \\ \implies 3^{2} + (y_{+})^{2} - 1 = 3 \end{array} $
	$ = x + (y+1)^2 = 4 $ (45 34682+)

proof

### Question 20

A transformation of the z plane to the w plane is given by

$$w = \frac{2z+1}{z}, z \in \mathbb{C}, z \neq 0$$

where z = x + iy and w = u + iv.

The circle  $C_1$  with centre at  $\left(1, -\frac{1}{2}\right)$  and radius  $\frac{\sqrt{5}}{2}$  in the *z* plane is mapped in the *w* plane onto another curve  $C_2$ .

a) Show that  $C_2$  is also a circle and determine the coordinates of its centre and the size of its radius.

The points inside  $C_1$  in the z plane are mapped onto points of a region R in the w plane.

**b**) Sketch and shade R in a suitably labelled Argand diagram, fully justifying the choice of the region.

2+ 17  $\Rightarrow \left| \frac{1}{2} - \left( l - \frac{1}{2} \right) \right| * \frac{\sqrt{5}}{2} \\ \left( \frac{1}{2} - l + \frac{1}{2} \right) = \frac{\sqrt{5}}{2}$  $\Rightarrow NS' = \frac{(4-w)}{|w-z|}$  $\frac{\left|4-(u+iv)\right|}{\left|(u+iv)-2\right|}$ = NS = 2-1- $\frac{\left(\frac{14}{2}-4\right)^2+\gamma^2}{\left(\frac{14}{2}-2\right)^2+\gamma^2}$ 4-W  $\frac{\|G-B_{4}+U^{2}+V^{2}}{(u^{2}-\psi_{4})+(4+V^{2})}$ Z-1+121 = 5 1 SAY 2=1  $\lfloor \frac{1}{2} \rfloor = \lfloor \frac{4-W}{2W-0} \rfloor$ u + 20 + 542 = 16-84  $u^2 - 12u + 4v^2 + 4 = c$  $\frac{\sqrt{5}}{2} = \frac{|4-w|}{2|w-2|}$  $\Rightarrow (4 - \frac{3}{2})^2 + \sqrt{2} - \frac{3}{2} + 1 = 0$  $= \left( \left( u - \frac{3}{2} \right)^2 + v^2 = \frac{1}{2}$ IE arelie annet (3,0) 24

centre at  $\left(\frac{3}{2}, 0\right)$ , radius =  $\frac{1}{\sqrt{2}}$ 

### Question 21

A transformation of the z plane to the w plane is given by

$$w = z + \frac{1}{z}, \ z \in \mathbb{C}, \ z \neq 0,$$

where z = x + iy and w = u + iv.

The locus of the points in the z plane that satisfy the equation |z| = 2 are mapped in the w plane onto a curve C.

By considering the equation of the locus |z| = 2 in exponential form, or otherwise, show that a Cartesian equation of *C* is

 $36u^2 + 100v^2 = 225.$ 

ETTZ GAN BE WRITTEN AS Z= 20° IN GROWASTIN	R FRAM
So	
$W = \mathbb{Z} + \frac{1}{\mathbb{Z}} = 2e^{i\theta} + \frac{1}{2e^{i\theta}} = 2e^{i\theta} + \frac{1}{2}e^{i\theta}$	
= 2(las0+iam0) + ±(las0-iam0) = ±las0+ ±iam	9
So $u + iv = \frac{5}{2} \log \theta + \frac{3}{2} \log \theta$	
$u = \frac{1}{2} \omega = \frac{1}{2} \varepsilon = \int \frac{\theta \omega}{\theta} d\omega = \frac{1}{2} \varepsilon$	Åθ= 1
$\Rightarrow \frac{1}{2}u^2 + \frac{1}{2}u^2$	$v^2 = 1$
⇒ 364 ² + 100	N ² =225
	- REPURA

proof

# Question 22

1.0.

A transformation from the z plane to the w plane is defined by the equation

 $w = i z - 1, z \in \mathbb{C}$ .

