COMPLEX NUMBERS PRACTICE (part 2)

Created by T. Madas

Question 1

$$
z^{4}=-16, z \in \mathbb{C}
$$

a) Solve the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.
b) Plot the roots of the equation as points in an Argand diagram.

$$
z=\sqrt{2}(\pm 1 \pm \mathrm{i})
$$

Question 2

$$
z^{5}=\mathrm{i}, \quad z \in \mathbb{C}
$$

a) Solve the equation, giving the roots in the form $r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Plot the roots of the equation as points in an Argand diagram.

$$
z=\mathrm{e}^{\mathrm{i} \frac{\pi}{10}}, \quad z=\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}, \quad z=\mathrm{e}^{\mathrm{i} \frac{9 \pi}{10}}, \quad z=\mathrm{e}^{-\mathrm{i} \frac{3 \pi}{10}}, \quad z=\mathrm{e}^{-\mathrm{i} \frac{7 \pi}{10}}
$$

Question 3

$$
z=4+4 \mathrm{i}
$$

a) Find the fifth roots of z. Give the answers in the form $r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Plot the roots as points in an Argand diagram.

Question 4
a) Find the cube roots of z.

Give the answers in polar form $r(\cos \theta+\mathrm{i} \sin \theta), r>0,-\pi<\theta \leq \pi$.
b) Plot the roots as points in an Argand diagram.

$$
z=2\left(\cos \frac{\pi}{9}-i \sin \frac{\pi}{9}\right), z=2\left(\cos \frac{5 \pi}{9}+\mathrm{i} \sin \frac{5 \pi}{9}\right), z=2\left(\cos \frac{7 \pi}{9}-\mathrm{i} \sin \frac{7 \pi}{9}\right)
$$

Question 5
The following complex number relationships are given

$$
w=-2+2 \sqrt{3} \mathrm{i}, \quad z^{4}=w
$$

a) Express w in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
b) Find the possible values of z, giving the answers in the form $x+\mathrm{i} y$, where x and y are real numbers.

$$
w=2\left[\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right],
$$

$$
z=\frac{1}{2}(\sqrt{6}+\mathrm{i} \sqrt{2}), z=\frac{1}{2}(-\sqrt{2}+\mathrm{i} \sqrt{6}), z=\frac{1}{2}(\sqrt{2}-\mathrm{i} \sqrt{6}), z=\frac{1}{2}(-\sqrt{6}-\mathrm{i} \sqrt{2})
$$

Question 6
Find the cube roots of the imaginary unit i , giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z_{1}=\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}, \quad z_{2}=-\frac{\sqrt{3}}{2}+\frac{1}{2} \mathrm{i}, \quad z_{3}=-\mathrm{i}
$$

Question 7
Find the cube roots of the complex number -8 i , giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z_{1}=\sqrt{3}-\mathrm{i}, \quad z_{2}=-\sqrt{3}-\mathrm{i}, \quad z_{3}=2 \mathrm{i}
$$

Question 8

$$
z^{4}=-8-8 \sqrt{3} \mathrm{i}, z \in \mathbb{C}
$$

Solve the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

$$
z=\sqrt{3}-\mathrm{i}, z=1+\sqrt{3} \mathrm{i}, z=-\sqrt{3}+\mathrm{i}, z=-1-\sqrt{3} \mathrm{i}
$$

Question 9

$$
z^{2}=(1+\mathrm{i} \sqrt{3})^{3}, z \in \mathbb{C}
$$

Solve the above equation, giving the answers in the form $a+b \mathrm{i}$, where a and b are real numbers.

Question 10
a) Solve the above equation.

Give the answers in exponential form $z=r \mathrm{e}^{\mathrm{i} \theta}, r>0,-\pi<\theta \leq \pi$.
b) Show that these roots satisfy the equation

$$
w^{9}+2^{18}=0
$$

$$
z=4 \mathrm{e}^{\mathrm{i} \frac{\pi}{9}}, 4 \mathrm{e}^{\mathrm{i} \frac{7 \pi}{9}}, 4 \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{9}}
$$

Question 11

$$
z^{7}-1=0, z \in \mathbb{C}
$$

One of the roots of the above equation is denoted by ω, where $0<\arg \omega<\frac{\pi}{3}$.
a) Find ω in the form $\omega=r \mathrm{e}^{\mathrm{i} \theta}, \quad r>0,0<\theta \leq \frac{\pi}{3}$.
b) Show clearly that

$$
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0
$$

c) Show further that

$$
\omega^{2}+\omega^{5}=2 \cos \left(\frac{4 \pi}{7}\right)
$$

d) Hence, using the results from the previous parts deduce that

Created by T. Madas

Created by T. Madas

$$
z^{3}=(1+i \sqrt{3})^{8}(1-i)^{5}, z \in \mathbb{C}
$$

Find the three roots of the above equation, giving the answers in the form $k \sqrt{2} \mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leq \pi, k \in \mathbb{Z}$.

Created by T. Madas

TRIGONOMETRIC
IDENTITIES

Created by T. Madas

Question 1
If $z=\cos \theta+\mathrm{i} \sin \theta$, show clearly that \ldots
a) $\ldots z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta$.
b) $\ldots 16 \cos ^{5} \theta \equiv \cos 5 \theta+5 \cos 3 \theta+10 \cos \theta$.

