VECTOR
 EXAM QUESTIONS

Part B

Question 1 (**)
The vectors \mathbf{a} and \mathbf{b}, are not parallel.

Question 3 (**)
Find the area of the triangle with vertices at $A(1,-1,2), B(-1,2,1)$ and $C(2,-3,3)$.

Question 4 (**)
Referred to a fixed origin the coordinates of the following points are given

$$
A(1,1,1), B(5,-2,1), C(3,2,6) \text { and } D(1,5,6)
$$

a) Find a Cartesian equation for the plane containing the points A, B and C.
b) Determine the volume of the tetrahedron $A B C D$.

Created by T. Madas

Question 5 (**)
The position vectors of the points A, B and C are given below

$$
\overrightarrow{O A}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}, \quad \overrightarrow{O B}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k} \quad \text { and } \quad \overrightarrow{O C}=\mathbf{i}+4 \mathbf{j}+\mathbf{k}
$$

a) Show that $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are linearly dependent.
b) Find the area of the triangle $A B C$.

Question 6 (**)
Find the equation of the straight line which is common to the planes

$$
x-2 y+4 z=9 \text { and } 2 x-3 y+z=4
$$

Created by T. Madas

Question 7 (**+)
The following vectors are given.

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\
& \mathbf{b}=\mathbf{i}+2 \mathbf{j}+\mathbf{k} \\
& \mathbf{c}=\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

a) Show the three vectors are coplanar.
b) Express \mathbf{a} in terms of \mathbf{b} and \mathbf{c}.

Created by T. Madas

Question 8 (**+)
The vectors \mathbf{a} and \mathbf{b} are such so that

$$
|\mathbf{a}|=\sqrt{10},|\mathbf{b}|=10 \text { and } \mathbf{a} \cdot \mathbf{b}=30
$$

Find the value of $|\mathbf{a} \wedge \mathbf{b}|$.

Created by T. Madas

Question 9 (**+)

With respect to a fixed origin O, the points A and B have position vectors given by

$$
\mathbf{a}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \mathbf{b}=2 \mathbf{i}+\mathbf{j}-\mathbf{k} .
$$

a) Find a Cartesian equation of the plane that passes through O, A and B.

A straight line has a vector equation

$$
[\mathbf{r}-(4 \mathbf{i}+\mathbf{j}+6 \mathbf{k})] \wedge(\mathbf{i}+\mathbf{j}+\mathbf{k})=\mathbf{0}
$$

b) Determine the coordinates of the point C, where C is the intersection between the straight line and the plane.
 (G)

Created by T. Madas

Question 10 (**+)
The plane Π_{1} passes through the point with coordinates $(2,5,1)$ and is perpendicular to the vector $5 \mathbf{i}-4 \mathbf{j}+20 \mathbf{k}$.
a) Find a vector equation of Π_{1}, in the form $\mathbf{r} \cdot \mathbf{n}=d$.
b) Calculate the exact value of the cosine of the acute angle between Π_{1} and the plane Π_{2} with equation $x+y+z=10$.

Question 11 (**+)
The following three vectors are given

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k} \\
& \mathbf{b}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} \\
& \mathbf{c}=\mathbf{i}+2 \mathbf{j}+\lambda \mathbf{k}
\end{aligned}
$$

where λ is a scalar constant.
a) If the three vectors given above are coplanar, find the value of λ.
b) Express \mathbf{a} in terms of \mathbf{b} and \mathbf{c}.

Created by T. Madas

Question 12 (***)

The vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are such so that

$$
\mathbf{c}_{\wedge} \mathbf{a}=\mathbf{i} \quad \text { and } \quad \mathbf{b} \wedge \mathbf{c}=2 \mathbf{k} .
$$

Express $(\mathbf{a}+\mathbf{b}) \wedge(\mathbf{a}+\mathbf{b}+2 \mathbf{c})$ in terms of \mathbf{i} and \mathbf{k}.

Question 13 (***)

Relative to a fixed origin O, the position vectors of the points A, B and C are

$$
\overrightarrow{O A}=\left(\begin{array}{l}
1 \\
-1 \\
-1
\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right) \text { and } \overrightarrow{O C}=\left(\begin{array}{r}
4 \\
-1 \\
5
\end{array}\right) .
$$

a) Show that $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are linearly independent.
b) Evaluate $\overrightarrow{O A} \cdot \overrightarrow{O B}$.
c) Show that $\overrightarrow{O B} \wedge \overrightarrow{O C}=k \overrightarrow{O A}$, where k is a constant.

The points O, A, B and C are vertices of a solid.
d) Describe the solid geometrically and state its volume.
$\overrightarrow{O A} \cdot \overrightarrow{O B}=0, k=14$, cuboid, volume $=42$

Created by T. Madas

Created by T. Madas

Question 14 (***)

Relative to a fixed origin O, the plane Π_{1} passes through the points A, B and C with position vectors $\mathbf{i}-\mathbf{j}+2 \mathbf{k}, 6 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$, respectively.
a) Determine an equation of Π_{1} in the form $\mathbf{r} \cdot \mathbf{n}=c$, where \mathbf{n} is the normal to Π_{1} and c is a scalar constant.
b) Find, in exact surd form, the shortest distance of Π_{1} from the origin O.

The plane Π_{2} passes through the point A and has normal $5 \mathbf{i}-2 \mathbf{j}+7 \mathbf{k}$.
c) Calculate, to the nearest degree, the acute angle between Π_{1} and Π_{2}.