Sketch in the w plane, in Cartesian form, the equation of the image of the half line with equation

 $\operatorname{arg}(z+2) = \frac{\pi}{4}, z \in \mathbb{C}.$ 

the last ang $(z_{+2}) = \frac{T}{4}$ TRANSPERATION W = $i_{Z-1}$	
W = 18-1	
$W+l = i \mathbb{Z}$ ) ALL of RY by $-i$ $-i W - i = \mathbb{Z}$	
$Z_{12} = -i_{W} - i_{12}$ $a_{W}(z_{12}) = a_{Fg}(-i_{W} - i_{12})$	I'mw
$\frac{W}{4} = a_{ij} \left[ -i \left[ w + i + 2i \right] \right]$	Reiv
$\frac{\Psi}{\Psi} = \operatorname{org}(-1) + \operatorname{arg}(w_{\pm1\pm21})$ $\frac{\Psi}{\Psi} = -\frac{\pi}{2} + \operatorname{arg}(w_{\pm1\pm21})$	
$\operatorname{arg}(w+i+2i) = \frac{3i}{4}$	- //

E.

graph

# Question 23

1.0

A transformation from the z plane to the w plane is defined by the equation

$$f(z) = \frac{\mathrm{i}\,z}{z-\mathrm{i}}, \ z \in \mathbb{C}$$

Find, in Cartesian form, the equation of the image of straight line with equation

 $|z-\mathbf{i}| = |z-2|, \ z \in \mathbb{C}.$ 

3	12.	
$\left(u+\frac{2}{5}\right)$	$\frac{v^{2} + \left(v - \frac{4}{5}\right)^{2} = \frac{1}{5}}{2}$	
6  2-2 = 1-2  a	$\oint (\mathcal{Z}) \simeq W = \frac{iZ}{Z - \Gamma}$	٩,
$ \begin{split} &  v  = \frac{12}{8-1} & (1) \\ &  v  = \frac{12}{8-1} & (1) \\ &  v  = \frac{1}{8} \\ &  v  =$	$\begin{cases} \frac{4\pi \alpha \epsilon^{\alpha} \pi \kappa}{ \mathbf{x}(-z_1)\mathbf{x}_2  = 1} \\ \left\{ \frac{ (-z_1)\mathbf{x}_2  = 1}{ \mathbf{x}_1 - \frac{z_1}{2d_1^2}} \right\} = 1 \\ \frac{ (-z_1)  _{\mathbf{x}_1 - \frac{z_1}{2d_1^2}} = 1 \\  (-z_1)  _{\mathbf{x}_1 - \frac{z_1}{2d_1^2}} = 1 \\  (-z_1)  _{\mathbf{x}_1 - \frac{z_1}{2d_1^2}} = 1 \\ \frac{ (-z_1)  _{\mathbf{x}_1 - \frac{z_1}{2d_1^2}} = 1 \\  ($	
$\begin{array}{c} Su^2 + Sy^2 - 8y + 4u = -3 \\ u^2 + v^2 - \frac{8}{3}v + \frac{4}{3}u = -\frac{3}{3} \\ (u + \frac{2}{3})^2 + (v - \frac{4}{3})^2 = \frac{3}{3}r \frac{4}{23}r + \frac{1}{2} \\ (u + \frac{2}{3})^2 + (v - \frac{4}{3})^2 = \frac{1}{3}r \\ (\omega + \frac{2}{3})^2 + (v - \frac{4}{3})^2 = \frac{1}{3}r \end{array}$	$\begin{cases} \sqrt{2} \left[  \mathbf{v} + \underline{2} _{\mathbf{x}}^{(-1)} = 1 \\ \sqrt{2} \right] \left[ \mathbf{v} + \frac{2}{3} - \frac{1}{3} \right] = 1 \\ \left[  \mathbf{v} + \frac{2}{3} - \frac{1}{3} \right] \left[ -\frac{1}{3} \right] \\ \end{bmatrix}$	

# Question 24

I.C.P.

i.C.B.