Question 2
It is given that

$$
\sin 5 \theta \equiv 16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

It is further given that

$$
\sin 5 \theta=5 \sin 3 \theta \text { for } 0 \leq \theta<\pi
$$

giving the solutions correct to 3 decimal places.

$$
\theta=0,1.095^{\mathrm{c}}, 2.046^{\mathrm{c}}
$$

b) Solve the equation

Question 3
The complex number z is given by

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta
$$

b) Hence show further that

$$
\cos ^{4} \theta \equiv \frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}
$$

c) Solve the equation

$$
2 \cos 4 \theta+8 \cos 2 \theta+5=0,0 \leq \theta<2 \pi
$$

$$
\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

\square

Question 4
The complex number z is given by

$$
z=\mathrm{e}^{\mathrm{i} \theta},-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
z^{n}+\frac{1}{z^{n}} \equiv 2 \cos n \theta
$$

b) Hence show further that

$$
16 \cos ^{5} \theta \equiv \cos 5 \theta+5 \cos 3 \theta+10 \cos \theta
$$

c) Use the results of part (a) and (b) to solve the equation

$$
\cos 5 \theta+5 \cos 3 \theta+6 \cos \theta=0,0 \leq \theta<\pi
$$

$$
\theta=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}
$$

Question 5
De Moivre's theorem asserts that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta, \theta \in \mathbb{R}, n \in \mathbb{Q}
$$

a) Use the theorem to prove the validity of the following trigonometric identity.

$$
\cos 6 \theta \equiv 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1
$$

b) Use the result of part (a) to find, in exact form, the largest positive root of the equation

$$
64 x^{6}-96 x^{4}+36 x^{2}-1=0
$$

$$
x=\cos \left(\frac{\pi}{9}\right)
$$

. $\theta+\sin \theta \equiv C+i s$
$(\cos \theta+i \sin \theta)^{\sigma}=(c+i \phi)^{6}$
$\cos 6 \theta+i \sin 6 \theta=c^{6}+6 i C^{5}+-1 s^{4} \$^{42}-20 i c^{2} s^{3}+15 c^{2} s^{4}+6 i c s^{5}-f^{4}$ Gquaft Preat Prets

$\Rightarrow \cos 9 \theta=c^{6}-15^{c}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-(1-c)^{3}$
$\left.\Rightarrow \cos 69=c^{c}-1 c^{6}+1 c^{6}+1 c^{2} c-2\right)^{2}+1-3 c^{2}$
$\Rightarrow \cos 6 \theta=c^{c}-15 c^{6}+15 c^{6}+15 c^{2}\left(1-2 c^{2}+c^{4}\right)-\left(1-3 c^{2}+3 c^{4}-c^{6}\right)$
$\Rightarrow \cos \theta \theta=c^{6}-15 c^{4}+15 c^{6}+15 c^{2}-30^{4}+15 c^{6}$
$\Rightarrow \cos \theta \theta=32 c^{6}-48 c^{2}+18 c^{2}-1$
$\therefore \cos \theta \theta=32 \cos \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$ As Requicss
(b) $64 x^{6}-96 x^{4}+36 x^{2}-1=0$
$\Rightarrow 32 x^{6}-48 x^{4}+18 x^{2}-\frac{1}{2}=0$
$\Rightarrow 32 x^{6}-48 x^{2}+18 x^{2}-1=-\frac{1}{2}$
LET $x=\cos \theta$
$\Rightarrow 32 \cos ^{2} \theta-48 \cos ^{2} \theta+18 \cos ^{2} \theta-1-\frac{1}{2}$
$\Rightarrow \cos 0 \theta=-\frac{1}{2}$
$0 \arccos \left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
$\left(\begin{array}{l}6 \theta=\frac{2 \pi}{3} \pm 2 n \pi \\ 6 \theta=\frac{\pi}{3} \pm 2 \pi\end{array} \quad 4=9,2,3,3,\right.$.
$\left\{\begin{array}{l}\theta=\frac{\bar{y}}{}+2 n \pi \\ \theta=\frac{2 \pi}{9} \pm 2 n \pi\end{array}\right.$
$\therefore x=\cos \frac{\pi}{9}$ is THe unaist Parnut Root of Tiff puation

Question 6
Euler's identity states

$$
\mathrm{e}^{\mathrm{i} \theta} \equiv \cos \theta+\mathrm{i} \sin \theta, \theta \in \mathbb{R}
$$

a) Use the identity to show that

$$
\mathrm{e}^{\mathrm{i} n \theta}+\mathrm{e}^{-\mathrm{i} n \theta} \equiv 2 \cos n \theta
$$

b) Hence show further that

$$
32 \cos ^{6} \theta \equiv \cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10
$$

c) Use the fact that $\cos \left(\frac{\pi}{2}-\theta\right) \equiv \sin \theta$ to find a similar expression for $32 \sin ^{6} \theta$.
d) Determine the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \sin ^{6} \theta+\cos ^{6} \theta d \theta
$$

