EXAM QUESTIONS Part B UBSIRALISEOR I. Y.C.B. MARIASINALISEOR I.Y.C.B. MARIASIN

Question 1 (**)

The vectors **a** and **b**, are not parallel.

Simplify fully the following expression

 $(2\mathbf{a}+\mathbf{b})\wedge(\mathbf{a}-2\mathbf{b})$.

Question 2 (**)

The vectors **a**, **b** and **c** are not parallel.

Simplify fully

2

 $\mathbf{a} \cdot \left[\mathbf{b} \wedge (\mathbf{c} + \mathbf{a}) \right].$

 $a \cdot (b \wedge c)$

1+

 $T_{AA} + 2_{A} d_{A} + 2_{A}$

Question 3 (**)

Find the area of the triangle with vertices at A(1,-1,2), B(-1,2,1) and C(2,-3,3).

 $\frac{1}{2}\sqrt{3}$

Question 4 (**)

Referred to a fixed origin the coordinates of the following points are given

A(1,1,1), B(5,-2,1), C(3,2,6) and D(1,5,6).

a) Find a Cartesian equation for the plane containing the points A, B and C.

b) Determine the volume of the tetrahedron *ABCD*.

3x + 4y - 2z = 5, volume = 5
42
(a) $\underbrace{\operatorname{form}_{(\lambda_{1},\lambda_{2})}}_{\substack{i \in \mathbb{Z}^{n}, \\ i \in \mathbb{Z}^{$
$\frac{\partial (22334 \int_{0}^{\infty} T_{1}^{2} + \frac{1}{2} \frac{\partial (2}{\partial z} + \frac{1}{2} \frac{\partial }{\partial z} \frac{\partial }{\partial z} + \frac{1}{2} \frac{\partial }{\partial z} \frac{\partial }{\partial z} + \frac{1}{2} \frac{\partial }$
$\begin{array}{c} (i_1(i_1) & i_2 & \dots & i_{n-1} & \dots & \dots & \dots \\ T_{n-1} & \dots \\ T_{n-1} & \dots \\ T_{n-1} & \dots \\ T_{n-1} & \dots & \dots & \dots & \dots & \dots & \dots \\ T_{n-1} & \dots & \dots & \dots & \dots & \dots & \dots \\ T_{n-1} & \dots & \dots & \dots & \dots & \dots & \dots \\ T_{n-1} & \dots \\ T_{n-1} & \dots & $
$\begin{array}{l} b) & \underline{\operatorname{STMT}} & \mathbf{F}_{1} & \operatorname{Full min}_{1} - \frac{\mathbf{F}_{2}}{\mathbf{F}_{2}} \\ \hline & \overline{\mathbf{F}}_{2}^{1} = \mathbf{J}_{-2} = (\mathbf{h}_{2}\mathbf{A}_{1}^{1} - (\mathbf{h}_{1}\mathbf{h}_{1}) = (\mathbf{a}_{1}\mathbf{g}_{1}) \\ & \forall = \frac{1}{6} \left[\left[\overline{\mathbf{F}}_{1} \cdot \overline{\mathbf{A}}_{1}^{2} - \overline{\mathbf{A}}_{1}^{2} \right] \\ & = \frac{1}{6} \left[\left[\left[\overline{\mathbf{F}}_{1} \cdot \overline{\mathbf{A}}_{1}^{2} \right] \right] \\ & = \frac{1}{6} \left[\left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \right] \\ & = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1} \cdot \mathbf{A}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}_{1}^{2} \right] \\ & \mathbf{F}_{1}^{1} = \frac{1}{6} \left[\mathbf{F}_{1}^{1} - \mathbf{F}$
= 5

Question 5 (**)

Ĉ.B.

P.C.B.

The position vectors of the points A, B and C are given below

 $\overrightarrow{OA} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ and $\overrightarrow{OC} = \mathbf{i} + 4\mathbf{j} + \mathbf{k}$.

- **a**) Show that \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are linearly dependent.
- **b**) Find the area of the triangle *ABC*.

n

F.C.B.

M2(12

nn

(**) Question 6

I.V.C.B.

Ismaths.

I.F.G.B.

Com I.Y.C.B.

0

Find the equation of the straight line which is common to the planes

x - 2y + 4z = 9 and 2x - 3y + z = 4.

$\mathbf{r} = (\mathbf{i} + 2\mathbf{k}) + \lambda(10\mathbf{i} + 7\mathbf{j} + \mathbf{k})$ or $[\mathbf{r} - (\mathbf{i} + 2\mathbf{k})] \land (10\mathbf{i} + 7\mathbf{j} + \mathbf{k}) = \mathbf{0}$

6

nadasm.

(0,2) AND DIRECTION (10,7,1)

. C.b.

naths.com

madasmaths.com

V.G.B. 11120/2811

Created by T. Madas

2017

Question 7 (**+)

2

F.C.B.

I.C.B.

The following vectors are given.

a = 2i + 3j - kb = i + 2j + kc = j + 3k

- a) Show the three vectors are coplanar.
- **b**) Express **a** in terms of **b** and **c**.

11.5

nadasm.

Inadası

Madasn

F.C.B.

Created by T. Madas

F.G.B.

Question 8 (**+)

The vectors **a** and **b** are such so that

madasmaths,

Com I. V.C.B.

COM

I.V.G.B. Madash

I.C.B.

 $|\mathbf{a}| = \sqrt{10}$, $|\mathbf{b}| = 10$ and $\mathbf{a} \cdot \mathbf{b} = 30$.

madasn.

.com

Find the value of $|\mathbf{a}_{\wedge}\mathbf{b}|$.

anasmaths,

naths.com

140

6

nadasm.

I.V.C.B. Madash

Created by T. Madas

i.C.B.

2017

Question 9 (**+)

With respect to a fixed origin O, the points A and B have position vectors given by

 $\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

a) Find a Cartesian equation of the plane that passes through O, A and B.

A straight line has a vector equation

$$\left[\mathbf{r} - \left(4\mathbf{i} + \mathbf{j} + 6\mathbf{k}\right)\right] \land \left(\mathbf{i} + \mathbf{j} + \mathbf{k}\right) = \mathbf{0} .$$

b) Determine the coordinates of the point C, where C is the intersection between the straight line and the plane.

(H,7,5) (4,1,6)+ 2+L, 1+L, 1+L) = 2

: C(1-2,3)

C(1,-2,3)

x - 7y - 5z = 0

Question 10 (**+)

The plane Π_1 passes through the point with coordinates (2,5,1) and is perpendicular to the vector $5\mathbf{i} - 4\mathbf{j} + 20\mathbf{k}$.

- **a**) Find a vector equation of Π_1 , in the form $\mathbf{r} \cdot \mathbf{n} = d$.
- **b**) Calculate the exact value of the cosine of the acute angle between Π_1 and the plane Π_2 with equation x + y + z = 10.

(6)

Question 11 (**+) The following three vectors are given

> a = i + 3j + 2k b = 2i + 3j + k $c = i + 2j + \lambda k$

where λ is a scalar constant.

î C.B.

- a) If the three vectors given above are coplanar, find the value of λ .
- **b**) Express **a** in terms of **b** and **c**.

4) IF THE USCOORS ARE CORMUNAL, THE CLASS PRODUCT OF MAY TWO WILL BE PERPHADIWARE TO THE THEOD
$\Rightarrow (\underline{o}^{\prime} \overline{p}) \cdot \overline{c} = 0$
= 0 1 2 Q 1 3 2 2 3 1
$\implies 1 \begin{vmatrix} 3 & 2 \\ 3 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} + 2 \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = 0$
(3-6) -2(1-4) + 2(3-6) = 0
= -3+6-32=0
$\Rightarrow 3 = 33$
6) SETTING OF AN EQUATION
$\frac{d}{2} = p \frac{b}{b} + q \frac{c}{2}$ $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = p \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + q \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$
$\begin{array}{c} (qvATF SAY \underline{i} \in (THF \underline{i} space advance) \\ 2p+eql = (?) \Rightarrow p=-1 a d=3 \\ p+eql = 2 (?) \Rightarrow p=-1 a d=3 \end{array}$
∴ a = 3c - h

 $, \lambda = 1$

 $\mathbf{a} = 3\mathbf{c} - \mathbf{b}$

Ĉ.Ŗ

Question 12 (***)

The vectors **a**, **b** and **c** are such so that

 $\mathbf{c} \wedge \mathbf{a} = \mathbf{i}$ and $\mathbf{b} \wedge \mathbf{c} = 2\mathbf{k}$.

Express $(\mathbf{a} + \mathbf{b}) \wedge (\mathbf{a} + \mathbf{b} + 2\mathbf{c})$ in terms of \mathbf{i} and \mathbf{k} .

-2i + 4k

 $\begin{array}{l} (\underline{a}+\underline{b})_{\chi}(\underline{a}+\underline{b}+2\varsigma) = (\underline{a}\pm\underline{b})_{\chi}(\underline{a}+\underline{b}) + (\underline{a}\pm\underline{b})_{\chi}\times\underline{c}\\ &= 2\underline{a}_{\chi}\varsigma + 2\underline{b}_{\chi}\varsigma & \cdot\\ &= -2\underline{c}_{\chi} + 2(\underline{b}\underline{c})\\ &= -2\underline{c}_{\chi} + 4\underline{b} \end{array}$

Question 13 (***)

Relative to a fixed origin O, the position vectors of the points A, B and C are

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \text{ and } \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix}$$

a) Show that \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are linearly independent.