The complex function w = f(z) is given by

 $w = \frac{1}{1-z} , \ z \neq 1.$ 

The point P(x, y) in the z plane traces the line with Cartesian equation

COM

# y + x = 1.

Show that the locus of the **image** of P in the w plane traces the line with equation

v = u.

I.C.B.

2017

18.COM

proof

1 +

# Question 25

2

The complex function w = f(z) satisfies

 $w = \frac{1}{z}, z \in \mathbb{C}, z \neq 0.$ 

This function maps the point P(x, y) in the z plane onto the point Q(u, v) in the w plane.

It is further given that P traces the curve with equation

 $\left|z+\frac{1}{2}i\right|=\frac{1}{2}.$ 

Find, in Cartesian form, the equation of the locus of Q.

DRK 4% FOWONS	
$M = \frac{F}{F} \implies S = \frac{F}{M}$	
⇒ ≥+±i = ¼+±i	
$\Rightarrow$ $2 + \frac{1}{2}i = \frac{2 + w_1}{2w}$	
Zadiz fitel ino juvacua Davis	
$\rightarrow \left  2 + \frac{1}{2} \right  = \left  \frac{2 + W_1}{2W} \right $	
$\Rightarrow \frac{1}{2} \approx \frac{ z+w_i }{ zw_i }$	
= (w) = (2 + w)	
r w=u+iv	
- (u+iv) = (2+1(u+iv))	
⇒ (u+iv) = 12+ai-v1	
$\implies$ $ (u+iv)  =  (2-v)+iu $	
$\int \sqrt{u^2 + v^2} = \sqrt{(2 - v)^2 + u^2}$	
= yst + xt = 4 - 40 yrt + xt	
$\implies 4v = 4$	
⇒ Y=1	
[or y=1]	

*v* =1

Question 26

.K.C.

F.C.B.

 $x = \cos\theta + i\sin\theta$ ,  $-\pi < \theta \le \pi$ 

a) Show clearly that

 $\frac{2}{1+z} = 1 - i \tan \frac{\theta}{2}.$ 

The complex function w = f(z) is defined by

 $w = \frac{2}{1+z}, \ z \in \mathbb{C}, \ z \neq -1.$ 

The circular arc |z|=1, for which  $0 \le \arg z < \frac{\pi}{2}$ , is transformed by this function.

b) Sketch the image of this circular arc in a suitably labelled Argand diagram.

proof/sketch

F.C.B.

madasm

(a)	$\frac{z}{\theta(m^2) + (1 + \theta m^2)} = \frac{z}{(\theta m^2 + \theta m^2) + (1 + \theta m^2)}$
	$=\frac{2[i\alpha\theta+1]-i\alpha\theta}{2[i\alpha\theta+1]+i\alpha\theta^2]}=[\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i\alpha\theta+1]-2[i$
	$=\frac{2(\cos\theta+i)-2i\sin\theta}{\cos\theta+2i\cos\theta+i+\sin^2\theta} \approx \frac{2(\cos\theta+i)-2i\sin\theta}{2+2\cos\theta}$
	$= \frac{2\omega\theta + 2}{2 + 2\omega\delta\theta} - \frac{2(3m\theta)}{2 + 2\omega\delta\theta} = 1 - i\frac{3m\theta}{1 + \omega\theta}$ $= (-i)\frac{3m\theta}{2\omega\theta} + i\frac{2}{2\omega\theta} + i\frac{2}{$
(L)	$= (-1) \frac{2 \cos \frac{2}{3} \cos \frac{2}{3}}{(+2 \cos \frac{2}{3})} = (-1) \frac{2 \cos \frac{2}{3} \cos \frac{2}{3}}{(+2 \cos \frac{2}{3})} = (-1) \cos \frac{2}{3}$ $[Z] = (-1) \cos \frac{2}{3} \cos \frac{2}{3} \cos \frac{2}{3}$
	$ \begin{array}{c} Z = (\alpha s \theta + i s m \theta) & \phi \leq \theta < \underline{\mathbb{F}} \\ \therefore \ W = 1 - i \frac{1}{2} \omega_{\varepsilon} \frac{\theta}{2} \\ \end{array} $
	$\left(\begin{array}{c} A = \frac{1}{16} & e^{-\frac{1}{16}} \\ A = \frac{1}{16} $
	-

# Question 27

The complex function with equation

 $f(z) = \frac{1}{z^2}, \ z \in \mathbb{C}, \ z \neq 0$ 

maps the complex number x+iy from the z plane onto the complex number u+iv in the w plane.

