VECTOR

PRACTICE

Part B

THE

CROSS

PRODUCT

Created by T. Madas

Created by T. Madas

Question 1

Find in each of the following cases $\mathbf{a} \wedge \mathbf{b}$, where the vectors \mathbf{a} and \mathbf{b} are
a) $\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}-\mathbf{j}$
b) $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}-\mathbf{j}-\mathbf{k}$
c) $\mathbf{a}=3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$
d) $\mathbf{a}=7 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$ and $\mathbf{b}=-\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$
e) $\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=-3 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$

$$
\mathbf{i}+3 \mathbf{j}-17 \mathbf{k},-\mathbf{i}+4 \mathbf{j}-7 \mathbf{k}, 5 \mathbf{i}-5 \mathbf{j}+10 \mathbf{k},-10 \mathbf{i}-18 \mathbf{j}+22 \mathbf{k},-11 \mathbf{i}+18 \mathbf{j}+17 \mathbf{k}
$$

Question 2

Find a unit vector perpendicular to both

$$
\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{b}=3 \mathbf{i}-\mathbf{j}-\mathbf{k} .
$$

Created by T. Madas

Question 3

The vectors \mathbf{a} and \mathbf{b}, are not parallel.

Simplify fully

Question 4

$$
(2 \mathbf{a}+\mathbf{b}) \wedge(\mathbf{a}-2 \mathbf{b})
$$

The vectors a,b and care not parallel.
Simplify fully
$\mathbf{a} \cdot[\mathbf{b} \wedge(\mathbf{c}+\mathbf{a})]$.

$$
\mathbf{a} \cdot(\mathbf{b} \wedge \mathbf{c})
$$

Created by T. Madas

Created by T. Madas

Question 5
The following vectors are given

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\
& \mathbf{b}=\mathbf{i}+2 \mathbf{j}+\mathbf{k} \\
& \mathbf{c}=\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

a) Show that the three vectors are coplanar.
b) Express \mathbf{a} in terms of \mathbf{b} and \mathbf{c}.

Question 6
The following three vectors are given

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k} \\
& \mathbf{b}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} \\
& \mathbf{c}=\mathbf{i}+2 \mathbf{j}+\lambda \mathbf{k}
\end{aligned}
$$

where λ is a scalar constant.
a) If the three vectors given above are coplanar, find the value of λ.
b) Express a in terms of \mathbf{b} and \mathbf{c}.

$$
\lambda=1, \quad \mathbf{a}=3 \mathbf{c}-\mathbf{b}
$$

$$
\underline{a}=p \underline{b}+\phi \underline{c}
$$

$$
\begin{aligned}
& \text { fquatt SAY i \& } k \text { (THt } 1 \text { stbous BAennct) } \\
& 2 p+\phi=1 ? \Rightarrow p=-1 \quad \text { \& } q=3
\end{aligned}
$$

$$
\left.\begin{array}{r}
2 p+\phi=1 \\
p+q=2
\end{array}\right\} \Rightarrow p=-1 \quad \& \quad q=3
$$

$$
\therefore \underline{a}=3 \underline{c}-\underline{b}
$$

Created by T. Madas

Question 7
The vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are such so that

$$
\mathbf{c} \wedge \mathbf{a}=\mathbf{i} \quad \text { and } \quad \mathbf{b} \wedge \mathbf{c}=2 \mathbf{k}
$$

Express $(\mathbf{a}+\mathbf{b}) \wedge(\mathbf{a}+\mathbf{b}+2 \mathbf{c})$ in terms of \mathbf{i} and \mathbf{k}.

CROSS PRODUCT GEOMETRIC APPLICATIONS

Question 1
Find the area of the triangle with vertices at $A(1,-1,2), B(-1,2,1)$ and $C(2,-3,3)$.