- **b**) Evaluate $\overrightarrow{OA} \cdot \overrightarrow{OB}$.
- c) Show that $\overrightarrow{OB} \wedge \overrightarrow{OC} = k \overrightarrow{OA}$, where k is a constant.

The points O, A, B and C are vertices of a solid.

d) Describe the solid geometrically and state its volume.

 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$, $\boxed{k = 14}$, cuboid, volume = 42

(***) Question 14

Relative to a fixed origin O, the plane Π_1 passes through the points A, B and C with position vectors $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $6\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, respectively.

- **a**) Determine an equation of Π_1 in the form $\mathbf{r} \cdot \mathbf{n} = c$, where **n** is the normal to Π_1 and c is a scalar constant.
- **b**) Find, in exact surd form, the shortest distance of Π_1 from the origin O.

The plane Π_2 passes through the point A and has normal $5\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}$.

c) Calculate, to the nearest degree, the acute angle between Π_1 and Π_2 .

START BY GRAVING & GROCE PHODOD $\overrightarrow{AB} = \underline{b} - \underline{a} = (\underline{c}_{1} - \underline{l}_{1}) - (\underline{l}_{1} - \underline{l}_{2}) = (\underline{s}_{1} - \underline{c}_{1})$ $= (3_{1}2_{2}2) - (1_{1}-1_{1}2) = (2_{1}-1_{1}0)$ 4 = (-1,-2,-5) -1 A NOLLIAL TO THE PUNIF |x + 2y + 5z = constraint)|+2(-1) + s(2) = constraint)4(1,-1,2) 36 = 130 178 0000 6050= 36 V 20x78 a+24+52 = ? r. (1,2,5)= Ø≈ 41-9088. PROJECT ON , ONTO THE DIFECTION) ĥ OA · D

 $\frac{3}{10}$

On 42

√10

42°

 $|\mathbf{r} \cdot (\mathbf{i}+2\mathbf{j}+5\mathbf{k})=9|,$

Question 15 (***)

Relative to a fixed origin O, the points A, B and C have position vectors

$$\mathbf{a} = \begin{pmatrix} 4\\1\\1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3\\2\\2 \end{pmatrix} \text{ and } \mathbf{c} = \begin{pmatrix} 3-2\lambda\\\lambda+5\\\lambda+17 \end{pmatrix}$$

where λ is a scalar parameter.

- a) Find the $\mathbf{b}_{\wedge}\mathbf{c}$ in terms of λ .
- **b**) Show that $\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c})$ is independent of λ .
- c) Find the volume of the tetrahedron and *OABC*.

Y.C.B.

Question 16 (***)

With respect to a fixed origin O, the points A(0,1,2), B(2,3,1) and C(1,1,3) are all contained by the plane Π .

- a) Calculate the area of the triangle *ABC*.
- **b**) Determine an equation of Π , giving the answer in the form $\mathbf{r} \cdot \mathbf{n} = c$, where **n** is a normal to Π and *c* is a scalar constant.
- c) Find the distance of Π from the origin O.

The distance of the point D(3,4,1) from the plane Π is $\frac{1}{\sqrt{1-2}}$

d) Calculate, correct to one decimal place, the acute angle between AD and Π .

The figure above shows a parallelepiped.

Relative to a fixed origin O, the vertices of the parallelepiped at A, B, C, D and E have respective position vectors

a = 5i + j + 3k, b = 9i + j, c = i + 8j + 3k, d = -3i + 8j + 6ke = 7i + 2j + 9k.

- a) Calculate the area of the face *ABCD*.
- **b**) Show that the volume of parallelepiped is 222 cubic units.
- c) Hence, find the distance between the faces *ABCD* and *EFGH*

3 Sh	
TUDUCAP 22030 A SIG 250TON TUDULAS SHT FTANUAD	
$ \vec{AB} = \underline{b} - \underline{a} = (q_{1(0)}) - (s_{1(3)}) = (4_{10} - 3) $ $ \vec{AD} = \underline{d} - \underline{a} = (-5,8_{0}) - (s_{1(3)}) = (-6,7,3) $	
$ARA = \vec{A}\vec{B}_{A} \sqrt{3}\vec{D} = \vec{L}_{A} \vec{U}_{A} = 21 2,28 $ $ \vec{A} = 21 2,28 $ $ \vec{A} = 21 2,28 $	
$=\sqrt{2^{2}+12^{2}+28^{27}}=\sqrt{1369}=37$	
() VOWWE IS (AE, (AE, AD)), SO WE ORTHIN	
\implies $V = \left \overrightarrow{AE} \cdot (21_{1}12_{1}28) \right $	
$\implies V = \lfloor (\underline{v} - \underline{\alpha}), (2i, u_1 2b) \rfloor$	
\longrightarrow $V = \left \left[\left(7_{1} 2_{1} 4 \right) - \left(5_{1} 1_{3} 5 \right) \right] + \left(2 1_{1} 7_{1} 2 5 \right) \right $	
$\implies V = \left (2_{l_1} \epsilon) \cdot (2_{l_1} r_{l_2} B) \right $	
\implies V = $ 42 + 12 + 166 $	
⇒ V = 222	
45 24por860	
WE SHOULD OBTAIN THE LOUGHT AS	
> V = BARE AREA X +(fileAT	
-> 222 = 37 × h -> h = 6	
H THE REPURED DUTTINGE IS.	6//

area = 37, distance = 6

Question 18 (***)

Two non zero vectors \mathbf{a} and \mathbf{b} have respective magnitudes a and b, respectively.

 d^2

Given that $c = |\mathbf{a} \wedge \mathbf{b}|$ and $d = |\mathbf{a} \cdot \mathbf{b}|$, show that

proof

$$\begin{split} c &= |a_{n}\underline{b}| = ||a_{0}||b_{0}| = |b_{0}||b_{0}||b_{0}|| = |b_{0}||b_{0}||b_{0}|| = a \\ b_{0}||a_{0}||a_{0}||a_{0}||b_{0}||a_{0}||a_{0}||a_{0}||b_{0}||a_{0}$$

Question 19 (***)

Relative to a fixed origin O, the points A(-2,3,5), B(1,-3,1) and C(4,-6,-7) lie on the plane Π .

a) Find a Cartesian equation for Π .

The perpendicular from the point P(26,2,7) meets the Π at the point Q.

b) Determine the coordinates of Q.

12x+4y+3z=3, Q(2,-6,1)

Question 20 (***)

The points A(3,1,0), B(0,2,2) and C(3,3,1) form a plane Π .

a) Show that $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ is a normal to Π .

b) Find a Cartesian equation for Π .

The straight line L passes through the point P(3,1,3) and meets Π at right angles at the point Q.

c) Determine the distance PQ.

م	BY UKLAGATION
	$-\overline{AB} = \underline{b} - \underline{a} = (a_{2,2}) - (a_{1,1,0}) = (-a_{1,1,2})$
	$\overline{A}_{C}^{\varphi} = \underline{c} - \underline{a} = (\underline{a}, \underline{a}, 1) - (\underline{a}, 1_{C}) = (0, 2, 1)$
	DOTTING GARY OF THERE UKCTOUS WITH THE NORMAL GUILD
	$(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) - (\frac{1}{2}, \frac{1}{2}) = -\frac{1}{2} - (\frac{1}{2} + \frac{1}{2}) = 0$ $(0, \frac{1}{2}, \frac{1}{2}) - (\frac{1}{2}, \frac{1}{2}) = 0 - \frac{1}{2} + \frac{1}{2} = 0$
	NDEFED THE NORMAL TO T
6	THE GUARTION OF THE PLANE WALL BE
	3 - y + 28 = constrained
	WINC MY OF THE 3 POINTS, SAY B(0,2,2)
	0=2+2x2 = CONTINT (CNITNS7 = 2
	: a-y+2z=2
c)	STANIMEN APPROACH
	$ L: \underline{l} = (3_i, \underline{2}) + \mathcal{A} (l_i - l_i 2) $
	τ _φ π
	Structure - Sincura
	$\implies (\lambda+3)-(1-\lambda)+2(2\lambda+3)=2$