$$
32 \sin ^{6} \theta=-\cos 6 \theta+6 \cos 4 \theta-15 \cos 2 \theta+10
$$

\square
(b) \quad IF $n=1$
$\Rightarrow 2 \cos \theta=e^{1 \theta}+e^{-1 \theta}$
$\Rightarrow(2 \cos \theta)^{6}=\left(e^{i \theta}+e^{-i \theta}\right)^{6}$
$\Rightarrow 64 \cos \theta=e^{i 6 \theta}+6 e^{i 4 \theta}+15 e^{i 2 \theta}+20+15 e^{-i 2 \theta}+6 e^{-i 4 \theta}+e^{-i 6 \theta}$
$\Rightarrow 64 \cos ^{6} \theta=\left(e^{i 6 \theta}+e^{-i 6 \theta}\right)+6\left(e^{i 4 \theta}+e^{-i 4 \theta}\right)+15\left(e^{i 2 \theta}+e^{i 2 \theta}\right)+20$
$\Rightarrow 64 \cos \theta=2 \cos 6 \theta+6(2440)+15(2 \cos \theta)+20$
$\Rightarrow 64 \cos \theta=2 \cos 6 \theta+6(2 \cos 4 \theta)+15(2 \cos 2 \theta)+20$
$\Rightarrow 32 \cos ^{5} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$
(c) $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
$\cos \left(c\left(\frac{\pi}{2}-\theta\right)\right)=\cos (3 \pi-6 \theta)=\cos 3 \pi \cos 6 \theta+\sin 34+8 \pi 6 \theta=-\cos 6 \theta$ $\cos \left(4\left(\frac{\pi}{2}-\theta\right)=\cos (2 \pi-4 \theta)=\cos 2 \pi \cos 4 \theta+\sin 2 \pi \sin 4 \theta=\cos 4 \theta\right.$
$\cos \left(2\left(\frac{\pi}{2}-\theta\right)\right)=\cos (T-2 \theta)=\cos \pi \cos 2 \theta+\sin \pi+\sin \theta$
$32 \sin ^{6} \theta=-6 \cos \theta \theta+6 \cos \theta-15 \cos \theta+10^{2}$
(d)

Question 7
De Moivre's theorem asserts that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta, \theta \in \mathbb{R}, n \in \mathbb{Q}
$$

a) Use the theorem to prove validity of the following trigonometric identity

$$
\sin 5 \theta=\sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)
$$

b) Hence, or otherwise, solve the equation

$$
\sin 5 \theta=10 \cos \theta \sin 2 \theta-11 \sin \theta, 0<\theta<\pi
$$

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}
$$

\square
$(\cos \theta+i \sin \theta)^{2}=(c+i s)^{5}$
$\cos S \theta+i \sin B \theta=C^{4}+5$
Equantr impanafy enets
$\Rightarrow \sin 5 \theta=5 c^{4} \$-10 c^{2} \$^{3}+\5
$\Rightarrow \sin 5 \theta=\$\left[5 c^{4}-10 c^{2} \$^{2}+\$^{4}\right]$
$\Rightarrow \sin 5 \theta=\$\left[5 c^{4}-10^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}\right]$
$\Rightarrow \sin 5 \theta=\$ 5 c^{4}-10^{2}+10 c^{4}+1-2 c^{2}+c^{4}$
$\Rightarrow \sin 50=\$\left[5 c^{4}-12 c^{2}+1\right]$
E. $\sin ^{5 \theta}=\sin \theta\left[16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right]$ As resurens
(b) $\sin 5 \theta=10 \cos \theta \sin 2 \theta-11 \sin \theta$
$\left.\sin \theta-6 \cos ^{2} \theta-12 \cos ^{2} \theta+1\right]=10 \cos \theta(2 \sin \theta \cos \theta)-11 \sin \theta$
As $0<\theta<\pi \quad \sin \theta \neq 0$ ffince $\operatorname{sevinot} \pi$
$16 \cos ^{4} \theta-12 \cos ^{2} \theta+1=20 \cos ^{2} \theta-11$
$16 \cos ^{2} \theta-2 \cos ^{2} \theta+12=0$
$4 \cos ^{4} \theta-8 \cos ^{2} \theta+3=0$
$\left(2 \cos ^{2} \theta-1\right)\left(2 \cos ^{2} \theta-3\right)=0$ $\cos ^{2} \theta=<\frac{1 / 2}{\frac{3}{2}}$
$-\frac{1}{\sqrt{2}} \cdots \cdot \theta=\frac{3 \pi}{4}$ onv

Question 8
It is given that

$$
\sin 5 \theta \equiv \sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)
$$

a) Use de Moivre's theorem to prove the validity of the above trigonometric identity.

