COMP. DUCASP. (part 1) ASSINGUIS CON I. Y. C.P. MARIASINALIS CON I.Y. C.P. MARIASINALIS CON I.Y. C.P. MARIASINALIS CON I.Y. C.P. MARIASINA

BASIC COMPLEX SEBRA BASIC COMPLEA ALGEBRA

Question 1

Simplify the following complex number expressions, giving the final answer in the form a+bi, where $a \in \mathbb{R}$, $b \in \mathbb{R}$.

Question 2

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

(x+iy)(2+i)=3-i.

Ĩ	(x+iy)(2+	i) = 3-i		
	2x+ix+	2gi - y = 3-i		
->	(2x-y) + i	(x+2y) = 3-1		
6PUF	ITE REAL AN	UD IMAGINARY THO	TS	
2: 	x-y = 3 .+2y = -1	} ⇒ <u>22-3</u>	= 4	
	7	⇒ ≈+2(2x-3) = - 1	
		$\Rightarrow x + 4i$	- 6 = - 1	
		⇒ S≥ =	5	
		$\Rightarrow \alpha = 1$		
		& THUS IF	y = 22-3	
		→ y=-1		
Acth	WAINH			
-	(x+iy) (2.	+1)= 3-1		
=	x+ig =	3-1		
⇒	x+iy =	$\frac{(3-i)(2-i)}{(2+i)(2-i)}$		
3	x tig =	$\frac{\zeta - 3i - 2i - i}{4 - 2i + 2i + i}$		
-	xtiy =	<u>5-si</u> s		
	x+iy =	t = í	∴ <u>2=</u> a	y=-1

Question 3

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

(x+iy)(3+4i) = 3-4i.

(x, y)

\$	$(\alpha_{+ij})(s_{+}4i) = 3 - 4i$
	$3c + iy = \frac{3 - 4i}{3 + 4i}$
-9	$x + iy = \frac{(3-4i)(3-4i)}{(3+4i)(3-4i)}$
\Rightarrow	$x + iy = \frac{9 - 12i - 12i + 161^2}{9 - 12i + 12i + 16}$
⇒	$x + iy = \frac{-7 - 24i}{25}$
9	$2 + iy = -\frac{7}{25} - \frac{24}{25}i$
	: a= - 25 two y= - 25

Question 4

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

1.

Question 5

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}$, $y \in \mathbb{R}$.

Question 6

Find the value of x and the value of y in the following equation, given further that $x \in \mathbb{R}, y \in \mathbb{R}$.

The Com

 $\pm (5+3i)$

-(4)=15

 $\left(\frac{|S|}{\alpha}\right)^2 = K$

 $|\pm(4+i)|,$

= 15+81

(Z= 16+301)

• $(4T = a + bi)^2 = 16 + 30i$ $(a + bi)^2 = 16 + 30i$ $a^2 + 2abi - b^2 = 16 + 30i$

 $a^2-b^2 = 16$ $a^2-b^2 = 16$ $b = \frac{12}{a}$

nasm.

• ET $z = \alpha + iy_1 \cdot \alpha \in \mathbb{R}, y \in \mathbb{R}$ • $(\alpha + ig)^2 = 15 + 8i$ • $\alpha^2 + 2\alpha y i - g^2 = 15 + 8i$

> = 5 } = y= + = 8 }

(1.5)

5

113.sm2

COM

madasn,

K.G.p.

Question 7

, F.G.B.

I.G.B.

Madasm,

Find the square roots of the following complex numbers.

- **a**) 15+8i
- **b**) 16+30i

Give the answers in the form a+bi, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

2028

Created by T. Madas

2017

R.

Question 8

I.C.B.

I.V.G.B

Madasm.

200

Solve the following equation.

 $z^2 = 21 - 20i, \quad z \in \mathbb{C}.$

ŀ.G.p.

Give the answers in the form a+bi, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

1120/251

LET Z= a+bi, NHERE a ER, bER	
$\Rightarrow z^{2} = 21 - 20i$ $\Rightarrow (a + bi)^{2} = 21 - 20i$ $\Rightarrow a^{2} + 2abi - b^{2} = 21 - 20i$	
QUATE REAL AND IMAGNARY PARTS	
$q^2 = b^2 = 2i$ $z = b = -\frac{b}{a}$	
$\Rightarrow a^{2} - \left(\frac{-10}{4}\right)^{2} = 21$ $\Rightarrow a^{3} - \frac{100}{4^{2}} = 21$	
$= 3 a^{4} - t_{00} = 21a^{2}$ $= 3 a^{4} - 21a^{2} - t_{00} = 0$	
$\Rightarrow (a^2+4)(a^2-25) = 0$ $\Rightarrow a^2 = \sqrt{-45}$	>
→ a = < ^S a b=	6 R 2
- S - S - S- 21	N 2
-5+2;	

madasn.

27

Is.com

 $z = \pm (5 - 2i)$

5

nadasma

nn

nadasn,

I.C.p

Created by T. Madas

COM

Question 9

N.C.B. Madasa

I.C.B.

Solve the following equation.

 $w^2 = 5 - 12i, \quad w \in \mathbb{C}.$

F.G.B.

Give the answers in the form a+bi, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

madası,

Com

 $w = \pm (3 - 2i)$

3

2012.57

nn

madasn.

ŀ.G.p.

Created by T. Madas

2017

Madasmath

COM

COM

·GA

Question 10

I.C.P.

Find the square roots of $1+i\sqrt{3}$.

madasmaths,

I.C.B.

COM

I.Y.G.B

Give the answers in the form a+bi, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

$\pm \frac{1}{2} \left(\sqrt{6} + i \sqrt{2} \right)$	
Let $\mathbb{Z}^{p_{n}} = t + i(\mathbb{T}^{n}, where \mathbb{Z} = a + ib_{1} a \in \mathbb{R}, b \in \mathbb{R}^{n}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
$\begin{array}{c} $	² S1721
$a \in \mathbb{R}$ $\Rightarrow a_1 = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	3

2011

ths.com

ths.com

3

15

.

madasm

. DD

I.F.G.B.

Question 11

Solve the equation

 $2z^2-2iz-5=0, z\in\mathbb{C}.$

2z2-	-212-5=0
BY Q	ADDATIC FORMULA
2 =	$\frac{2i \pm \sqrt{(-2i)^2 - 4_{X2X}(-5)}}{2_{X2}} = \frac{2i \pm \sqrt{-4+40}}{4}$
군 =	$\frac{2i \pm 6}{4} = \frac{1}{2}i \pm \frac{3}{2} = \pm \frac{3}{2} \pm \frac{1}{2}i$

Question 12

 $z-8=i(7-2\overline{z}), z\in\mathbb{C}$.

The complex conjugate of z is denoted by \overline{z} .

Determine the value of z in the above equation, giving the answer in the form x+iy, where x and y are real numbers.

$\begin{array}{l} +\tau & 2 = x + iy \\ \bullet & x + iy = 0 = i \left(7 - 2(x - iy)\right) \\ \bullet & (x - 0) + iy = i \left(7 - 2x + 2iy\right) \\ \bullet & (x - 0) + iy = i \left(7 - 2x + 2iy\right) \\ \bullet & (x - 0) + iy = (7 - 2x); \\ \bullet & -2y \end{array}$	$\begin{cases} THS x-8=-29\\ y=7-2x \end{cases} \Rightarrow$ $x-8=-2(7-2x)$ $x-8=-1(1+4)x$ $6=3x$
	2=2 9=3 1. Z=2+3;

z = 2 + 3i

Question 13

The complex conjugate of z is denoted by \overline{z} .

Solve the equation

 $z - 12 = i(9 - 2\overline{z}),$

giving the answer in the form x + iy, where x and y are real numbers.

