VECTOR TOCE VECTOR PRACTICE Part B EC ACTA Part B CLASTICALIS.COM LY.C.B. IN2UGSIN2HIS.COM LY.C.B. IN2U3.COM

THE CROSS PRODUCT OF A DATE OF A DAT

Question 1

Find in each of the following cases $\mathbf{a} \wedge \mathbf{b}$, where the vectors \mathbf{a} and \mathbf{b} are

a)
$$\mathbf{a} = 2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$$
 and $\mathbf{b} = 3\mathbf{i} - \mathbf{j}$

b)
$$\mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
 and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} - \mathbf{k}$

c)
$$\mathbf{a} = 3\mathbf{i} - \mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$

d) $\mathbf{a} = 7\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$

e)
$$a = 2i + 5j - 4k$$
 and $b = -3i + j - 3k$

 $\boxed{\mathbf{i}+3\mathbf{j}-17\mathbf{k}}, \boxed{-\mathbf{i}+4\mathbf{j}-7\mathbf{k}}, \boxed{5\mathbf{i}-5\mathbf{j}+10\mathbf{k}}, \boxed{-10\mathbf{i}-18\mathbf{j}+22\mathbf{k}}, \boxed{-11\mathbf{i}+18\mathbf{j}+17\mathbf{k}}$

(a)	$\left[\left[\left$
(6)	$ \begin{pmatrix} l_1 r_1^2 l_1 \end{pmatrix}_{A} \begin{pmatrix} 3_1 r_1^1 - l \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ -l \\ -l \\ -l \\ -l \\ -l \\ -l \\$
(0)	$ \begin{pmatrix} 3_{l-1}, -2 \end{pmatrix}_{A} \begin{pmatrix} 1_{l}, 3_{l}, l \end{pmatrix} = \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 3 & -l & -2 \\ l & 3 & l \end{vmatrix} = \begin{bmatrix} -l - (-d_{j})_{j-2} - s_{l}, q - (-d_{j})_{j-2} \\ - s$
(d)	$ \begin{pmatrix} (7_1), 4 \end{pmatrix}_{A} \begin{pmatrix} -1_1 S_1 2 \end{pmatrix} = \begin{pmatrix} j & j & \frac{1}{2} \\ 7 & 1 & 4 \\ -1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 - (2_1 - 4 - 14_1) A & -(-3) \\ 0 & 0 & 0 \end{pmatrix} $
(3)	$ \begin{pmatrix} z_1\xi_1^{-\frac{1}{4}} \end{pmatrix}_{A} \begin{pmatrix} (z_1^{-1})_{1-3} \end{pmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -z & (1-3) \end{vmatrix} = \begin{pmatrix} -(1-(-4)_{j})_{2-(-4)_{j}} \\ -z & (1-3) \end{pmatrix}$

6

Question 2

Find a **unit** vector perpendicular to both

 $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} - \mathbf{k}$.

1 -4i + 5j + 17k $\sqrt{330}$

$\underbrace{\underline{\alpha}}_{\Lambda} \underbrace{\underline{b}}_{\mathcal{D}} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 3 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\$
-415H7 = N 16+25+289 = N 330
: $(\gamma_1, \gamma_2, \gamma_3) \xrightarrow{(1)}_{\alpha \in \Sigma \setminus V} (\gamma_1, \gamma_2, \gamma_3) = (\gamma_1, \gamma_2, \gamma_3)$

Question 3

The vectors **a** and **b**, are not parallel.

Simplify fully

 $(2\mathbf{a}+\mathbf{b})\wedge(\mathbf{a}-2\mathbf{b})$.

	$5\mathbf{b} \wedge \mathbf{a} = -5\mathbf{a} \wedge \mathbf{b}$
	i h
USING THE FAOT THAT THE	"OBDER PRODUCT" IS "TRUBURD H-
OUGE ADDITION & SUBTRAY	TTON, WE OBTION
(2a+b), (a-2b) =	2 <u>a,a</u> - 4 <u>a,b</u> + <u>b,a</u> - 2 <u>b,b</u>
NEXT WE ROSE THE PROPRET	<u>ы</u>
• <u>U</u> , <u>U</u> = <u>0</u> For :	AU <u>U</u> Ao do U A V
- 312 312 ·	
2 =	2+4 <u>b</u> ,a+b,a -0
= 51	² A ^a

Question 4

The vectors **a**, **b** and **c** are not parallel.

Simplify fully

2

 $a \cdot \left[b \wedge (c+a) \right].$

 $a\cdot \left(b\wedge c\right)$

è

Question 5

F.G.B.

I.C.B.

