Created by T. Madas

Question 1 (**)

$$
w=\frac{-9+3 \mathrm{i}}{1-2 \mathrm{i}}
$$

Find the modulus and the argument of the complex number w.

$$
\text { 双, }|w|=3 \sqrt{2},, \arg w=-\frac{3 \pi}{4}
$$

Question 3 (**)
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Given that z is a real number, find the possible values of λ.

Question 5 (**)
Find the values of x and y in the equation

$$
x(1+\mathrm{i})^{2}+y(2-\mathrm{i})^{2}=3+10 \mathrm{i}, x \in \mathbb{R}, y \in \mathbb{R}
$$

$$
x=7, y=1
$$

\square

Question 6 (**)
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

$$
(x+\mathrm{i} y)(3+4 \mathrm{i})=3-4 \mathrm{i}
$$

Question 7 (**)
The complex number z satisfies the equation

$$
4 z-3 \overline{\mathrm{z}}=\frac{1-18 \mathrm{i}}{2-\mathrm{i}}
$$

where \bar{z} denotes the complex conjugate of z.

Solve the equation, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

a) $\ldots w$ in the form $a+b \mathrm{i}$, where a and b are real numbers.
b) ... the modulus and the argument of w.

$$
w=2+2 \mathrm{i}, \quad|w|=2 \sqrt{2}, \quad \arg w=\frac{\pi}{4}
$$

Created by T. Madas

Question 9 (**)
$z=22+4 \mathrm{i} \quad$ and $\quad \frac{z}{w}=6-8 \mathrm{i}$.

By showing clear workings, find ...
a) $\ldots w$ in the form $a+b \mathrm{i}$, where a and b are real numbers .
b) \ldots the modulus and the argument of w.

$$
w=1+2 \mathrm{i}, \quad \mid=\sqrt{5}, \quad \arg w \approx 1.11^{\mathrm{c}}
$$

Question 10

$$
z=(2-\mathrm{i})^{2}+\frac{7-4 \mathrm{i}}{2+\mathrm{i}}-8
$$

Express z in the form $x+\mathrm{i} y$, where x and y are real numbers.

Created by T. Madas

Question 11 (**)

The complex conjugate of z is denoted by \bar{z}.

Solve the equation

$$
2 z-3 \bar{z}=\frac{-27+23 \mathrm{i}}{1+\mathrm{i}}
$$

giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Question 12 (**+)
Solve the following equation.

$$
z^{2}=21-20 \mathrm{i}, \quad z \in \mathbb{C} .
$$

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Created by T. Madas

Question 13 (**+)
The cubic equation

$$
2 z^{3}-5 z^{2}+c z-5=0, c \in \mathbb{R}
$$

has a solution $z=1-2 \mathrm{i}$.

Find in any order
a) ... the other two solutions of the equations.
b) \ldots the value of c.

Created by T. Madas

Question 14 (**+)
The quadratic equation

$$
z^{2}-2 z+1-2 \mathrm{i}=0, c \in \mathbb{R}
$$

has a solution $z=-\mathrm{i}$.

Find the other solution.

Created by T. Madas

Question $15 \quad\left({ }^{* *}+\right.$)

$$
z-8=\mathrm{i}(7-2 \bar{z}), z \in \mathbb{C} .
$$

The complex conjugate of z is denoted by \bar{z}.

Determine the value of z in the above equation, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.
\square $\Rightarrow(x-8)+i y=(7-2 x) i-2 y$ $x-8=-14+4 x$

Question 16 (**+)

$$
z^{3}+A z^{2}+B z+26=0, \text { where } A \in \mathbb{R}, B \in \mathbb{R}
$$

One of the roots of the above cubic equation is $1+\mathrm{i}$.
a) Find the real root of the equation.
b) Determine the values of A and B.

$$
z=-13, A=11, B=-24
$$

Created by T. Madas

Created by T. Madas

Question $17 \quad(* *+)$

The complex conjugate of z is denoted by \bar{z}.

