COMPLEX

NUMBERS

(part 1)

BASIC
 COMPLEX

ALGEBRA

Question 1
Simplify the following complex number expressions, giving the final answer in the form $a+b$ i, where $a \in \mathbb{R}, b \in \mathbb{R}$.
a) $\frac{1}{1+2 \mathrm{i}}+\frac{1}{1-2 \mathrm{i}}$
b) $5-4 \mathrm{i}+\frac{25}{3-4 \mathrm{i}}$
c) $-1+3 \mathrm{i}+\frac{10}{-1+3 \mathrm{i}}$
d) $\left(\frac{5+i}{2+3 i}\right)^{4}$

Question 2
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

$$
(x, y)=(1,-1)
$$

\square

Question 3
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

$$
(x+\mathrm{i} y)(3+4 \mathrm{i})=3-4 \mathrm{i}
$$

$$
(x, y)=\left(-\frac{7}{25},-\frac{24}{25}\right)
$$

Created by T. Madas

Question 4
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Created by T. Madas

Question 5
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Created by T. Madas

Question 6
Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

Created by T. Madas

Question 7
Find the square roots of the following complex numbers.
a) $15+8 \mathrm{i}$
b) $16+30 \mathrm{i}$

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.
\square
$\pm(4+\mathrm{i}), \pm(5+3 \mathrm{i})$

Created by T. Madas

Question 8
Solve the following equation.

$$
z^{2}=21-20 \mathrm{i}, \quad z \in \mathbb{C}
$$

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

$$
z= \pm(5-2 i)
$$

Created by T. Madas

Question 9
Solve the following equation.

$$
w^{2}=5-12 \mathrm{i}, \quad w \in \mathbb{C} .
$$

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Question 10
Find the square roots of $1+i \sqrt{3}$.

Give the answers in the form $a+b \mathrm{i}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Question 11
Solve the equation
Created by T. Madas

$$
2 z^{2}-2 \mathrm{i} z-5=0, z \in \mathbb{C}
$$

$$
z= \pm \frac{3}{2}+\frac{1}{2} \mathrm{i}
$$

Question 12

$$
z-8=\mathrm{i}(7-2 \bar{z}), z \in \mathbb{C}
$$

The complex conjugate of z is denoted by \bar{z}.

Determine the value of z in the above equation, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Created by T. Madas

Question 13

The complex conjugate of z is denoted by \bar{z}.

Solve the equation

$$
z-12=\mathrm{i}(9-2 \bar{z}),
$$

giving the answer in the form $x+i y$, where x and y are real numbers.

$$
z=2+5 i
$$

Question 14
The complex number z satisfies the equation

$$
2 z-\mathrm{i} \overline{\mathrm{z}}=3(3-5 \mathrm{i})
$$

where \bar{z} denotes the complex conjugate of z.
Determine the value of z, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Question 15
Find the value of z and the value of w in the following simultaneous equations

giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Created by T. Madas

Question 17

$$
z-8=\mathrm{i}(7-2 \bar{z}), z \in \mathbb{C} .
$$

The complex conjugate of z is denoted by \bar{z}.

Determine the value of z in the above equation, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Question 18
The complex conjugate of w is denoted by \bar{w}. Given further that

$$
w=1+2 \mathrm{i} \text { and } z=w-\frac{25 \bar{w}}{w^{2}}
$$

show clearly that z is a real number, stating its value.

Question 19
The complex number z satisfies the equation

$$
4 z-3 \overline{\mathrm{z}}=\frac{1-18 \mathrm{i}}{2-\mathrm{i}}
$$

where \bar{z} denotes the complex conjugate of z.

Solve the equation, giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Created by T. Madas

Question 21

The complex conjugate of z is denoted by \bar{z}.

Find the two solutions of the equation

$$
(z-i)(\bar{z}-\mathrm{i})=6 z-22 \mathrm{i}, z \in \mathbb{C},
$$

giving the answers in the form $x+\mathrm{i} y$, where x and y are real numbers.

Question 22

The complex conjugate of z is denoted by \bar{z}.

Solve the equation

$$
2 z-3 \bar{z}=\frac{-27+23 \mathrm{i}}{1+\mathrm{i}}
$$

giving the answer in the form $x+\mathrm{i} y$, where x and y are real numbers.

Created by T. Madas

Question 23

Find the three solutions of the equation

$$
4 z^{2}+4 \bar{z}+1=0, z \in \mathbb{C},
$$

where \bar{z} denotes the complex conjugate of z.