	Ав 1-2 2(+) 2,2,1}
$ PQ = q-p = (2_12_1)-(3_1l_1\lambda) = $	$[-1,1,-2] = \sqrt{1+1+4^{7}}$
<u>م ا</u> ب:	Q1= 16
ACTIONATIVE FOR PART (C)	
$\begin{split} & \widetilde{\mathbf{P}}_{1}^{\widetilde{\mathbf{A}}} = \underline{q} \cdot \underline{p} = \left(\underline{s}_{1}(q) \cdot \underline{Q}_{1}(z) + \underline{S}(q,\overline{q})\right) \\ & \underline{\Phi}_{1}^{\widetilde{\mathbf{A}}} = \frac{1}{q_{1}(1+1)}\left(\underline{q}_{1}(q) - \underline{q}_{1}(\overline{q}) + \underline{q}_{2}(q)\right) \\ & \underline{\Phi}_{1}^{\widetilde{\mathbf{A}}} = \frac{1}{q_{1}(1+1)}\left(\underline{q}_{1}(q) - \underline{q}_{1}(\overline{q}) + \underline{q}_{2}(q)\right) \\ & \underline{\Phi}_{1}^{\widetilde{\mathbf{A}}} \left[\underline{P} \underline{Q}_{1}^{\widetilde{\mathbf{A}}} - \underline{\Phi}_{1}^{\widetilde{\mathbf{A}}}\right] \\ & = \left \underline{Q} (q,\overline{q}) \cdot \underline{Q}_{1} - \underline{Q}_{2}(q,\overline{q}) + \underline{Q}_{1}(q)\right \\ & = \frac{1}{q_{n}^{\widetilde{\mathbf{A}}}}\left[\underline{Q} (q,\overline{q},\overline{a}) \cdot (\underline{1}_{q},\underline{1})\right] \end{split}$	(Чала) 5-((ча) - А(4ла)
$= \frac{1}{16} \left[0 + 0 - 6 \right]$ $= \frac{1}{16}$ $= \frac{1}{16}$ $= \frac{1}{16}$ $= \frac{1}{16}$ $= \frac{1}{16}$	

x - y + 2z = 2

 $|PQ| = \sqrt{6}$

The figure above shows a parallelepiped, whose vertices are located at the points A(2,1,t), B(3,3,2), D(4,0,5) and E(1,-2,7), where t is a constant.

- a) Calculate $\overrightarrow{AB} \wedge \overrightarrow{AD}$, in terms of t.
- **b**) Find the value of $\overrightarrow{AB} \wedge \overrightarrow{AD} \cdot \overrightarrow{AE}$

The volume of the parallelepiped is 22 cubic units.

c) Determine the possible values of t.

$(12-3t)\mathbf{i}+(-t-1)\mathbf{j}-5\mathbf{k}$, 11t-44, t=2,6

$$\begin{split} & (\mathbf{\hat{s}}) \quad \underbrace{A_{0}^{(2)} = \left\{ \begin{array}{l} 2 - \frac{1}{2}, \\ - \frac{1}{2}, \\$$

 $\begin{array}{c} \textcircled{()} \quad \forall = \left| 1 \underbrace{|t - u_{1}|}_{2 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{1}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{1}|}_{1 \times c} \right| \\ & \overbrace{1 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left| 1 \underbrace{|t - u_{2}|}_{1 \times c} \right| \\ & \overbrace{2 \times c} \left|$

Question 22 (***)

Find in Cartesian form the equation of the intersection between the planes with the following equations

2x + 4y + z = 0

3x + 3y + 2z = 15.

$$\begin{split} & = \begin{cases} 8 = (\mu^{1} + x^{2}) \\ 28 = \xi + x^{2} \\ 28 = (\xi^{2} + x^{2}) \\ 28 = \xi^{2} + x^{2} \\$$

Question 23 (***) Two planes have Cartesian equations

3x + 2y - 6z = 20 and 12x + ky = 20,

where k is a non zero constant.

The acute angle between the two planes is θ .

Given that $\cos\theta = \frac{2}{7}$, determine the value of k.

 $2g_{-62} = 203 \Rightarrow \underline{M}_{1} = (3, 2, -7)$ $ku = 20 \Rightarrow \underline{M}_{2} = (0, 4, 0)$ The (2, -7)

Question 24 (***)

I.C.B.

The straight lines l_1 and l_2 have respective vector equations

$$\mathbf{r}_1 = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + \lambda(\mathbf{j} + 3\mathbf{k})$$
$$\mathbf{r}_2 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{k})$$

where λ and μ are scalar parameters.

Show that l_1 and l_2 are skew and hence find the shortest distance between them.

12

Question 25 (***)

The points A(1,-3,1), B(-1,-2,0) and C(0,-1,-4) define a plane Π .

a) Show that $\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ is a normal to Π .

b) Determine a Cartesian equation for Π .

The straight line L has equation

$\mathbf{r} = 2\mathbf{i} + \mathbf{k} + \lambda (5\mathbf{i} + \mathbf{j} + 2\mathbf{k}),$

where λ is a scalar parameter.

- c) Find the coordinates of the point of intersection between Π and L.
- d) Calculate the size of the acute angle between Π and L.

x+3y+z+7=0, |(-3,-1,-1)|, $|33.4^{\circ}$

Question 26 (***+)

Y.C.B.

A tetrahedron has its four vertices at the points A(-3,6,4), B(0,11,0), C(4,1,28) and D(7,k,24), where k is a constant.

- a) Calculate the area of the triangle *ABC*.
- **b**) Find the volume of the tetrahedron ABCD, in terms of k.

The volume of the tetrahedron is 150 cubic units.

c) Determine the possible values of k.

A.C.B.

Question 27 (***+)

A triangular prism has vertices at A(3,3,3), B(1,3,t), C(5,1,5) and F(8,0,10), where t is a constant.

The face ABC is parallel to the face DEF and the lines AD, BE and CF are parallel to each other.

a) Calculate $\overrightarrow{AB} \wedge \overrightarrow{AC}$, in terms of t.

b) Find the value of $\overrightarrow{AB} \wedge \overrightarrow{AC} \cdot \overrightarrow{AD}$, in terms of *t*.

The value of t is taken to be 6.

c) Determine the volume of the prism for this value of t.

d) Explain the geometrical significance if t = -1.

 $(2t-6)\mathbf{i}+(2t-2)\mathbf{j}+4\mathbf{k}$, 4t+4, V=14 cubic units

A, B, C, D are coplanar, so no volume

 $\begin{array}{l} & \overline{AB} = \underline{b} - \underline{s} = (1;\underline{h};\underline{c}) - (\underline{x};\underline{h};\underline{s}) + (-\underline{x};\underline{h};\underline{c}) + (-\underline{x};\underline{h};\underline{s}) \\ & \overline{AB} = \underline{b} - \underline{s} = (2;\underline{h};\underline{c}) - (\underline{A};\underline{h};\underline{s}) = (\underline{x};\underline{c},\underline{c},\underline{c},\underline{c}) \\ & \overline{AB}, \overline{AC} = \begin{bmatrix} \underline{i} & \underline{i} & \underline{i} & \underline{i} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} & \underline{c} & \underline{c} & \underline{c} \\ -\underline{a} & \underline{c} &$

) if ta-1, prism has no column, it A, B, C, D are coplanar

Question 28 (***+)

Relative to a fixed origin O the point P has coordinates (1,2,1).

A plane Π has Cartesian equation

2x + y + 3z = 21.

The straight line L passes through the point P and it is perpendicular to Π .

a) Find the coordinates of the point M, where M is the intersection of Π and L.

The point Q is the reflection of P about Π .

- **b**) Find the coordinates of Q.
- c) Find $\overrightarrow{OM} \wedge \overrightarrow{OP}$.
- d) Hence, or otherwise, find the shortest distance from the point P to the straight line OM, giving the answer in exact form.

M(3,3,4), Q(5,4,7), 5i - j - 3k, distance = $\sqrt{\frac{35}{34}}$

Question 29 (***+)

The plane Π has an equation given by

 $\mathbf{r} = 4\mathbf{i} + \mathbf{k} + \lambda(2\mathbf{j} - \mathbf{k}) + \mu(3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}),$

where λ and μ are scalar parameters.

a) Find a normal vector to this plane.

The straight line L passes through the point A(2,2,2) and meets Π at the point B(4,0,1).

b) Calculate, to the nearest degree, the acute angle between L and Π .

c) Hence, or otherwise, find the shortest distance from A to Π .

 $\mathbf{n} = -2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, 63°, distance =

Question 30 (***+)

With respect to a fixed origin O the points A, B and C, have respective coordinates (6,10,10), (11,14,13) and (k,8,6), where k is a constant.

- a) Given that all the three points lie on a plane which contains the origin, find the value of k.
- **b**) Given instead that OA, OB, OC are edges of a parallelepiped of volume 150 cubic units determine the possible values of k.

Question 31 (***+)

The straight lines L_1 and L_2 have respective Cartesian equations

$$\frac{x-25}{9} = \frac{y}{7} = \frac{z+13}{2}$$
 and $\frac{x+26}{-6} = \frac{y-7}{7} = \frac{z-13}{8}$

a) Show that L_1 and L_2 intersect at some point and find its coordinates.

The plane Π contains both L_1 and L_2 .

b) Find a Cartesian equation for Π .

Question 32 (***+)

The figure below shows a parallelepiped.

Relative to an origin O the points A, B, C and D have respective position vectors

$$a = 4i - j + 7k$$
, $b = 6i + j + 6k$, $c = 2i + 2j - k$ and $d = i + 3j - 2k$.

a) Find an equation of the plane *ABDG* in the form ...

i. ... $\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$.

ii. ... ax + by + cz + d = 0.

b) Hence determine the direction cosines of the straight line through O and F.