Created by T. Madas

Question 15 (***)
Relative to a fixed origin O, the points A, B and C have position vectors

$$
\mathbf{a}=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{c}=\left(\begin{array}{c}
3-2 \lambda \\
\lambda+5 \\
\lambda+17
\end{array}\right),
$$

where λ is a scalar parameter.
a) Find the $\mathbf{b} \wedge \mathbf{c}$ in terms of λ.
b) Show that $\mathbf{a} \cdot\left(\mathbf{b}_{\wedge} \mathbf{c}\right)$ is independent of λ.
c) Find the volume of the tetrahedron and $O A B C$.
$24 \mathbf{i}-(7 \lambda+45) \mathbf{j}+(7 \lambda+9) \mathbf{k}, \quad$ area $=10$

Created by T. Madas

Question 16 (***)
With respect to a fixed origin O, the points $A(0,1,2), B(2,3,1)$ and $C(1,1,3)$ are all contained by the plane Π.
a) Calculate the area of the triangle $A B C$.
b) Determine an equation of Π, giving the answer in the form $\mathbf{r} \cdot \mathbf{n}=c$, where \mathbf{n} is a normal to Π and c is a scalar constant.
c) Find the distance of Π from the origin O.

The distance of the point $D(3,4,1)$ from the plane Π is $\frac{1}{\sqrt{17}}$.
d) Calculate, correct to one decimal place, the acute angle between $A D$ and Π.

$$
\text { area }=\frac{1}{2} \sqrt{17}, \mathbf{r} \cdot(2 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k})=-7, \quad \text { distance }=\frac{7}{\sqrt{17}}, 3.2^{\circ}
$$

Question 17 (***)

The figure above shows a parallelepiped.
Relative to a fixed origin O, the vertices of the parallelepiped at A, B, C, D and E have respective position vectors

$$
\begin{aligned}
& \mathbf{a}=5 \mathbf{i}+\mathbf{j}+3 \mathbf{k}, \\
& \mathbf{b}=9 \mathbf{i}+\mathbf{j}, \\
& \mathbf{c}=\mathbf{i}+8 \mathbf{j}+3 \mathbf{k}, \\
& \mathbf{d}=-3 \mathbf{i}+8 \mathbf{j}+6 \mathbf{k} \\
& \mathbf{e}=7 \mathbf{i}+2 \mathbf{j}+9 \mathbf{k} .
\end{aligned}
$$

a) Calculate the area of the face $A B C D$
b) Show that the volume of parallelepiped is 222 cubic units.
c) Hence, find the distance between the faces $A B C D$ and $E F G H$

Created by T. Madas

Question 18 (***)
Two non zero vectors \mathbf{a} and \mathbf{b} have respective magnitudes a and b, respectively.

Given that $c=|\mathbf{a} \wedge \mathbf{b}|$ and $d=|\mathbf{a} \cdot \mathbf{b}|$, show that

$$
c^{2}+d^{2}=a^{2} b^{2}
$$

Question 19 (***)
Relative to a fixed origin O, the points $A(-2,3,5), B(1,-3,1)$ and $C(4,-6,-7)$ lie on the plane Π.
a) Find a Cartesian equation for Π.

The perpendicular from the point $P(26,2,7)$ meets the Π at the point Q.
b) Determine the coordinates of Q.
\square $12 x+4 y+3 z=3, Q(2,-6,1)$

Created by T. Madas

Question 20 (***)
The points $A(3,1,0), B(0,2,2)$ and $C(3,3,1)$ form a plane Π.
a) Show that $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ is a normal to Π.
b) Find a Cartesian equation for Π.

The straight line L passes through the point $P(3,1,3)$ and meets Π at right angles at the point Q.
c) Determine the distance $P Q$.
\square $, x-y+2 z=2,|P Q|=\sqrt{6}$

Created by T. Madas

The figure above shows a parallelepiped, whose vertices are located at the points $A(2,1, t), B(3,3,2), D(4,0,5)$ and $E(1,-2,7)$, where t is a constant.
a) Calculate $\overrightarrow{A B} \wedge \overrightarrow{A D}$, in terms of t.
b) Find the value of $\overrightarrow{A B} \wedge \overrightarrow{A D} \cdot \overrightarrow{A E}$

The volume of the parallelepiped is 22 cubic units.
c) Determine the possible values of t.

$$
(12-3 t) \mathbf{i}+(-t-1) \mathbf{j}-5 \mathbf{k}, 11 t-44, t=2,6
$$

Created by T. Madas

Question 22 (***)

Find in Cartesian form the equation of the intersection between the planes with the following equations

Question 23 (***)

Two planes have Cartesian equations

$$
3 x+2 y-6 z=20 \quad \text { and } \quad 12 x+k y=20
$$

where k is a non zero constant.

The acute angle between the two planes is θ.

Given that $\cos \theta=\frac{2}{7}$, determine the value of k.

Created by T. Madas

Question 24 (***)
The straight lines l_{1} and l_{2} have respective vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}+\lambda(\mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.

Show that l_{1} and l_{2} are skew and hence find the shortest distance between them.

Created by T. Madas

Question 25 (***)
The points $A(1,-3,1), B(-1,-2,0)$ and $C(0,-1,-4)$ define a plane Π.
a) Show that $\mathbf{i}+3 \mathbf{j}+\mathbf{k}$ is a normal to Π.
b) Determine a Cartesian equation for Π.

The straight line L has equation

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{k}+\lambda(5 \mathbf{i}+\mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.
c) Find the coordinates of the point of intersection between Π and L.
d) Calculate the size of the acute angle between Π and L.
\square $, x+3 y+z+7=0,(-3,-1,-1), 33.4^{\circ}$

Created by T. Madas

Question 26 (***+)
A tetrahedron has its four vertices at the points $A(-3,6,4), B(0,11,0), C(4,1,28)$ and $D(7, k, 24)$, where k is a constant.
a) Calculate the area of the triangle $A B C$.
b) Find the volume of the tetrahedron $A B C D$, in terms of k.