Solve the equation

$$
z-12=\mathrm{i}(9-2 \bar{z}),
$$

giving the answer in the form $x+i y$, where x and y are real numbers.
$z=2+5 i$

Question 19 (**+)
The cubic equation

$$
2 z^{3}-z^{2}+4 z+p=0, p \in \mathbb{R}
$$

is satisfied by $z=1+2 \mathrm{i}$.
a) Find the other two roots of the equation.
b) Determine the value of p.
\square

$$
p=15
$$

Created by T. Madas

Question $20 \quad(* *+$)
Solve the following equation.

$$
w^{2}=5-12 \mathrm{i}, \quad w \in \mathbb{C} .
$$

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.
\square
\square
$w= \pm(3-2 i)$

LET $\omega=a+b i$, witbet $a \in \mathbb{R}, b \in \mathbb{R}$
$\Rightarrow \omega^{2}=5-12 i$
$\Rightarrow(a+b i)^{2}=5-12 i$
$\Rightarrow a^{2}+2 a b i-b^{2}=5-12 i$
$\Rightarrow\left(a^{2}-b^{2}\right)+i(2 a b)=5-12 i$ gPuate RGAL ATND IMAGNARY PARETS $\begin{aligned} & a^{2}-b^{2}=5 \\ & 2 a b-12\end{aligned} \Rightarrow b=-\frac{6}{a}$ $\begin{aligned} 2 a b=-12 & \Rightarrow a^{2}-\left(-\frac{6}{a}\right)^{2}=5\end{aligned}$ $\Rightarrow a^{2}-\frac{36}{a^{2}}=5$ $\Rightarrow \quad a^{4}-36=5 a^{2}$ $\Rightarrow\left(a^{2}+4\right)\left(a^{2}-9\right)=0$ $\Rightarrow a^{2}=<\overrightarrow{-*} \quad a \in \mathbb{R}$ $\rightarrow a=<_{-3}^{3} \quad b=<_{2}^{-2}$ $\therefore z=\sim-3-2 i$

Created by T. Madas

Question 21 (**+)

$$
z=1+\sqrt{3} \mathrm{i} \quad \text { and } \quad \frac{w}{z}=2+2 \mathrm{i}
$$

Find the exact value of the modulus of w and the exact value of the argument of w.

Question 22 (**+)
The following cubic equation is given

$$
z^{3}+a z^{2}+b z-5=0
$$

where $a \in \mathbb{R}, b \in \mathbb{R}$.

One of the roots of the above cubic equation is $2+\mathrm{i}$.
a) Find the other two roots.
b) Determine the value of a and the value of b.
$z_{2}=2-\mathrm{i}, z_{3}=1, a=-5, b=9$

Question 23 (**+)
The following cubic equation is given

$$
z^{3}+p z^{2}+6 z+q=0
$$

where $p \in \mathbb{R}, q \in \mathbb{R}$.

One of the three solutions of the above cubic equation is $5-\mathrm{i}$.
a) Find the other two solutions of the equation.
b) Determine the value of p and the value of q.

$$
z_{2}=5+\mathrm{i}, z_{3}=2, p=-8, q=52
$$

Created by T. Madas

Question 24 (**+)
The complex number z is defined as

$$
z=\mathrm{i}(1+\mathrm{i})(1-2 \mathrm{i})^{2} .
$$

It is further given that

$$
\overline{z-3 \mathrm{i}}+P(z-3 \mathrm{i})=Q \bar{z}
$$

where P and Q are real constants.

Find the value of P and the value of Q.

Created by T. Madas

Question 25 (***)

$$
z=\sqrt{3}+\mathrm{i} \text { and } w=3 \mathrm{i}
$$

a) Find, in exact form where appropriate, the modulus and argument of z and the modulus and argument of w.
b) Determine simplified expressions for $z w$ and $\frac{w}{z}$, giving the answers in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}, y \in \mathbb{R}$.
c) Find, in exact form where appropriate, the modulus and argument of $z w$ and the modulus and argument of $\frac{w}{z}$.