 $\mathbf{r} = 4\mathbf{i} - \mathbf{j} + 7\mathbf{k} + \lambda(2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \mu(3\mathbf{i} - 4\mathbf{j} + 9\mathbf{k}), \quad \boxed{2x - 3y - 2z + 3 = 0},$ $\boxed{l = \frac{7}{9}, m = \frac{4}{9}, n = \frac{4}{9}}$

Question 33 (***+)

The planes Π_1 and Π_2 have the following Cartesian equations.

$$2x + 2y - z = 9$$
$$x - 2y = 7$$

a) Find, to the nearest degree, the acute angle between Π_1 and Π_2 .

The two planes intersect along the straight line L.

b) Determine an equation of L in the form $\mathbf{r} \wedge \mathbf{a} = \mathbf{b}$, where **a** and **b** are vectors with integer components.

73°, $\mathbf{r} \wedge (2\mathbf{i} + \mathbf{j} + 6\mathbf{k}) = -5\mathbf{i} - 32\mathbf{j} + 7\mathbf{k}$

 $\mathcal{L}_{*}(2,1,6) = (-5, -5)$

Question 34 (***+)

The straight line l has Cartesian equation

$$\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-4}{2}.$$

a) Show that the point P with coordinates (16, 24, 18) lies on l.

The point A has coordinates (8,19,6) and the direction vector of l is denoted by **d**.

- **b**) Calculate $\frac{\overrightarrow{AP} \wedge \mathbf{d}}{|\mathbf{d}|}$.
- c) Hence show that the shortest distance of A from l is exactly 6 units.

(0)

(20i - 4j - 14k)/17

Question 35 (***+)

The three vertices of the parallelogram ABCD have coordinates

A(7,1,-6), B(4,0,7) and D(-2,6,1).

The diagonals of the parallelogram meet at the point M.

- a) Determine in any order the coordinates of M and the coordinates of C.
- **b**) Calculate in exact simplified surd form, the area of *ABCD*.

The straight line l passes through C and is perpendicular to ABCD.

c) Find an equation of l, giving the answer in the form $(\mathbf{r}-\mathbf{a}) \wedge \mathbf{b} = \mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.

The plane Π is parallel to *ABCD* and passes through the point with coordinates (10,10,1).

d) Determine the coordinates of the point of intersection between Π and l.

The parallelogram *ABCD* is one of the six faces of a parallelepiped whose opposite face lies in Π .

e) Calculate the volume of this parallelepiped.

M(1,3,4), C(-5,5,14), $area = 24\sqrt{26}$, a = -5i + 5j + 14k, b = 3i + 4j + k(1,13,6), volume = 1248

BD 13 M(4월, 말음, 감비)= M(1,34)

Section) IS AT (1, 13, 16)

Question 36 (***+)

Three planes have the following Cartesian equations.

$$x-3y-2z = 2$$
$$2x-2y+3z = 1$$
$$5x-7y+4z = k$$

where k is a constant.

 \hat{c}_{j}

I.C.B.

Determine the intersection of the three planes, stating any restrictions in the value of k.

1+

21/15

É.B.

Mana,

Question 37 (***+)

The planes Π_1 and Π_2 have respective Cartesian equations

x + 2y - z = 1 and x + 3y + z = 6.

- **a**) Find the acute angle between Π_1 and Π_2 .
- **b**) Show that Π_1 and Π_2 intersect along the straight line with equation

$$\mathbf{r} = (5\lambda - 9)\mathbf{i} + (5 - 2\lambda)\mathbf{j} + \lambda\mathbf{k}$$

, 42.4°

where λ is a scalar parameter.

Question 38 (***+)

It is given that the vectors **a**, **b** and **c** satisfy

 $\mathbf{b} \wedge \mathbf{c} = 2\mathbf{i}$ and $\mathbf{a} \wedge \mathbf{c} = \mu \mathbf{j}$,

where μ is a scalar constant.

It is further given that the vector expression defined as

$$(\mathbf{a}+2\mathbf{b}-3\mathbf{c})\wedge(\mathbf{a}+2\mathbf{b}+k\mathbf{c}),$$

where k is a scalar constant, is parallel to the vector $\mathbf{i} - \mathbf{j}$.

Determine the condition that μ and k must satisfy.

PROCEED AS GUOWS
$(a+2\underline{b}-3\underline{c})^{\prime}(\overline{a}+5\overline{p}+\overline{p}\overline{c}) = \lambda(\overline{1}-\overline{7})$
45 THE CLOSS PICEOUT" IS DISTRIBUTIVE 17/182 HODMON/SUBTRACTION
$ = \left[\underline{a} + 2\underline{b} \right] - 3\underline{c}] \land \left[\underline{a} + 2\underline{b} \right] + \underline{k} \underline{c}] = \Im(\underline{1} - \underline{j}) $
$\Rightarrow (a+2b)_{\lambda}(ax2b) + (a+2b)_{\lambda}ks - 3ks_{\lambda}s = \lambda(1-1)$ -3 s_{\lambda}(a+2b)
$\Rightarrow (\underline{a}_{+} 2\underline{b}) \cdot \underline{k} c + 3(\underline{a}_{+} 2\underline{b}) \cdot \underline{c} = \Im(\underline{i}_{-} \underline{j})$ $\Rightarrow \underline{k} \underline{a}_{+} c + 2\underline{b}_{+} \underline{c} + 3\underline{a}_{+} \underline{c} + c \underline{b}_{+} \underline{c} = \Im(\underline{i}_{-} \underline{j})$
\rightarrow ($\overline{F+2}$)($\overline{a}^{\vee}\overline{c}$) + ($\overline{x}^{\vee}+\overline{c}$)($\overline{p}^{\vee}\overline{c}$) = $\mathcal{N}(\overline{1}^{\vee}\overline{7})$
BOT by C = 21 & BAS = 742
$\Rightarrow (k+3)(\mu\bar{\eta}) + (3k+e)(3\bar{\eta}) = \lambda\bar{\eta} - \gamma\bar{\eta}$
COMPARINO- COMPONENTIS
$ \begin{cases} 4k+1k = \lambda \\ (k+s)y = -\lambda \end{cases} \xrightarrow{\text{dense Goves}} & 4k+k + y(k+s) = 0 \\ 4(k+s)y + y(k+s) = 0 \\ (k+s)(y+k) = 0 \end{cases} $
FNAWY WE HAVE =3 OR 1==4
k≠3 two p=-4
(VILLS KD DWLERGA)

 $k \neq 3$,

Question 39 (***+)

The position vector \mathbf{r} of a variable point traces the plane Π with equation

$$\mathbf{r} = (4 + \lambda + 5\mu)\mathbf{i} + (8 + 2\lambda - 4\mu)\mathbf{j} + (-5 + \lambda + 7\mu)\mathbf{k},$$

where λ and μ are parameters.

a) Express the equation of Π in the form

$\mathbf{r} \cdot \mathbf{n} = c$,

where \mathbf{n} and c is a vector and scalar constant, respectively.

The point P(12, -1, 44) is reflected about Π onto the point P'.

b) Determine the coordinates of P'.

a) <u>Eliminate to cartesian First</u>	SOUL SIMULTING YELL WITH THE GUILING OF THE PULL
2= 4+2+54 y= 8+22-44 ≥=-5+2+74 Substitute IND THE FROM EVATIONS	a = qt + 12 $y = -t - 1$ 8 $q_{2} - y - 7e = 63$ Z = 44 - 7t
$\begin{array}{c} 1 = 4 + (2 + 5 - 7_{1}) + 5_{1} \\ g = 6 + 2(2 + 5 - 7_{1}) - 4_{1} \\ y = 6 + 2(2 + 5 - 7_{1}) - 4_{1} \\ \vdots \\ y = 3 + 2_{2} - 2_{1} \\ y = -2_{1} \\ y = -2_{1$	$\Rightarrow 9(9t+u) - (-t-i) - 7(4t-7t) = 63$ $\Rightarrow 6tt + t+ 40t + 100t + -300 = 63$ $\Rightarrow 13tt = 242$ $\Rightarrow t = 2$ $\frac{(SING: t=4 ust comment me selection)}{P'(48-516)}$
$\frac{1}{2} = (s_{(b)}^{(l)}) \cdot (\Gamma_{1}^{(l)})$ $= \frac{1}{2} = (s_{(b)}^{(l)}) \cdot (\Gamma_{1}^{(l)})$ $= \frac{1}{2} = $	• Use t=2. B 6410 Q(30,72,30) p * too + the the the too for too for the too for the too f
b) <u>DETRUTIVE THE RELEASED OF A UNE TROUGH P(c2-1,44)</u> <u>a in the direction of the normal</u> $\Gamma = (0_{2}-1,44) + t(9_{-1},-7)$ $(3_{-1},9_{-2}) = (9_{2}+1_{2},-7-1,-7+44)$	• THEN DOE WIDEPOINT PATTERNS' 12 $\xrightarrow{+80}{}$ 30 $\xrightarrow{+100}{}$ (2) -1 $\xrightarrow{-2}{}$ -3 $\xrightarrow{-2}{}$ (3) 444 $\xrightarrow{-14}{}$ 30 $\xrightarrow{-44}{}$ (6)

 $\left|\mathbf{r}\cdot(9\mathbf{i}-\mathbf{j}-7\mathbf{k})=63\right|,$

P'(48, -5, 16)

P't=4

Question 40 (****)

The plane Π has a vector equation

 $\mathbf{r} = (1+4\lambda+3\mu)\mathbf{i} + (3+\lambda+2\mu)\mathbf{j} + (4+2\lambda-\mu)\mathbf{k},$

where λ and μ are scalar parameters.