The volume of the tetrahedron is 150 cubic units.
c) Determine the possible values of k.
\square , area $=75$, \square volume $=\frac{50}{3}|k-6|$ $k=-3, \quad k=15$
\square $\underbrace{3\left(1 y_{[0}\right)}_{A[=3(4)}$ c) $\begin{aligned} & \frac{\operatorname{csinc}-\operatorname{Pact}(b)}{\frac{50}{3}|k-c|}=150 \\ & 50|k-6|=450 \\ &|k-6|=9 \\ & k-6=<9 \\ & k-<6\end{aligned}$
b) uner ne Tile nexaon HB w Thens or k
$\overrightarrow{A D}=\underline{p}-\underline{a}=\left(2, k_{1} 24\right)-(-3,5,4)=(10, k-5,20)$

Vownt- $=\frac{1}{6}|\overrightarrow{A B}, \overrightarrow{A C} \cdot \overrightarrow{A D}|$
$=\frac{1}{6}\left|\begin{array}{ccc}10 & k-6 & 20 \\ 3 & 5 & -4 \\ 7 & -5 & 24\end{array}\right|$
$=\frac{1}{6}|(100,-10,-50) \cdot(10, k-6,20)|$
$=\frac{1}{6}|1900-100(k-6)-1060|$
$=\frac{1}{6}|-100||k-6|$
$=\frac{55}{3}|k-6|$

Created by T. Madas

Question 27 (***+)

A triangular prism has vertices at $A(3,3,3), B(1,3, t), C(5,1,5)$ and $F(8,0,10)$, where t is a constant.

The face $A B C$ is parallel to the face $D E F$ and the lines $A D, B E$ and $C F$ are parallel to each other.
a) Calculate $\overrightarrow{A B} \wedge \overrightarrow{A C}$, in terms of t.
b) Find the value of $\overrightarrow{A B} \wedge \overrightarrow{A C} \cdot \overrightarrow{A D}$, in terms of t.

The value of t is taken to be 6 .
c) Determine the volume of the prism for this value of t.
d) Explain the geometrical significance if $t=-1$.

$$
\begin{array}{r}
(2 t-6) \mathbf{i}+(2 t-2) \mathbf{j}+4 \mathbf{k} \\
A, 4 t+4, V=14 \text { cubic units }, \\
\\
\hline, B, D \text { are coplanar, so no volume }
\end{array}
$$

Created by T. Madas

Created by T. Madas

Question 28 (***+)

Relative to a fixed origin O the point P has coordinates $(1,2,1)$.

A plane Π has Cartesian equation

$$
2 x+y+3 z=21 .
$$

The straight line L passes through the point P and it is perpendicular to Π.
a) Find the coordinates of the point M, where M is the intersection of Π and L.

The point Q is the reflection of P about Π.
b) Find the coordinates of Q.
c) Find $\overrightarrow{O M} \wedge \overrightarrow{O P}$
d) Hence, or otherwise, find the shortest distance from the point P to the straight line $O M$, giving the answer in exact form.

Question 29 (***+)
The plane Π has an equation given by

$$
\mathbf{r}=4 \mathbf{i}+\mathbf{k}+\lambda(2 \mathbf{j}-\mathbf{k})+\mu(3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})
$$

where λ and μ are scalar parameters.
a) Find a normal vector to this plane.

The straight line L passes through the point $A(2,2,2)$ and meets Π at the point $B(4,0,1)$.
b) Calculate, to the nearest degree, the acute angle between L and Π.
c) Hence, or otherwise, find the shortest distance from A to Π.

Created by T. Madas

Question 30 (***+)
With respect to a fixed origin O the points A, B and C, have respective coordinates $(6,10,10),(11,14,13)$ and $(k, 8,6)$, where k is a constant.
a) Given that all the three points lie on a plane which contains the origin, find the value of k.
b) Given instead that $O A, O B, O C$ are edges of a parallelepiped of volume 150 cubic units determine the possible values of k.

$$
k=10, \quad k=-5, \quad k=25
$$

Question 31 (***+)
The straight lines L_{1} and L_{2} have respective Cartesian equations

$$
\frac{x-25}{9}=\frac{y}{7}=\frac{z+13}{2} \quad \text { and } \quad \frac{x+26}{-6}=\frac{y-7}{7}=\frac{z-13}{8}
$$

a) Show that L_{1} and L_{2} intersect at some point and find its coordinates.

The plane Π contains both L_{1} and L_{2}.
b) Find a Cartesian equation for Π.

Created by T. Madas

Question 32 (***+)
The figure below shows a parallelepiped.

Relative to an origin O the points A, B, C and D have respective position vectors

$$
\mathbf{a}=4 \mathbf{i}-\mathbf{j}+7 \mathbf{k}, \quad \mathbf{b}=6 \mathbf{i}+\mathbf{j}+6 \mathbf{k}, \quad \mathbf{c}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k} \quad \text { and } \quad \mathbf{d}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k} .
$$

a) Find an equation of the plane $A B D G$ in the form ...
i. $\quad \ldots \mathbf{r}=\mathbf{u}+\lambda \mathbf{v}+\mu \mathbf{w}$.
ii. ... $a x+b y+c z+d=0$.
b) Hence determine the direction cosines of the straight line through O and F.

$$
\begin{aligned}
& \mathbf{r}=4 \mathbf{i}-\mathbf{j}+7 \mathbf{k}+\lambda(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})+\mu(3 \mathbf{i}-4 \mathbf{j}+9 \mathbf{k}), 2 x-3 y-2 z+3=0, \\
& l=\frac{7}{9}, m=\frac{4}{9}, n=\frac{4}{9}
\end{aligned}
$$

Question 33 (***+)
The planes Π_{1} and Π_{2} have the following Cartesian equations.

$$
\begin{array}{r}
2 x+2 y-z=9 \\
x-2 y=7
\end{array}
$$

a) Find, to the nearest degree, the acute angle between Π_{1} and Π_{2}.

The two planes intersect along the straight line L.
b) Determine an equation of L in the form $\mathbf{r}_{\wedge} \mathbf{a}=\mathbf{b}$, where \mathbf{a} and \mathbf{b} are vectors with integer components.

$$
\square, 73^{\circ}, \mathbf{r}_{\wedge}(2 \mathbf{i}+\mathbf{j}+6 \mathbf{k})=-5 \mathbf{i}-32 \mathbf{j}+7 \mathbf{k}
$$

\square

Question 34 (${ }^{* * *+) ~}$
The straight line l has Cartesian equation

$$
\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{2} .
$$

a) Show that the point P with coordinates $(16,24,18)$ lies on l.