2	z = 2 +
$\begin{aligned} &12 = i \left(q - 2\overline{z} \right) \\ &\overline{z} = \alpha + i q \\ &3 - 12 = i \left(q - 2(\overline{z} - i q)) \\ &3 - 12 = i \left(q - 2z + 2q \right) \\ &3 - 12 = i \left(q - 2z + 2q \right) \\ &3 - 12 = q \\ &3 - 2x + i \left(q - 2z \right) \end{aligned}$	$\frac{\text{Hbx}(c)}{2-12 = -2(9-2x)}$ $\frac{1}{2} \frac{1}{12 = -18 + 4x}$ $C = 3x$ $\boxed{2=2}$ $f(\underline{9} = 5$

Question 14

The complex number z satisfies the equation

 $2z-i\overline{z}=3(3-5i),$

where \overline{z} denotes the complex conjugate of z.

Determine the value of z, giving the answer in the form x+iy, where x and y are real numbers.

z = 1 - 7i z = 1 - 7i

Question 15

Find the value of z and the value of w in the following simultaneous equations

 $2z + 1 = -\mathrm{i}w$

$$z - 3 = w + 3i$$

	z = -1 + z	w = -4 - 1
		'n
22+l = -iw 2-3 = w+3	2z = -1 - ih 2z = 2(3+h)	(₊₃₁)] ⇒
-1 - iw = -1 - iw = -7 - 6i =	2(3+17+3i) 6+27+6i 27+117 W(2+i)	
W =	$\frac{\frac{-7-6i}{2+i}}{(2+i)(2-i)}$	
w = w =	-14+7i-12i-6 5 -20-5i	TTNS Z = 3+W+3i Z = 3-4-1+3i
$\mathcal{W} =$	-4-1	2 = -1+21

Question 16

Solve the equation

 $\frac{13z}{z+1} = 11 - 3\mathbf{i} \,, \ z \in \mathbb{C} \,,$

giving the answer in the form x + iy, where x and y are real numbers.

z = 1 - 3i

A detted A	NETHOD B
$\implies \frac{132}{2+1} = 11-31$	$\left(\longrightarrow \frac{15z}{z+1} = 11 - 3i \right)$
⇒ (3z = (1-3i)(z+1)	$\Rightarrow \frac{Z+1}{ 3Z } = \frac{1}{ 3Z }$
⇒ 132 = 112+11-312-3i	$\Rightarrow 2+1 = 13$
⇒ 22+3iz =11-3i	<u>11-3;</u>
⇒ Z(2+31) = 11-31	$1 = \frac{13}{1 + \frac{1}{2}} = \frac{13}{11 - 3i}$
$\Rightarrow z = \frac{11-3i}{2+3i}$	$\implies \frac{1}{2} = \frac{13}{11-3i} - 1$
\implies Z = $\frac{(11-3i)(2-3i)}{(2+3i)(2-3i)}$	$\Rightarrow z = \frac{1}{\frac{13}{13} - 1}$
$\implies 2 = \frac{22 - 38i - 6i - 9}{4 + 9}$	MULTIRY TOP & BOTTOM OF THE FEADTON BY 11-31
$\Rightarrow Z = \frac{13 - 34!}{13}$	
₩ Z= 1-31	"CONTINGATE -43 BHEORE TO GET
11	2 = 1-31

Question 17

 $z-8=\mathrm{i}(7-2\overline{z}), \ z\in\mathbb{C}.$

The complex conjugate of z is denoted by \overline{z} .

Determine the value of z in the above equation, giving the answer in the form x + iy, where x and y are real numbers.

	z = 2 + 3i
2	
2 = 22+iy 1 = 2 = 22-iy 22+iy - 18 = i (7-2(22-iy)) 22-18) + iy = i (7-22,+2iy) 22-18) + iy = i (7-22,+2iy) 22-18) + iy = (7-22) i - 22	$\begin{cases} \neg H_{M} & x - \theta = -2\theta \\ y = 7 - 2x \end{cases} \Rightarrow$ $x - \theta = -2(7 - 2x)$ $x - \theta = -2(7 - 2x)$ $x - \theta = -1(\theta + \theta x)$ $6 = 3x$
	2=2 Y=3

1. Z= 2+31

Question 18

The complex conjugate of w is denoted by \overline{w} .

Given further that

w = 1 + 2i and $z = w - \frac{25\overline{w}}{w^2}$

show clearly that z is a real number, stating its value.

 $Z = W - \frac{2S\overline{W}}{W^2} = (1+2i) - \frac{2S(1-2i)}{(1+2i)^2} = 1+2i - \frac{2S(1-2i)}{(1+4i-4)}$

12

 $= \frac{1+2i}{-3+4i} - \frac{25(i-2i)}{-3+4i} = 1+2i - \frac{25(i-2i)(-3-4i)}{(-3+4i)(-3-4i)}$ $\frac{1+2i}{-3} - \frac{25(-3-4i+6i-8)}{4+16} = 1+2i - \frac{25(-1+2i)}{-3}$

9+16

Question 19

The complex number z satisfies the equation

$$4z - 3\overline{z} = \frac{1 - 18i}{2 - i},$$

where \overline{z} denotes the complex conjugate of z.

Solve the equation, giving the answer in the form x + iy, where x and y are real numbers.

120	z = 4 - 1
$3\bar{2} = \frac{1-18\bar{1}}{2-\bar{1}}$	$\left\langle \Rightarrow \mathcal{L} + 7 \psi \right _{i} = \frac{20 - 351}{5}$
$\overline{z} = \alpha + iy$ $\overline{z} = \alpha - iy$)⇒a+7gi = 4-7i
$iy - 3(x - iy) = \frac{(1 - 18i)(2 + i)}{(1 - 18i)(2 + i)}$	α=4 y =−1
-4iu - 3z + 3iu = 2 + i - 36i + 18	** Z= 4-1

Question 20

The complex conjugate of z is denoted by \overline{z}

Solve the equation

giving the answer in the form x + iy, where x and y are real numbers.

F.	1212
$\begin{cases} \frac{1}{2} $	$\begin{array}{c} * & 5 = 2 + i \\ & & & \\$

z = 3 + i

Question 21

The complex conjugate of z is denoted by \overline{z} .

Find the two solutions of the equation

 $(z-i)(\overline{z}-i)=6z-22i, z\in\mathbb{C},$

asma

giving the answers in the form x + iy, where x and y are real numbers.

$\overline{z_1 = 2 + 3i},$	$z_2 = \frac{28}{5} + \frac{9}{5}i$
$ \begin{array}{l} \left(\frac{z-1}{z}\right) = 6z - 2z; \\ \overline{z}\overline{z} - iz - 1\overline{z} - iz \in z - 2z; \\ \overline{z}\overline{z} - iz - 1\overline{z} - iz \in z - 2z; \\ [\overline{z}]^{+} - i(\overline{z} + \overline{z}] - 1 = 6z - 2z; \\ [\overline{z}]^{+} - i(\overline{z} + \overline{z}] - 1 = 6z - 2z; \\ (\overline{z}^{+} + \overline{z}] - i - 6z) + i(\overline{z} - 4z; -2z) = 0 \\ (\overline{z}^{+} + \overline{z}^{+} - 6z) + i(\overline{z} - 4z; -2z) = 0 \\ \overline{z}^{+} + \overline{z}^{+} - 6z + 2z = 0 \\ \overline{z}^{+} + \overline{z}^{+} - 6z + 2z = 0 \\ [\overline{z} - 6z; -1 = 0] + 2z = 0 \\ \overline{z}^{+} + 2z = 0 \\ \overline{z}^{+} - 6z + 2z = 0 \\ \end{array} $	$ \begin{array}{c} \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$

Question 22

The complex conjugate of z is denoted by \overline{z} .