Consider the general solution of the trigonometric equation

$$
\sin 5 \theta=0
$$

b) Find exact simplified expressions for

$$
\cos ^{2}\left(\frac{\pi}{5}\right) \text { and } \cos ^{2}\left(\frac{2 \pi}{5}\right)
$$

fully justifying each step in the workings.

$$
\cos ^{2}\left(\frac{\pi}{5}\right)=\frac{3+\sqrt{5}}{8}, \cos ^{2}\left(\frac{2 \pi}{5}\right)=\frac{3-\sqrt{5}}{8}
$$

\square
(8) Bamer

$\Rightarrow \cos s \theta+i \sin S \theta=\left(c^{5}-10 c c^{3} \$^{12}+5 c^{14}\right)+i\left(s^{4} c^{4}-10 c^{2} s^{3}+c^{3} 5\right)$
$\therefore \sin 5 \theta=5 C^{4} S-10 c^{2} S^{3}+S^{15}$
$\Rightarrow \sin 5 \theta=\$\left[5 c^{4}-10 c^{2} S^{2}+S^{2}\right]$
$\Rightarrow \sin 5 \theta=\$\left[5 c^{4}-10 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}\right]$
$\Rightarrow \sin 5 \theta=\$\left[16 c^{4}-12 c^{2}+1\right]$
$\Rightarrow \sin 5 \theta=\sin \theta\left[6 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right]$ At reporkio
$\begin{array}{ll}\arcsin 0=0 & \sin \theta\left(16 \cos ^{2} \theta-12 \cos ^{2} \theta+1\right)=0 \\ 9 \theta=0 \pm 2 \pi & \quad \sin \theta=0 \Rightarrow \theta=0, \pi, 2 \pi, 3 \pi, \ldots\end{array}$

Created by T. Madas

Question 9
By considering the binomial expansion of $(\cos \theta+i \sin \theta)^{4}$ show that
Θ
\circ

$$
\tan 4 \theta \equiv \frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

proof

LET $\cos \theta+i \sin \theta=C+i \leq\}$
$(\cos \theta+i \sin \theta)^{4}=(c+i s)^{4}$
$\cos 4 \theta+i \sin 4 \theta=c^{4}+4 i c^{3} \delta^{2}-6 c^{2 \delta^{2}}-4 i c \delta^{\prime 3}+\delta^{2}$
$\cos 4 \theta+i \sin 4 \theta=\left(c^{4}-6 \cos ^{2} s^{2}+s^{4}\right)+i\left(4 c^{3} \delta^{2}-4 s^{3}\right)$
$\therefore \tan 4 \theta=\frac{\sin 4 \theta}{\cos 4 \theta}=4 \cos ^{2} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$
DWIDE TPD BOTTOM BY coste
$\tan 4 \theta=\frac{\frac{4 \cos ^{2} \sin \theta}{\cos 4 \theta}-\frac{4 \cos \theta \sin ^{3} \theta}{\cos 4 \theta}}{\cos \theta}$
$\tan 4 \theta=\frac{4 \tan \theta-4 \tan \theta}{-\quad / .}$
$\frac{4 \tan \theta-4 \tan \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$

Question 10
By using de Moivre's theorem followed by a suitable trigonometric identity, show clearly that ...
a) $\ldots \cos 3 \theta \equiv 4 \cos ^{3} \theta-3 \cos \theta$.
b) $\ldots \cos 6 \theta \equiv\left(2 \cos ^{2} \theta-1\right)\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+1\right)$

Consider the solutions of the equation.

$$
\cos 6 \theta=0,0 \leq \theta \leq \pi .
$$

c) By fully justifying each step in the workings, find the exact value of

Created by T. Madas

Created by T. Madas

Question 1
By finding a suitable Cartesian locus in the complex z plane, shade the region R that satisfies the inequality

Question 2

$$
|z-1-\mathrm{i}|=4, z \in \mathbb{C} .
$$

a) Sketch the locus of the points that satisfy the above equation in a standard Argand diagram.
b) Find the minimum and maximum values of $|z|$ for points that lie on this locus.

$$
z_{\min }=4-\sqrt{2}, z_{\min }=4+\sqrt{2}
$$

 THE DISTINEE OF A POIN ROU THE ORGIN

- distince of the ceraretrom 0 is $\sqrt{2}$ - $\mid z_{\text {Max }}=R+\operatorname{ANS}+\sqrt{2}=4+\sqrt{2}$ (Point $\left.P\right)$ - $|z|_{\text {MiN }}=\operatorname{RasNO}-\sqrt{2}=4-\sqrt{2} /($ (Pant $\varphi)$

Question 3
The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z-1|=2|z+2|
$$

show that the locus of P is given by

Question 4
The complex number $z=x+\mathrm{i} y$ represents the point P in the complex plane.

Given that

$$
\bar{z}=\frac{1}{z}, z \neq 0
$$

determine a Cartesian equation for the locus of P.

$$
x^{2}+y^{2}=1
$$

Created by T. Madas

Question 5
Sketch, on the same Argand diagram, the locus of the points satisfying each of the following equations.
a) $|z-3+\mathrm{i}|=3$.
b) $|z|=|z-2 \mathrm{i}|$.

Give in each case a Cartesian equation for the locus.
c) Shade in the sketch the region that is satisfied by both these inequalities

$$
\begin{aligned}
|z-3+\mathrm{i}| & \leq 3 \\
|z| & \geq|z-2 \mathrm{i}|
\end{aligned}
$$

$$
(x-3)^{2}+(y+1)^{2}=9, y=1
$$

\square

Question 6
a) Sketch on the same Argand diagram the locus of the points satisfying each of the following equations.
i. $|z-\mathrm{i}|=|z-2|$.
ii. $\quad \arg (z-2)=\frac{\pi}{2}$.
b) Shade in the sketch the region that is satisfied by both these inequalities

Question 7
The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z-1|=\sqrt{2}|z-\mathrm{i}|
$$

show that the locus of P is a circle, stating its centre and radius.

$$
(x+1)^{2}+(y-2)^{2}=4,(-1,2), r=2
$$

Question 8
\square

$$
|z-2 \mathrm{i}|=1, z \in \mathbb{C}
$$

a) In the Argand diagram, sketch the locus of the points that satisfy the above equation.
b) Find the minimum value and the maximum value of $|z|$, and the minimum value and the maximum of $\arg z$, for points that lie on this locus.