Question 24
Solve the following equations.
a) $z^{2}+2 \mathrm{i} z+8=0, z \in \mathbb{C}$.
b) $w^{2}+16=30 \mathrm{i}, w \in \mathbb{C}$.

Question 26
The complex number z satisfies the equation

$$
z^{2}=3+4 \mathrm{i}
$$

a) Find the possible values of ..
$\mathrm{a} . . . z$.
b.... z^{3}.
b) Hence, by showing detailed workings, find a solution of the equation

$$
w^{6}-4 w^{3}+125=0, w \in \mathbb{C}
$$

$$
z= \pm(2+\mathrm{i}), z^{3}=2 \pm 1 \mathrm{i}, \quad w= \pm(2+\mathrm{i})
$$

Created by T. Madas

Created by T. Madas

Question 27
It is given that

$$
z=-17-6 \mathrm{i} \text { and } w=3+\mathrm{i} .
$$

Find the value of u given further that

$$
\frac{1}{10 u}=\frac{3}{z}+\frac{1}{2 w}
$$

Created by T. Madas

Question 28
The complex conjugate of the complex number z is denoted by \bar{z}.

Solve the equation

$$
\frac{2 \bar{z}(1-2 i)}{5 z}+\frac{i}{1+2 i}=\frac{2-3 i}{z}
$$

Created by T. Madas

Question 29
It is given that

$$
z=\cos \theta+\mathrm{i} \sin \theta, 0 \leq z<2 \pi
$$

Show clearly that

Created by T. Madas

Question 30
By considering the solutions of the equation
find the solutions of the equation

$$
w^{4}=16(1-w)^{4}
$$

giving the answers in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}, y \in \mathbb{R}$.

$$
z_{1}=2, \quad z_{2}=\frac{2}{3}, \quad z_{3}=\frac{4}{5}+\mathrm{i} \frac{2}{5}, \quad z_{4}=\frac{4}{5}-\mathrm{i} \frac{2}{5}
$$

Created by T. Madas

Question 31
The complex number z is given by

$$
z=\frac{a+b \mathrm{i}}{a-b \mathrm{i}}, a \in \mathbb{R}, b \in \mathbb{R}
$$

Show clearly that

Created by T. Madas

Question 32
Solve the following equations.
a) $z^{3}-27=0$.
b) $w^{2}-\mathrm{i}(w-2)=(w-2)$.

$$
z_{1}=3, \quad z_{2}=\frac{3}{2}(-1 \pm \sqrt{3}), \quad w_{1}=2 \mathrm{i}, \quad w_{2}=1-\mathrm{i}
$$

Created by T. Madas

Question 33
Solve the quadratic equation

$$
z^{2}-7 z+16=\mathrm{i}(z-11), z \in \mathbb{C}
$$

$$
z=2+3 \mathrm{i}, \quad z=5-2 \mathrm{i}
$$

MODULUS

AND

ARGUMENT

Created by T. Madas

Question 1

$$
w=\frac{-9+3 \mathrm{i}}{1-2 \mathrm{i}}
$$

Find the modulus and the argument of the complex number w.

Created by T. Madas

Question 2

$$
z=-3+4 \mathrm{i} \quad \text { and } \quad z w=-14+2 \mathrm{i}
$$

By showing clear workings, find ...
a) $\ldots w$ in the form $a+b \mathrm{i}$, where a and b are real numbers.
b) \ldots the modulus and the argument of w.

$$
w=2+2 \mathrm{i}, \quad|w|=2 \sqrt{2}, \quad \arg w=\frac{\pi}{4}
$$

Question 3

$$
z=22+4 \mathrm{i} \quad \text { and } \quad \frac{z}{w}=6-8 \mathrm{i}
$$

By showing clear workings, find ...
a) $\ldots w$ in the form $a+b \mathrm{i}$, where a and b are real numbers.
b) \ldots the modulus and the argument of w.

$$
w=1+2 \mathrm{i},|w|=\sqrt{5}, \quad \arg w \approx 1.11^{\mathrm{c}}
$$

Created by T. Madas

Created by T. Madas

Question 4

$$
z=1+\sqrt{3} \mathrm{i} \quad \text { and } \quad \frac{w}{z}=2+2 \mathrm{i}
$$

Find the exact value of the modulus of w and the exact value of the argument of w.