Solve the equation

 $2z - 3\overline{z} = \frac{-27 + 23i}{1+i},$

giving the answer in the form x + iy, where x and y are real numbers.

z = 2 + 5i

22-32 = -27+231	$\int = -3 + 5iy = \frac{-4 + 50i}{2}$
Elet Z=x+iy Z=x-iu	= -2 + 25i
$\Rightarrow a(x+iy)-3(x-iy) = \frac{(-27+231)(1-i)}{(1-i)}$	dia a = 2 y = s
$\Rightarrow 2x + 2iy - 3x + 3iy = \frac{-it + 2ii + 23i + 23}{(+)}$: Z= 2+51

Question 23

Find the three solutions of the equation

 $4z^2 + 4\overline{z} + 1 = 0, \ z \in \mathbb{C} ,$

where \overline{z} denotes the complex conjugate of z.

+i,

Question 24

Solve the following equations.

- **a**) $z^2 + 2iz + 8 = 0, z \in \mathbb{C}$.
- **b**) $w^2 + 16 = 30i$, $w \in \mathbb{C}$.

Question 25

It is given that

27.4

SMaths.com

I.F.G.B.

The Com $\frac{w}{z} = 2 + 2i$, Im w = 8. $z + 2\mathbf{i} = \mathbf{i}z + k$, $k \in \mathbb{R}$ and

Determine the value of k.

Madasmaths.com

I.C.B. Madasmaths.Com

F.G.B.

ŀ.G.p

I.F.G.B.

NGB Madasman

ths.com

k = 4

ths.col

¥.G.b.

· (iii

.

madasma,

Madasn,

COM

Question 26

2

The complex number z satisfies the equation

 $z^2 = 3 + 4i$

- **a**) Find the possible values of ...
 - b.... z^3 .

a.... z

b) Hence, by showing detailed workings, find a solution of the equation

 $w^6 - 4w^3 + 125 = 0, w \in \mathbb{C},$

(a) Let $z = x + iy$ $\Rightarrow (x + iy)^2 = 3 + 4i$ $\Rightarrow (x + iy)^2 = 3 + 4i$ $\Rightarrow (x^2 - 3y) + i(xy) = 3 + 6i$ $\Rightarrow (x^2 - y^2) + i(xy) = 3 + 6i$ $\Rightarrow (x^2 - y^2) = 3$ $\Rightarrow (x^2 - y^2) =$	$ \Rightarrow \chi^{2} - \left(\frac{2}{2}\right)^{2} + 3 \Rightarrow \chi^{2} - \frac{4}{24} + 3 \Rightarrow \chi^{4} - \frac{4}{24} + 3 \Rightarrow \chi^{4} - \frac{4}{24} + 3 \Rightarrow \chi^{4} - \frac{4}{24} + 3 \\ \Rightarrow \chi^{4} - \chi^{2} + 4 = 0 \Rightarrow \chi^{2} = \left(\frac{2}{2}, \frac{4}{24}\right)^{2} + 1 = 0 \Rightarrow \chi^{2} = \left(\frac{2}{2}, \frac{4}{24}\right)^{2} + \frac{4}{24} + \frac{4}{24}$
$ \begin{array}{ll} & \mathcal{M}_{e} \neq \mathcal{M}_{e} \left(\operatorname{scale}_{W_{e}} & \operatorname{scale}_{W_{e}} & \operatorname{scale}_{W_{e}} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} \neq \mathcal{M}_{e} = \mathcal{M}_{e} \\ & \mathcal{M}_{e} = \mathcal{M}_{e} = \mathcal{M}_{e} \end{pmatrix} \\ & \mathcal{M}_{e} =$	$\begin{cases} \Rightarrow w^{3} = 2 + i (mer a) \\ \Rightarrow w = < \frac{2 + i}{2 - i} \end{cases}$

 $\langle \cdot \rangle$

 $z = \pm (2+i)$, $z^3 = 2 \pm 11i$, $w = \pm (2+i)$

Question 27

It is given that

F.G.S.

. F.G.B. z = -17 - 6i and w = 3 + i.

Find the value of *u* given further that

E.G.P.

nadasn

u = -9 - 7i

COM

$=\frac{1}{100} = \frac{3}{2} + \frac{1}{2N}$	$\int \frac{1}{\log t} = \frac{3}{2} + \frac{4}{2w}$
$\implies \frac{1}{104} = \frac{6w + z}{28w}$	$\Rightarrow \frac{1}{100} = \frac{3}{-17-6} + \frac{1}{6+7}$
\implies $IOU = \frac{280v}{Gw+2}$	$\implies \frac{1}{\log} = \frac{3(-7+61)}{220+14} + \frac{6-21}{2}$
$\implies 10u = \frac{2(-17-61)(3+1)}{6(3+1)+(-17-61)}$	$\frac{1}{100} = \frac{-51 + 18i}{325} + \frac{6 - 2i}{5}$
$= 10u = \frac{(-34-121)(3+1)}{18+67-17-67}$	AWITTALY BY 325
> lou = -102-341-361+12	$\Rightarrow \frac{5\pi}{62} = -21 + 16! + \frac{6}{62}(9-5!)$
=) lou = -90-701	$\implies \frac{\mu_{\text{LCT}}}{G} = 8(-s_1 + i8_1) + 6s(6-s_1)$
=) u = -9-7i	= 260 u = -408 + 144i + 390-1301
	$\frac{260}{4} = -48 + 141$
	$\Rightarrow u = \frac{260}{-48+14i} = \frac{130}{-9+7i}$
	$= 0 = \frac{130(-9-7i)}{8i+49}$
	$\sim u = \frac{13\sigma(-9-7i)}{13\sigma}$
) => 4= -9-7i

HHTHO -A

Created by T. Madas

2017

Question 28

ŀG.p.

I.G.B.

The complex conjugate of the complex number z is denoted by \overline{z} .

Solve the equation

$$\frac{2\overline{z}(1-2i)}{5z} + \frac{i}{1+2i} = \frac{2-3i}{z}$$

F.C.P.

giving the answer in the form x + iy.

z = 5 + 2i

FG.B.

5

madasn.

Question 29

It is given that

 $z = \cos\theta + i\sin\theta$, $0 \le z < 2\pi$.

Show clearly that

COM

I.Y.G.B.

F.G.B.

·G,

 $\frac{2}{1+z}$ $=1-i\tan\left(\frac{\theta}{2}\right)$

I.G.B.

madasn.

200

hs.com

proof

hs.col

.G.5.

.

nadasma,

madasn,

nn

ŀ.G.p.

Created by T. Madas

2017

Question 30

i GB.

5.

By considering the solutions of the equation

 $z^4 = 16$,

find the solutions of the equation

 $w^4 = 16(1-w)^4$,

giving the answers in the form x + iy, where $x \in \mathbb{R}$, $y \in \mathbb{R}$.

firstly $z^4 = 16$ $z^2 = <_{-4}^4 =$	
Now $W^{\mu} \in I6(I-W)^{\mu}$	-2i • W ₁ = $\frac{2}{2+1} = \frac{2}{3}$
$\implies (1-m)_{d} = 10$	• W = -2 = -2 = -2 //
$\implies \left(\frac{W}{1-W}\right)^4 = 16$	$v_{2} = \frac{-2i}{2i} = (1-2i)2i$ $2i+4$
$\Rightarrow \frac{W}{1-W} = \Xi$	$= \frac{4+2i}{4+2i} = \frac{4+2i}{4+2i}$
$\Rightarrow \frac{W}{W} = \frac{S}{W}$	$W_{u} = \frac{-2i}{-2i} = -2i(1+2i) -2i+u$
$\Rightarrow \frac{1}{w} - 1 = \frac{1}{2}$	$\begin{pmatrix} -2i+1 & (1-2i)(i+2i) & \frac{-2i+4}{1+4} \\ = 4-2i & 0 & 2 & 4 \end{pmatrix}$
=) <u>1</u> = <u>1</u> +1	$\frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2}$
$\implies \frac{1}{W} = \frac{Z+1}{Z}$. {
\Rightarrow $\gamma = \frac{2}{2+1}$	2
	1

·C.A

.