2

The following vectors are given

a = 2i + 3j - kb = i + 2j + kc = j + 3k

- **a**) Show that the three vectors are coplanar.
- **b**) Express **a** in terms of **b** and **c**.

14

madasm.

madası

1121/2.Sn

F.C.B.

Created by T. Madas

F.G.B.

Question 6

. P.

The following three vectors are given

a = i + 3j + 2k b = 2i + 3j + k $c = i + 2j + \lambda k$

where λ is a scalar constant.

- a) If the three vectors given above are coplanar, find the value of λ .
- **b**) Express **a** in terms of **b** and **c**.

a)	IF THE VEOTORS ARE CORMWAR. THE MOSS AMOUNT
	OF MUY TWO WILL BE PERPAUDIWUME TO THE THED
	$\Rightarrow (\underline{a}, \underline{b}) \cdot \underline{c} = 0$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\implies \begin{vmatrix} 3 & 2 \\ 3 & 1 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = 0$
	(3-6) - 2(1-4) + A(3-6) = 0
	= -3+6-32=0
	⇒ 3 = 3A
	- <u>3=1</u>
6)	SETTING ON AN ADDATION
	a = pb + qc
	$\begin{pmatrix} l \\ 3 \\ 2 \end{pmatrix} = \binom{2}{l} + \binom{2}{l}$
	EQUATE SAY I & K (THE I SHOULD BALANCE)
	$2p+q=() \Rightarrow p=-1$ of $q=3$ p+q=2
	: <u>a = 3c - b</u>

Ĉ.Ŗ

è

Question 7

Ismaths.com

I.F.G.B

Com I. V.C.J

0

The vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are such so that

 $\mathbf{c} \wedge \mathbf{a} = \mathbf{i}$ $\mathbf{b} \wedge \mathbf{c} = 2\mathbf{k}$. and

madasmaths.

KGB Madasman

COM

COM

I.Y.C.B. Madasmarks.Com

I.F.G.B.

the com

-2i + 4k

COM

18.CU

4.6.0

6

Madasman

Express $(\mathbf{a}+\mathbf{b}) \wedge (\mathbf{a}+\mathbf{b}+2\mathbf{c})$ in terms of **i** and **k**.

nadasmaths.com

CROSS PR GEOMETS APPLICATION

Question 1

Find the area of the triangle with vertices at A(1,-1,2), B(-1,2,1) and C(2,-3,3).

Question 2

(C.P.

E.B.

F.C.F

Find the area of the triangle with vertices at A(2,1,1), B(-1,0,4) and C(3,-1,-1).

Ĉ.Ŗ

ng

Question 3

A triangle has vertices at A(-2,-2,0), B(6,8,6) and C(-6,8,12).

Find the area of the triangle ABC.

Smarns.co

1:0.

Question 4

A parallelepiped has vertices at the points A(2,1,t), B(3,3,2), D(4,0,5) and E(1,-2,7), where t is a scalar constant.

B

F

a) Calculate $\overrightarrow{AB} \wedge \overrightarrow{AD}$, in terms of t.

b) Find the value of $\overrightarrow{AB} \wedge \overrightarrow{AD} \cdot \overrightarrow{AE}$

The volume of the parallelepiped is 22 cubic units.

c) Determine the possible values of t.

 $(12-3t)\mathbf{i}+(-t-1)\mathbf{j}-5\mathbf{k}$, 11t-44, t=2,6

(a) $A_{k}^{(2)} = \frac{1}{2} - \frac{1}{2$

1.4.

100

G

Question 5

A triangular prism has vertices at the points A(3,3,3), B(1,3,t), C(5,1,5) and F(8,0,10), where t is a scalar constant.

The face ABC is parallel to the face DEF and the lines AD, BE and CF are parallel to each other.

В

- a) Calculate $\overrightarrow{AB} \wedge \overrightarrow{AC}$, in terms of t.
- **b**) Find the value of $\overrightarrow{AB} \wedge \overrightarrow{AC} \cdot \overrightarrow{AD}$, in terms of t.

The value of t is taken to be 6.

- c) Determine the volume of the prism for this value of t.
- **d**) Explain the geometrical significance if t = -1.