$$
\begin{array}{r}
|z|=2,|w|=3, \\
\left\lvert\, \arg z=\frac{\pi}{6}\right., \arg w=\frac{\pi}{2},, z w=-3+3 \sqrt{3} \mathrm{i}, \frac{w}{z}=\frac{3}{4}+\frac{3}{4} \sqrt{3} \mathrm{i} \\
\left||z w|=6,\left|\frac{w}{z}\right|=\frac{3}{2}, \arg (z w)=\frac{2 \pi}{3}, \arg \left(\frac{w}{z}\right)=\frac{\pi}{3}\right.
\end{array}
$$

Created by T. Madas

Question 26 (***)
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Created by T. Madas

Question 27 (***)
Find the square roots of $1+i \sqrt{3}$.
Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Question 28 (***)
Solve the equation

$$
\frac{13 z}{z+1}=11-3 \mathrm{i}, \quad z \in \mathbb{C}
$$

giving the answer in the form $x+i y$, where x and y are real numbers.

Question 30 (***)
The following cubic equation is given

$$
z^{3}+2 z^{2}+a z+b=0
$$

where $a \in \mathbb{R}, b \in \mathbb{R}$.

One of the roots of the above cubic equation is $1+\mathrm{i}$.
a) Find the real root of the equation.
b) Find the value of a and the value of b.

$$
z=-4, a=-6, b=8
$$

\square

Question 31 (***)
The following complex numbers are given. $z_{1}=2-2 \mathrm{i}, \quad z_{2}=\sqrt{3}+\mathrm{i}$ and $z_{3}=a+b \mathrm{i}$ where $a \in \mathbb{R}, b \in \mathbb{R}$.
a) If $\left|z_{1} z_{3}\right|=16$, find the modulus z_{3}.
b) Given further that $\arg \left(\frac{z_{3}}{z_{2}}\right)=\frac{7 \pi}{12}$, determine the argument of z_{3}.
c) Find the values of a and b, and hence show $\frac{z_{3}}{z_{1}}=-2$.
\square , $\left|z_{3}\right|=4 \sqrt{2}, \quad \arg z_{3}=\frac{3 \pi}{4}, \quad a=-4, b=4$
\square

Created by T. Madas

Question 32 (***)
Solve the equation

$$
2 z^{4}-14 z^{3}+33 z^{2}-26 z+10=0, z \in \mathbb{C}
$$

given that one of its roots is $3+\mathrm{i}$.

Question 33 (***)

$$
2 z^{3}+p z^{2}+q z+16=0, p \in \mathbb{R}, q \in \mathbb{R}
$$

The above cubic equation has roots α, β and γ, where γ is real.

It is given that $\alpha=2(1+\mathrm{i} \sqrt{3})$.
a) Find the other two roots, β and γ.
b) Determine the values of p and q.

Created by T. Madas

Question 34 (***)
Find the value of x and the value of y in the following equation, given that $x, y \in \mathbb{R}$.

$$
\frac{1}{x+\mathrm{i} y}+\frac{1}{1+2 \mathrm{i}}=1
$$

$\square,(x, y)=\left(1,-\frac{1}{2}\right)$

Created by T. Madas

Question 35 (***)
Consider the cubic equation

$$
z^{3}+z+10=0, \quad z \in \mathbb{C} .
$$

a) Verify that $1+2 \mathrm{i}$ is a root of this equation.
b) Find the other two roots.

Created by T. Madas

Question 36 (***)
The complex conjugate of z is denoted by \bar{z}.

Solve the equation

$$
\frac{2 z+3 \mathrm{i}(\bar{z}+2)}{1+\mathrm{i}}=13+4 \mathrm{i}
$$

Question 37 (***)

$$
z^{4}-8 z^{3}+33 z^{2}-68 z+52=0, z \in \mathbb{C} .
$$

One of the roots of the above quartic equation is $2+3 \mathrm{i}$.

Find the other roots of the equation.