The line with equation

 $y = mx , \ x \neq 0 ,$ 

v = Mu,

is mapped onto the line with equation

where m and M are the respective gradients of the two lines.

Given that m = M, determine the three possible values of m.



1000	
$\Rightarrow W = \frac{1}{Z^2}$	$\rightarrow$ $u+iv = \frac{(x^2-y^2) - 2xyi}{x^4 - 2x_1^2y^2 + y^4 + 4y_1^2y^2}$
$\Rightarrow (l_+i) = \frac{l}{(x+iy)^2}$	$= u_{+iv} = \frac{(x^2 - y^2) - 2xy_i}{x^4 + 2x_i^2 + y^4}$
⇒ (1+1) = 1 2°+ 22gi-92	$= \frac{(3_s + d_s)s}{(2_s - d_s) - 3xdi}$
$\Rightarrow (u+i)_{i} = \frac{(\chi^{2}-y^{1})-2zy_{i}}{\left[(u^{2}-y^{2})+2zy_{i}\right]\left[(u^{2}-y^{2})-2zy_{i}\right]}$	$\Rightarrow (u + (v) = (\frac{u^2 - y^2}{(u^2 + y^2)^2} - \frac{2xy}{(u^2 + y^2)^2})$
$\Rightarrow$ $(1+i)V = \frac{(\chi^2-y^2)-2\chi y_1^2}{(\chi^2-y^2)^2+\eta\chi^2y^2}$	
@ NOW y=mac	
$U = \frac{\alpha_s^2 - m_s^2 \alpha_r}{(\alpha_s^2 + m_s^2 \alpha_r)_s} = \frac{\alpha_s^2 C(-m_s)}{\alpha_s^4 (1 + m_s^2)_s}$	$= \frac{1-M_{y}}{D_{s}(1+M_{y})_{y}}$
$V = \frac{-2\chi(h_{2})}{(\chi^{2} + h_{1}^{2}\chi^{2})^{2}} = \frac{-2M\chi^{2}}{\chi^{4}(1 + h_{1}^{2})^{2}}$	= <u>-201</u>
(x+Mx) 32(1+M-)-	J CITMO
$ u \times \frac{1}{V} = \frac{1 - w_1^2}{2^2 (Hw_1^2)^2} \times \frac{2^2 (Hw_1^2)^2}{-2w_1} $	
	$\frac{\omega}{\sqrt{2}} = \frac{w^2 - 1}{2m}$
	$=$ $V = \left(\frac{2m}{M^2 - 1}\right)_{\rm U}$
	4
	GRADINT
2 W	
So m= 2m m2-1	
> m3-m = 2m	
=> hy3-3hy=0	
	10
-> m(m2-3)=0 .	M= - N3' //

### Question 28

A complex transformation of points from the z plane onto points in the w plane is defined by the equation

 $w = z^2, z \in \mathbb{C}$ .

The point represented by z = x + iy is mapped onto the point represented by w = u + iv.