The straight line L has a vector equation

$$\mathbf{r} = (2+2t)\mathbf{i} + (1+3t)\mathbf{j} + (-3-4t)\mathbf{k}$$
,

where t is a scalar parameter.

- **a**) Show that L is parallel to Π .
- **b**) Find the shortest distance between L and Π .

(9)	$T = \left(1 + i \eta + 3 h^{1} + 3 + 3 + 3 + 5 + 1 + 5 + - h^{1}\right)$
	$\begin{array}{l} x = 1 + 4 \begin{pmatrix} y - 3 - 2y \end{pmatrix} \\ y = 3 + 3 + 2y \\ z = 4 + 2 \begin{pmatrix} y - 3 - 2y \end{pmatrix} \\ z = 1 + 4 \begin{pmatrix} y - 2y \end{pmatrix} \\ z = 1 + 4 \begin{pmatrix} y - 2y \end{pmatrix} \\ z = 1 + 4 \begin{pmatrix} y - 2y \end{pmatrix} \\ z = 1 + 4$
	Z = 4 + 22 - p J Z = 4 + 2(9-3-2p) - p
	x = 1 + 4y - 12 - 8y + 3y - 7 z = 4y - 5y - 11 z = 4y - 5y - 11 z = 2y - 2 - 5y
	SuBraker
	0-7= 2y-9
	3 -24-2 -9 14 home
	y1 - (1 - 2 - 1)
	4003 04/4.
	$\underline{\Gamma} = (2+2t_1)+3t_1-3-4t_1 = (2t_1-3)+t_2(2t_1-4)$
Ąs	(2,3,-4). (1,-2,-1)= 2-6+4=0, THK LANH IS PARAULY TO PUTUL
)	$\overrightarrow{B}(z_1, l, \overline{3}) \qquad \overrightarrow{AB} = \underbrace{b}_{-2} = (z_1 l_1 \overline{a}) \cdot (-\overline{l}_1 \rho_0) = (l_1, l_1 \overline{3})$
	$\begin{array}{c} d = d \\ d = (0, 1, 3) \cdot \frac{1}{4}(1/2, 7) \\ d = (0, 1/3) \cdot $
/	del(ma) (ma)
/	$d = [(1_{i_1}, 3) \cdot \frac{1}{\sqrt{c}} (1_{i_1}, 2_{i_1}, 1_{i_2})]$
-	$d = \frac{1}{\sqrt{c^2}} \left[11 - 2 + 3 \right] = \frac{12}{\sqrt{c^2}} = 2\sqrt{c^2}$

 $2\sqrt{6}$

Question 41 (****)

Relative to a fixed origin O, the following points are given.

A(4,2,0), B(-1,7,-1) and C(2,0,1).

a) Determine a vector, with integer components, which is perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} .

You may **NOT** use the vector (cross) product for this part.

b) Deduce a Cartesian equation of the plane, which passes through A, B and C.

TO BOTH AB & AC IS REPONDICULAR START BY ANDING AR A TC (3 12 1) (3,7,20 $b_{-2} = (-1,7,-1) - (4,2,0) = (-5,5,-1)$ = = = = (210,1) - (24,20) = (-2-2,1) THE DEPUTIEND PURNE IS (3,7,20) pulled utable be (albec) 32+7y+202 = cont $(a_1b_1c) = 0$ $(a_1b_1c) =$ x2 + 7x0 + 20 == I IN THE ABOUT SQUATTON'S constant = 26 3x+7y+202 = 26 - 10a - 10b =

3i + 7j + 20k, 3x + 7y + 20z = 26

Question 42 (****)

The straight lines L_1 and L_2 have respective Cartesian equations

$$\frac{x-2}{2} = \frac{y-3}{4} = z$$
 and $\frac{x+2}{2} = \frac{4y}{11} = \frac{z+10}{3}$

- **a**) Show that L_1 and L_2 intersect at some point P and find its coordinates.
- **b**) Show further that the Cartesian vector $37\mathbf{i}-16\mathbf{j}-10\mathbf{k}$ is perpendicular to both L_1 and L_2 .

The plane Π is defined by L_1 and L_2 .

The point Q(2,5,-2) does not lie on Π .

The straight line L_3 passes through Q and P.

c) Calculate the acute angle formed between L_3 and Π .

P(6,11,2), $\theta \approx 2.00^{\circ}$

-	BY WEITING THE SPURTIONS IN PARAMETRIC
4:	$\frac{2-2}{2} = \frac{y-3}{4} = \frac{2-0}{1}$
L ₂ :	<u>252</u> - <u>14</u> - 2±0 J == J
	$(2_1 \ge 0) + \Im(2_1 u_{11}) = (2\lambda + 2_1 4\lambda + 3_2 \lambda)$
<u> </u>	$(-2_1 q_1 - b) + \gamma'(2_1 \#_1 3)$
	$+\mu(8_{11},12) = C_{8\mu-2}(1)\mu(12\mu-12)$
QUATE :	La.k
7:1	14 = 42+3) => 11/2 = 1 (12/1-10)+3
k:	$\lambda = 12\mu - 10$ $\implies 11\mu = 102\mu - 37$
	: 37 = 37y
	· · · · · · · · · · · · · · · · · · ·
	a 2 = 2
	λ = 2
ayear i	$2\lambda + 2 = 2x2 + 2 = 6$
	84-2=8x1-2=6
AS ALL 3	COMPONENCE AFREE (IF A=2, y=1), THE LINCE MEET
47 त्त₩ २	ant P(6,11,2)
DONTING TH	E GNUNS WHERE WITH THE DIRUCTION) DEPLORS
	$(z_1 + 0) \cdot (z_1 + 1) = 7 - 64 - 10 = 0$
(31,-1	$(G_{1} = 10) \cdot (G_{1} = 11, 12) = 296 - (76 - 120 = 0) + (10, 10$

ab	E EQUATION OF THE PUNCE IS NOT ACTIONLY NEED	
•	• THE PUNCE NORMAL IS 12 = (37,-16,-10)	
•	· THE LINE L. PASSES THOMAN THE INTREASTICS (G, 11,2)	
	AND THE GUIN POINT (2,5,-2)	
•	· DIRECTION OF L3 12 FIND BY	
	$(6_1 u_1 z) - (2_1 s_1 - 2) = (4_1 6_1 4) \sim (2_1 3_1 2)$	
4hr	RE WE HAVE LOOKING AT A DIMERAM	
	h= (27, 45, 70) - Lo (direction (2, 172))	
-	the - Putwe (cease section view)	
	$(-16_{1}-10) \cdot (2_{1}s_{1}z_{2}) = [37_{1}-16_{1}-10](2_{1}s_{1}z_{1}) \cos \phi$	
G	+-48-20 = 1369+256+100 14+9+4 000 + = 1125×17 6000	
	¢ = 87-992	
	· REPUBLIC ANGRE Dia 2.00°	

Question 43 (****)

Relative to a fixed origin O, the following points are given.

A(7,2,6), B(9,10,4) and C(-3,-2,-2)

a) Determine a vector, with integer components, which is perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} , and hence deduce a Cartesian equation of the plane Π , which passes through A, B and C.

You may NOT use the vector (cross) product for this part.

The straight line l is perpendicular to Π and passes through the point P(11,3,-4).

The point Q is the intersection of l and Π .

- **b**) Find the coordinates of Q.
- c) Calculate the distance PQ.

, $|2\mathbf{i} - \mathbf{j} + 2\mathbf{k}|$, |2x - y - 2z = 0|, |Q(5,6,2)|, ||PQ| = 3

Question 44 (****)

The straight line L and the plane Π have equations

$$L : \mathbf{r} = -3\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})$$

 $\Pi: \quad 3x - 2y + z = 5$

- a) Find the size of the acute angle between L and Π .
- b) Use a method involving the cross product to show that the shortest distance of the point (0,-6,13) from L is 3 units.

Question 45 (****)

The equations of two planes are given below

 $\mathbf{r} \cdot (6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = 42$ and $\mathbf{r} \cdot (17\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = -7$.

The straight line l is the intersection of the two planes.

a) Find an equation for l, in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

A third plane Π_3 contains *l* and the point with position vector $30\mathbf{i} + 7\mathbf{j} + 30\mathbf{k}$.

b) Find an equation for Π_3 , in the form $\mathbf{r} = \mathbf{u} + \alpha \mathbf{v} + \beta \mathbf{w}$, where \mathbf{u} , \mathbf{v} and \mathbf{w} are constant vectors and α and β are scalar parameters.