Question 9
The complex number z represents the point $P(x, y)$ in the Argand diagram.

Given that

$$
|z+1|=2|z-2 \mathrm{i}|
$$

show that the locus of P is a circle and state its radius and the coordinates of its centre.

Created by T. Madas

Question 10
The complex number $z=x+\mathrm{i} y$ satisfies the relationship

$$
2 \leq|z-2-3 i|<3
$$

a) Shade accurately in an Argand diagram the region represented by the above relationship.
b) Determine algebraically whether the point that represents the number $4+\mathrm{i}$ lies inside or outside this region.

Question 11
Two sets of loci in the Argand diagram are given by the following equations

$$
|z|=|z+2| \quad \text { and } \quad|z|=2, \quad z \in \mathbb{C} .
$$

a) Sketch both these loci in the same Argand diagram.

The points P and Q in the Argand diagram satisfy both loci equations.
b) Write the complex numbers represented by P and Q, in the form $a+\mathrm{i} b$, where a and b are real numbers.
c) Find a quadratic equation with real coefficients, whose solutions are the complex numbers represented by the points P and Q.

Question 12
a) Sketch in the same Argand diagram the locus of the points satisfying each of the following equations
i. $|z-3-2 \mathrm{i}|=2$.
ii. $|z-3-2 \mathrm{i}|=|z+1+2 \mathrm{i}|$.
b) Show by a geometric calculation that no points lie on both loci.

Question 13
The point A represents the complex number on the z plane such that

$$
|z-6 i|=2|z-3|
$$

and the point B represents the complex number on the z plane such that

$$
\arg (z-6)=-\frac{3 \pi}{4}
$$

a) Show that the locus of A as z varies is a circle, stating its radius and the coordinates of its centre.
b) Sketch, on the same z plane, the locus of A and B as z varies.
c) Find the complex number z, so that the point A coincides with the point B.

$$
C(4,-2), r=\sqrt{20}, z=(4-\sqrt{10})+\mathrm{i}(-2-\sqrt{10})
$$

\square

Question 14

$$
\begin{gathered}
|z-2+i|=5 \\
\arg (z-2)=-\frac{3 \pi}{4}
\end{gathered}
$$

a) Sketch each of the above complex loci in the same Argand diagram.
b) Determine, in the form $x+i y$, the complex number z_{0} represented by the intersection of the two loci of part (a).

Question 15
The locus of the point z in the Argand diagram, satisfy the equation

$$
|z-2+i|=\sqrt{3}
$$

a) Sketch the locus represented by the above equation.

The half line L with equation

$$
y=m x-1, \quad x \geq 0, \quad m>0,
$$

touches the locus described in part (a) at the point P.
b) Find the value of m.
c) Write the equation of L, in the form

$$
\arg \left(z-z_{0}\right)=\theta, \quad z_{0} \in \mathbb{C},-\pi<\theta \leq \pi
$$

d) Find the complex number w, represented by the point P.

Question 16
The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=1+\mathrm{i} \sqrt{3} \quad \text { and } \quad z_{2}=\mathrm{i} z_{1} .
$$

a) Label accurately the points representing z_{1} and z_{2}, in an Argand diagram.
b) On the same Argand diagram, sketch the locus of the points z satisfying ...
i. $\quad \ldots\left|z-z_{1}\right|=\left|z-z_{2}\right|$.
ii. $\quad \ldots \arg \left(z-z_{1}\right)=\arg z_{2}$.
c) Determine, in the form $x+\mathrm{i} y$, the complex number z_{3} represented by the intersection of the two loci of part (b).

$$
z_{3}=(1-\sqrt{3})+\mathrm{i}(1+\sqrt{3})
$$

Created by T. Madas

Created by T. Madas

Question 17

The complex number z lies in the region R of an Argand diagram, defined by the inequalities

$$
\frac{\pi}{3} \leq \arg (z-4) \leq \pi \quad \text { and } \quad 0 \leq \arg (z-12) \leq \frac{5 \pi}{6}
$$

a) Sketch the region R, indicating clearly all the relevant details.

The complex number w lies in R, so that $|w|$ is minimum.
b) Find $|w|$, further giving w in the form $u+\mathrm{i} v$, where u and v are real numbers.

$$
|w|=3, \quad w=3+3 \sqrt{3} \mathrm{i}
$$

Created by T. Madas

Question 18
The point P represents the number $z=x+\mathrm{i} y$ in an Argand diagram and further satisfies the equation

$$
\arg \left(\frac{1-\mathrm{i} z}{1-z}\right)=\frac{\pi}{4}, z \neq-\mathrm{i}
$$

Use an algebraic method to find an equation of the locus of P and sketch this locus accurately in an Argand diagram.

$$
x^{2}+y^{2}=1, \text { such that } y>x-1
$$

Created by T. Madas

Question 19
The complex number $x+\mathrm{i} y$ in the z plane of an Argand diagram satisfies the inequality

$$
x^{2}+y^{2}+x>0 .
$$

a) Sketch the region represented by this inequality.

