ADVANCED MENSURATION

Created by T. Madas

Question 1 (**)
A water tank has a square base of length 48 cm and height 35 cm .

It is filled with water to a height of 25 cm .

When a solid sphere is placed in the tank the water level rises by $\pi \mathrm{cm}$.

Assuming the sphere is fully submerged determine the radius of the sphere.

$$
r=12 \mathrm{~cm}
$$

Created by T. Madas

Question 2 (**+)

The figure above shows two circles, with centres at M and N, with respective radii 7 cm and 3 cm touch each other. The points M, N and C lie in a straight line and the straight line $A B C$ is a common tangent to the circles.

Determine the length of $M C$.

Question 3 (***+)
A circular cylinder and a sphere both have radius $r \mathrm{~cm}$.

The total surface area of the cylinder is twice as large as the surface area of the sphere.
Determine the ratio of the volume of the cylinder to the volume of the sphere.

Created by T. Madas

Question 4 (****)

The figure above shows a circle with centre at O, inscribed in a square $A B C D$. The diagonal $A C$ meets the circle at the points P and Q.
a) Show clearly that $\measuredangle P D Q=\arccos \frac{1}{3}$.
b) Given that the triangle $P D Q$ is of unit area, determine the exact area of the triangle $A P D$.

Question 5 (*****)
The following information is given.

- The straight line l_{1} is a tangent to a circle at the point T and the point C is another point on l_{1}.
- The straight line l_{2} passes through C, intersecting the circle at two distinct points A and B.
- The straight line l_{3} is the angle bisector of $\measuredangle T C A$.

Given further that l_{3} intersects $T A$ and $T B$ at the points P and Q respectively, prove that the triangle $T P Q$ is isosceles.

Created by T. Madas

The figure above shows a Reuleaux heptagon, $A B C D E F G$, constructed as follows.

Firstly a regular heptagon $A B C D E F G$ with centre at O and radius r is constructed. This is shown dotted in the figure.

A circular arc $\overparen{A B}$ is drawn with centre at E and radius $E A$. A second circular arc $\overparen{B C}$ is drawn with centre at F and radius $F B$.

A third circular arc $\overparen{C D}$ is drawn with centre at G and radius $G C$ and the process is repeated, forming a curved heptagon known as a Reuleaux heptagon.

Show that the area of this Reuleaux heptagon is

$$
r^{2}\left[2 \pi \cos ^{2}\left(\frac{\pi}{14}\right)-\sin \left(\frac{\pi}{7}\right)\right]
$$

\square , proof

Created by T. Madas

Question 7 (*****)

The figure above shows the cross sectional view of a solid sphere that just fits inside a right circular conical shell of radius 6 cm and height $h \mathrm{~cm}$.

If the sphere occupies $\frac{3}{8}$ of the volume of the conical shell determine the two possible values of h.

Created by T. Madas

Question 8 (*****)

The figure above shows a triangle $A B C$, where $|A B|=a$ and $|A C|=2 a$.

The angle $B A C$ is α, where $\tan \alpha=\frac{3}{4}$.

The side $B C$ is extended to the point D so that the angle $A C D$ is denoted by θ. Show clearly that $\theta=\arctan 2$.
\square , proof

Created by T. Madas

Question 9 (*****)

$$
2 x \tan x=1, x \neq \frac{1}{2} n \pi, n \in \mathbb{N}
$$

a) Show that the above equation has a solution in the interval $(0.6,0.7)$.
b) Use the Newton Raphson method to find the solution of this equation, correct to 5 decimal places.

The figure below shows a circle, centre at O. The points A, B and C lie on the circumference of this circle. A circular sector $A B C$, subtending an angle of 2θ at C, is inscribed in this circle.

c) Determine the greatest proportion of the area of the circle, which can be covered by this sector.

You may give the answer as a percentage, correct to two decimal places
\square
\square