Show that if z traces the curve with Cartesian equation

 $y^2 = 2x^2 - 1,$ 

the locus of *w* satisfies the equation

 $v^2 = 4(u-1)(2u-1).$ 

	(u= 1- x2
⇒(u+iv) = (x+iy)2	$\begin{cases} \Rightarrow \begin{pmatrix} u_{-1} - \chi^2 \\ v_{-2}^2 + 4\chi^2(2\lambda^2 - 1) \end{pmatrix} \end{cases}$
$\Rightarrow u + iv = \alpha^2 + 2\alpha y i - y^2$	O THUS 22=1-4
$\Rightarrow \begin{pmatrix} u = x^2 - y^2 \\ v = 2xy \end{pmatrix}$ subst b $y^2 = 2x^{-1}$	$\begin{cases} \implies \forall^2 = 4(1-q)(2(1-q)-1) \\ \implies 2 \end{cases}$
5	$\begin{cases} \implies v^{2} = 4(1-u)(2-2u-1) \\ \implies v^{2} = 4(1-u)(1-2u) \end{cases}$
$\Rightarrow \begin{pmatrix} u = x^2 - (2x^2 - 1) \\ y^2 = 4x^2y^2 \end{pmatrix}$	$ \Rightarrow \gamma^2 = 4(u-1)(2u-1) $
	to exponence

proof

# Question 29

I.C.P.

The complex function w = f(z) is defined by

I.C.B.

 $w = \frac{1}{z-1}, z \in \mathbb{C}, z \neq 1.$ 

The half line with equation  $\arg z = \frac{\pi}{4}$  is transformed by this function.

a) Find a Cartesian equation of the locus of the **image** of the half line.

b) Sketch the image of the locus in an Argand diagram.



20

I.C.B.



:0n

# Question 30

N.G.B. May

I.C.p

COM

The complex function w = f(z) is defined by

I.Y.G.B.

I.V.C.

 $w = \frac{3z + \mathbf{i}}{1 - z}, \ z \in \mathbb{C}, \ z \neq 1.$ 

The half line with equation  $\arg z = \frac{3\pi}{4}$  is transformed by this function.

a) Find a Cartesian equation of the locus of the **image** of the half line.

b) Sketch the image of the locus in an Argand diagram.



I.C.B.

 $(u+1)^{2} + (v+1)^{2} = 5, v > \frac{1}{3}u+1$ 

18.COM

# COMPLEX SEA Halashalls Complex Sea RUSSINGIN I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MAGSSMAINS.COM I.Y.C.B. MARIASM

# Question 1

I.C.S.

. G.B.

The following convergent series C and S are given by

$$C = 1 + \frac{1}{2}\cos\theta + \frac{1}{4}\cos 2\theta + \frac{1}{8}\cos 3\theta...$$
  
$$S = \frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta...$$

a) Show clearly that

$$C + \mathrm{i}S = \frac{2}{2 - \mathrm{e}^{\mathrm{i}\theta}} \, .$$

**b**) Hence show further that

$$C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta},$$

and find a similar expression for S.



C.15.

2017

madasn.

ŀ.G.B.

(a)  $C+i\beta = i + \frac{1}{2}(\omega\beta + i\omega\beta) + \frac{1}{4}(\omega\beta + i\omega\beta) + \frac{1}{6}(\omega\beta + i\omega\beta) + \frac{1}{6}(\omega\beta + i\omega\beta) + ...$  $= i + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{i\beta}M + \frac{1}{6}e^{i\beta}M + ...$   $= \underbrace{( + \frac{\pi^2}{2}e^{i\theta} + \frac{(\pi^2\beta)^2}{4} + (\frac{\pi^2\beta}{2}e^{i\theta})^2 + ..., (F. with a = 1)}{(F. With a = 1)}$   $= \frac{1}{(1 - \frac{\pi^2}{2}e^{i\theta})} = \frac{2}{2 - e^{i\theta}} + \underbrace{\frac{2}{2}e^{i\theta}}{4 - 2e^{i\theta}(2 - e^{i\theta})} = \frac{2(2 - (\omega\beta - i\omega\beta))}{4 - 2e^{i\theta}(2 - e^{i\theta})}$   $= \frac{2(2 - (\omega\beta - i\omega\beta))}{2 - 2(e^{i\theta})(2 - e^{i\theta})} = \frac{4 - 2\omega\beta + 2i\alpha\beta}{2 - 4\omega\beta + i}$   $= \frac{2(4 - 2\omega\beta) + i(2 - 2\omega\beta)}{2 - 4(\omega\beta - i\beta)} = \frac{4 - 2\omega\beta + 2i\alpha\beta}{2 - 4\omega\beta + i}$ 