The point A has coordinates $(8,19,6)$ and the direction vector of l is denoted by \mathbf{d}.
b) Calculate $\frac{\overrightarrow{A P} \wedge \mathbf{d}}{|\mathbf{d}|}$.
c) Hence show that the shortest distance of A from l is exactly 6 units.

$$
\frac{(20 \mathbf{i}-4 \mathbf{j}-14 \mathbf{k})}{\sqrt{17}}
$$

\square

Created by T. Madas

Question 35 (***+)

The three vertices of the parallelogram $A B C D$ have coordinates

$$
A(7,1,-6), \quad B(4,0,7) \text { and } D(-2,6,1)
$$

The diagonals of the parallelogram meet at the point M.
a) Determine in any order the coordinates of M and the coordinates of C.
b) Calculate in exact simplified surd form, the area of $A B C D$.

The straight line l passes through C and is perpendicular to $A B C D$.
c) Find an equation of l, giving the answer in the form $(\mathbf{r}-\mathbf{a}) \wedge \mathbf{b}=\mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.

The plane Π is parallel to $A B C D$ and passes through the point with coordinates $(10,10,1)$.
d) Determine the coordinates of the point of intersection between Π and l.

The parallelogram $A B C D$ is one of the six faces of a parallelepiped whose opposite face lies in Π.
e) Calculate the volume of this parallelepiped.

$$
\begin{array}{r}
M(1,3,4), \\
\hline
\end{array}
$$

Created by T. Madas

Created by T. Madas

Question 36 (***+)
Three planes have the following Cartesian equations.

$$
\begin{aligned}
x-3 y-2 z & =2 \\
2 x-2 y+3 z & =1 \\
5 x-7 y+4 z & =k
\end{aligned}
$$

where k is a constant.

Determine the intersection of the three planes, stating any restrictions in the value of k.
\square

Question 37 (***+)
The planes Π_{1} and Π_{2} have respective Cartesian equations

$$
x+2 y-z=1 \quad \text { and } \quad x+3 y+z=6 .
$$

a) Find the acute angle between Π_{1} and Π_{2}.
b) Show that Π_{1} and Π_{2} intersect along the straight line with equation

$$
\mathbf{r}=(5 \lambda-9) \mathbf{i}+(5-2 \lambda) \mathbf{j}+\lambda \mathbf{k},
$$

where λ is a scalar parameter.

\square

Question 38 (***+)
It is given that the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} satisfy
$\mathbf{b} \wedge \mathbf{c}=2 \mathbf{i} \quad$ and $\quad \mathbf{a} \wedge \mathbf{c}=\mu \mathbf{j}$,
where μ is a scalar constant.

It is further given that the vector expression defined as

$$
(\mathbf{a}+2 \mathbf{b}-3 \mathbf{c}) \wedge(\mathbf{a}+2 \mathbf{b}+k \mathbf{c})
$$

where k is a scalar constant, is parallel to the vector $\mathbf{i}-\mathbf{j}$.

Determine the condition that μ and k must satisfy.

Question 39 (***+)
The position vector \mathbf{r} of a variable point traces the plane Π with equation

$$
\mathbf{r}=(4+\lambda+5 \mu) \mathbf{i}+(8+2 \lambda-4 \mu) \mathbf{j}+(-5+\lambda+7 \mu) \mathbf{k},
$$

where λ and μ are parameters.
a) Express the equation of Π in the form

$$
\mathbf{r} \cdot \mathbf{n}=c
$$

where \mathbf{n} and c is a vector and scalar constant, respectively.

The point $P(12,-1,44)$ is reflected about Π onto the point P^{\prime}.
b) Determine the coordinates of P^{\prime}.
\square $, \mathbf{r} \cdot(9 \mathbf{i}-\mathbf{j}-7 \mathbf{k})=63, P^{\prime}(48,-5,16)$

se in The direaion of The noemal
$r=(12,-1,44)+t(9,-1,-7)$
$r=(12,-1,44)+t(9,-1,-7)$
$(x, y, z)=(9 t+12,-t-1,-7 t+44)$

Question 40 (****)
The plane Π has a vector equation

$$
\mathbf{r}=(1+4 \lambda+3 \mu) \mathbf{i}+(3+\lambda+2 \mu) \mathbf{j}+(4+2 \lambda-\mu) \mathbf{k}
$$

where λ and μ are scalar parameters.

The straight line L has a vector equation

$$
\mathbf{r}=(2+2 t) \mathbf{i}+(1+3 t) \mathbf{j}+(-3-4 t) \mathbf{k}
$$

where t is a scalar parameter.
a) Show that L is parallel to Π.
b) Find the shortest distance between L and Π.

Created by T. Madas

Question 41 (****)
Relative to a fixed origin O, the following points are given.

$$
A(4,2,0), \quad B(-1,7,-1) \quad \text { and } \quad C(2,0,1)
$$

a) Determine a vector, with integer components, which is perpendicular to both $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
You may NOT use the vector (cross) product for this part.
b) Deduce a Cartesian equation of the plane, which passes through A, B and C.

Created by T. Madas

Question 42 (****)

The straight lines L_{1} and L_{2} have respective Cartesian equations

$$
\frac{x-2}{2}=\frac{y-3}{4}=z \quad \text { and } \quad \frac{x+2}{2}=\frac{4 y}{11}=\frac{z+10}{3} .
$$

a) Show that L_{1} and L_{2} intersect at some point P and find its coordinates.
b) Show further that the Cartesian vector $37 \mathbf{i}-16 \mathbf{j}-10 \mathbf{k}$ is perpendicular to both L_{1} and L_{2}.

The plane Π is defined by L_{1} and L_{2}.

The point $Q(2,5,-2)$ does not lie on Π.