A locus in the z plane of an Argand diagram is given by the equation

$$
\arg \left(\frac{z+1}{z}\right)=\frac{\pi}{4}
$$

b) Sketch the locus represented by this equation.

Question 20
The complex number z satisfies the relationship

$$
\arg (z-2)-\arg (z+2)=\frac{\pi}{4}
$$

Show that the locus of z is a circular arc, stating ...

- ... the coordinates of its endpoints.
- ... the coordinates of its centre.
- ... the length of its radius.

$$
(-2,0),(2,0),(0,2), r=2 \sqrt{2}
$$

$\arg (z-2)-\operatorname{ang}(z+2)=$
(2) $\begin{aligned} & \theta-\phi=\frac{\pi}{4} \\ & \left(\theta=\frac{\pi}{4}+\phi\right)\end{aligned}$

\qquad
\qquad

Created by T. Madas

Question 1
A transformation from the z plane to the w plane is defined by the complex function

$$
w=\frac{3-z}{z+1}, z \neq-1 .
$$

The locus of the points represented by the complex number $z=x+\mathrm{i} y$ is transformed to the circle with equation $|w|=1$ in the w plane.

Find, in Cartesian form, an equation of the locus of the points represented by the complex number z.

Question 3
The complex function

$$
w=\frac{1}{z-1}, z \neq 1, z \in \mathbb{C}, z \neq 1
$$

transforms the point represented by $z=x+i y$ in the z plane into the point represented by $w=u+\mathrm{i} v$ in the w plane.

Given that z satisfies the equation $|z|=1$, find a Cartesian locus for w.

Question 4
The complex function $w=f(z)$ is given by

$$
w=\frac{3-z}{z+1} \text { where } z \in \mathbb{C}, \quad z \neq-1
$$

A point P in the z plane gets mapped onto a point Q in the w plane.

The point Q traces the circle with equation $|w|=3$.

Show that the locus of P in the z plane is also a circle, stating its centre and its radius.

Question 5
The general point $P(x, y)$ which is represent by the complex number $z=x+\mathrm{iy}$ in the z plane, lies on the locus of

$$
\gg|z|=1
$$

A transformation from the z plane to the w plane is defined by

$$
w=\frac{z+3}{z+1}, z \neq-1,
$$

and maps the point $P(x, y)$ onto the point $Q(u, v)$.

Find, in Cartesian form, the equation of the locus of the point Q in the w plane.

Question 6
The point P represented by $z=x+\mathrm{i} y$ in the z plane is transformed into the point Q represented by $w=u+\mathrm{i} v$ in the w plane, by the complex transformation

$$
w=\frac{2 z}{z-1}, z \neq 1
$$

The point P traces a circle of radius 2 , centred at the origin O.
Find a Cartesian equation of the locus of the point Q.

Created by T. Madas

Question 7
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q, respectively, in separate Argand diagrams.

The two numbers are related by the equation

$$
w=\frac{1}{z+1}, z \neq-1 .
$$

If P is moving along the circle with equation

$$
(x+1)^{2}+y^{2}=4,
$$

find in Cartesian form an equation of the locus of the point Q.

$$
u^{2}+v^{2}=\frac{1}{4}
$$

Created by T. Madas

Question 8
A transformation from the z plane to the w plane is defined by the equation

$$
w=\frac{z+2 \mathrm{i}}{z-2}, z \neq 2 .
$$

Find in the w plane, in Cartesian form, the equation of the image of the circle with equation $|z|=1, z \in \mathbb{C}$.

Question 9
A transformation from the z plane to the w plane is given by the equation

$$
w=\frac{1+2 z}{3-z}, z \neq 3
$$

Show that the in the w plane, the image of the circle with equation $|z|=1, z \in \mathbb{C}$, is another circle, stating its centre and its radius .

$$
\left(u-\frac{5}{8}\right)^{2}+y^{2}=\frac{49}{64}, \quad \operatorname{centre}\left(\frac{5}{8}, 0\right), \quad r=\frac{7}{8}
$$

Created by T. Madas

Question 10
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q, respectively, in separate Argand diagrams.

The two numbers are related by the equation

$$
w=\frac{1}{z}, z \neq 0 .
$$

If P is moving along the circle with equation

$$
x^{2}+y^{2}=2
$$

find in Cartesian form an equation for the locus of the point Q.

Created by T. Madas

Question 11
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation $y=x$.

The complex numbers z and w are related by

$$
w=z-z^{2} .
$$

a) Find, in Cartesian form, the equation of the locus of Q in the w plane.
b) Sketch the locus traced by Q.

$$
v=u-2 u^{2} \text { or } y=x-2 x^{2}
$$

Created by T. Madas

Question 12
The complex numbers $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$ are represented by the points P and Q on separate Argand diagrams.

In the z plane, the point P is tracing the line with equation $y=2 x$.

Given that he complex numbers z and w are related by

$$
w=z^{2}+1
$$

find, in Cartesian form, the locus of Q in the w plane.

$$
4 u+3 v=4 \text { or } 4 x+3 y=4
$$

Question 13
A transformation of the z plane to the w plane is given by

$$
w=\frac{1+3 z}{1-z}, z \in \mathbb{C}, z \neq 1,
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The set of points that lie on the y axis of the z plane, are mapped in the w plane onto a curve C.