Question 5
The following complex numbers are given.

$$
z_{1}=2-2 \mathrm{i}, \quad z_{2}=\sqrt{3}+\mathrm{i} \quad \text { and } \quad z_{3}=a+b \mathrm{i} \quad \text { where } a \in \mathbb{R}, b \in \mathbb{R}
$$

a) If $\left|z_{1} z_{3}\right|=16$, find the modulus z_{3}.
b) Given further that $\arg \left(\frac{z_{3}}{z_{2}}\right)=\frac{7 \pi}{12}$, determine the argument of z_{3}.
c) Find the values of a and b, and hence show $\frac{z_{3}}{z_{1}}=-2$.

$$
\left|z_{3}\right|=4 \sqrt{2}, \quad \arg z_{3}=\frac{3 \pi}{4}, \quad a=-4, b=4
$$

a) vama $|z w|=|z||w|$
$\Rightarrow\left|z_{1} z_{3}\right|=16$
$\Rightarrow\left|z_{1}\right|\left|z_{3}\right|=16$
$\Rightarrow|2-2 i|\left|z_{3}\right|=16$
$\Rightarrow \sqrt{4+4}\left|z_{3}\right|=16$
$\Rightarrow \sqrt{8}\left|z_{3}\right|=16$
$\Rightarrow \sqrt{8}\left|z_{3}\right|=16$
$\Rightarrow \sqrt{2} \sqrt{9}\left|z_{3}\right|=16 \sqrt{2}$
$\Rightarrow 4\left|z_{3}\right|=16 \sqrt{2}$
$\Rightarrow\left|z_{3}\right|=4 \sqrt{2} / /$
b) $\sin G \arg \left(\frac{z}{w}\right)=\arg z-\operatorname{ang} w$
$\Rightarrow \operatorname{ag}\left(\frac{z_{3}}{z_{2}}\right)=\frac{7 \pi}{12}$
$\Rightarrow \arg z_{3}-\arg z_{2}=\frac{\pi \pi}{R}$
$\Rightarrow \arg z_{3}-\arg (\sqrt{3}+i)=\frac{\pi}{12}$
$\Rightarrow \arg z_{3}-\operatorname{artan}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi \pi}{2}$
$\Rightarrow \arg z_{3}-\pi=-\frac{\pi}{1}$
$\Rightarrow \arg z_{3}-\frac{\pi}{6}=\frac{-\pi}{12}$
$\Rightarrow \arg _{3}=\frac{3 \pi}{4}$

Created by T. Madas

Created by T. Madas

Question 6

$$
z=\sqrt{3}+\mathrm{i} \text { and } w=3 \mathrm{i}
$$

a) Find, in exact form where appropriate, the modulus and argument of z and the modulus and argument of w.
b) Determine simplified expressions for $z w$ and $\frac{w}{z}$, giving the answers in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}, y \in \mathbb{R}$.
c) Find, in exact form where appropriate, the modulus and argument of $z w$ and the modulus and argument of $\frac{w}{z}$.

$$
\begin{array}{|}
|z|=2,|w|=3, \quad \arg z=\frac{\pi}{6}, \arg w=\frac{\pi}{2}, \quad z w=-3+3 \sqrt{3} \mathrm{i}, \frac{w}{z}=\frac{3}{4}+\frac{3}{4} \sqrt{3} \mathrm{i}, \\
|z w|=6,\left|\frac{w}{z}\right|=\frac{3}{2}, \arg (z w)=\frac{2 \pi}{3}, \arg \left(\frac{w}{z}\right)=\frac{\pi}{3}
\end{array}
$$

Question 7
The following complex numbers are given

$$
z=\frac{1+\mathrm{i}}{1-\mathrm{i}} \text { and } w=\frac{\sqrt{2}}{1-\mathrm{i}}
$$

a) Calculate the modulus of z and the modulus of w.
b) Find the argument of z and the argument of w.

In a standard Argand diagram, the points A, B and C represent the numbers z, $z+w$ and w respectively. The origin of the Argand diagram is denoted by O.
c) By considering the quadrilateral $O A B C$ and the argument of $z+w$, show that

$$
\tan \left(\frac{3 \pi}{8}\right)=1+\sqrt{2}
$$

$$
|z|=1, \quad|w|=1, \arg z=\frac{\pi}{2}, \quad \arg w=\frac{\pi}{4}
$$

Created by T. Madas

Question 8

$$
\frac{(3+4 \mathrm{i})(1+2 \mathrm{i})}{1+3 \mathrm{i}}=q(1+\mathrm{i}), \quad q \in \mathbb{R} .
$$

a) Find the value of q.
b) Hence simplify

$$
\arctan \frac{4}{3}+\arctan 2-\arctan 3
$$

giving the answer in terms of π.