Question 39 (***)
The complex conjugate of z is denoted by \bar{z}.
Find the two solutions of the equation

$$
(z-i)(\bar{z}-\mathrm{i})=6 z-22 \mathrm{i}, z \in \mathbb{C}
$$

giving the answers in the form $x+\mathrm{i} y$, where x and y are real numbers.

$$
z_{1}=2+3 \mathrm{i}, z_{2}=\frac{28}{5}+\frac{9}{5} \mathrm{i}
$$

$(z-1)(\bar{z}-1)=6 z-2 z$ $z z-i z-i z-(=6 z-2 i$ $\|z\|^{2}-i(z+\bar{z})-1=6 z-22$ $\left(x^{2}+y^{2}\right)-i(2 x)-1=6(x+i y)-2 x$ $\left(x^{2}+y^{2}-1-62\right)+((x-6 y-2 x)=0$ $x=11-3 y$ $(11-3 y)^{2}+y^{2}-6(11-3 y)-1=0$ $121-66 y+9 y^{2}+y^{2}-16+8 y-1=0$ $10 y^{2}-48 y+54=0$ $5 y^{2}-24 y+27=0$	

Created by T. Madas

Question 40 (***)
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Created by T. Madas

Question 41 (***)

Find the value of z and the value of w in the following simultaneous equations

$$
\begin{aligned}
& 2 z+1=-\mathrm{i} w \\
& z-3=w+3 \mathrm{i}
\end{aligned}
$$

$$
z=-1+2 \mathrm{i}, w=-4-\mathrm{i}
$$

Question 42

 (***)It is given that

Determine the value of k.

Question 43 (***+)
Given that z and w are complex numbers prove that

$$
|z+w|^{2}-|z-\bar{w}|^{2}=4 \operatorname{Re} z \operatorname{Re} w
$$

where \bar{w} denotes the complex conjugate of w.
\square proof

$=z \bar{w}+w \bar{z}+z w+\bar{w} \bar{z}$ $=z w+z w+w z+w z$
$=z(w+\bar{w})+\vec{z}(w+\bar{w})$ $=(w+\bar{w})(z+\bar{z})$
$=(2 R \in w)(2 R \in z)$ $=4 R_{t} W R_{E} z$

Created by T. Madas

Question 44 (***+)

Find the three solutions of the equation

$$
4 z^{2}+4 \bar{z}+1=0, z \in \mathbb{C}
$$

where \bar{z} denotes the complex conjugate of z.

Question 45 (***+

The complex numbers z and w are defined as

$$
z=3+\mathrm{i} \quad \text { and } \quad w=1+2 \mathrm{i} .
$$

Determine the possible values of the real constant λ if

$$
\left|\frac{z}{w}+\lambda\right|=\sqrt{\lambda+2} .
$$

Question $46 \quad(* * *+$)
The complex number z satisfies the equation

$$
z^{2}=3+4 \mathrm{i}
$$

a) Find the possible values of ...
i. $\ldots z$.
ii. $\ldots z^{3}$.
b) Hence, by showing detailed workings, find a solution of the equation

$$
w^{6}-4 w^{3}+125=0, w \in \mathbb{C}
$$

$$
z= \pm(2+\mathrm{i}), z^{3}=2 \pm 1 \mathrm{i}, \quad w= \pm(2+\mathrm{i})
$$

Question $47 \quad(* * *+)$
Solve the following quadratic equation

$$
z^{2}-6 z+10+(z-6) \mathrm{i}=0, \quad z \in \mathbb{C}
$$

Give the answers in the form $a+b i, a \in \mathbb{R}, b \in \mathbb{R}$.
\square

$$
, z_{1}=4+\mathrm{i}, z_{2}=2-2 \mathrm{i}
$$

Created by T. Madas

Question 48 (***+)
Solve teach of the following equations.
a) $z^{2}+2 \mathrm{i} z+8=0, z \in \mathbb{C}$.
b) $w^{2}+16=30 \mathrm{i}, w \in \mathbb{C}$.

Created by T. Madas

Question 49 (***+)
It is given that $z=2$ and $z=1+2 \mathrm{i}$ are solutions of the equation

$$
z^{4}-3 z^{3}+a z^{2}+b z+c=0
$$

where a, b and c are real constants.

Determine the values of a, b and c.