Question 31

The complex number z is given by

Show clearly that

12

0

$$\frac{z^2 + 1}{2z} = \frac{a^2 - b^2}{a^2 + b^2}.$$

The Com

ths.col

1. Y. G.B.

1.1.6

.

Madasman

I.K.C.B. Madasn

·G.B	S.B.	$\frac{z^2+1}{2z} = \frac{a^2-b^2}{a^2+b^2}.$		Mar.
		10/28 N	adas I	proof
alls .	Sinally.	"Allo	$ \frac{Z}{Z} \approx \frac{\alpha + b_1'}{\alpha - b_1'} = \frac{(\alpha + b_1')(\alpha + b_1)}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{\alpha^2 + b^2} = \frac{2\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1} = \frac{(\alpha + b_1')^{\alpha}}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{(\alpha + b_1')^{\alpha}}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + 2\alpha b_1' - b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + \alpha^2 + b_1'}{(\alpha - b_1')^{\alpha} + b_1'} = \frac{\alpha^2 + \alpha^2 + b_1'}{(\alpha - b_1')^{\alpha} + b_1'}$, Muchaey To F [$Gradue = Tract Relations by G-4 f]^2$
	, ⁴⁸ .C		$= \frac{(a_{+}b_{1})^{2}}{2(a_{+}b_{1})(a_{-}b_{1})} = \frac{a_{+}^{2} 2b_{1}^{2} - b_{+}^{2} + e_{-}}{2(a_{+}^{2}+b_{-}^{2})}$ $= \frac{2a_{+}^{2} - 2b_{-}}{2(a_{+}^{2}+b_{-}^{2})} = \frac{2(a_{+}^{2}-b_{-}^{2})}{\chi(a_{+}^{2}+b_{-}^{2})} = \frac{a_{-}^{2}-b_{-}^{2}}{a_{+}^{2}+b_{-}^{2}}$	<u>2467-54</u>
I.V.	· F.G.D	· I.V.	·.V.C	
			20 15	100 .
asna. V	alasm -	381121	12028n	
	Alls,			no lo
	1.1.			1000
· Kon	-C.	· Ko	- · · C	2

I.V.G.B.

I.Y.C.B. Madasmanna I.Y.C.B. Created by T. Madas

Question 32

Solve the following equations.

	Solve the following equations	s.	SO	Cn.	-01
5	a) $z^3 - 27 = 0$.			N 10	
1.0	b) $w^2 - i(w-2) = (w-2)$	2).	<u>ک</u> ر کر	Go	· Ko
1.6	ip 'sp	$z_1 = 3, z_2$	$=\frac{3}{2}\left(-1\pm\sqrt{3}\right)$, w_1	$=2i, w_2 = 1-i$	63
0.	10.	nad.	$(a) = z^3 - x^2 = 0$ $(b) = z^3 - z^3 = 0$	()(4++++);	20.
asin_	adas -	asm	\longrightarrow $(\vec{z}^{-3})(\vec{z}^{2}+3z+9) = 0$ $(\vec{z}^{-3})(\vec{z}^{2}+3z+9) = 0$ $(\vec{z}+\frac{1}{2})$ $(\vec{z}+\frac{1}{2})$ $\vec{z}+\frac{1}{2}$	$\frac{1}{2}\frac{4}{2}\frac{4}{2}\frac{9}{60}$ = $-\frac{1}{42}$ THS $\frac{3}{2}$ = $\pm \frac{1}{2}\frac{1}{2$	"nars
	ns anath	- All	$(L) w^2 - i(y_{-2}) = w_{-2}.$ $\Rightarrow w^3 - iw_{+2i} - w_{+2} = 0$ $\Rightarrow w^2 \cdot w_{-(i-1)} + (2x_{2i}) = 0$ $\Rightarrow w^2 \cdot w_{-(i-1)} + (2x_{2i}) = 0$ $\forall Q_{i} \text{Modelly, Franked}$	2 * Z ! - Z + D	
3	COM SI	Con	$\begin{split} & \gamma_{VS} = \frac{(-f_{-1}) \frac{1}{2} \sqrt{\frac{1}{2} (\frac{1}{2} \frac{1}{2} $		
1	· ···	· / ,	$\begin{array}{c} (a_{11}a_{11}b_{22}-b_{11})\\ a_{12}^{2}a_{11}b_{22}^{2}a_{22}-b_{12}^{2}a_{22}\\ a_{12}^{2}a_{2}^{2}a_{2}^{2}a_{$	$ \Rightarrow w_s < \frac{\frac{1}{11}\frac{11}{1-31}}{\frac{11}{1-31}} $ $ \Rightarrow w_s < \frac{\frac{2-31}{1-31}}{\frac{11}{1-31}} $	1.1.
	Go CB				~~G
201	in.	Mari	·0 	1	2
13Sm	Adar.	and asim	120	20.	asp
19	the Math		le l	nari	121
22	CON S	CON	"COD	S.C.	м 1.
\sim	· In			1. 1. "	n .
1	.CC.		Gr	·Cp	1. K.
<u>b.</u>		no.	ч. Г. р.	· · 1	20 . Y
121	1200	Created by T. M	Iadas 🧳	Ż	70/20

asmaths.com

nains.col

Smarns.com

Question 33

Solve the quadratic equation

 $z^2 - 7z + 16 = i(z - 11), z \in \mathbb{C}$.

MODUL AND ARGUMENT T. I.Y.C.B. Madasmanna I.Y.C.B. Manage KGC I.V.C.B. MARIASINALIS.COM I.V.C.B. MARIASINALIS.COM I.V.C.B. MARIASINALIS.COM I.V.C.B. MARIASINA

Question 1

 $w = \frac{-9+3i}{1-2i}.$

Find the modulus and the argument of the complex number w.

Question 2

= -3 + 4i and zw = -14 + 2i.

By showing clear workings, find ...

- **a)** ... w in the form a+bi, where a and b are real numbers.
- **b**) ... the modulus and the argument of w.

(a) $\mathbb{Z}_{W} = -14 + 2i$ $\Rightarrow (-3 + 4i)_{W} = -16 + 2i$ $\Rightarrow _{W} = \frac{-14 + 2i}{-3 + 4i}$ $\Rightarrow _{W} = \frac{-14 + 2i}{(-3 + 4i)(-3 - 4i)}$	$\begin{cases} \mathbf{b} \cdot \mathbf{w} = 2+2i = \sqrt{2^2 + 2^2} \\ = \sqrt{8^2} = 2\sqrt{2^2} \\ = \log(2+2i) \\ = \exp(\frac{2}{3}) \end{cases}$
\Rightarrow w = $\frac{42 + 56i - 6i + 1}{25}$	B Z = ordan I
\implies W = $\frac{50 + 50!}{25}$	= 14
=> W = 2+2i]

Question 3

5

z = 22 + 4i and $\frac{z}{w} = 6 - 8i$.

By showing clear workings, find ...

- **a)** ... w in the form a + bi, where a and b are real numbers
- **b**) ... the modulus and the argument of w.

w=1+2i, $|w|=\sqrt{5}$, $\arg w \approx 1.11^{\circ}$

) <u>z</u> = 6-81	(b) (w) = (1+2i)
$\frac{22+4i}{W} = 6-8i$	$=\sqrt{1^2+2^2}$
$\mathcal{W} = \frac{22 + 4i}{6 - 8i}$	= 21
$W = \frac{1_{1+2i}}{3-4i}$	● aidin = aid(1+S!)
$W = \frac{(11+2i)(3+4i)}{(3-4i)(3+4i)}$	$= \operatorname{carchar}\left(\frac{2}{i}\right)$
$W = \frac{33+44i+6i-8}{9+16}$	= antry 2.
$M = \frac{52}{1000000000000000000000000000000000000$	
W = 1+2i	

I.C.B.

I.Y.G.B.

 $z = 1 + \sqrt{3}i$ and $\frac{w}{z} = 2 + 2i$.

Find the exact value of the modulus of w and the exact value of the argument of w.