Created by T. Madas

Question 9
It is given that

$$
z=\frac{1+8 \mathrm{i}}{1-2 \mathrm{i}} .
$$

a) Express z in the form $x+\mathrm{i} y$.
b) Find the modulus and argument of z.
c) Show clearly that

$$
\arctan 8+\arctan 2+\arctan \frac{2}{3}=\pi
$$

COMPLEX POLYNOMIAL

 QUESTIONS

 QUESTIONS}

Created by T. Madas

Created by T. Madas

Question 1
The cubic equation

$$
2 z^{3}-5 z^{2}+c z-5=0, c \in \mathbb{R}
$$

has a solution $z=1-2 \mathrm{i}$.

Find in any order
a) ... the other two solutions of the equations.
b) ... the value of c.

Created by T. Madas

Question 2
The following cubic equation is given

$$
z^{3}+a z^{2}+b z-5=0
$$

where $a \in \mathbb{R}, b \in \mathbb{R}$.

One of the roots of the above cubic equation is $2+\mathrm{i}$.
a) Find the other two roots.
b) Determine the value of a and the value of b.
$z_{2}=2-\mathrm{i}, z_{3}=1, a=-5, b=9$
\square

Question 3
The following cubic equation is given

$$
z^{3}+p z^{2}+6 z+q=0
$$

where $p \in \mathbb{R}, q \in \mathbb{R}$.

One of the three solutions of the above cubic equation is $5-\mathrm{i}$.
a) Find the other two solutions of the equation.
b) Determine the value of p and the value of q.
\square
$z_{2}=5+\mathrm{i}, z_{3}=2, p=-8, q=52$

Created by T. Madas

Question 4
The following cubic equation is given

$$
z^{3}+2 z^{2}+a z+b=0
$$

where $a \in \mathbb{R}, b \in \mathbb{R}$.

One of the roots of the above cubic equation is $1+\mathrm{i}$.
a) Find the real root of the equation.
b) Find the value of a and the value of b.

$$
z=-4, a=-6, b=8
$$

\square

Question 5
The following cubic equation is given

$$
z^{3}+A z^{2}+B z+26=0
$$

where $A \in \mathbb{R}, B \in \mathbb{R}$
One of the roots of the above cubic equation is $1+\mathrm{i}$.
a) Find the real root of the equation.
b) Determine the value of A and the value of B.
$z=-13, A=11, B=-24$

Created by T. Madas

Question 6
The cubic equation

$$
2 z^{3}-z^{2}+4 z+p=0, p \in \mathbb{R}
$$

is satisfied by $z=1+2 \mathrm{i}$.
a) Find the other two roots of the equation.
b) Determine the value of p.

$$
1-2 \mathrm{i},-\frac{3}{2}, \quad p=15
$$

Created by T. Madas

Question 7
Consider the cubic equation

$$
z^{3}+z+10=0, z \in \mathbb{C}
$$

a) Verify that $1+2 \mathrm{i}$ is a root of this equation.
b) Find the other two roots.

Question 8
Solve the equation

$$
2 z^{4}-14 z^{3}+33 z^{2}-26 z+10=0, z \in \mathbb{C}
$$

given that one of its roots is $3+\mathrm{i}$.

$$
z=3+\mathrm{i}, \quad z=3-\mathrm{i}, \quad z=\frac{1}{2}+\frac{1}{2} \mathrm{i}, \quad z=\frac{1}{2}-\frac{1}{2} \mathrm{i}
$$

Created by T. Madas

Question 9

$$
2 z^{3}+p z^{2}+q z+16=0, p \in \mathbb{R}, q \in \mathbb{R}
$$

The above cubic equation has roots α, β and γ, where γ is real.

It is given that $\alpha=2(1+\mathrm{i} \sqrt{3})$.
a) Find the other two roots, β and γ.
b) Determine the values of p and q.

$$
\beta=2(1-\mathrm{i} \sqrt{3}), \gamma=-\frac{1}{2}, p=-7, q=28
$$

Created by T. Madas

Question 10

$$
z^{4}-8 z^{3}+33 z^{2}-68 z+52=0, z \in \mathbb{C}
$$

One of the roots of the above quartic equation, is $2+3 \mathrm{i}$.

Find the other roots of the equation.

Created by T. Madas

Question 11
It is given that $z=2$ and $z=1+2 \mathrm{i}$ are solutions of the equation

$$
z^{4}-3 z^{3}+a z^{2}+b z+c=0
$$

where a, b and c are real constants.

Determine the values of a, b and c.
$a=5, b=-1, c=-10$

Created by T. Madas

Created by T. Madas

Question 12
If $1-2 i$ is a root of the quartic equation

$$
z^{4}-6 z^{3}+18 z^{2}-30 z+25=0
$$

find the other three roots.