 $C = \frac{4 - 2 \cos \theta}{S - 4 \cos \theta} \quad \theta \qquad S = \frac{2 \cos \theta}{S - 4 \cos \theta}$ 

### Question 2

The following finite sums, C and S, are given by

 $C = 1 + 5\cos 2\theta + 10\cos 4\theta + 10\cos 6\theta + 5\cos 8\theta + \cos 10\theta$  $S = 5\sin 2\theta + 10\sin 4\theta + 10\sin 6\theta + 5\sin 8\theta + \sin 10\theta$ 

By considering the binomial expansion of  $(1+A)^5$ , show clearly that

 $C = 32\cos^5\theta\cos 5\theta,$ 

and find a similar expression for S



C = 1 + 50020 + 1000240 + 1000260 + 50020 + 00100 \$= 55420 + 105440 + 10.5460 + 55480 + 54100

THSC+iS = 1 + 5e + 10e¹⁴⁰ + 10e⁴⁰ + 5e¹⁸⁰ + e¹⁰⁰

- which is THE BINOMIAL EXPAN
- $= (1 + e^{2i\theta})^5$
- $(1 + \cos 2\theta + i \sin 2\theta)^{5}$  $(1 + \cos^{2}\theta + i + 2i \sin^{2}\theta \cos^{2}\theta)^{5}$
- $= (21030 \pm 120000)^{5}$
- $\left[205\theta(\cos\theta + i\sin\theta)\right]^{5}$
- 326050 (1000 + ismo)
- 32 cos 8 (02 cos 1 + 1 sm 30)
- = (32605960550) + (326059650050)
- $C = 32 \cos \theta \cos 50$
- $\$ = 32\cos^2 \Theta \sin 5\Theta$

# Question 3

The following convergent series S is given below

 $S = \sin\theta - \frac{1}{3}\sin 2\theta + \frac{1}{9}\sin 3\theta - \frac{1}{27}\sin 4\theta \dots$ 

By considering the sum to infinity of a suitable geometric series involving the complex exponential function, show that



### Question 4

I.C.B.

ŀ.C.p.

The sum C is given below

 $C = 1 - \binom{n}{1} \cos \theta \cos \theta + \binom{n}{2} \cos^2 \theta \cos 2\theta - \binom{n}{1} \cos^3 \theta \cos 3\theta + \dots + (-1)^n \cos^n \theta \cos n\theta$ 

Given that  $n \in \mathbb{N}$  determine the 4 possible expressions for *C*.

Give the answers in exact simplified form.

$$n = 4k, k \in \mathbb{N} : C = \cos n\theta \sin^n \theta$$
, 
$$n = 4k + 1, k \in \mathbb{N} : C = \sin n\theta \sin^n \theta$$
$$n = 4k + 2, k \in \mathbb{N} : C = -\cos n\theta \sin^n \theta$$
, 
$$n = 4k + 3, k \in \mathbb{N} : C = -\sin n\theta \sin^n \theta$$