12/2

 $\left. \begin{array}{c} \frac{2}{2} = 1 + \sqrt{3} \frac{1}{4} \\ \frac{W}{2} = 2 + 2\frac{1}{4} \end{array} \right\} \stackrel{W}{\Longrightarrow} \left. \begin{array}{c} \frac{W}{2 + 2\frac{1}{4}} = 1 + \sqrt{3} \frac{1}{4} \\ \frac{W}{2} = \frac{1}{2} + \sqrt{3} \frac{W}{2} \\ \frac{W}{2} = \frac{1}{2} + \sqrt{3} \frac{1}{4} \\ \frac{W}{2} = \frac{1}{4} + \sqrt{3} \frac{1}{4}$ METHOD A METHED B W= 2+2/31+21-2/3 • $W = (2+2i)(1+\sqrt{2}i)$ $W = (2 - 2\sqrt{3}^{2}) + (2 + 2\sqrt{3}^{2})^{2}$ $\Rightarrow [w] = [(2+2i)(1+\sqrt{2}i)]$ $\Rightarrow [w] = [2+2i](1+\sqrt{2}i]$ Thus $|W| = \sqrt{(2 - 2\sqrt{3}^2)^2 + (2 + 2\sqrt{3}^2)^2}$ \Rightarrow $|W| = \sqrt{2^{k}+2^{k^{-1}}} \sqrt{1^{2}+(\sqrt{2^{k}})^{k^{-1}}}$ ⇒ W = JB × J4 \Rightarrow [W] = $\sqrt{4 - 843^2 + 12 + 4 + 843^2 + 12}$ =>|W| = 242 × 2 \Rightarrow $|w| = \sqrt{32}$ $\Rightarrow |w| = 4\sqrt{2}$ ⇒ lwl = 4√2 • and $\mu = \operatorname{arg}\left(2+21\right)\left(1+\sqrt{2}1\right)$ · FINALLY $\Rightarrow ang(2+21) + ang(1+121)$ $\Rightarrow \alpha \eta W = \alpha \eta ((2-2\sqrt{3})+i(2+2\sqrt{3}))$ $\Rightarrow agg_W = arctin(\frac{2}{2}) + arctin(\frac{\sqrt{3}}{2})$ $W = antau \left[\frac{2+2\sqrt{3}}{2-2\sqrt{3}}\right] + \pi$ => any = arctan 1 + arctan 13 $\Rightarrow OW = \frac{1}{4} + \frac{1}{3}$ $Q_{\mathcal{B}} h = \operatorname{angal}\left(\frac{1-d\underline{2}_{i}}{1+d\underline{2}_{i}}\right) + d.$ 8m = 15 2 $\operatorname{cite}_{\mathcal{O}}^{\mathcal{O}}\left[\frac{(1-4\mathcal{I}_{1})}{(1+4\mathcal{I}_{1})(1+4\mathcal{I}_{1})}\right]+\underline{j}$ are the function $\left[\frac{1+2\sqrt{3}+3}{1-3}\right]$ + T $\Rightarrow a m w = - \frac{S\pi}{42} + \pi$ oppu = in

 $||w| = 4\sqrt{2}$

 7π

12

14

Madası

 $\arg w =$

I.C.p

Created by T. Madas

RI.

Question 5

Y.C.B.

I.C.B.

The following complex numbers are given.

- $z_1 = 2 2i$, $z_2 = \sqrt{3} + i$ and $z_3 = a + bi$ where $a \in \mathbb{R}$, $b \in \mathbb{R}$.
- **a**) If $|z_1 z_3| = 16$, find the modulus z_3 .
- **b**) Given further that $\arg\left(\frac{z_3}{z_2}\right) = \frac{7\pi}{12}$, determine the argument of z_3 .

c) Find the values of a and b, and hence show $\frac{z_3}{z_3} = -2$ z_1

a = -4

|b = 4|

F.G.B.

120

 $||z_3| = 4\sqrt{2}$

3%

2

Created by T. Madas

1.01

Question 6

IV A

 $z = \sqrt{3} + i$ and w = 3i.

- a) Find, in exact form where appropriate, the modulus and argument of z and the modulus and argument of w.
- **b)** Determine simplified expressions for zw and $\frac{w}{z}$, giving the answers in the form x+iy, where $x \in \mathbb{R}$, $y \in \mathbb{R}$.

c) Find, in exact form where appropriate, the modulus and argument of zw and the modulus and argument of $\frac{w}{z}$.

$ z =2, w =3$, $\arg z = \frac{2}{3}$	$\frac{\pi}{5}$, $\arg w = \frac{\pi}{2}$, $\boxed{zw = -3 + \frac{\pi}{2}}$	$\overline{3\sqrt{3}i}$, $\frac{w}{z} = \frac{3}{4} + \frac{3}{4}\sqrt{3}i$
-418.Co.	$ zw = 6$, $\left \frac{w}{z}\right = \frac{3}{2}$, $\arg($	zw) = $\frac{2\pi}{3}$, $\arg\left(\frac{w}{z}\right) = \frac{\pi}{3}$

$$\begin{split} \|\boldsymbol{\varepsilon}\| &= \|\boldsymbol{\zeta}\|^{-1} + \|\boldsymbol{\varepsilon}\| &= \langle \boldsymbol{\zeta}(\boldsymbol{\varsigma})^{+} + \|\boldsymbol{\varepsilon}\| &= \langle \boldsymbol{\zeta} = \boldsymbol{\varepsilon} \\ \|\boldsymbol{v}\| &= \langle \boldsymbol{s} \boldsymbol{\varepsilon} \| = \boldsymbol{s} \\ \|\boldsymbol{v}\| &= \langle \boldsymbol{s} \boldsymbol{\varepsilon} \| = \boldsymbol{s} \\ \boldsymbol{\alpha} \\ \boldsymbol{\Omega} \\ \boldsymbol{\delta} \\ \boldsymbol{\delta} \\ \boldsymbol{\sigma} = \alpha \boldsymbol{\eta} \langle \boldsymbol{\zeta} \\ \boldsymbol{\varepsilon} + \| &= \alpha n \boldsymbol{\delta} \boldsymbol{s} \\ \boldsymbol{\delta} \\ \boldsymbol{\delta} \\ \boldsymbol{\delta} \\ \boldsymbol{\sigma} \\ \boldsymbol{\delta} \\ \boldsymbol{\delta}$$

 $\begin{array}{c} \underbrace{ W }_{\mathbb{Z}} = \langle \overline{(\mathcal{L}_{+}^{-1})} (3i) = 3\overline{\mathcal{L}_{1}^{-1}} = -3 + 3\overline{\mathcal{L}_{1}^{-1}} \\ \\ \\ \frac{W}{\mathbb{Z}} = -\frac{3i}{\mathcal{U}_{+}^{-1}} = \frac{3i}{\langle \mathcal{L}_{+}^{-1} (\mathcal{L}_{+}^{-1}) \\ \\ \hline \langle \mathcal{L}_{+}^{-1} (\mathcal{L}_{+}^{-1}) \\ \\ \end{array} = \frac{3\mathcal{L}_{+}^{-1}}{3+1} = \frac{3}{4} + \frac{3}{4} \overline{\mathcal{L}_{+}^{-1}} (i) \\ \end{array}$

 $\begin{aligned} \mathbf{G} \quad & \left[\mathbf{Z}_{\mathbf{M}} \right] = \left[\mathbf{Z}_{\mathbf{M$

Question 7

The following complex numbers are given

$$x = \frac{1+i}{1-i}$$
 and $w = \frac{\sqrt{2}}{1-i}$.

- **a**) Calculate the modulus of z and the modulus of w.
- **b**) Find the argument of z and the argument of w.