 $(2t-6)\mathbf{i} + (2t-2)\mathbf{j} + 4\mathbf{k}, \quad 4t+4, \quad V = 14 \text{ cubic units},$ A, B, C, D are coplanar, so no volume

 $\begin{array}{l} (\textbf{b}) \quad \overline{AB} = \underline{b} - 3 = ((i_1 b_1) - (3i_1 b_3) = (-2i_1 b_1 - 3)) \\ \overline{AC} = 5 - 3 = (5i_1 b_1) - (3i_2 b_3) = (3i_1 - i_1 a_1) \\ \overline{AB} + \overline{AC} = \begin{bmatrix} i & j & k \\ -2 & 0 & -3 \end{bmatrix} = (2c - 6i_1 a_1 b_1) = (2c - (3i_1 b_2) + (3i_1 - 1)) \\ \overline{AB} + \overline{AC} = \overline{AB} = \frac{c}{c} = (\frac{c}{c} + (2c - c_1 (2i_1 - a_1)) + (3i_1 - 1)) \\ \overline{AB} = \overline{C} + \frac{1}{c} - \frac{c}{c} = (\frac{c}{c} + (2c - (2i_1 - 2i_1)) + (3i_1 - 1)) \\ \overline{AB} + \overline{AC} + \overline{AB} = (2c - (2i_1 - 2i_1)) + (3i_1 - 1)) \\ \overline{AB} = \overline{C} + \frac{1}{c} - \frac{c}{c} = (2c - (2i_1 - 2i_1)) + (3i_1 - 1) \\ \overline{AB} = \frac{c}{c} + \frac{1}{c} + \frac{c}{c} = (2c - (2i_1 - 2i_1)) + (3i_1 - 1) \\ \overline{AB} = \frac{c}{c} + \frac{1}{c} + \frac{c}{c} = (2c - (2i_1 - 2i_1)) + (3i_1 - 1) \\ \overline{C} = \frac{c}{c} + \frac{1}{c} + \frac{c}{c} = \frac{1}{c} + \frac{1}{c}$

E

Question 6

A tetrahedron has vertices at the points A(-3,6,4), B(0,11,0), C(4,1,28) and D(7,k,24), where k is a scalar constant.

- **a**) Calculate the area of the triangle ABC.
- **b**) Find the volume of the tetrahedron ABCD, in terms of k.

The volume of the tetrahedron is 150 cubic units.

c) Determine the possible values of k.

<u>area = 75</u>, volume = $\frac{50}{3}|k-6|$, <u>k = -3,15</u>

	10-20° 2005
(a) -78, 42 = [b-	$\underline{a}_{k}\left[\underline{b}-\underline{a}_{k}\right] = \left[\underline{b}_{0}(t_{0})-(-3_{1}t_{1}+1)\right]_{k}\left[\underline{b}_{1}(t_{1}2b)-(-3_{1}t_{1}+1)\right] = \left(3_{1}5_{1}-4\right)_{k}\left(7_{1}-5_{1}2+4\right)$
= 1 3 7	$\frac{z}{2} = \frac{z+1}{k} = (u0^{1}-(00^{1}-20))$
\therefore ARA = $\frac{1}{2}$	$\overrightarrow{AB}_{A}\overrightarrow{AC} = \frac{1}{2} 100_{1}700_{1}S_{0} = \frac{1}{2} \sqrt{100000} + \frac{1}{2} \sqrt{10000} = 75$
W . /	$A_{D}^{-p} = \underline{d}_{-\underline{\alpha}} = (7_{1}k_{1}24) - (-3_{4}k_{1}4) = (10_{1}k_{1}-6_{1}20)$
5%	*• VOLMAY = $\frac{1}{6} \left[4\vec{k}_{A} \vec{AC} \cdot \vec{AD} \right]$
A	$= \frac{1}{2} \left[(100^{1} - 100^{1} - 20) \cdot (10^{1} k - 6^{1} 50) \right]$
	$=\frac{1}{6}$ loe6 - look + 6 ∞ -lo ∞
(C) Solvector	$= \frac{1}{6} \left[\frac{600 - \log k}{2} \right] = \frac{32}{3} \left[\frac{k-6}{2} \right]$
1K-6/=0	i ka < K
	~-3//

Question 7

With respect to a fixed origin O the points A, B and C, have respective coordinates (6,10,10), (11,14,13) and (k,8,6), where k is a constant.

- a) Given that all the three points lie on a plane which contains the origin, find the value of k.
- **b)** Given instead that OA, OB, OC are edges of a parallelepiped of volume 150 cubic units determine the possible values of k.

ARTISCOM INCOM INCOM INCOM INCOM INCOM INCOM T. T. G.B. HIRIBSHRIER BURGER I. Y. G. HIRIBBARKAN I. Y. HIRIBBA CLASINGUIS COM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM

Question 1

Find an equation of the straight line that passes through the point P(1,4,1) and is parallel to the vector $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$.

Give the answer in the form $\mathbf{r} \wedge \mathbf{a} = \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors.

Question 2

Find an equation of the straight line that passes through the points P(5,0,9) and Q(8,4,10).

Give the answer in the form $\mathbf{r} \wedge \mathbf{a} = \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors.

Question 3

A straight line has equation

 $\mathbf{r} = 4\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} + 8\mathbf{j} - 3\mathbf{k}),$

where λ is a scalar constant.