Show that a Cartesian equation of C is

$$
(u+1)^{2}+v^{2}=4
$$

Question 14
The complex function $w=f(z)$ is given by

$$
w=\frac{1}{z}, z \in \mathbb{C}, z \neq 0 .
$$

This function maps a general point $P(x, y)$ in the z plane onto the point $Q(u, v)$ in the w plane.

Given that P lies on the line with Cartesian equation $y=1$, show that the locus of Q is given by

$$
\left|w+\frac{1}{2} \mathrm{i}\right|=\frac{1}{2}
$$

Created by T. Madas

Created by T. Madas

Question 15
A transformation of the z plane onto the w plane is given by

$$
w=\frac{a z+b}{z+c}, z \in \mathbb{C}, z \neq-c
$$

where a, b and c are real constants.

Under this transformation the point represented by the number $1+2 \mathrm{i}$ gets mapped to its complex conjugate and the origin remains invariant.
a) Find the value of a, the value of b and the value of c.
b) Find the number, other than the number represented by the origin, which remains invariant under this transformation.

Question 16
A transformation of the z plane to the w plane is given by

$$
w=\frac{1}{z-2}, z \in \mathbb{C}, z \neq 2
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The line with equation

$$
2 x+y=3
$$

is mapped in the w plane onto a curve C.
a) Show that C represents a circle and determine the coordinates of its centre and the size of its radius.

The points of a region R in the z plane are mapped onto the points which lie inside C in the w plane.
b) Sketch and shade R in a suitable labelled Argand diagram, fully justifying the choice of region.

Question 17
A transformation of the z plane to the w plane is given by

$$
w=z^{2}, z \in \mathbb{C}
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The line with equation $y=1$ is mapped in the w plane onto a curve C.

Sketch the graph of C, marking clearly the coordinates of all points where the graph of C meets the coordinate axes.

Created by T. Madas

Question 18
A transformation of points from the z plane onto points in the w plane is given by the complex relationship

$$
w=z^{2}, \quad z \in \mathbb{C}
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

Show that if the point P in the z plane lies on the line with equation

$$
y=x-1
$$

the locus of this point in the w plane satisfies the equation

$$
v=\frac{1}{2}\left(u^{2}-1\right)
$$

Question 19
A complex transformation from the z plane to the w plane is defined by

$$
w=\frac{z+\mathrm{i}}{3+\mathrm{i} z}, z \in \mathbb{C}, z \neq 3 \mathrm{i} .
$$

The point $P(x, y)$ is mapped by this transformation into the point $Q(u, v)$.

It is further given that Q lies on the real axis for all the possible positions of P.

Show that the P traces the curve with equation

Created by T. Madas

Question 20
A transformation of the z plane to the w plane is given by

$$
w=\frac{2 z+1}{z}, z \in \mathbb{C}, z \neq 0
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.
The circle C_{1} with centre at $\left(1,-\frac{1}{2}\right)$ and radius $\frac{\sqrt{5}}{2}$ in the z plane is mapped in the w plane onto another curve C_{2}.
a) Show that C_{2} is also a circle and determine the coordinates of its centre and the size of its radius.

The points inside C_{1} in the z plane are mapped onto points of a region R in the w plane.
b) Sketch and shade R in a suitably labelled Argand diagram, fully justifying the choice of the region.

Question 21
A transformation of the z plane to the w plane is given by

$$
w=z+\frac{1}{z}, z \in \mathbb{C}, z \neq 0,
$$

where $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$.

The locus of the points in the z plane that satisfy the equation $|z|=2$ are mapped in the w plane onto a curve C.

By considering the equation of the locus $|z|=2$ in exponential form, or otherwise, show that a Cartesian equation of C is

$$
36 u^{2}+100 v^{2}=225
$$

Question 22
A transformation from the z plane to the w plane is defined by the equation

$$
w=\mathrm{i} z-1, z \in \mathbb{C}
$$

Sketch in the w plane, in Cartesian form, the equation of the image of the half line with equation

Question 23
A transformation from the z plane to the w plane is defined by the equation

$$
f(z)=\frac{\mathrm{i} z}{z-\mathrm{i}}, z \in \mathbb{C}
$$

Find, in Cartesian form, the equation of the image of straight line with equation

$$
|z-\mathrm{i}|=|z-2|, z \in \mathbb{C}
$$

$$
\left(u+\frac{2}{5}\right)^{2}+\left(v-\frac{4}{5}\right)^{2}=\frac{1}{5}
$$

\square
$\underbrace{m(1-2)+2 i=1} \underbrace{0}$
 $|-2 u-2 i v+i u-v+2 i|=1$

Question 24
The complex function $w=f(z)$ is given by

$$
w=\frac{1}{1-z}, z \neq 1 .
$$

The point $P(x, y)$ in the z plane traces the line with Cartesian equation

$$
y+x=1 .
$$

Show that the locus of the image of P in the w plane traces the line with equation

Question 25
The complex function $w=f(z)$ satisfies

$$
w=\frac{1}{z}, z \in \mathbb{C}, z \neq 0 .
$$

This function maps the point $P(x, y)$ in the z plane onto the point $Q(u, v)$ in the w plane.