 $|w_i| = \left\lfloor \frac{\sqrt{2}}{1-1} \right\rfloor = \frac{1}{1-1}$ $\operatorname{Org}(2) = \operatorname{Org}\left(\frac{1+1}{1-1}\right) =$

= = - (-=)

 $\operatorname{ang}\left(\frac{\sqrt{2}}{1+1}\right) = \operatorname{ang}\left(\frac{1}{2}\right) = \operatorname{ang}\left(\frac{1}{2}\right)$

 $=\frac{4\overline{2}^{2} + (246\overline{2}^{2})}{2}$ $=\frac{4\overline{2}^{2}}{2} + \frac{246\overline{2}}{2}$

- In a standard Argand diagram, the points A, B and C represent the numbers z = z + w and w respectively. The origin of the Argand diagram is denoted by O.
 - c) By considering the quadrilateral *OABC* and the argument of z + w, show that

 $\tan\left(\frac{3\pi}{8}\right) = 1 + \sqrt{2} \; .$

Ζ.

 $\left(\frac{-1}{2}\right) = \left(-\frac{\pi}{4}\right) = \frac{\pi}{4}$

RECTAND BY BIS 3

THE OF HOC, SO THAT

ADC = # AOB = BOC = #

 $\frac{1}{|V|} \approx \frac{1+\frac{1}{1-\frac{1}{2}}}{1-\frac{1}{2}} + \frac{\frac{1}{1-\frac{1}{2}}}{1-\frac{1}{2}} \approx \frac{(1+\frac{1}{2})+\frac{1}{2}}{(1-\frac{1}{2})+\frac{1}{2}(\frac{1}{2}+\frac{1}{2})} \approx - \frac{1+\frac{1}{2}}{\frac{1+\frac{1}{2}}{2}} + \frac{(1+\frac{1}{2})\frac{1}{2}+\frac{1}{2}}{\frac{1}{2}} + \frac{1}{2}$

|w| = 1

 $\frac{\text{M+H}_{\text{CB}}}{2} \xrightarrow{\mathbb{Z}+W} = \frac{1+1}{1-1} + \frac{4\pi}{1-1} = \frac{(1+4\pi)+1}{1-1}$

 $\operatorname{reg}(2 + \operatorname{tr}) = \operatorname{creg}\left(\underbrace{(1 + \sqrt{2}) + 1}_{i}\right)$

 $\frac{3\pi}{8} = \arg\left[1+6^{2}\right] + \left[-\arg(1-1)\right]$

 $\begin{array}{rcl} \frac{\partial G}{\partial T} &=& \operatorname{Orbut}\left(\frac{1}{(1+G)}\right) - \operatorname{Orbut}\left(\frac{1}{(1+G)}\right) \\ \frac{\partial G}{\partial T} &=& \operatorname{Orbut}\left(\frac{1}{(1+G)}\right) - \left(-\frac{T}{2f}\right) \\ \frac{\partial G}{\partial T} &=& \operatorname{Orbut}\left(\frac{1}{(1+G)}\right) + \frac{T}{2f} \end{array}$

3 = try antry (1+r) +]

1-1-

CAN OF THE

 $\frac{2+42}{32} = \frac{2}{32} +$

aby (1+2)) + trit

m (tot) touil

π

2

arg w =

tay (A+B)= tan A+tanB

 $\arg z =$

Question 8

I.C.B.

I.V.G.B.

 $\frac{(3+4i)(1+2i)}{1+3i} = q(1+i) , \quad q \in \mathbb{R} .$

- **a**) Find the value of q.
- **b**) Hence simplify

20/2.51

 $\arctan\frac{4}{3} + \arctan 2 - \arctan 3$,

giving the answer in terms of π

ŀ.C.p.

21/20

hs.com

.G.5.

5

.

nadası

I.G.B.

- (b) $\frac{(3+4i)(1+2i)}{1+3i} = \frac{5}{2}(1+i)$
- $\Rightarrow \arg \left[\frac{(3+4i)(1+2i)}{1+3i} \right] = \arg \left[\frac{5}{2} (1+i) \right]$
- ⇒ ang(3+4i) + ang(+2i) ang(+3i) = ang € + ang(+i)
- =) $\operatorname{antral}_{\frac{3}{2}} + \operatorname{antral}_{\frac{1}{2}} \operatorname{antral}_{\frac{3}{2}} = 0 + \operatorname{antral}_{\frac{3}{2}}$ =) $\operatorname{antral}_{\frac{3}{2}} + \operatorname{antral}_{\frac{3}{2}} = 0$
- y manig + anday 2 anday 3 = #

Created by T. Madas

2017

R

Question 9

ŀ.G.p

Y.G.B.

It is given that

 $z = \frac{1+8i}{1-2i}$

- **a**) Express z in the form x + iy.
- **b**) Find the modulus and argument of z.
- c) Show clearly that

 $\arctan 8 + \arctan 2 + \arctan \frac{2}{3} = \pi$.

z = -3 + 2i, $|z| = \sqrt{13}$, $\arg z \approx 2.55^{\circ}$

 $(\mathbf{e}) \quad 2 = \frac{1+\mathbf{8}i}{1-2i} = \frac{(i+\mathbf{8}i)(i+2i)}{(i-2i)(i+2i)} = \frac{1+2i+\mathbf{8}i-\mathbf{16}}{i+4} = \frac{-i\mathbf{5}+\mathbf{16}i}{-\mathbf{5}} = -\mathbf{5}+2i$

I.C.P.

. G.D.

Mada

madas,

- (b) $|z| = |-3+2i| = \sqrt{(-3)^2 + 2^{2i}} = \sqrt{13^2}$ $\cos(2i) = \pi + \operatorname{ontbm}(\frac{-3}{2i}) = \pi - \operatorname{ontbm}(\frac{3}{2i})$
- (c) $\frac{1+8i}{1-2i} = -3+2i$
- $\Longrightarrow \operatorname{and}\left(\frac{1-2!}{1+B!}\right) = \operatorname{and}\left(-2+5!\right)$
- $\implies \operatorname{ang}(J + B_i) \operatorname{ang}(J 2i) = \operatorname{ang}(-3 + 2i)$ $\implies \operatorname{angh}(\frac{B}{I}) \operatorname{angh}(\frac{-2}{I}) = \pi \operatorname{angh}(\frac{-3}{2} + 2i)$
- =) anothy 8 + andow 2 = 71 andow 3

F.G.B.

=) anthy 8 + anthy 2 + anthy 3 = TT + 1

Created by T. Madas

R.

COMPLEX POLYNOMIAL TSTIONS CON. POLYNON. QUESTIONS UL IN INALASINATISCOM INCOM INCOM T. I. Y. G.B. MARIASMANIS.COM I. Y. G.B. Marias,

Question 1

The cubic equation

 $2z^3 - 5z^2 + cz - 5 = 0, \ c \in \mathbb{R},$

has a solution z = 1 - 2i.

Find in any order ...

i C.B.

- **a**) ... the other two solutions of the equations.
- **b**) ... the value of c.

C.I.

Question 2

i.C.B.

I.C.P.

The following cubic equation is given

 $z^3 + az^2 + bz - 5 = 0,$

 $z_2 = 2 - i$

where $a \in \mathbb{R}$, $b \in \mathbb{R}$.

One of the roots of the above cubic equation is 2+i.

- a) Find the other two roots.
- **b**) Determine the value of a and the value of b.

F.C.B.

nadası,

 $z_3 = 1$, a = -5, b = 9

Question 3

C.B. III

I.C.P.

The following cubic equation is given

 $z^3 + pz^2 + 6z + q = 0,$

where $p \in \mathbb{R}$, $q \in \mathbb{R}$.

One of the three solutions of the above cubic equation is 5-i.

- a) Find the other two solutions of the equation.
- **b**) Determine the value of p and the value of q.