The straight line L_{3} passes through Q and P.
c) Calculate the acute angle formed between L_{3} and Π.

Created by T. Madas

Question 43 (****)
Relative to a fixed origin O, the following points are given.

$$
A(7,2,6), \quad B(9,10,4) \quad \text { and } \quad C(-3,-2,-2)
$$

a) Determine a vector, with integer components, which is perpendicular to both $\overrightarrow{A B}$ and $\overrightarrow{A C}$, and hence deduce a Cartesian equation of the plane Π, which passes through A, B and C.
You may NOT use the vector (cross) product for this part.

The straight line l is perpendicular to Π and passes through the point $P(11,3,-4)$.

The point Q is the intersection of l and Π.
b) Find the coordinates of Q.
c) Calculate the distance $P Q$.

$$
2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, 2 x-y-2 z=0, Q(5,6,2),|P Q|=3
$$

Created by T. Madas

Question 44 (****)
The straight line L and the plane Π have equations

$$
L: \quad \mathbf{r}=-3 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k})
$$

$$
\Pi: \quad 3 x-2 y+z=5
$$

a) Find the size of the acute angle between L and Π.
b) Use a method involving the cross product to show that the shortest distance of the point $(0,-6,13)$ from L is 3 units.

Created by T. Madas

Question 45 (****)

The equations of two planes are given below

$$
\mathbf{r} \cdot(6 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k})=42 \quad \text { and } \quad \mathbf{r} \cdot(17 \mathbf{i}+2 \mathbf{j}+\mathbf{k})=-7
$$

The straight line l is the intersection of the two planes.
a) Find an equation for l, in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

A third plane Π_{3} contains l and the point with position vector $30 \mathbf{i}+7 \mathbf{j}+30 \mathbf{k}$.
b) Find an equation for Π_{3}, in the form $\mathbf{r}=\mathbf{u}+\alpha \mathbf{v}+\beta \mathbf{w}$, where \mathbf{u}, \mathbf{v} and \mathbf{w} are constant vectors and α and β are scalar parameters.

$$
\mathbf{r}=-8 \mathbf{j}+9 \mathbf{k}+\lambda(-\mathbf{i}+4 \mathbf{j}+9 \mathbf{k}), \quad \mathbf{r}=(-8 \mathbf{j}+9 \mathbf{k})+\alpha(-\mathbf{i}+4 \mathbf{j}+9 \mathbf{k})+\beta(10 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
$$

Created by T. Madas

Question 46 (****)
A triangle has vertices at $A(-2,-2,0), B(6,8,6)$ and $C(-6,8,12)$.
a) Find the area of the triangle $A B C$.

The plane Π_{1} contains the point B and is perpendicular to $A B$.
b) Show that an equation of Π_{1} is

$$
4 x+5 y+3 z=82
$$

The plane Π_{2} contains the point C and is perpendicular to $A C$.
c) Find the size of the acute angle between Π_{1} and Π_{2}.
d) Show that the intersection of Π_{1} and Π_{2} is ?

$$
(\lambda-6) \mathbf{i}+(20-2 \lambda) \mathbf{j}+(2 \lambda+2) \mathbf{k}
$$

Question 47 (****)

The plane quadrilateral $A B C D$ is the base of a pyramid with vertex V.

The coordinates of the points A, B and C are $(5,1,9),(8,-2,0)$ and $(4,-1,6)$, respectively.

If the equation of the face $C D V$ is $2 x-3 y-16 z+85=0$ determine the vector equation of the line $C D$.
$\mathbf{r}=(4 \mathbf{i}-\mathbf{j}+6 \mathbf{k})+\lambda(35 \mathbf{i}+18 \mathbf{j}+\mathbf{k})$ or $[\mathbf{r}-(4 \mathbf{i}-\mathbf{j}+6 \mathbf{k})] \wedge(35 \mathbf{i}+18 \mathbf{j}+\mathbf{k})=\mathbf{0}$

Question 48 (****)
A straight line L and a plane Π have respective cartesian equations

$$
L: x-3=2-y=\frac{1}{4}(2 z-5) \quad \text { and } \quad \Pi: 2 x+k y+z=13
$$

where k is a constant.

Given that the acute angle between L and Π is 30°, find the possible values of k.
$\square, k=1 \cup k=-17$

Created by T. Madas

Question 49 (****)
With respect to a fixed origin O the point A has position vector $\overrightarrow{O A}=-4 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.

The straight line L has vector equation

$$
\mathbf{r} \wedge \overrightarrow{O A}=5 \mathbf{i}-10 \mathbf{k}
$$

a) Find, in terms of a scalar parameter λ, a vector equation of L.

Give the answer in the form $\mathbf{r}=\mathbf{p}+\lambda \mathbf{q}$, where \mathbf{p} and \mathbf{q} are constant vectors.
b) Verify that the point B, with position vector $\overrightarrow{O B}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$, lies on L.
c) Find the exact area of the triangle $O A B$.

Created by T. Madas

Question 50 (${ }^{(* * * *) ~}$
The planes Π_{1} and Π_{2} have respective Cartesian equations

$$
6 x+2 y+9 z=5 \quad \text { and } \quad 10 x-y-11 z=4
$$

a) Find the acute angle between Π_{1} and Π_{2}.
b) Show that Π_{1} and Π_{2} intersect along the straight line with equation

$$
\mathbf{r}=\mathbf{i}-5 \mathbf{j}+\mathbf{k}+t(\mathbf{i}-12 \mathbf{j}+2 \mathbf{k})
$$

where t is a scalar parameter.

The plane Π_{3} has Cartesian equation

$$
5 x+3 y+11 z=28
$$

c) Find the coordinates of the point of intersection of all three planes.
d) Determine an equation of the plane that passes through the point $(2,1,8)$ and is perpendicular to both Π_{1} and Π_{2}.

$$
75.5^{\circ},(-2,31,-5), x-12 y+2 z=6
$$

Created by T. Madas

Question 51 (${ }^{*} * * *$)
The points $P(2,2,1)$ and $Q(6,-7,-1)$ lie on the plane Π with Cartesian equation

$$
c x+4 y-12 z=k
$$

where c and k are constants.
a) Determine an equation of the straight line L, which is perpendicular to Π and passing through P.