It is further given that P traces the curve with equation

$$
\left|z+\frac{1}{2} \mathrm{i}\right|=\frac{1}{2} .
$$

Find, in Cartesian form, the equation of the locus of Q.

Created by T. Madas

Question 26

$$
z=\cos \theta+\mathrm{i} \sin \theta,-\pi<\theta \leq \pi
$$

a) Show clearly that

$$
\frac{2}{1+z}=1-\mathrm{i} \tan \frac{\theta}{2}
$$

The complex function $w=f(z)$ is defined by

$$
w=\frac{2}{1+z}, z \in \mathbb{C}, z \neq-1 .
$$

The circular are $|z|=1$, for which $0 \leq \arg z<\frac{\pi}{2}$, is transformed by this function.
b) Sketch the image of this circular arc in a suitably labelled Argand diagram.

Question 27
The complex function with equation

$$
f(z)=\frac{1}{z^{2}}, z \in \mathbb{C}, z \neq 0
$$

maps the complex number $x+\mathrm{i} y$ from the z plane onto the complex number $u+\mathrm{i} v$ in the w plane.

The line with equation

$$
y=m x, x \neq 0,
$$

is mapped onto the line with equation

$$
v=M u,
$$

where m and M are the respective gradients of the two lines.

Given that $m=M$, determine the three possible values of m.

Question 28
A complex transformation of points from the z plane onto points in the w plane is defined by the equation

$$
w=z^{2}, z \in \mathbb{C} .
$$

The point represented by $z=x+\mathrm{i} y$ is mapped onto the point represented by $w=u+\mathrm{i} v$.

Show that if z traces the curve with Cartesian equation

$$
y^{2}=2 x^{2}-1,
$$

the locus of w satisfies the equation

Question 29
The complex function $w=f(z)$ is defined by

$$
w=\frac{1}{z-1}, z \in \mathbb{C}, z \neq 1
$$

The half line with equation $\arg z=\frac{\pi}{4}$ is transformed by this function.
a) Find a Cartesian equation of the locus of the image of the half line.
b) Sketch the image of the locus in an Argand diagram.

Question 30
The complex function $w=f(z)$ is defined by

$$
w=\frac{3 z+\mathrm{i}}{1-z}, z \in \mathbb{C}, z \neq 1 .
$$

The half line with equation $\arg z=\frac{3 \pi}{4}$ is transformed by this function.
a) Find a Cartesian equation of the locus of the image of the half line.
b) Sketch the image of the locus in an Argand diagram.

Created by T. Madas

Question 1
The following convergent series C and S are given by

$$
\begin{aligned}
& C=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta \ldots \\
& S=\frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta \ldots
\end{aligned}
$$

a) Show clearly that

$$
C+\mathrm{i} S=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}} .
$$

b) Hence show further that

$$
C=\frac{4-2 \cos \theta}{5-4 \cos \theta},
$$

and find a similar expression for S.

Question 2
The following finite sums, C and S, are given by

$$
\begin{aligned}
& C=1+5 \cos 2 \theta+10 \cos 4 \theta+10 \cos 6 \theta+5 \cos 8 \theta+\cos 10 \theta \\
& S=5 \sin 2 \theta+10 \sin 4 \theta+10 \sin 6 \theta+5 \sin 8 \theta+\sin 10 \theta
\end{aligned}
$$

By considering the binomial expansion of $(1+A)^{5}$, show clearly that

$$
C=32 \cos ^{5} \theta \cos 5 \theta
$$

and find a similar expression for S

Question 3
The following convergent series S is given below

$$
S=\sin \theta-\frac{1}{3} \sin 2 \theta+\frac{1}{9} \sin 3 \theta-\frac{1}{27} \sin 4 \theta \ldots
$$

By considering the sum to infinity of a suitable geometric series involving the complex exponential function, show that

$$
S=\frac{9 \sin \theta}{10+6 \cos \theta}
$$

Question 4
The sum C is given below

$$
C=1-\binom{n}{1} \cos \theta \cos \theta+\binom{n}{2} \cos ^{2} \theta \cos 2 \theta-\binom{n}{1} \cos ^{3} \theta \cos 3 \theta+\ldots+(-1)^{n} \cos ^{n} \theta \cos n \theta
$$

Given that $n \in \mathbb{N}$ determine the 4 possible expressions for C.

Give the answers in exact simplified form.

$$
\begin{aligned}
n=4 k, k \in \mathbb{N}: C=\cos n \theta \sin ^{n} \theta & , n=4 k+1, k \in \mathbb{N}: C=\sin n \theta \sin ^{n} \theta \\
n=4 k+2, k \in \mathbb{N}: C=-\cos n \theta \sin ^{n} \theta & , n=4 k+3, k \in \mathbb{N}: C=-\sin n \theta \sin ^{n} \theta
\end{aligned}
$$

Question 5
The following convergent series S is given below

$$
S=\frac{\sin \theta}{1!}-\frac{\sin 2 \theta}{2!}+\frac{\sin 3 \theta}{3!}-\frac{\sin 4 \theta}{4!}+\ldots
$$

By considering the sum to infinity of a suitable series involving the complex exponential function, show that