Convert the above equation into Cartesian form.

20	$\frac{x-4}{1}$	=	$\frac{y-}{8}$	2		$\frac{-5}{-3}$
$\left\{\begin{array}{c} \left\{ s_{1}^{2}, s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, s_{3}^{2},$	$\lambda = \frac{3}{2-2}$ $\lambda = \frac{3}{2-2}$ $\lambda = \frac{3}{2-2}$	5	<u>x-4</u> =	<u>y-2</u> = 02	-3	//

Question 4

A straight line has equation

$$\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + \lambda(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$$

where λ is a scalar parameter.

Convert the above equation into Cartesian form.

x-2	y+3	Z.
1	-2	$\frac{1}{2}$
	1	>

$\frac{\Gamma}{\Gamma} = (2, -3, 0) + \Omega(1, -2, 2)$ $\frac{\Gamma}{\Gamma} = 2 + 2, -3 - 2\lambda + 2\lambda$	
$\begin{array}{c} \chi=\chi+2\\ y=-3-2\lambda\\ z=2\lambda \end{array} \begin{array}{c} \chi=\chi\\ y=-3-2\lambda\\ z=2\lambda \end{array} \begin{array}{c} \chi=\chi-2\\ z=\chi\\ \chi=\chi\\ z=\chi\\ z=\chi\\ z=\chi \end{array}$	$\therefore \Im -2 = \frac{-3-4j}{2} = \frac{2}{2}$ $\Im -2 = \frac{4j+3}{-2} = \frac{2}{2}$

Question 5

Convert the equation of the straight line

$$\frac{x-3}{2} = \frac{y+2}{3} = \frac{5-z}{7}$$

into a vector equation of the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

Question 6

A straight line has equation

$$\left[\mathbf{r} - (5\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})\right] \land (7\mathbf{i} + 5\mathbf{k}) = \mathbf{0}$$

Convert the above equation into the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

02 Se-25 = 72+21 5a = 72+46 q y=2

Question 7

A straight line has equation

 $\mathbf{r} \wedge (2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) = (2\mathbf{i} - 5\mathbf{j} - 8\mathbf{k})$

Convert the above equation into the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

 $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k})$ or $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k})$

 $\left(\frac{1}{3}\right) = \left(5^{1}-7^{1}-\theta\right)$ = (2,-5,-8) $f_{2}(3) \begin{bmatrix} l & \frac{1}{2} & 0 & 2 \\ 0 & \frac{3}{2} & 2 & l \\ 0 & 3 & 4 & 2 \end{bmatrix}$ $\Gamma_{21}(-\frac{1}{2})$ $\left(\begin{array}{c} U \\ U \\ U \\ \end{array}\right) = \left(\begin{array}{c} U \\ U \\ U \\ \end{array}\right) + \left(\begin{array}{c} U \\ U \\ U \\ U \\ \end{array}\right)$ $\int = \left(\frac{5}{3}1\frac{2}{3}10\right) + \frac{1}{9}\left(\frac{2}{3}1-\frac{4}{3}11\right) + \left(\frac{4}{3}1-\frac{8}{3}+2\right)$ $(3_{1}-2_{1}^{2}) + \mu (\frac{2}{3}(\frac{4}{3}))$ $\Gamma = (3_{1}-2_{1}2) + \mathcal{A}(2_{1}-4_{1}1)$

Question 8

If the point A(p,q,1) lies on the straight line with vector equation

 $\mathbf{r} \wedge (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = (8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}),$

find the value of each of the scalar constants p and q.

p = q = 3

Question 9

The straight line L has equation

 $\left[\mathbf{r} - (3\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})\right] \land (2\mathbf{i} - 3\mathbf{k} + 4\mathbf{k}) = 0.$

Use a method involving the cross product to show that the shortest distance of the point (2,-1,-3) from L is 3 units.

proof

24

TRUSCOM INCOMINATION OF THE OWNER OWN T. I.Y.G.B. ITABLASTRATISCOM I.Y.G.B. ITABLASTRATISCOM I.Y.G.B. ITABLASTRATISCOM I.Y.G.B. ITABLASTRATISCOM I.Y.G. CLASINGUIS COM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM

Question 1

Find a Cartesian equation of the plane that passes through the point A(6, -2, 5), and its normal is in the direction $5\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$.

Question 2

Find a Cartesian equation of the plane that passes through the point A(5,1,2), and its normal is in the direction $2\mathbf{i} - 7\mathbf{j} + \mathbf{k}$.