 $\mathbf{r} = -8\mathbf{j} + 9\mathbf{k} + \lambda(-\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}), \quad \mathbf{r} = (-8\mathbf{j} + 9\mathbf{k}) + \alpha(-\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}) + \beta(10\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$

Question 46 (****)

A triangle has vertices at A(-2, -2, 0), B(6, 8, 6) and C(-6, 8, 12).

a) Find the area of the triangle *ABC*.

The plane Π_1 contains the point *B* and is perpendicular to *AB*.

b) Show that an equation of Π_1 is

4x + 5y + 3z = 82.

The plane Π_2 contains the point C and is perpendicular to AC

- c) Find the size of the acute angle between Π_1 and Π_2 .
- **d**) Show that the intersection of Π_1 and Π_2 is

 $(\lambda-6)\mathbf{i}+(20-2\lambda)\mathbf{j}+(2\lambda+2)\mathbf{k}$.

AB = b.	-== (686)-(-21-210)= (8,1016)
A AC N C	$-\underline{\sigma} = (-6_1 B_1 U_2) - (-2_1 - 2_1 \sigma) = (-4_1 U_1 U_2)$
	$42M = \frac{1}{2} \left \overline{AB}_{A} \overline{AC}^{2} \right = \frac{1}{2} \left G_{0} - G_{0} \right _{D_{0}} \left ACM = \frac{1}{2} \sqrt{3} G_{00} + VH(G_{0})^{2} = 90$
6) AR IN NORMA IS PLANH	
$\wedge a_{\ell} _{l^{=}} (A_{l}s,3) \in \operatorname{Rom}(G_{\ell}c)$	42+54+32= constant 24+40+18= constant contant = 82
** 42+5y+32=82	-Π ₂
E) SULVARY AT 13 ANORAL WE De (2,5,6) DOTTING WORKS	
$\begin{array}{l} & (\delta_{1},\varsigma_{1})-(-\xi_{1},\varsigma_{1})=(\delta_{1},\varsigma_{1},\varsigma_{1})-(\xi_{1},\varsigma_{1})\\ & -\theta_{2}(\xi_{1}+1)=\lambda_{2}(\varepsilon_{1},\varsigma_{1},\varsigma_{1})+(\xi_{1}+1)-(\xi_{1}+1)\\ & (\xi_{2})=0\\ & (\xi_{2})=0\\ & (\xi_{1})=0\\ & (\xi_{1})=0$	
-22+54+62=640ml ($G_{FOX} = 4(-6) + 5(20) + 3(2) = 22$ -2(-6) + 5(20) + 6(2) = 124
12+40+72 = coubbut (A Difference of lunt u A AFRAR SOLLAS O The (1,-2,1) Box (6,-10,700)
: - 2x+5y+62= 13f	ABARC SORE 5
• By NUSRENCIA (WORKUS: 47 ANOUNCI) THE POWO (-6/20/2.) UKS ON 2074 RUHUS	$\frac{(a_1,a_1)}{(a_1,a_2)} = \frac{(a_1,a_2)}{(a_1,a_2)} = \frac{(a_1,a_2)}{(a_$

Question 47 (****)

The plane quadrilateral ABCD is the base of a pyramid with vertex V.

The coordinates of the points A, B and C are (5, 1, 9), (8, -2, 0) and (4, -1, 6), respectively.

If the equation of the face CDV is 2x-3y-16z+85=0 determine the vector equation of the line CD.

 $\mathbf{r} = (4\mathbf{i} - \mathbf{j} + 6\mathbf{k}) + \lambda(35\mathbf{i} + 18\mathbf{j} + \mathbf{k}) \text{ or } [\mathbf{r} - (4\mathbf{i} - \mathbf{j} + 6\mathbf{k})] \land (35\mathbf{i} + 18\mathbf{j} + \mathbf{k}) = \mathbf{0}$

Question 48 (****)

A straight line L and a plane Π have respective cartesian equations

L: $x-3=2-y=\frac{1}{4}(2z-5)$ and $\Pi: 2x+ky+z=13$,

where k is a constant.

1. G.B. 11

Given that the acute angle between L and Π is 30°, find the possible values of k.

C.

n

$k=1 \cup k=-17$
90.
EXTRACT DURECTIONS FROM THE GIVEN EQUATIONS
$\begin{array}{c} 3-3=-2-y_{\rm C}\cdot\frac{2e_{\rm C}}{2} \\ \frac{3-3}{2}+\frac{y_{\rm C}}{2}=\frac{2-y_{\rm C}}{2} \\ \hline \end{array} \qquad \qquad$
BY THE DIT PRODUCT LOOKING AT THE DIAGRAM
$ \begin{array}{c} (1,1_2) \cdot (3,k_1) = & _{1-1_2} (2,k_1) _{166} & (3^{2}) \\ \hline \\ (4^{-1}k_2) \cdot (3^{-1}k_1) \cdot (3^{-1}k_1) \cdot (3^{-1}k_2) \cdot (3^{-1}k_2) \\ _{2-k_1-2} = & \frac{1}{2} \cdot (6^{-1}\sqrt{1^{2+2}}) \\ \hline \\ _{4-k_1} = & \frac{1}{2} \cdot (6^{-1}\sqrt{1^{2+2}}) \end{array} $
SQUARING BORN SIDES
$ \Rightarrow (k-t)^{2} = \left[\frac{1}{2} \sqrt{t^{2} \sqrt{t^{2} t^{2}}} \right]^{2} $ $ \Rightarrow (k-t)^{2} = \frac{1}{2} \sqrt{t^{2} \sqrt{t^{2} t^{2}}} $ $ \Rightarrow (k-t)^{2} = \frac{1}{2} \sqrt{t^{2} t^{2}} $ $ \Rightarrow x - tk + t^{2} = \frac{1}{2} \sqrt{t^{2} t^{2}} $ $ \Rightarrow t^{2} + (tk - t) = 0 $ $ \Rightarrow t^{2} + (tk - t) = 0 $ $ \therefore k = \sqrt{t^{2} - 1} $

ne,

I.C.B.

COM

Question 49 (****)

With respect to a fixed origin O the point A has position vector $\overrightarrow{OA} = -4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

The straight line L has vector equation

$$\mathbf{r} \wedge \overrightarrow{OA} = 5\mathbf{i} - 10\mathbf{k}$$
.

- a) Find, in terms of a scalar parameter λ , a vector equation of *L*. Give the answer in the form $\mathbf{r} = \mathbf{p} + \lambda \mathbf{q}$, where \mathbf{p} and \mathbf{q} are constant vectors.
- **b**) Verify that the point *B*, with position vector $\overrightarrow{OB} = 2\mathbf{i} 3\mathbf{j} + \mathbf{k}$, lies on *L*.
- c) Find the exact area of the triangle *OAB*.

area

 $\frac{5}{2}\mathbf{j} + \lambda (4\mathbf{i} - \mathbf{j} + 2\mathbf{k})$

Question 50 (****)

The planes Π_1 and Π_2 have respective Cartesian equations

6x + 2y + 9z = 5 and 10x - y - 11z = 4.

- **a**) Find the acute angle between Π_1 and Π_2 .
- **b**) Show that Π_1 and Π_2 intersect along the straight line with equation

$$=\mathbf{i}-5\mathbf{j}+\mathbf{k}+t(\mathbf{i}-12\mathbf{j}+2\mathbf{k})$$

where t is a scalar parameter.

The plane Π_3 has Cartesian equation

5x + 3y + 11z = 28.

- c) Find the coordinates of the point of intersection of all three planes.
- d) Determine an equation of the plane that passes through the point (2,1,8) and is perpendicular to both Π_1 and Π_2 .

 75.5° , (-2,31,-5), x-12y+2z=6

2000(1ままま) $\begin{pmatrix} \pi \\ y \\ \xi \end{pmatrix} = \begin{pmatrix} \pm \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \pm \\ -\xi \\ 1 \end{pmatrix}$

Question 51 (****)

The points P(2,2,1) and Q(6,-7,-1) lie on the plane Π with Cartesian equation

cx + 4y - 12z = k ,

where c and k are constants.

a) Determine an equation of the straight line L, which is perpendicular to Π and passing through P.

The points A and B are both located on L and each of these points is at a distance of 26 units from Π .

b) Show that the area of the triangle ABQ is approximately 261 square units.

-	1. 1.
a) NEED THE POINT NORMAL FIBST	
$\begin{array}{c} (2\rho_1) \Longrightarrow & 2c_+ \theta - p_1 = k \\ k = 2c k \\ (6p_1^- p_1) \Longrightarrow & 6c 2\theta + p_2 = k \\ k = 6c 16 \end{array} \qquad \begin{array}{c} 2c k = 6c k \\ p_2 = 2c k = 6c k \\ p_3 = 2c k \\ p_4 = 2c k \\ p_5 = 2c k \\ p_6 = 2c k \end{array}$	
$(\nu = 2)^{-1}$)
$\therefore 3\alpha + 4y_0 - 12a = 2$ $\therefore \underline{n} = (3, 4_0 - 12)$ $\therefore \underline{\Gamma} = (2, 2, 1) + \mathcal{N}(3, 4_0 - 2)$ $\therefore \underline{\Gamma} = (2 + 2\lambda_1) 2 + 4\lambda_1 - 12\lambda_1$	
6) LOOKING AT A DIAGRAM	
$\begin{array}{c} A \\ c \\ p \\ p \\ c \\ c \\ c \\ c \\ c \\ c \\ c$	

 $\mathbf{r} = (3\lambda + 2)\mathbf{i} + (4\lambda + 2)\mathbf{j} + (1 - 12\lambda)\mathbf{k}$

Question 52 (****)

- The plane Π_1 contains the origin O and the points A(2,0,-1) and B(4,3,1).
 - **a**) Find a Cartesian equation of Π_1 .