$\int \Theta_{n,2,0} \Theta_{n,2,0} \left[ \frac{1}{2} \right] \cos \Theta_{n,2} \left[ \frac{1}{2} \right] = O(2 \cos \Theta_{n,2} \cos \Theta_{n,2$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$C + i \not\leq = 1 - \binom{M}{2} \text{add} \left[ \text{add} + i \text{and} \right] + \binom{M}{2} \text{add} \left[ \text{add} + i \text{and} \right] - \binom{M}{2} \text{add} \left[ \text{add} + i \text{and} \right] + \dots + (-1)^{N} \text{add} \left[ \text{add} + i \text{and} \right]$
$= (1 - \binom{n}{2})e^{i\theta_{0}} + \binom{n}{2}\log + \binom{n}{2}\log - \binom{n}{3}\log \log + \binom{n}{2}\log - \binom{n}{3}\log \log \binom{n}{2}$
. Motat is a binamine exercision $(1 - ax)^{n/n}$
${}^{\mu}(\Theta_{M2}\Theta_{201}^{\dagger} - \Theta_{201}^{\dagger} - 1) = {}^{\mu}(\Theta_{M21}^{\dagger} + \Theta_{201}) \Theta_{201} - 1) = {}^{\sigma}(\Theta_{201}^{\dagger} \Theta_{2-1} - 1) =$
${}^{\mu}\left[\partial_{\mu}\alpha i+\partial_{\alpha}\alpha\right]\partial_{\mu}{}^{\mu}a^{\nu}(i)={}^{\mu}\left[\partial_{\alpha}\alpha i-\partial_{\mu}\alpha\right]\partial_{\mu}{}^{\mu}a^{\nu}={}^{\mu}\left[\partial_{\mu}\alpha\partial_{\alpha}\alpha i-\partial_{\mu}\alpha\right]=$
$= \left(-\frac{1}{2}\right) \theta_{i}^{\prime} w_{i}^{\prime} \Theta_{i}^{\prime} = \left(-\frac{1}{2}\right) \theta_{i}^{\prime} w_{i}^{\prime} \Theta_{i}^{\prime} = \left(-\frac{1}{2}\right) \theta_{i}^{\prime} w_{i}^{\prime} \Theta_{i}^{\prime} \Theta_{i}^{\prime} = \left(-\frac{1}{2}\right) \theta_{i}^{\prime} w_{i}^{\prime} \Theta_{i}^{\prime} = \left(-\frac{1}{2}\right) \theta_{i}^{\prime} \Theta_{i}^{\prime} = \left(-\frac{1}{2}\right) \theta_{i}^{\prime}$
$(\texttt{@IF } n=\texttt{IK}, \texttt{KEN} (-i)^{\texttt{KEI}} \implies \texttt{C+i} \texttt{S} = \texttt{cosn} \texttt{D} \texttt{sn}^{\texttt{M}} \texttt{D} + \texttt{i} \texttt{sun} \texttt{D} \texttt{an}^{\texttt{M}} \texttt{D} \implies \texttt{C} = \texttt{cosn} \texttt{D} \texttt{an}^{\texttt{M}} \texttt{D}$
● IF N=4K+1, KEN (1)** - i => C+is = SMM8SM18 - icosh8sm18 => C= SIM48SM18
C = - 4K+7, K= Ni (-1) (+1) (+1) = (+1) = - (05H) SHID = 15H40 SHID = C = - (05H) SHID

13.SM

I.C.B.

mana.

20

### **Question 5**

K.C.

The following convergent series S is given below

 $S = \frac{\sin\theta}{1!} - \frac{\sin 2\theta}{2!} + \frac{\sin 3\theta}{3!} - \frac{\sin 4\theta}{4!} + \dots$ 

By considering the sum to infinity of a suitable series involving the complex exponential function, show that

 $S = \mathrm{e}^{-\cos\theta}\sin\left(\sin\theta\right).$ 

proof

### $\frac{\underline{sm\theta}}{\underline{l!}} = \frac{\underline{sm2\theta}}{\underline{2!}} + \frac{\underline{sm3\theta}}{\underline{3!}} - \frac{\underline{sm4\theta}}{\underline{4!}} + \cdots$

 $\begin{array}{l} & (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) = (-1) =$ 

 $1 - \tilde{e}^2 = -1 + \tilde{e} - \frac{1}{21} + \frac{1}{31} - \cdots$  $1 - \tilde{e}^2 = \frac{2}{11} - \frac{2^2}{21} + \frac{2^3}{31} - \frac{2^4}{4}$ 

 $= 1 - e^{-\frac{i}{2}(2\theta)} = 1 - e^{-\frac{i}{2}(2\theta$ 

* AS WE REQUER THE IMAGINARY PART, THE ANDLAD U CONS