Question $50 \quad\left({ }^{* * *}+\right.$)
The following complex numbers are given

$$
z=\frac{1+\mathrm{i}}{1-\mathrm{i}} \text { and } w=\frac{\sqrt{2}}{1-\mathrm{i}}
$$

a) Calculate the modulus of z and the modulus of w.
b) Find the argument of z and the argument of w.

In a standard Argand diagram, the points A, B and C represent the numbers z, $z+w$ and w respectively. The origin of the Argand diagram is denoted by O.
c) By considering the quadrilateral $O A B C$ and the argument of $z+w$, show that

$$
\tan \left(\frac{3 \pi}{8}\right)=1+\sqrt{2}
$$

$$
|z|=1, \quad|w|=1 \quad \arg z=\frac{\pi}{2}, \quad \arg w=\frac{\pi}{4}
$$

\square
\square

Question 51 (***+)
Solve the following quadratic equation

$$
z^{2}-z+8+2(z+1) \mathrm{i}=0, \quad z \in \mathbb{C}
$$

Give the answers in the form $a+b i, a \in \mathbb{R}, b \in \mathbb{R}$.

$$
\square, z_{1}=2 \mathrm{i}, z_{2}=1-4 \mathrm{i}
$$

Sther by wratash tife gevatous ta + "3 trem quadiancin inz
$\begin{aligned} & \Rightarrow z^{2}-2+8+2(z+1) i=0 \\ & \rightarrow z^{2} 2\|8\| 2 z i 12 i-0 \\ & \Rightarrow z^{2}+(-1+2 i) z+(8+2 i)=0 \end{aligned}$
NSING THE QUADRATC FORMUA
$\begin{aligned} & \Rightarrow z=\frac{-(-1+2 i) \pm \sqrt{(-1+2 i)^{2}-4 \times 1 \times(8+2 i)}}{2 \times 1} \\ & \Rightarrow z=\frac{1-2 i \pm \sqrt{1-4 i-4-32-8 i}}{2} \\ & \Rightarrow z=\frac{1-2 i \pm \sqrt{-35-12 i}}{2} \end{aligned}$
Now wf nitis to falwart tife Smunef zart
$\begin{aligned} & \Rightarrow(a+b i)^{2} \equiv-35-12 i \\ & \Rightarrow a^{2}+2 a b i-b^{2}=-35-12 i \end{aligned}$
$\Rightarrow\left(\begin{array}{l} a^{2} \\ a b=-35 \\ a b=-6 \end{array}\right) \Rightarrow b=\frac{-6}{a}$
$\Rightarrow \quad a^{2}-\left(\frac{-6}{a}\right)^{2}=-35$
$\Rightarrow a^{2}-\frac{36}{a^{2}}=-35$
$\Rightarrow a^{4}-36=-35 a$
$\Rightarrow a^{4}+35 a-36=0$

$\Rightarrow\left(a^{2}+36\right)\left(a^{2}-1\right)=0$
$\Rightarrow a^{2}=<-36$
$\Rightarrow a=<_{-1}^{1} \quad b=\frac{-6}{a}-\ll_{5}^{-6}$
RETOQNing To THE quadeatic Formma
$z=\frac{1-2 i \pm(1-6 i)}{2}$
$z=<\frac{1-2 i+1-6 i}{2}=\frac{2-8 i}{2}=1-4 i$

THf Efquirio Soumpas tlef
$z_{1}=1-4 i \quad$ or $\quad z_{2}=2 i$

Question 52 (***+)
The quadratic equation

$$
z^{2}+4 z+20+\mathrm{i} z(A+1)=0
$$

where A is a constant, has complex conjugate roots.

If one of the roots of this quadratic is $z=B+2 \mathrm{i}$, where B is a real constant, find the possible values of A.

Question 53 (***+)
If $1-2 \mathrm{i}$ is a root of the quartic equation

$$
z^{4}-6 z^{3}+18 z^{2}-30 z+25=0
$$

Created by T. Madas

Question 55 (****)
It is given that

$$
z=\cos \theta+\mathrm{i} \sin \theta, 0 \leq z<2 \pi .
$$

Show clearly that

Created by T. Madas

Question 56 (****)

$$
\frac{(3+4 \mathrm{i})(1+2 \mathrm{i})}{1+3 \mathrm{i}}=q(1+\mathrm{i}), \quad q \in \mathbb{R} .
$$

a) Find the value of q.
b) Hence simplify

$$
\arctan \frac{4}{3}+\arctan 2-\arctan 3
$$

giving the answer in terms of π.