Question 2
Find the area of the triangle with vertices at $A(2,1,1), B(-1,0,4)$ and $C(3,-1,-1)$.

$$
\frac{1}{2} \sqrt{122}
$$

\square

Created by T. Madas

Question 3
A triangle has vertices at $A(-2,-2,0), B(6,8,6)$ and $C(-6,8,12)$.

Find the area of the triangle $A B C$.

Question 4

A parallelepiped has vertices at the points $A(2,1, t), B(3,3,2), D(4,0,5)$ and $E(1,-2,7)$, where t is a scalar constant.

a) Calculate $\overrightarrow{A B} \wedge \overrightarrow{A D}$, in terms of t.
b) Find the value of $\overrightarrow{A B} \wedge \overrightarrow{A D} \cdot \overrightarrow{A E}$

The volume of the parallelepiped is 22 cubic units.
c) Determine the possible values of t.

$$
(12-3 t) \mathbf{i}+(-t-1) \mathbf{j}-5 \mathbf{k}, 11 t-44, t=2,6
$$

Created by T. Madas

Question 5
A triangular prism has vertices at the points $A(3,3,3), B(1,3, t), C(5,1,5)$ and $F(8,0,10)$, where t is a scalar constant.

The face $A B C$ is parallel to the face $D E F$ and the lines $A D, B E$ and $C F$ are parallel to each other.
a) Calculate $\overrightarrow{A B} \wedge \overrightarrow{A C}$, in terms of t.
b) Find the value of $\overrightarrow{A B} \wedge \overrightarrow{A C} \cdot \overrightarrow{A D}$, in terms of t.

The value of t is taken to be 6 .
c) Determine the volume of the prism for this value of t.
d) Explain the geometrical significance if $t=-1$.
$(2 t-6) \mathbf{i}+(2 t-2) \mathbf{j}+4 \mathbf{k}, 4 t+4, V=14$ cubic units,
A, B, C, D are coplanar, so no volume

Created by T. Madas

Question 6
A tetrahedron has vertices at the points $A(-3,6,4), B(0,11,0), C(4,1,28)$ and $D(7, k, 24)$, where k is a scalar constant.
a) Calculate the area of the triangle $A B C$.
b) Find the volume of the tetrahedron $A B C D$, in terms of k.

The volume of the tetrahedron is 150 cubic units.
c) Determine the possible values of k.

Created by T. Madas

Question 7
With respect to a fixed origin O the points A, B and C, have respective coordinates $(6,10,10),(11,14,13)$ and $(k, 8,6)$, where k is a constant.
a) Given that all the three points lie on a plane which contains the origin, find the value of k.
b) Given instead that $O A, O B, O C$ are edges of a parallelepiped of volume 150 cubic units determine the possible values of k.

Question 1
Find an equation of the straight line that passes through the point $P(1,4,1)$ and is parallel to the vector $3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$.

Give the answer in the form $\mathbf{r} \wedge \mathbf{a}=\mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors.

Question 2
Find an equation of the straight line that passes through the points $P(5,0,9)$ and $Q(8,4,10)$.

Give the answer in the form $\mathbf{r} \wedge \mathbf{a}=\mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors.

Created by T. Madas

Question 3

A straight line has equation

$$
\mathbf{r}=4 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+8 \mathbf{j}-3 \mathbf{k})
$$

where λ is a scalar constant.

Convert the above equation into Cartesian form.

$$
\frac{x-4}{1}=\frac{y-2}{8}=\frac{z-5}{-3}
$$

Question 4

A straight line has equation

$$
\mathbf{r}=2 \mathbf{i}-3 \mathbf{j}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.

Convert the above equation into Cartesian form.