The points A and B are both located on L and each of these points is at a distance of 26 units from Π.
b) Show that the area of the triangle $A B Q$ is approximately 261 square units.

Created by T. Madas

Question 52 (****)
The plane Π_{1} contains the origin O and the points $A(2,0,-1)$ and $B(4,3,1)$.
a) Find a Cartesian equation of Π_{1}.

The plane Π_{2} contains the point B and has normal vector $\mathbf{n}=3 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
b) Determine an equation of the plane in the form $\mathbf{r} \cdot \mathbf{n}=d$.

The straight line L is the intersection of Π_{1} and Π_{2}.

The point P lies on L so that $O P$ is perpendicular to L.
c) Find a vector equation of L.
d) Determine the coordinates of P.

$$
x-2 y+2 z=0, \quad \mathbf{r} \cdot(3 \mathbf{i}+\mathbf{j}-\mathbf{k})=14, \quad \mathbf{r}=4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{j}+\mathbf{k}), P(4,1,-1)
$$

Created by T. Madas

Question 53 (****)
The following vectors are given

$$
\begin{aligned}
& \mathbf{a}=3 \mathbf{i}+4 \mathbf{j}+\mathbf{k} \\
& \mathbf{b}=2 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k} \\
& \mathbf{c}=7 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}
\end{aligned}
$$

a) Show that the vectors are linearly independent.
b) Express the vector $9 \mathbf{i}+20 \mathbf{j}-5 \mathbf{k}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.

$$
9 \mathbf{i}+20 \mathbf{j}-5 \mathbf{k}=2 \mathbf{a}-2 \mathbf{b}+\mathbf{c}
$$

\square

Created by T. Madas

Question 54 (${ }^{(* * * *) ~}$
The points $A(0,2,1), B(8,6,0)$ and $C(-4,1,1)$ form a plane Π_{1}.
a) Find a Cartesian equation for Π_{1}.

The point $T(1,2, t)$ lies outside Π_{1}.
b) Show that the shortest distance of T from Π_{1} is

$$
\left|\frac{1}{9}(8 t-9)\right|
$$

The plane Π_{2} has Cartesian equation

$$
2 x+y-2 z+7=0
$$

c) Given that the T is equidistant from Π_{1} and Π_{2} find the possible values of t.

$$
-x+4 y+8 z=16, t=-12,3
$$

Question 55 (****)
With respect to a fixed origin O, the points $A(3,0,0), B(0,2,-1)$ and $C(2,0,1)$ have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, respectively.
a) Calculate $\overrightarrow{A C} \wedge \overrightarrow{O B}$.

The plane Π contains the point C and the straight line L with vector equation

$$
(\mathbf{r}-\mathbf{a}) \wedge \mathbf{b}=\mathbf{0}
$$

where \mathbf{a} and \mathbf{b} are constant vectors to be found.
b) Find a Cartesian equation of Π.
c) Calculate the shortest distance of Π from O.

The point D is the reflection of O about Π.
d) Determine the coordinates of D.

Created by T. Madas

Question 56 (****)
Relative to a fixed origin O, the point A has position vector $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.

The plane Π has vector equation

$$
\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}
$$

where $\mathbf{b}=2 \mathbf{i}-\mathbf{k}$ and $\mathbf{c}=3 \mathbf{j}-\mathbf{k}$.
a) Find a Cartesian equation of Π.

The point P has position vector $\mathbf{i}+5 \mathbf{j}-3 \mathbf{k}$.
b) Calculate, to the nearest degree, the acute angle between $A P$ and Π.

$$
3 x+2 y+6 z=13,31^{\circ}
$$

Question 57 ($* * * *$)
The system of equations below has a unique solution.

$$
\begin{aligned}
& 5 x+y+6 z=9 \\
& 3 x+6 y+2 z=8 \\
& 4 x+2 y-9 z=75
\end{aligned}
$$

a) Show that $z=-5$ and find the values of x and y.

The straight line L and the plane Π have respective vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=\left(\begin{array}{l}
-29 \\
-9 \\
46
\end{array}\right)+t\left(\begin{array}{c}
-6 \\
-2 \\
9
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{l}
-38 \\
-17 \\
-29
\end{array}\right)+\lambda\left(\begin{array}{l}
5 \\
3 \\
4
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
6 \\
2
\end{array}\right), ~, ~
\end{aligned}
$$

where t, λ and μ are scalar parameters.
b) Show that L is perpendicular to Π.
c) Show further that L meets Π at the point with coordinates $(1,1,1)$.

Question 58 (****)
The straight line L has vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
3 \\
7 \\
0
\end{array}\right)+\lambda\left(\begin{array}{r}
-2 \\
2 \\
-3
\end{array}\right)
$$

where λ is a scalar parameter.

The plane Π passes through the points $A(11,13,5)$ and $B(15,12,5)$.

It is further given that Π is parallel to L.
a) Find a Cartesian equation for Π and hence calculate the distance between L and Π.