An R	MHID B
1 11	-GRUATION OF PURNE WAST BE
24 45	21- 74+ 2= content
-	wing A(5,1,2)
0	2×5-7×1+2= courtes
MATLED 4	10-7+2= Constrat
AR . 1 =0	constant = 5
$\begin{bmatrix} v_{\mu} & -\sigma \cdot \mu \\ -\sigma \cdot \mu & -\sigma \cdot \mu \\ 0 & -$: 2-7y+2=5
$(a_i q_i p)_* (2_i \overline{\gamma}_i) = (s_i \overline{\gamma}_i)_* (2_i \overline{\gamma}_i)$	
2x-79+2= 10-7+2	
21-79+2=5	
12	

Question 3

Find a Cartesian equation of the plane that passes through the points

A(5,2,2), B(-1,2,1) and C(3,-2,-2)

A B B	$\begin{split} & \overbrace{\substack{d \mid 0\\d \mid 0}}^{q} \underbrace{ \begin{array}{l} & \overbrace{d \mid 0}}_{d \mid 1} \underbrace{ \begin{array}{l} \underline{D} \\ \underline$
4700G22-114+1276=	Gustart.
181NG 4(52,2)=0 -10-;	2. +24 - courtbut
· conta	u+ = −ℓ
23 + 11Å -155 = 2 14ρ7 -52 -11Å +155 = 2	

Question 4

Determine a Cartesian equation of the plane that contains the point A(9,-1,0) and the straight line with vector equation

 $\mathbf{r} = 5\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}),$

where λ is a scalar parameter.

Question 5

Find a Cartesian equation of the plane that contains the parallel straight lines with vector equations

 $\mathbf{r}_1 = 2\mathbf{i} + \mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + \mathbf{k})$ and $\mathbf{r}_2 = 3\mathbf{i} - \mathbf{j} + 6\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$,

where λ and μ are scalar parameters.

Find a Cartesian equation of the plane that contains the intersecting straight lines with vector equations

 $\mathbf{r}_1 = 6\mathbf{i} + 3\mathbf{j} + 7\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ and $\mathbf{r}_2 = 6\mathbf{i} + 2\mathbf{j} + 4\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$,

where λ and μ are scalar parameters.

x - 3y + z = 4

z-x=3

Question 7

- a) Find a set of parametric equations for the plane that passes through the points A(2,4,1), B(6,0,-2) and C(0,1,7).
- **b**) Eliminate the parameters to obtain a Cartesian equation of the plane.

Image: Second state Image: Second state</t CLASHIBILISCON C. C. HARDESINGUISCON I.Y.C.B. MARAN

Question 1

Find the coordinates of the point of intersection of the plane with equation

x + 2y + 3z = 4

and the straight line with equation

$$\mathbf{r} = -\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k}),$$

where λ is a scalar parameter.

Find the coordinates of the point of intersection of the plane with equation

3x + 2y - 7z = 2

and the straight line with equation

 $\mathbf{r} = 9\mathbf{i} + 2\mathbf{j} + 7\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}).$

where λ is a scalar parameter.

87 A	
[3z+2y-7z=2.)	$\sum_{i=1}^{n} \frac{1}{(2,1)} e^{i \frac{1}{2}} e^{-\frac{1}{2}} \frac{1}{(2,1)} = \frac{1}{2}$
((24472)= (2+9, 3+2, 2+7)
Strong	Shireson
3(2+9)+	-2 (32+2) -7 (21+7)=2
3x+2T+	
	-20 = 5 $\lambda = -4$
· · · · · · · · · · · · · · · · · · ·	x = -4 + 9 = 5 x = 3(-4) + 2 = -10 (5 - 10 - 1)
	z = 2(-4)+7 = -[···(31-901-1)

(5, -10, -1)

(1, 3, -1)

Question 3

Find the size of the acute angle formed by the planes with Cartesian equations

4x + 4y - 7z = 13 and 7x - 4y + 4z = 6.

Find the size of the acute angle between the planes with Cartesian equations

2020

4x + 5y + 3z = 82 and -2x + 5y + 6z = 124.

52.1°

78.6°

Question 5

Find the size of the acute angle between the plane with equation

2x - 2y + z = 12

and the straight line with equation

$$\mathbf{r} = 7\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda (2\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}),$$

where λ is a scalar parameter.

31.6°

Question 6

Find the size of the acute angle formed between the plane with Cartesian equation

2x - 2y - z = 2

and the straight line with vector equation

 $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}),$

where λ is a scalar parameter.

14.9°

Question 7

Find the size of the acute angle between the plane with equation

3x - 2y + z = 5

and the straight line with equation

$$\mathbf{r} = -3\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}),$$

where λ is a scalar parameter.

52.6°

 $2\sqrt{2}$

Question 8

Find shortest distance of the origin O from the plane with equation

4x + 3y - 5z = 20.