Question 5
Convert the equation of the straight line

$$
\frac{x-3}{2}=\frac{y+2}{3}=\frac{5-z}{7}
$$

into a vector equation of the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

$$
\mathbf{r}=3 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k})
$$

$$
[\mathbf{r}-(5 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})] \wedge(7 \mathbf{i}+5 \mathbf{k})=\mathbf{0}
$$

Convert the above equation into the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

Question 7
A straight line has equation

$$
\mathbf{r}_{\wedge}(2 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k})=(2 \mathbf{i}-5 \mathbf{j}-8 \mathbf{k})
$$

Convert the above equation into the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

$$
\mathbf{r}=3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k}) \quad \text { or } \mathbf{r}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}+\lambda(2 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k})
$$

Question 8
If the point $A(p, q, 1)$ lies on the straight line with vector equation

$$
\mathbf{r}_{\wedge}(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})=(8 \mathbf{i}-7 \mathbf{j}-3 \mathbf{k})
$$

find the value of each of the scalar constants p and q.

$$
p=q=3
$$

Created by T. Madas

Created by T. Madas

Question 9
The straight line L has equation

$$
[\mathbf{r}-(3 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})] \wedge(2 \mathbf{i}-3 \mathbf{k}+4 \mathbf{k})=0 .
$$

Use a method involving the cross product to show that the shortest distance of the point $(2,-1,-3)$ from L is 3 units.

Created by T. Madas

Question 1
Find a Cartesian equation of the plane that passes through the point $A(6,-2,5)$, and its normal is in the direction $5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.

Question 2
Find a Cartesian equation of the plane that passes through the point $A(5,1,2)$, and its normal is in the direction $2 \mathbf{i}-7 \mathbf{j}+\mathbf{k}$.

Question 3
Find a Cartesian equation of the plane that passes through the points

$$
A(5,2,2), B(-1,2,1) \quad \text { and } \quad C(3,-2,-2)
$$

$$
2 x+11 y-12 z=8
$$

Question 4
Determine a Cartesian equation of the plane that contains the point $A(9,-1,0)$ and the straight line with vector equation

$$
\mathbf{r}=5 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}+\lambda(\mathbf{i}-3 \mathbf{j}+6 \mathbf{k})
$$

where λ is a scalar parameter.

Question 5
Find a Cartesian equation of the plane that contains the parallel straight lines with vector equations

$$
\mathbf{r}_{1}=2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}) \quad \text { and } \quad \mathbf{r}_{2}=3 \mathbf{i}-\mathbf{j}+6 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}+\mathbf{k}),
$$

where λ and μ are scalar parameters.

Question 7
a) Find a set of parametric equations for the plane that passes through the points $A(2,4,1), B(6,0,-2)$ and $C(0,1,7)$.
b) Eliminate the parameters to obtain a Cartesian equation of the plane.

$$
(x, y, z)=(2-2 \lambda+4 \mu, 4-3 \lambda-4 \mu, 1+6 \lambda-3 \mu), 33 x+18 y+20 z=158
$$

GEOMETRIC PROBLEMS

(WITH PLANES AND LINES)

Question 1
Find the coordinates of the point of intersection of the plane with equation

$$
x+2 y+3 z=4
$$

and the straight line with equation

$$
\mathbf{r}=-\mathbf{i}+\mathbf{j}-5 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.

Find the coordinates of the point of intersection of the plane with equation

$$
3 x+2 y-7 z=2
$$

and the straight line with equation

$$
\mathbf{r}=9 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}),
$$

where λ is a scalar parameter.

Created by T. Madas

Question 3
Find the size of the acute angle formed by the planes with Cartesian equations

$$
4 x+4 y-7 z=13 \text { and } 7 x-4 y+4 z=6 .
$$

Question 4
Find the size of the acute angle between the planes with Cartesian equations

Created by T. Madas

Created by T. Madas

Question 5

Find the size of the acute angle between the plane with equation

$$
2 x-2 y+z=12
$$

and the straight line with equation

$$
\mathbf{r}=7 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k})
$$

where λ is a scalar parameter.

Question 6

Find the size of the acute angle formed between the plane with Cartesian equation

$$
2 x-2 y-z=2
$$

and the straight line with vector equation

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{j}-5 \mathbf{k}+\lambda(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})
$$

where λ is a scalar parameter.