METERD 4.	METHED B
9) ~= 5−1 &= 2+1	((a)) S ¹ = 2+1
$ \begin{array}{l} \partial_{z} = x \gamma_{z} + y \partial_{z} + \partial_{z} \approx \\ \partial_{z} = (1-z) \chi_{z} + (1+z) (1-z) \approx \end{array} $	The second
$\Rightarrow 25 + 1 + 58 + 18 + 58 - 18 = 6$ $\Rightarrow 25 + 1 + 28 + 18 + 28 - 18 = 6$	$\begin{cases} -\left[\left(s-2\right)+\frac{1}{2}\right]\left[\left(s-2\right)-\frac{1}{2}\right]\\ -\left[\left(s-2\right)+\frac{1}{2}\right]\left[\left(s-2\right)-\frac{1}{2}\right]\\ -\left[\left(s-2\right)-\frac{1}{2}\right]\left[\left(s-2\right)-\frac{1}{2}\right]\\ -\left(s-2\right)-\frac{1}{2}\left[\left(s-2\right)-\frac{1}{2}\right]\right] \end{cases}$
-) J= -2	$= \frac{2}{2} - 102 + 22 + 1$
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	= = = +26
₹3 = -2	23+722+62+0=(2+c)(22-102+2c)
$P = -\frac{q}{1} = \alpha + b + \gamma$ $\Rightarrow -P = (s-i) + (s+i) - \gamma$	$\equiv 2^{3} - 102^{2} + 262$ $C^{2^{2}} - 10C^{2} + 26C$
⇒ -p = 8	$\equiv z_{+}^{3} + (c_{-10})z_{+}^{2} + (z_{-10c})z_{+}z_{6c}$
	a_{CUMTE} $a_{\text{CHE}} = a_{\text{CHE}} + a$
4010	C = 2 $p = -8$ $q = sz$
$\Rightarrow -d = (z-i)(z+i)(-z)$	· Z+C=D Z+D=D
$\Rightarrow - \varphi = (2S+i)(-2)$	Z=-2
$\Rightarrow q = s2$	77/15 21=5-1 P=-8 21=5+1 d=52
/	E3==2

F.C.P.

 $z_2 = 5 + i, z_3 = 2$, p = -8, q = 52

2%

Question 4

27

The following cubic equation is given

 $z^3 + 2z^2 + az + b = 0,$

where $a \in \mathbb{R}$, $b \in \mathbb{R}$.

One of the roots of the above cubic equation is 1+i.

- **a**) Find the real root of the equation.
- **b**) Find the value of a and the value of b.

MHTED A				
$1f = 2_1 = 1 + 1$ $Z_2 = 1 - 1$	77K2 [Z-C	(+f)][z= (1-0]	= [(z-1)-i][(z-1)+i]	
	$= (2-1)^2$	$-1^2 = 2^2 - 22 + 1$	r (= 2 ² -22+2	
	$\frac{1}{2}$ the form of the second sec	$z^2 + \alpha z + b \equiv Gz$	+c)(2²-22+2)	
		≦ Z ²	-222+22	
		= z ³	$\frac{ce - 2c2 + 2c}{(c-2)2^2 + (2-2c)2} + 2c$	
THUS C-2=2	Q = 2-2C	ac = h		
[<u>C=</u> 4]	a = 2 - 8 a = -6	6 = B	o", a=-6	
(Z+4)=0	+		Z=-4	
24			11	
METTING B				
ictripio D	н. н			
SUM OF THE 3 D	- <u>0</u> - <u>0</u>	$=-\frac{2}{1}=-2$		
(1+i)+((-i)+ . <u>~</u>	-2		
	-2			
	/ .			
$\frac{d}{a} = \frac{c}{a}$	cl + liz + Ya	5	$\frac{d}{d} = \frac{d}{d} = \alpha \partial \gamma$	
$\frac{a}{1} = (1$	+1)(1-1)+(1-1)	i)(-4) + (1+i)(-4)	$-\frac{b}{i} = (i+i)(i-i)(-q)$	
0 = 2	-4+41-4-	H (b = (1+1)(1-1) x 4	
a = -6	/	1	p= s×t	
			p= 8	
			1	

z = -4

a = -6, b = 8

Question 5

ĈĿ;

I.C.P.

The following cubic equation is given

 $z^3 + Az^2 + Bz + 26 = 0,$

where $A \in \mathbb{R}$, $B \in \mathbb{R}$

One of the roots of the above cubic equation is 1+i.

- a) Find the real root of the equation.
- **b**) Determine the value of A and the value of B.

z = -13,	A = 11,	B = -24
	10	

21/20

a)	2 + Az2 + B2 + 26 = 0
	• FIRT $Z = 1 \pm i$ ARE SOLUTIONS THEN $\left[Z - (l + 1)\right] \left[Z - (l - 1)\right] = \left[(2 - 1)^2 + 1\right] \left[(2 - 1) + 1\right]$
	$= (2-1) - 1^{-1}$ $= z^{2} + 2z + 1 + 1$ $= z^{2} - 2z + 2$
	• THUL BY INSPECTION OF $\mathbb{Z}^3 \xrightarrow{3} \mathbb{A}^{26}$ $\mathbb{Z}^3 \xrightarrow{1} \mathbb{A}^{26} + \mathbb{B}_2 + 26 = 0$ $(\mathbb{Z}^2 - 22 + 2)(\mathbb{Z} + 13) = 0$
(1.	i Refu Rat u Z=-13
(b) Finitury $(\overline{z}^2 - 2\overline{z} + 2)(z+B) = \underline{z}^1 + B z^2 - 26z - 2z^2 - 26z - 2z + 26$

A=11 B=-

·C.A

Question 6

Ĉţ.

1.0,

The cubic equation

 $2z^3 - z^2 + 4z + p = 0, \ p \in \mathbb{R},$

is satisfied by z = 1 + 2i.

- a) Find the other two roots of the equation.
- **b**) Determine the value of p.

 $1 - 2i, -\frac{3}{2}$ *p* =15

AS THE ODAFRONTIS OF THE POLYNOMIAL EQUIPTION ARE BE	or, tw
20075 MUST ARRAR AS CONJUGATE PARS - SO WE HAVE	
Z1 = 1+2, , SAY ~	
$\neq_2 = 1 - 2i_1 \text{ solv } 2$	
Now 1+6+8 = - b-	
$(1+2i)+(1-2i)+\chi = -\frac{-1}{2}$	
$2 + \gamma = \frac{1}{2}$	
7=-2	
- SOUTEDING ARE 1+21, 1-21 6 - 35	
1 1 4	
NOW orby = -d	
$(1+2i)(1-2i)(-\frac{3}{2}) = -\frac{p}{2}$	
3(1+2i)(1-2i) = p	
$p = 3(1^{2}+2^{4})$	
p = 15	
ACTIONATIVE WITHOUT WING ROOT RELATIONSHIPS	
$(1+2i)^2 = 1+4i+(2i)^2 = 1+4i-4 = -3+4i$	
$(1+2i)^{3} = (-3+4i)(1+2i) = -3-6i+4i-8 =$	-11-2
SIB NDO THE GARGE TO GUIDE DO GART	
28 ³ -2 ² +4% +9 ap	
2(-1)-2i)-(-3+4i)+4(1+2i)+p=0	
-2-41+3-41+4+81+P=0	
Pals	

MOD SOUTIONS MUST APPARE IN CONJUNATE PARES IF COMPLEX	1
(2-1-2i)(2-1+2i) - [(2-1)-2i][(2-1)+2i]	
Car and a Carl a Carl	
= (3-1) ⁻ (2/) ²	
= 2*-22+1++	
= 2-22+5	
	-
AV INSPECTION	
$2\overline{z}^{3} - \overline{z}^{2} + 4\overline{z} + 1\overline{s} = (2\overline{z} + 3)(\overline{z}^{2} - 2\overline{z} + \overline{s})$	
1+2	

·GA

Question 7

ŀG.B.

I.G.B.

Consider the cubic equation

 $z^3 + z + 10 = 0, \ z \in \mathbb{C}$.

2112

- **a**) Verify that 1+2i is a root of this equation.
- **b**) Find the other two roots.