Question 9

Find shortest distance of the origin O from the plane with equation

E.B.

x+2y+2z=5.

Question 10

2

CR

Find shortest distance from the point A(1,3,-2) to the plane with Cartesian equation

202

x+3y-5z=5.

12

Question 11

F.C.B.

Find shortest distance from the point P(3,1,3) to the plane with Cartesian equation

x - y + 2z = 2.

	63	$\sqrt{6}$
Ann Ann Ann Ann Ann Ann Ann Ann Ann Ann	$ \begin{aligned} & \left(\begin{split} & \left \delta \zeta^{*} A \left(Q_{i} Q_{i} \right) \right & s + 2 a \log \log \log \\ & \left \widetilde{H}^{2} = \frac{1}{p} \cdot \underline{a} = \left(\zeta_{i} \gamma_{i} \zeta_{i} \right) - \left(\zeta_{i} \sigma_{i} \right) = \\ & \mathbf{a}^{*} \left[- \frac{1}{q} \widetilde{A}^{*} \cdot \zeta_{i} \right] \\ & \mathbf{a}^{*} = \left[\left(\zeta_{i} \gamma_{i} \zeta_{i} \right) - \frac{1}{q} \widetilde{A}^{*} \left((\zeta_{i} \gamma_{i} + \zeta_{i}) \right) \\ & \mathbf{a}^{*} = \left[\frac{1}{q} \widetilde{A}^{*} - \zeta_{i} \right] \\ & \mathbf{a}^{*} = \left[\frac{1}{q} \widetilde{A}^{*} \left((\zeta_{i} - 1 + \zeta_{i}) \right) \\ & \mathbf{a}^{*} = \frac{1}{q} \widetilde{A}^{*} \\ & \mathbf{a}^{*} \mathbf{a}^{*} \end{aligned} $	i al THE RAUL

Question 12

C.P.

Find shortest distance of the point P(1,2,9) from the plane with Cartesian equation

112112

-x + 4y + 8z = 16.

Question 13

Find the distance between the parallel planes with Cartesian equations

2x+6y+3z=70 and 2x+6y+3z=14.

8

Question 14

The straight line with vector equation

 $\mathbf{r} = (\lambda + 5)\mathbf{i} + (2 - \lambda)\mathbf{j} + (\lambda + 2)\mathbf{k},$

where λ is a scalar parameter, is parallel to the plane with Cartesian equation

x + 2y + z = 10.

Find the distance between the plane and the straight line.

 $\frac{\sqrt{6}}{6}$

Question 15

Find the distance between the parallel planes with Cartesian equations

3x + 2y + z = 203x + 2y + z = 40and

 $\frac{21}{10}\sqrt{2}$

11+

Question 16

Find the distance between the parallel straight lines with vector equations

 $\mathbf{r}_1 = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$ and $\mathbf{r}_2 = 2\mathbf{i} + \mathbf{k} + \mu (5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}),$

where λ and μ are a scalar parameters.