Created by T. Madas

Question 57 (****)
The complex conjugate of the complex number z is denoted by \bar{z}.

Solve the equation

$$
\frac{2 \bar{z}(1-2 i)}{5 z}+\frac{i}{1+2 i}=\frac{2-3 i}{z}
$$

Created by T. Madas

Question 58 (****)
It is given that

$$
z=-17-6 \mathrm{i} \quad \text { and } \quad w=3+\mathrm{i} .
$$

Find the value of u given further that

$$
\frac{1}{10 u}=\frac{3}{z}+\frac{1}{2 w}
$$

Created by T. Madas

Question 59 (****)
Sketch on a standard Argand diagram the locus of the points $z=\sqrt{2}(1+\mathrm{i}), \quad w=\sqrt{3}-\mathrm{i}$ and $z+w$, and use geometry to prove that

$$
\tan \left(\frac{\pi}{24}\right)=\sqrt{6}-\sqrt{3}+\sqrt{2}-2
$$

You must justify all the steps in this proof.

Created by T. Madas

Question 60 (****)
The complex number z is given by

$$
z=\frac{a+b \mathrm{i}}{a-b \mathrm{i}}, a \in \mathbb{R}, b \in \mathbb{R}
$$

Show clearly that

$$
\frac{z^{2}+1}{2 z}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} .
$$

Question 61 (****)
It is given that

$$
z=\frac{1+8 \mathrm{i}}{1-2 \mathrm{i}}
$$

a) Express z in the form $x+\mathrm{i} y$, where x and y are real numbers.
b) Find the modulus and argument of z.
c) Show clearly that

$$
09 \quad \arctan 8+\arctan 2+\arctan \frac{2}{3}=\pi
$$

Question 62 (****+)
Solve each of the following equations.
a) $z^{3}-27=0$.
b) $w^{2}-\mathrm{i}(w-2)=(w-2)$.

$$
z_{1}=3, \quad z_{2}=\frac{3}{2}(-1 \pm \sqrt{3}), \quad w_{1}=2 \mathrm{i}, \quad w_{2}=1-\mathrm{i}
$$

Created by T. Madas

Question 63 (****+)

$$
z=(2+3 \mathrm{i})^{4 n+2}+(3-2 \mathrm{i})^{4 n+2}, n \in \mathbb{N} .
$$

Show clearly that $z=0$ for all $n \in \mathbb{N}$.

Show clearly that the equation

$$
2 z^{3}-z=\bar{z}
$$

is satisfied either by $z=0$ or $z= \pm 1$.

Created by T. Madas

Question 65 (****+)

$$
z=(5+2 \mathrm{i})^{n}+(5-2 \mathrm{i})^{n}, n \in \mathbb{N}
$$

Show clearly that z is a real number.

Created by T. Madas

Question 66 (****+)
The complex number z satisfies the relationship 2) $z+\frac{1}{z}=-1, z \neq 0$.

Show clearly that
a) $\ldots z^{3}=1$.
b) $\ldots z^{8}+z^{4}=-1$.

Created by T. Madas

Question 67 (****+)

$$
z=(a+b \mathrm{i})^{4 n}+(b+a \mathrm{i})^{4 n}, a \in \mathbb{R}, b \in \mathbb{R}, n \in \mathbb{N}
$$

Show that z is a real number.

Question 68 (****+)

$$
z^{3}-(4+2 \mathrm{i}) z^{2}+(4+5 \mathrm{i}) z-(1+3 \mathrm{i})=0, z \in \mathbb{C} .
$$

Given that one of the solutions of the above cubic equation is $z=2+\mathrm{i}$, find the other two solutions.