The plane Π_2 contains the point *B* and has normal vector $\mathbf{n} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$

b) Determine an equation of the plane in the form $\mathbf{r} \cdot \mathbf{n} = d$.

The straight line L is the intersection of Π_1 and Π_2 .

The point P lies on L so that OP is perpendicular to L.

- c) Find a vector equation of L.
- **d**) Determine the coordinates of P.

x-2y+2z=0, $\mathbf{r}\cdot(3\mathbf{i}+\mathbf{j}-\mathbf{k})=14$, $\mathbf{r}=4\mathbf{i}+3\mathbf{j}+\mathbf{k}+\lambda(\mathbf{j}+\mathbf{k})$, P(4,1,-1)

Question 53 (****)

F.G.B.

. V.G.B.

The following vectors are given

a = 3i + 4j + k b = 2i - 5j + 2kc = 7i + 2j - 3k

- a) Show that the vectors are linearly independent.
- **b**) Express the vector 9i + 20j 5k in terms of **a**, **b** and **c**.

11.4

212.Sm

Created by T. Madas

,GB

200

I.C.P.

Question 54 (****)

The points A(0,2,1), B(8,6,0) and C(-4,1,1) form a plane Π_1 .

a) Find a Cartesian equation for Π_1 .

The point T(1,2,t) lies outside Π_1 .

b) Show that the shortest distance of T from Π_1 is

$\left|\frac{1}{9}(8t-9)\right|$.

The plane Π_2 has Cartesian equation

2x + y - 2z + 7 = 0.

c) Given that the T is equidistant from Π_1 and Π_2 find the possible values of t.

-x + 4y + 8z = 16, t = -12, 3

Question 55 (****)

With respect to a fixed origin O, the points A(3,0,0), B(0,2,-1) and C(2,0,1) have position vectors **a**, **b** and **c**, respectively.

a) Calculate $\overrightarrow{AC} \wedge \overrightarrow{OB}$.

The plane Π contains the point C and the straight line L with vector equation

 $(\mathbf{r}-\mathbf{a})\wedge\mathbf{b}=\mathbf{0},$

where **a** and **b** are constant vectors to be found.

- **b**) Find a Cartesian equation of Π .
- c) Calculate the shortest distance of Π from O.

The point D is the reflection of O about Π .

d) Determine the coordinates of D.

 $\left(\frac{8}{3}\right)$ $-2\mathbf{i} - \mathbf{i} - 2\mathbf{k}, \quad 2x + y + 2z = 6,$ $,\frac{4}{3}$ distance = 2D

Question 56 (****)

Relative to a fixed origin O, the point A has position vector $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$.

The plane Π has vector equation

$\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c} ,$

where $\mathbf{b} = 2\mathbf{i} - \mathbf{k}$ and $\mathbf{c} = 3\mathbf{j} - \mathbf{k}$.

a) Find a Cartesian equation of Π .

The point *P* has position vector $\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$.

b) Calculate, to the nearest degree, the acute angle between AP and Π .

3x + 2y + 6z = 13

, 31°

(****) Question 57

The system of equations below has a unique solution.

$$5x + y + 6z = 9$$

$$3x + 6y + 2z = 8$$

$$4x + 2y - 9z = 75$$

a) Show that z = -5 and find the values of x and y.

The straight line L and the plane Π have respective vector equations

$$\mathbf{r}_{1} = \begin{pmatrix} -29\\ -9\\ 46 \end{pmatrix} + t \begin{pmatrix} -6\\ -2\\ 9 \end{pmatrix} \text{ and } \mathbf{r}_{2} = \begin{pmatrix} -38\\ -17\\ -29 \end{pmatrix} + \lambda \begin{pmatrix} 5\\ 3\\ 4 \end{pmatrix} + \mu \begin{pmatrix} 1\\ 6\\ 2 \end{pmatrix}.$$

h.

x = 8, y = -1

REAM FIR

 $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} -2\mathbf{y} - 6\mathbf{z} \\ -\mathbf{y} - 2\mathbf{z} \\ \mathbf{4}\mathbf{x} + \mathbf{y}\mathbf{z} \end{pmatrix}$

where t, λ and μ are scalar parameters.

- **b**) Show that L is perpendicular to Π .
- c) Show further that L meets Π at the point with coordinates (1,1,1).

<i></i>		· · · · · · · · · · · · · · · · · · ·	-	Y
	٩)	STANDARD FUMINATIONS BY SUBSTITUTIONS	C) WORKING IN PARAMETRIC FOR THE LINE	a 100
		$\langle I \rangle = d - 2\pi - e^2$	THE PLANE 17: 62+24-92 = CHSTAND	,
		SUBSTITUTE ADD THE THE THE GUATIONS	: (-38) + 2(-17) - 9(-21) = (-100) : (-17) = -22 + 361 - 34	
		$\begin{cases} 3z + 6\left(9 - 5z - 9\right) + 2z = 2 \\ 4zz + 2\left(9 - 5z - 9\right) - 9z = 2 \end{cases} \qquad \begin{cases} 3z + 5z - 40z - 4z - 9z - 7z \\ 4zz + 2z - 9z - 4z - 7z - 9z - 7z \\ 4zz + 2z - 9z - 5z - 7z \\ 4z - 4z - 5z - 9z - 5z - 7z \\ 4z - 4z - 5z - 7z - 7z \\ 4z - 4z - 5z - 7z \\ 4z - 5z - 5z - 7z \\ 4z - 5z - 5z - 5z \\ 5z - 5z - 5z - 5z \\ 5z - 5z -$: Crusphil = -1	
		$\begin{cases} -2\hbar - 342 = -46 \\ -6\hbar - 248 = 57 \end{cases} \implies \begin{cases} 2/24 + 342 = 46 \\ 24k + 78 = -46 \\ 24k + 78 = -46 \\ 24k + 78 = -46 \\ 24k + 78 \end{cases} \times 2$	$\implies 6x + 2y - 3y = -1$ $\implies 6(x^{2}-6t) + 2(-9-2t) - 9(46+9t) = -1$	
		$\left\{\begin{array}{lll} Sig + 691\% = -Sig \\ Sig + 691\% = -Sig \\ \end{array}\right\} \implies 1212 = -602$	-174-266-18-4t - 414-8t=-1 -121t=605	
		EVALLY WE HAVE	. t≈-s (. (= (3) =
		22+72=-19 4= 2-22 22-25=-19 4= 20-22	ALTHOUTTNE TO PART (C) USING PART (G)	(a) dia
>.		$2\lambda = 16$ $\frac{1}{\lambda} \approx 8$	$\hat{I}_{i} = f_{k} \implies \begin{pmatrix} -2t-ct\\ -t-2t\\ -t-2t\\ 46+9t \end{pmatrix} = \begin{pmatrix} -3t+2t\\ -t+2t\\ -2t+4t \end{pmatrix}$	
1	6)	THE DESCRICH OF THE WAY IS (-G1-2, 9) SALES TO (-G12-9)	$\implies \begin{pmatrix} -5\lambda - \mu - 6t \\ -3\lambda - \zeta_{\mu} - 2\eta \\ -4\lambda - \zeta_{\mu} - 2\eta \\ -4\lambda - 2\eta + 1t \end{pmatrix} = \begin{pmatrix} -q \\ -6t \\ -7t \\ -7t \end{pmatrix}$	
1		THE THE PLANK WE HAVE:	$ = \begin{pmatrix} \frac{5\lambda + \mu + 6t}{3\lambda + 6t} \\ \frac{3\lambda + 6t}{4\lambda + 2t} \end{pmatrix} = \begin{pmatrix} \frac{9}{8t} \\ \frac{9}{15} \\ \frac{9}{15} \end{pmatrix} $	
		$\underbrace{\underline{\mathbf{N}}}_{\mathbf{i}} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{k} & \mathbf{k} \\ \mathbf{i} & \mathbf{k} & \mathbf{k} \end{bmatrix} = \underbrace{\left\{ (\mathbf{R}_{i} - \mathbf{c}_{i}, \mathbf{T}) \\ \mathbf{S}_{i} \in \mathbf{R}_{i} \\ \mathbf{C}_{i} \mathbf{c}_{i}^{-1} \right\}} \underbrace{\left\{ (\mathbf{C}_{i} \mathbf{c}_{i} - \mathbf{c}_{i}, \mathbf{c}_{i} \right\}}_{\mathbf{C}_{i} \in \mathbf{C}_{i}^{-1} \mathbf{C}_{$	CRARZED HUL 2-=+ JANEZ	e¢
		At to a preduce to the two treation), $\frac{1}{2}$ is a preduce to the two treation),		

Question 58 (****)

The straight line L has vector equation

$$\mathbf{r} = \begin{pmatrix} 3\\7\\0 \end{pmatrix} + \lambda \begin{pmatrix} -2\\2\\-3 \end{pmatrix}$$

where λ is a scalar parameter.