h h	$\begin{array}{l} \widehat{\left\{ \begin{array}{l} \widehat{\left\{ (y_{k}, y_{k}, y_{k}, y_{k}, y_{k}) \right\}} \right\}} & \text{ if } \underline{A} = C_{1} (z_{k} - 1) \\ \underline{z} = C_{0} (y_{k}, y_{k} - y_{k}) \\ \underline{z} = C_{0} (y_{k}, y_{k} - y_{k}) \\ \hline \bullet \overline{A} = \underbrace{b} - \underline{a} = (z_{0}, y_{2}, z_{k}) \\ \underline{(z_{0}} + (y_{2}, y_{k})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{1}, y_{2})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{1}, y_{1})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{1}, y_{1})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{1}, y_{1})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{0}, y_{0})) = (z_{0}, y_{0}) \\ \underline{(z_{0}} + (y_{0}, y_{0})) \\ ($	$\operatorname{Nerr}_{\underline{M}} \underbrace{\overrightarrow{A}}_{\underline{M}} = \underbrace{\underbrace{i}_{\underline{M}} \underbrace{k}_{\underline{M}}}_{\underline{M}} \underbrace{i}_{\underline{M}} \underbrace{k}_{\underline{M}}$	$ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \underbrace{ \left(\begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right) \\ \end{array} \right) \\ \\ \end{array} \right) \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right) \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right) \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right) \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right) \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \underbrace{ \left(\begin{array}{c} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
$\stackrel{*}{\leftrightarrow} \overrightarrow{4B} = \left(\begin{array}{c} \frac{\gamma}{2c} + \frac{s_L}{2c} + \frac{q_I}{2c} \right) \Rightarrow \Rightarrow $	$\begin{aligned} \varphi_{m_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_$	$4 m \mathcal{L}_{2} = \left(3 - 4 m \mathcal{L}_{3}\right) \Rightarrow \left(3 \mathcal{L}_{2} = 1\right)$ $4 m \mathcal{L}_{3} = \left(3 \mathcal{L}_{3} - 4 m \mathcal{L}_{3}\right) \Rightarrow \left(3 \mathcal{L}_{3} = 1\right)$ $\therefore d = \frac{20}{10} N^{2}$	$\begin{split} &2542\xi_{0}+kS^{\prime} = \sqrt{4}\xi_{0} ^{\prime} \\ & \widetilde{A}_{0}^{\prime} - \widehat{\underline{U}}_{2} = \langle 0 _{1} 2_{1} 2 \rangle \frac{1}{\sqrt{6\xi_{0}}} \langle 5, 4\xi_{1} 3, 7 = \langle \frac{1}{\sqrt{4\xi_{0}}} \langle \xi_{1} 32 + 2\xi_{1} \rangle \\ & \widetilde{A}_{0}^{\prime} - \widehat{\underline{U}}_{2} = \langle 0 _{1} 2_{1} 2 \rangle \frac{1}{\sqrt{6\xi_{0}}} \langle 5, 4\xi_{1} 3, 7 = \langle 1, \xi_{1} \rangle \frac{1}{\sqrt{4\xi_{0}}} \langle \xi_{1} 32 + 2\xi_{1} \rangle \\ & \widetilde{A}_{0}^{\prime} - \widehat{\underline{U}}_{2} = \langle 0 _{1} 2_{1} 2 \rangle \frac{1}{\sqrt{6\xi_{0}}} \langle 5, 4\xi_{1} 3, 7 = \langle 1, \xi_{1} \rangle \frac{1}{\sqrt{4\xi_{0}}} \langle \xi_{1} 3, 2 + 2\xi_{1} \rangle \frac{1}{\sqrt{6\xi_{0}}} \langle \xi_{1} 3, 2 + 2\xi_{1$

Question 17

Find the distance between the parallel straight lines with vector equations

$$\begin{bmatrix} \mathbf{r} - (2\mathbf{i} + \mathbf{k}) \end{bmatrix} \land (\mathbf{i} + \mathbf{j} - \mathbf{k}) = \mathbf{0}$$
 and $x - 4 = y - 8 = -z - 7$.

	2√6
$ \begin{array}{ll} & \underbrace{ \int_{t_1} = & (2_1 o_1 t) + \Im (t_1 t_1 - t) \\ & \underbrace{ \int_{t_2} = & (4_1 s_1 - t) + \mu (t_1 t_1 - t) \end{array} } \end{array} $	$\frac{4(2,0,1)}{6(2,0,1)}$ ($\lambda = 0$) $B(\bar{3},1,0)$ ($\lambda = 1$) $C(4,8,7)$ ($\bar{3} = 0$)-
A C	$\begin{split} & \overline{h}^{\overline{h}} = \underline{h} = (\Im_{1}, v) - (2, \alpha_{1}) = (1, 1) \\ & \overline{h} = \underline{c} - 2 = (4, \eta, \tau) - (2, \eta_{1}) = (2, \eta_{2}) \\ & \overline{f}^{*} \end{split}$
$ \stackrel{*}{\longrightarrow} \underline{u} = \frac{\overline{h}\overline{b}_{A}\overline{4C}}{I} = \begin{pmatrix} \underline{1} & \underline{a} & \underline{b} \\ I & I & -I \\ I & 4 & -\eta \end{pmatrix} = \begin{pmatrix} 0_{1}3, 3 \end{pmatrix} $	\leftarrow Scale 1: I_{2}^{-} (b ¹ /1) $2006 \approx O(1/1-4)$
IF UN COOSE IN & ARE WH GET THE COMMON P	24MU ONT HT TO LAUMORED
$\begin{vmatrix} z & z & z \\ 0 & (-1) \\ 1 & 1 & -1 \end{vmatrix} = (-2_1 -1)$	
SUPPERST DISTINUCE IS THE PESITORIAN OF	4C orts (-2,1,-1)
$\therefore d \in \left \left(2_i 8_i - 8 \right) \cdot \left \left(-2_j 1_i - 1 \right) \left(2_j 1_j - 1 \right) \right =$	(1/6) (-4+8+8) = 12 = 216

 $2\sqrt{6}$

Question 18

Find the shortest distance between the skew straight lines with vector equations

 $-\mathbf{i}+3\mathbf{j}-\mathbf{k}+\mu(2\mathbf{i}-\mathbf{j}-\mathbf{k})$ $\mathbf{r}_1 = \mathbf{i} + \lambda(\mathbf{j} + \mathbf{k})$ and $r_2 =$

where λ and μ are a scalar parameters.