Question 7
Find the size of the acute angle between the plane with equation

$$
3 x-2 y+z=5
$$

and the straight line with equation

$$
\mathbf{r}=-3 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k})
$$

where λ is a scalar parameter.

Question 8
Find shortest distance of the origin O from the plane with equation

$$
4 x+3 y-5 z=20
$$

Created by T. Madas

Question 9

Find shortest distance of the origin O from the plane with equation

$$
x+2 y+2 z=5 .
$$

Question 10

Find shortest distance from the point $A(1,3,-2)$ to the plane with Cartesian equation

Question 11
Find shortest distance from the point $P(3,1,3)$ to the plane with Cartesian equation

$$
x-y+2 z=2
$$

Question 12

Find shortest distance of the point $P(1,2,9)$ from the plane with Cartesian equation

Question 13
Find the distance between the parallel planes with Cartesian equations

$$
2 x+6 y+3 z=70 \quad \text { and } \quad 2 x+6 y+3 z=14
$$

Question 14
The straight line with vector equation
\square

$$
\mathbf{r}=(\lambda+5) \mathbf{i}+(2-\lambda) \mathbf{j}+(\lambda+2) \mathbf{k}
$$

where λ is a scalar parameter, is parallel to the plane with Cartesian equation

$$
x+2 y+z=10
$$

Find the distance between the plane and the straight line.

Question 15
Find the distance between the parallel planes with Cartesian equations

$$
3 x+2 y+z=20 \quad \text { and } \quad 3 x+2 y+z=40
$$

$$
\frac{10}{7} \sqrt{14}
$$

\square

Question 16
Find the distance between the parallel straight lines with vector equations

$$
\mathbf{r}_{1}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}+\lambda(5 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}) \quad \text { and } \quad \mathbf{r}_{2}=2 \mathbf{i}+\mathbf{k}+\mu(5 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}),
$$

where λ and μ are a scalar parameters.

$$
\frac{21}{10} \sqrt{2}
$$

Question 17
Find the distance between the parallel straight lines with vector equations

$$
[\mathbf{r}-(2 \mathbf{i}+\mathbf{k})] \wedge(\mathbf{i}+\mathbf{j}-\mathbf{k})=\mathbf{0} \quad \text { and } \quad x-4=y-8=-z-7
$$

Question 19
Find the shortest distance between the skew straight lines with vector equations

$$
\mathbf{r}_{1}=7 \mathbf{i}+\lambda(7 \mathbf{i}-10 \mathbf{k}) \quad \text { and } \quad \mathbf{r}_{2}=3 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\mu(\mathbf{i}+3 \mathbf{j}-\mathbf{k})
$$

where λ and μ are a scalar parameters.

Question 20
Find the shortest distance between the skew straight lines with vector equations

$$
\mathbf{r}_{1}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}+\lambda(\mathbf{j}+3 \mathbf{k}) \quad \text { and } \quad \mathbf{r}_{2}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{k})
$$

where λ and μ are a scalar parameters.

Created by T. Madas

Question 21

Find the intersection of the planes with Cartesian equations

$$
2 x-2 y-z=2 \text { and } x-3 y+z=5
$$

giving the answer in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$,
where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

$$
\mathbf{r}=-\mathbf{i}-2 \mathbf{j}+\lambda(5 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k})
$$

Question 22

Show that the planes with Cartesian equations

$$
4 x+5 y+3 z=82 \text { and }-2 x+5 y+6 z=124
$$

intersect along the straight line with equation

$$
\mathbf{r}=(\lambda-6) \mathbf{i}+(20-2 \lambda) \mathbf{j}+(2 \lambda+2) \mathbf{k}
$$

where λ is a scalar parameter.

Question 23
The planes Π_{1} and Π_{2} have Cartesian equations:

$$
\begin{aligned}
& \Pi_{1}: x-2 y+2 z=0 \\
& \Pi_{2}: 3 x-2 y-z=5
\end{aligned}
$$

Show that the two planes intersect along the straight line with Cartesian equation