Created by T. Madas

Question 69 (*****)
Find the solutions of the equation

$$
w^{4}=16(1-w)^{4},
$$

giving the answers in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}, y \in \mathbb{R}$.

Question 70 (*****)
Solve the quadratic equation

$$
z^{2}-7 z+16=\mathrm{i}(z-11), z \in \mathbb{C}
$$

Created by T. Madas

Question 71 (*****)

$$
2 z^{2}-(3+8 \mathrm{i}) z-(m+4 \mathrm{i})=0, z \in \mathbb{C} .
$$

Given that m is a real constant, find the two solutions of the above equation given further that one of these solutions is real.

Question 72 (*****)
Solve the quadratic equation

$$
z^{2}-4 z i+4 \mathrm{i}=7, z \in \mathbb{C}
$$

\square

$$
, z=-2+3 \mathrm{i}, z=2+\mathrm{i}
$$

\square

$$
z^{4}-2 z^{3}-2 z^{2}+3 z-4=0, z \in \mathbb{C}
$$

By using the substitution $w=z^{2}-z$, or otherwise, find in exact form the four solutions of the above equation.

$z=\frac{1 \pm \sqrt{17}}{2}, \frac{1 \pm \mathrm{i} \sqrt{3}}{2}$

Created by T. Madas

Question 74 ($\left.{ }^{*} * * * * *\right)$
Show that if n and m are natural numbers, then the equations

Created by T. Madas

Question 75 (*****)

$$
z^{4}-2 z^{3}+z-20=0, z \in \mathbb{C} .
$$

By using the substitution $w=z^{2}-z$, or otherwise, find in exact form the four solutions of the above equation.

Created by T. Madas

Question 76 (*****)
Two distinct complex numbers z_{1} and z_{2} are such so that $\left|z_{1}\right|=\left|z_{2}\right|=r \neq 0$.

Show clearly that $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is purely imaginary.

Created by T. Madas

Question 77 (*****)
The complex number z satisfies the relationship

$$
5(z+\mathrm{i})^{n}=(4+3 \mathrm{i})(1+\mathrm{i} z)^{n}, n \in \mathbb{R}
$$

Show that z is a real number.

Created by T. Madas

Question 78 (*****)
The complex numbers z and w are such so that $|z|=|w|=1$.

Show clearly that $\frac{z+w}{1+z w}$ is real.

Question 79
(*****)

$$
z^{3}-2(2-\mathrm{i}) z^{2}+(8-3 \mathrm{i}) z-5+\mathrm{i}=0, \quad z \in \mathbb{C} .
$$

Find the three solutions of the above equation given that one of these solutions is real.

Question 80 (*****)
Solve the quadratic equation

$$
\mathrm{i} z^{2}-2 \sqrt{2} z-2 \sqrt{3}=0, z \in \mathbb{C} .
$$

Give the answers in the form $x+\mathrm{i} y$, where x and y are exact real constants.
\square $z=-1+\mathrm{i}(\sqrt{3}-\sqrt{2}), \quad z=1-\mathrm{i}(\sqrt{3}+\sqrt{2})$

UARLATIAN To find THE SQuARt Doot wirker MANIPVATIONS/ N PECTON
$\Rightarrow z+i \sqrt{2}= \pm \sqrt{-2-2 i \sqrt{3}}$

Created by T. Madas

Question 81 (*****)
The complex number z satisfies the equation

$$
z+1+8 \mathrm{i}=|z|(1+\mathrm{i})
$$

Show clearly that

$$
|z|^{2}-18|z|+65=0
$$

and hence find the possible values of z.
$\square, z=4-3 \mathrm{i}, z=12+5 \mathrm{i}$

$$
z^{3}-(2+4 \mathrm{i}) z^{2}-3(1-3 \mathrm{i}) z+14-2 \mathrm{i}=0, z \in \mathbb{C}
$$

Find the three solutions of the above equation given that one of these solutions is purely imaginary.

Created by T. Madas

Question 83 (*****)
It is given that
where $z \in \mathbb{C}, w \in \mathbb{C}$, and $|w|>1$.

Determine an exact simplified expression for $|z|$, in terms of $|w|$.