E.

 $2\sqrt{2}$

Question 19

Find the shortest distance between the skew straight lines with vector equations

$$\mathbf{r}_1 = 7\mathbf{i} + \lambda(7\mathbf{i} - 10\mathbf{k})$$
 and $\mathbf{r}_2 = 3\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mu(\mathbf{i} + 3\mathbf{j} - \mathbf{k})$,

where λ and μ are a scalar parameters.

 $\frac{6}{5}\sqrt{6}$

Question 20

Find the shortest distance between the skew straight lines with vector equations

 $\mathbf{r}_1 = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + \lambda(\mathbf{j} + 3\mathbf{k})$ and $\mathbf{r}_2 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{k})$,

where λ and μ are a scalar parameters.

 $\frac{5}{\sqrt{14}}$

Question 21

Find the intersection of the planes with Cartesian equations

2x - 2y - z = 2 and x - 3y + z = 5,

giving the answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$,

where **a** and **b** are constant vectors and λ is a scalar parameter.

$\mathbf{r} = -\mathbf{i} - 2\mathbf{j} + \lambda$	λ (5 i +3 j +4 k)
20	1
$ \begin{pmatrix} 1 & -3 & 1 & 5 \\ 2 & -2 & -1 & 2 \end{pmatrix} \xrightarrow{\Gamma_{\underline{a}}(A)} \begin{pmatrix} 1 & -3 & 1 \\ 0 & 4 & -3 \\ 0 & 1 & -\frac{5}{4} & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{\Gamma = (-1_{12}, \circ) + \gamma(\zeta_{1}(\zeta_{1}, \zeta_{1}))}{(\underline{\Lambda}(\underline{n}, \underline{n}, \underline{n}))} + \beta(\underline{S}, \underline{S}, 4)$ $(\underline{\Lambda}(\underline{n}, \underline{n}, \underline{n}, \underline{n}))$ $(\underline{\Lambda}(\underline{n}, \underline{n}, \underline{n}, \underline{n}))$ $(\underline{\Lambda}(\underline{n}, \underline{n}, \underline{n}))$	4 POINT ON THE LIVE, SAY Z=0
$\begin{vmatrix} i & j & k \\ 2 & -2 & -i \\ 1 & -3 & i \end{vmatrix} = \begin{pmatrix} -5 & -3 & -4 \end{pmatrix}$	$\begin{array}{c} 2\lambda - 2y = 2\\ 2\lambda - 3y = 5 \end{array} \right\} \Longrightarrow \begin{array}{c} 2\lambda - 2y = 2\\ 2\lambda - 3y = 5 \end{array} \right\} \Longrightarrow \begin{array}{c} 2\lambda - 2y = 2\\ 2\lambda - 6y = 0\\ y = -8\\ y = -8 \end{array}$
	$ \begin{array}{c} \ddots \overset{\mathcal{L}}{\underline{\Gamma}} = (\mathcal{L}, \mathcal{L}_{j}) + \lambda \left(\mathcal{L}_{j, \mathcal{L}_{j}} \right) \\ \overset{\mathcal{L}}{\underline{\mathcal{L}}} = \overset{\mathcal{L}}{\underline{\mathcal{L}}} \\ \overset{\mathcal{L}}{\underline{\mathcal{L}}} = \overset{\mathcal{L}}{\underline{\mathcal{L}}} \end{array} $

Question 22

Show that the planes with Cartesian equations

4x + 5y + 3z = 82 and -2x + 5y + 6z = 124

intersect along the straight line with equation

$$\mathbf{r} = (\lambda - 6)\mathbf{i} + (20 - 2\lambda)\mathbf{j} + (2\lambda + 2)\mathbf{k}$$

where λ is a scalar parameter.

Aves influent at indection $\begin{cases} \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{6} \end{cases} = \zeta S_1 \cdot S_0, S_0$ Dills THE IDEST(SU'TE (1,2), S $\frac{1}{2} + \frac{1}{5} + \frac{3}{6} = \frac{3}{2} \\ \frac{1}{2} + \frac{1}{5} + \frac{1}{6} = \frac{1}{16} \\ \frac{1}{2} + \frac{1}{5} + \frac{1}{6} = \frac{1}{16} \\ \frac{1}{6} + \frac{1}{6} + \frac{1}{6} \\ \frac{1}{6} + \frac{1}{6$

proof

Question 23

The planes Π_1 and Π_2 have Cartesian equations:

 $\Pi_1: x - 2y + 2z = 0$ $\Pi_2: 3x - 2y - z = 5$

Show that the two planes intersect along the straight line with Cartesian equation