The straight line M is the reflection of L about Π.
b) Determine a vector equation for M.
,$x+4 y+2 z=73$, distance $=2 \sqrt{21}, \quad \mathbf{r}=7 \mathbf{i}+23 \mathbf{j}+8 \mathbf{k}+\mu(2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})$

$d=|\overrightarrow{A C} \cdot \hat{B}|=\left|(-12,-5,-s) \cdot \frac{(1,4,2)}{\sqrt{21}}\right|=\left|\frac{-(2-20-10}{\sqrt{21}}\right|$ $=\left|\frac{-42}{\sqrt{21}}\right|=\frac{42 \sqrt{21}}{21}=2 \sqrt{2}$
b)

FIND AN ETOATLON of L^{\prime}
$f=(x, 4, z)=(3 \pi, 0)+\lambda(1,4,2)$

Solumg sametaniousy wian the kpoation of Tite futint
$\Rightarrow \quad x+4 y+2 z=73$
$\begin{array}{ll}\Rightarrow & (\lambda+3)+4(4 \lambda+7)+2(2 \lambda)=73 \\ \Rightarrow & \lambda+3+k \lambda+23+42=73\end{array}$
$\Rightarrow 21 \lambda=42$
Thtes $D(5,15,4)$
HFWCE WE HNE THE REFEEETON OF C $(3,7,0)$ Heary Π IS THE POMT $E(7,23,8)$ (By inspection is D is THE UIDPONT OF $C E$)
\therefore reporem unt whe be $r=(7,2,3)+p(2,-2,3)$

Question 59 (****)
The point $P(1,3,8)$ lies on the plane Π_{1}.

The straight line L, whose Cartesian equation is given below also lies on Π_{1}.

$$
x-4=\frac{y-3}{3}=\frac{2-z}{4}
$$

a) Find a Cartesian equation of Π_{1}.

You may not use the vector product (cross product) in part (a).

The point $R(-2,-2, k)$, where k is a constant, lies on another plane Π_{2}, which is parallel to Π_{1}.
b) Given that the distance between Π_{1} and Π_{2} is 3 units determine, in exact fractional form, the possible values of k.

You may not use the standard formula which finds the distance between two parallel planes in part (b).

$$
\text { Fe, } 6 x+2 y+3 z=36, k=\frac{73}{3}, k=\frac{31}{3}
$$

Created by T. Madas

Question 60 (****)

With respect to a fixed origin O, four points have the following coordinates

$$
A(-1,3,-1), B(1,2,-2), C(1,2,2) \text { and } D(k, k, k)
$$

where k is a constant.
a) Determine the shortest distance between the straight lines $A B$ and $C D$.
b) Find, in terms of k, the volume of the tetrahedron $A B C D$.

Created by T. Madas

Question 61 (****+)
The straight line L has Cartesian equation

$$
x-9=\frac{y-a}{2}=\frac{z-1}{b}
$$

where a and b are non zero constants.

The plane Π has Cartesian equation

$$
x+y-2 z=12
$$

a) If L is contained by Π, determine the value of a and the value of b.
b) Given instead that L meets Π at the point where $x=0$, and is inclined at an angle $\arcsin \frac{5}{6}$ to Π, determine the value of a.

$$
a, a=5, b=\frac{2}{3}, a=50
$$

\square

Sponeman Botht Sides
$\Rightarrow 36(3-2 b)^{2}=25 \times 6 \times\left(5+b^{2}\right)$
$\Rightarrow 6(3-2 b)^{2}=25\left(5+b^{2}\right)$
$\Rightarrow 6\left(9-12 b+4 b^{2}\right)=125+25 b^{2}$
$\Rightarrow 4+72 b+24 b^{2}=125+25 b^{2}$ $\Rightarrow 0=b^{2}+72 b+71$
$\Rightarrow 0=(b+1)(b+71)$
$\Rightarrow b=<_{-71}^{-1} \quad$ (Doo soat woik Dot to spenenene?)
Finaluy to find a

- IF $b=-1$ $\left(x_{1}, y_{1} z=\left(\lambda+a_{1}, 2 \lambda+a_{1} \lambda b+1\right)\right.$
$\left(x_{1}, y_{2}\right)=\left(\lambda+a_{1}, 2 \lambda+a_{1}-\lambda+1\right)$
$(x, y, z)=(\lambda+a, 2 \lambda+a, \lambda b+1)$ $(x, y, z)=(\lambda+9,2 \lambda+a,-7(\lambda+1)$
$(0, y, z)=(\lambda+9, z+a,-7, \lambda+1)$ $\Rightarrow A=-9$
$\Rightarrow z=640 \quad\left\{\begin{array}{l}11 \\ \Rightarrow y=-18+a\end{array}\right\}, 639$ Hencte Hhaces
$x+y$ $x+y-2 z=12$
$0+(-18+a)-2 \times 640=12$ $-18+a-1200=12$
$a=1310$

Created by T. Madas

Question $62(* * * *+)$
0

The figure above shows an irregular hollow shape, consisting of two non-congruent, non-parallel triangular faces $A B C$ and $D E F$, and two non-congruent quadrilateral faces $A B E D$ and BCFE.

The respective equations of the straight lines $A D$ and $D E$ are

$$
\mathbf{r}_{1}=-5 \mathbf{i}+6 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}) \quad \text { and } \quad \mathbf{r}_{2}=-\mathbf{i}+12 \mathbf{j}+\mathbf{k}+\mu(-2 \mathbf{i}+7 \mathbf{j}-7 \mathbf{k})
$$

where λ and μ are scalar parameters.
a) If the plane face $B C F E$ has equation $21 x-14 y+20 z=111$, determine an equation of the straight line $B E$.

The straight line $B C$ has equation

$$
\mathbf{r}_{3}=-\mathbf{i}-8 \mathbf{j}+\mathbf{k}+v(-2 \mathbf{i}+7 \mathbf{j}+7 \mathbf{k}),
$$

where v is a scalar parameter.
b) Given further that the point G has position vector $5 \mathbf{i}+7 \mathbf{j}$, determine the acute angle between the plane face $B C F E$ and the straight line $B G$.
$\square, \mathbf{r}=\mathbf{i}+5 \mathbf{j}+8 \mathbf{k}+t(2 \mathbf{i}+3 \mathbf{j}), \theta \approx 13.5^{\circ}$

Created by T. Madas

Created by T. Madas

 \square
DTIING NORMALTO BCFE ANO DIEATION BG $(21,-44,20\rangle) \cdot(1,1,-1)=|21,-14,20||1,1,-1| \cos \theta$ $2-14-2 n=\sqrt{4+111956400)} \sqrt{2} \cos \theta$

$\cos \theta=\frac{-13}{\sqrt{311}}$
$\theta=103.478$
WE RLPVIRt AWTH AWGAT (SSt DIARARA)
$\theta=180-103.478$
$\theta=755^{\circ}$
Finsuy The Repuen poxat is ϕ

Question 63 (****+)
The skew straight lines L_{1} and L_{2} have vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=(-13 \mathbf{j}+\mathbf{k})+\lambda(-3 \mathbf{i}+4 \mathbf{j}-7 \mathbf{k}), \\
& \mathbf{r}_{2}=(5 \mathbf{i}+25 \mathbf{j})+\mu(2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Find a vector which mutually perpendicular to L_{1} and L_{2}.