 $z_1 = 1 - 2i$,

COM

 $z_2 =$

5

Madasn.

202

F.C.B.

Question 8

I.C.B.

Solve the equation

 $2z^4 - 14z^3 + 33z^2 - 26z + 10 = 0, \ z \in \mathbb{C}$

given that one of its roots is 3+i.

i.C.B.

aths.com

Kal

Madasm,

Com

I.V.G.B

1	z=3+i, z=3	$3-i, z = \frac{1}{2}$	$\frac{1}{2} + \frac{1}{2}i, z = \frac{1}{2}$	$\frac{1}{2} - \frac{1}{2}i$	4
		2	4	0.	
22.	<	As the polyhowith gran	UN 25 WIGHTON DATE 244- (NOTT	eroituoz y Ventuoz	6
1905		[±−(3+1)][±−(3	$(z-3)^2 = ((z-3)^2 - 1^2)^4$ = $((z-3)^2 - 1^2)^4$ = $z^2 - 6z + 9 + 1$ = $z^2 - 6z + 10$		Sp.
	3	KOLAND JUNE JUNE	222 - 22 + 1		XQ
	1211	72~ 62 +10	$2^{24} - 147^{3} + 337^{2} - 267 + 10$ $-28^{4} + 127^{3} - 208^{2}$ $-28^{3} + 137^{2} - 267 + 10$ $+28^{3} - 127^{3} + 207^{2}$		
Þ.	20		2 ² -62 +10 -2 ¹ +92 -10		
2		$\frac{4}{4} = \frac{1}{2} = \frac{1}$	2		
On	-0	$(2k-1)^2 = -1$ $2k-1 = \pm 1$ $2k = 1\pm 1$		0	
1		モー ±±芝) に 74fe foce societion aft	s 3+i, 3-i, ±+±i, ±-	±i/	
	/ ₁	- Y	P_		~ J
5	1 m		S.C.	λ	10
	62)	- 20		
n				5	
190	5 5	0.		×9	2
19	Ph	190	6	- 4	20
	Qar.	14	Sh		20
2	- Co.		12	6	1
8	100	2	- 4	20	
10		Uh.		20	

00

hs.col

nadasman

madasm

.

COM

I.C.B.

hs.com

Question 9

.G.B.

I.C.P.

Inadasn.

 $2z^3 + pz^2 + qz + 16 = 0, \ p \in \mathbb{R}, \ q \in \mathbb{R}.$

The above cubic equation has roots α , β and γ , where γ is real.

It is given that $\alpha = 2(1+i\sqrt{3})$.

a) Find the other two roots, β and γ .

b) Determine the values of p and q.

 $\beta = 2(1 - i\sqrt{3})$ $\frac{1}{2}$, p = -7, q = 28 $\gamma = -$

F.G.B.

COM

Mana,

⇒4(1+3)		(1-1/3)	1-(1
⇒l6 -2	2	9	
		÷	

Question 10

C.5.

F.G.B.

 $z^4 - 8z^3 + 33z^2 - 68z + 52 = 0, \ z \in \mathbb{C} \ .$

One of the roots of the above quartic equation, is 2+3i.

Find the other roots of the equation.

anasn

-0-	z = 2 - 3i, z = 2
n in	
$\frac{2^{4}-8z^{2}+33z^{2}-66z+52=0}{45}$ $\frac{45}{10}$ THE GRATION THIS DEAL DEFENDING ANY DOTS IF COMPLEX MUST EXIST AS LORINGERT ANDS $\frac{1}{10}$ $\frac{1}{10}$	$\begin{array}{l} ^{4}_{1} \text{PVCE} & \text{We flave} \\ & = \underbrace{ z^{4} - b z^{4} + 33 z^{6} - 6 e_{2} + 52 = (z^{2} - 4 z + 13)(z^{4} - 4 z + 4) \\ & = (z - 4 z + 13)(z - 2)^{2} \\ ^{4}_{1} \text{PVCE} & \underbrace{ \text{The frace stars for or southouss is } }_{2} \end{array}$
$\frac{Pboces}{\left[\left(i \in Z\right), \left(\overline{z} - \overline{z}_{i}\right) = \left[\left(z - \overline{z}_{i}\right), \left(\overline{z} - \overline{z}_{i}\right)\right] = \left[\left(z - \overline{z}_{i}\right), \left(\overline{z} - \overline{z}_{i}\right)\right] = \left[\left(z - \overline{z}_{i}\right), \left(\overline{z} - \overline{z}_{i}\right)\right]$	2 - 2+3; (Grue) 2-3; 2 (24%879)
$= (2^{2} - 2^{2})^{-1} (2^{2})^{-1}$ $= 2^{2} - 42 + 4 + 3$ $= 2^{2} - 42 + 13$ $= 2^{2} - 42 + 13$ (AOTEMARY AS (AOULY SAOU) (200) (12)	
$\begin{array}{c} \frac{z^2 - 4z + 4}{4^2 - 4z + 4} \\ z^2 - 4z + 13 \\ \frac{z^2 - 4z^2 + 6z^2 + 3z^2 - 6z + 5z}{z^2 + 4z^2 - 8z^2} \\ \frac{-4z^2 + 4z^2 - 8z^2}{4^2 + 2zz} \\ \frac{-4z^2 + 6z^2 - 6z + 5z}{4^2 - 6z + 5z} \\ \frac{4z^2 - 6z + 5z}{4^2 - 6z + 5z} \\ \frac{-4z^2 + 16z + 5z}{4^2 - 6z} \\ 0 \end{array}$	

1121/2.51

Ĉ.Ŗ

nadasn,

Created by T. Madas

2017

Question 11

27

It is given that z = 2 and z = 1 + 2i are solutions of the equation

$${}^4-3z^3+az^2+bz+c=0\,.$$

where a, b and c are real constants.

Determine the values of a, b and c.

a = 5, $b = -$	1, c = -10
122	.9
PROCEED AS FOLLOWS - AS QUARTIC HAS COMPLEX POITS WILL APPEAR AS CONJUGAT	26th WHEN THE ANY 7 Phili
50 Z1=2 Z2=(+2) Z3=1	- 21
$\begin{array}{c} \text{Now} \text{THE sour of A(2, 4) and satisfy} \\ \hline \\ $	- <u>-3</u>
$\begin{split} & \left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[\left[$	=0
→ ₹ ² - ² - ² - ² - ² - 22 ² + 22 ² + 4 ² + 52 ² - 5 ² - ¹ 0 = 0	
$\Rightarrow z^4 - 3z^1 + zz^2 - z - 10 = 0$	* 9=5 b=-1 c=-10

Question 12

Smaths.com

I.V.C.P

2.

If 1-2i is a root of the quartic equation

madasmaths.com

I.F.G.B.

1.1.6.8

1720281

I.V.C.B. Madasmaths.Com

find the other three roots.

$z^4 - 6z^3 + 18z^2 - 30z + 25 =$	=0	<u>ک</u>
1.1	· · · · ·	1.1
z ₂ =	$1+2i$, $z_3 = 2-i$, $z_4 = 2+i$	19
na	IF $2_{1}=1-21$ is 4 Bay THO $2_{2}=1+21$ BUT 450 B 4 Southan A THE CORPUBIE OF THE QUARK AR BAY. $[2-(1-21)][2-(1+21)]=(2-1)+21][(2-1)-22]=(2-1)^2-(21)^2$	02
alasm.	$\sum_{(1,2)\\(2,2)$	"Ing
i allo	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	
S. C	$\begin{array}{c} (\mathbb{Z} - 3)^{L_{\alpha}} - 1 \\ \mathbb{Z} - 2 = \pm \frac{1}{2} \\ \mathbb{Z} = 2 \pm \frac{1}{2} \end{array} \qquad $	A.

I.Y.C.B. Madasmarks.Com

I.C.B.

ins.com

ths.col

Y.G.

1.6

Madasman

I.V.C.B. Madasm

Created by T. Madas

madasmaths.com