You may not use the vector (cross) product in answering part (a).

The point A lies on L_{1} and the point B lies on L_{2}.
b) Given that the distance $A B$ is least, determine the coordinates of A and B.
\square $A(-3,-9-6), B(9,21,6)$

Created by T. Madas

Created by T. Madas

Question 64 (*****)
The points A, B and C have respective position vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, relative to a fixed origin O.

Show that the equation of the plane through A, B and C can be written as

Created by T. Madas

Question 65 (*****)
An irregular pyramid with a triangular base $A B C$ has vertex at the point V.
The equation of the straight line $V C$ is

$$
\mathbf{r}=2 \mathbf{i}+4 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+4 \mathbf{k})
$$

where λ is a scalar parameter.

The plane face $A B V$ has equation $2 x-3 y-z=1$.

If the point D lies on the plane face $V B C$ and has position vector $\frac{10}{3} \mathbf{i}+\frac{1}{3} \mathbf{j}+5 \mathbf{k}$, show that the equation of the line $V B$ can be written as

$$
\mathbf{r}=3 \mathbf{i}-\mathbf{j}+8 \mathbf{k}+\mu(2 \mathbf{i}+3 \mathbf{j}-5 \mathbf{k})
$$

where μ is a scalar parameter.
\square , proof

Question 66 (*****)
The straight line L_{1} has vector equation

$$
\mathbf{r}=4 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}+\lambda(3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k})
$$

where λ is a scalar parameter.

The plane Π has vector equation

$$
\mathbf{r} \cdot(4 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k})=17
$$

The point P is the intersection of L_{1} and Π.

The acute angle θ is formed between L_{1} and Π.

The straight line L_{2} lies on Π, passes through P so that the acute angle between L_{1} and L_{2} is also θ.

Determine the value of θ and find a vector equation for L_{2}.

$$
\square, \theta=30^{\circ}, \mathbf{r}_{2}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mu(2 \mathbf{i}-11 \mathbf{j}+5 \mathbf{k})
$$

- a 5 mutoanar freppandicane to 4 a n
- a is is THE Diefetion ($7,-1,5$)
- a_{1}, n \& The dizetion of L_{2} arf hle Pinponvilule
- Hitwae the dieferon or L_{2} is Givin हy
$\underset{\substack{n \rightarrow}}{\substack{i}}\left|\begin{array}{ccc}1 & j & k \\ 4 & 3 & 5 \\ 7 & -1 & -5\end{array}\right|=(-10,55,-25)$

- gevation of
- $\overrightarrow{P T}=E-p=\left(z_{1}-\frac{9}{2}, \frac{4}{2}\right)-(1,1,2)-\left(1,-\frac{1}{2}, \frac{5}{2}\right)$
- WND THe Dietotion of L_{2} ance scress $\times 2$

ALIRENATUE APPROAOH TO FIND THE DIREGTIN
OF THE UNE L_{2}

- Prak to Arartefey Pois an 4
- The fuation of A prependicuil

UNE Thlow Gf Q wu BE
$P=(4-3,7)+\lambda(4,3,5)$
$f=(4,-3, \lambda+\lambda(4,3,1)$
$r=(4 \lambda+4,3 \lambda-3,5 \lambda+7)$

Created by T. Madas

Question 67 (*****)
With respect to a fixed origin O, the points A, B and C have respective position vectors

$$
\mathbf{a}=3 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=6 \mathbf{i}+2 \mathbf{k} \quad \text { and } \quad \mathbf{c}=3 \mathbf{j}+5 \mathbf{k},
$$

so that the plane Π contains A, B and C.

The straight line L is parallel to Π and has vector equation

$$
\mathbf{r}=(13 \mathbf{i}-9 \mathbf{j})+\lambda(-7 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k})
$$

where λ is a scalar parameter.

The point P lies outside the plane so that $P C$ is perpendicular to Π.

The point Q lies on L so that $P Q$ is perpendicular to L.

Given further that P is equidistant from Π and L, find the position vector of P and the position vector of Q.

$$
\mathbf{p}=-6 \mathbf{i}-4 \mathbf{k}, \mathbf{q}=-\mathbf{i}+\mathbf{j}+6 \mathbf{k}
$$

Created by T. Madas

Question 68 (*****)?
0

The figure above shows an irregular hollow shape, consisting of two non-congruent, non-parallel triangular faces $A B C$ and $D E F$, and two non-congruent quadrilateral faces $A B E D$ and $B C F E$.

The respective equations of the straight lines $A D, D E$ and $B C$ are

$$
\begin{aligned}
& \mathbf{r}_{1}=-5 \mathbf{i}+6 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}) \\
& \mathbf{r}_{2}=-\mathbf{i}+12 \mathbf{j}+\mathbf{k}+\mu(-2 \mathbf{i}+7 \mathbf{j}-7 \mathbf{k}) \\
& \mathbf{r}_{3}=-\mathbf{i}-8 \mathbf{j}+\mathbf{k}+\nu(-2 \mathbf{i}+7 \mathbf{j}+7 \mathbf{k})
\end{aligned}
$$

where λ, μ and v are scalar parameters.

If the plane face $B C F E$ has equation $21 x-14 y+20 z=111$ and the point G has position vector $5 \mathbf{i}+7 \mathbf{j}$, show that the acute angle between the plane face $B C F E$ and the straight line $B G$ is