The plane Π passes through the points A(11,13,5) and B(15,12,5).

It is further given that Π is parallel to L.

a) Find a Cartesian equation for Π and hence calculate the distance between L and Π .

The straight line M is the reflection of L about Π .

b) Determine a vector equation for M.

 $|\mathbf{x} + 4\mathbf{y} + 2\mathbf{z} = 73|$, distance $= 2\sqrt{21}|$, $|\mathbf{r} = 7\mathbf{i} + 23\mathbf{j} + 8\mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})|$

 $d = \left| \overrightarrow{AC} \cdot \underline{b} \right| = \left| (-12_1 - 5_1 - 5) \cdot \frac{(1_1 + 1_1 2)}{\sqrt{31}} \right| = \left| \frac{-12 - 20 - 10}{\sqrt{31}} \right|$ START BY OBTIMNING & NORMAL BY OSTING AB & THE DIRECTION OF $=\left[\frac{-\frac{1}{2}}{\sqrt{21}}\right] = \frac{42\sqrt{21}}{21} = 2\sqrt{21}$ $\overline{AB} = \underline{b} - \underline{a} = (IS_I B_I S) - (II_I B_I S)$ = (4,-1,0) FIND AN GUATION OF L $\underbrace{\underline{N}}_{i} = \begin{vmatrix} \underline{1} & \underline{J} & \underline{k} \\ 4 & -1 & 0 \\ -2 & 2 & -3 \end{vmatrix}$ = (3,12,6) $(\Sigma_{i}\mu_{i}^{\prime})\hat{K} + (o_{i}\tau_{i}\varepsilon) = (\varepsilon_{i}\mu_{i}\kappa) = \underline{1}$ $(a_1y_1z) = (\lambda_{+3}, 4\lambda_{+7}, z\lambda)$ (2, BID) A MIDT -TH SCHUNG THE NORMAL TO (1,14,2) SUMUTION OF THE FOUND OF THE PLANE JL + ly + 22 = GONSTANT x + 4y + 2z = 72(2+3)+4(42+7)+2(22) = 7311+4×13+2×5 = CONTEMPT 01+52+11 = 1749721400 2+3+61+28+4 = 73 CONSTMN7 = 73 ela = 42 in JE+44+22=73 FIND THE SHORT DISTINU they foll ON THE 23.8) (BY INSPECTION AS D IS THE MIDPOINT O $\overrightarrow{AC} = \underline{C} - \underline{O} = (3_17_10) - (16_112_1S) = (-12_1-5_1-5)$... REPORTA UNE WHE BE ALSO $\underline{\underline{N}} = \frac{1}{\sqrt{13}u^2 + 2^2} (1_1u_12)$ $\Gamma = (7_{1}23_{1}8) + p(2_{1}-2_{1}3)$ $\underline{\dot{N}} = \frac{C(4,2)}{C}$

((37,0)

MBOUT 17 AS THE

Question 59 (****)

The point P(1,3,8) lies on the plane Π_1 .

The straight line L, whose Cartesian equation is given below also lies on Π_1 .

$x-4 = \frac{y-3}{3} = \frac{2-z}{4}$

a) Find a Cartesian equation of Π_1 .

You may not use the vector product (cross product) in part (a).

The point R(-2, -2, k), where k is a constant, lies on another plane Π_2 , which is parallel to Π_1 .

b) Given that the distance between Π_1 and Π_2 is 3 units determine, in exact fractional form, the possible values of k.

You may not use the standard formula which finds the distance between two parallel planes in part (b).

|6x+2y+3z=36|,

"250009 2110 WOOLAN" OUT 209 & JUTHAMARY UN 2011 JHF FIJW
$\frac{2x-4}{1} = \frac{9-3}{3} = \frac{2-2}{-4}$
$\mathcal{L}_{\Xi} \left(\delta_{i} s_{i} \right) \in \mathcal{L}_{i} \left(s_{i} s_{i} \right)$
: $A(4_{1}3_{1}2) \in B(s_{1}s_{1}-2)$ is an the lase
LOOKING AT THE DIAPEAN
$\begin{array}{l} \widehat{P}\overrightarrow{A}=\underline{\alpha}-\underline{p}=\left(4_{1}3_{1}2\right)-(1_{1}3_{1}8)*\left(3_{1}0_{1-}6\right)=\text{SCMLD-TO} \left(1_{1}0_{1}-2\right)\\ \widehat{P}\overrightarrow{B}=\underline{b}=\left(z_{1}4_{1}2\right)-(1_{1}3_{1}8)=\left(4_{1}3_{1}-10\right)\end{array}$
LET THE NORMAL BE N= (0, b, L)
$ \begin{array}{c} (1, q, -2) \bullet (q, h, c) = 0 \\ (4_1 B_1 \circ a) \bullet (q, h, c) = 0 \end{array} $
$\left\{\begin{array}{c} \alpha - 2c = 0 \\ 4u + 3b - 10c = 0 \end{array}\right\} \Longrightarrow \underline{\alpha = 2c}$
\Rightarrow 4(22) +3b -10c =0 3b -2c = 0
p = \$c
14N b=2 & a=6
$\therefore \underline{n} = (6, 2, 3)$
LINE IN CONTRACTOR IN A REAL PROPERTY OF A
THE EQUATION OF THE PLATHE IS
$G_{2} + 2y + 3z = constand$
on a literative point of a set of the second set of the second set of the second s
The B Recenter of and the state of the industry of the second of the second

WWG (1,318)	
(6x1) + (2X3) + (3x8) = constra	រា
CONSTRUT = 36	
∴ જિ+34+3	52 = 36
- ACTINGNATIONE BY CROSS PIDDOCT TO GA	IS THE NORMAL MANY
ζ	}
ξ / +R	3,80 /
5 / /	7 2
3 TI. Aaro T	\$
7	7
$\frac{2}{3} - \frac{1}{49} = p - q = (1, 3, 8) - (4, 3, 2) = (-1)$	-3,0,6) scaled to (1,0,-2)
3 1124	}
$\frac{n}{2} = \frac{1}{10 - 2} = (6_1 2_1 3)$	the BERRES 2
5 13-41	4
mun	munt
b) LOOKING AT A DIAGRAM	
	-R(-3.0K)
$PR = C - P \circ (-2j - 2jk) - (1/3j6)$	/th
$= (-p^1 - z^1 F - B)$	3
	n the plast
	n 4- (P(24)

BUT WORK THE UNIT NORMAL 2	
$\overline{\eta} = \overline{\gamma} (e^{i_2 t_2})$ $\overline{\eta} = \overline{\gamma} (e^{i_2 t_2})$ $\overline{\eta} = \overline{\zeta} (e^{i_2 t_2})$	
ROJECTING PR ONTO THE UNIT NORMAL & GUTE 3	
$ \begin{array}{c} \Rightarrow \Delta = \left\{ \overline{tk} \cdot \underline{k} \right\} \\ \Rightarrow \tilde{x} = \left[(2_1 x_1 k_2 b_1) + \frac{1}{2} (k_1 k_2) \right] \\ \Rightarrow \tilde{y} = \frac{1}{2} \left[(2_1 x_1 k_2 b_1) + (5_1 x_1 b_1) \right] \\ \Rightarrow \tilde{y} = \frac{1 - 18 - 5}{2} + \frac{3k - 2k}{2} + \frac{1}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{5k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2} \\ \Rightarrow \tilde{y} = \frac{1}{2} + \frac{2k - 2k}{2k} \\ \Rightarrow \tilde{y} = \frac{1}{2} + 2k$	

 $k = \frac{31}{3}$

Question 60 (****)

With respect to a fixed origin O, four points have the following coordinates

$$A(-1,3,-1), B(1,2,-2), C(1,2,2) \text{ and } D(k,k,k),$$

where k is a constant.

- a) Determine the shortest distance between the straight lines AB and CD.
- **b**) Find, in terms of k, the volume of the tetrahedron *ABCD*.

Question 61 (****+) The straight line *L* has Cartesian equation

$$x-9=\frac{y-a}{2}=\frac{z-1}{b},$$

where a and b are non zero constants.

The plane Π has Cartesian equation

$$x + y - 2z = 12.$$

- a) If L is contained by Π , determine the value of a and the value of b.
- **b**) Given instead that L meets Π at the point where x = 0, and is inclined at an angle $\arcsin \frac{5}{6}$ to Π , determine the value of a.

				-	1
	9	WRITE THE UNE IN PARAMETRIC FORM		SAUMENCE BOTH SLDES	
		$\frac{2-q}{l} = \frac{q-q}{2} = \frac{2-1}{l} \implies f = (q_1q_1l) + \mathcal{H}(q_2q_b)$		⇒ 36(3-2b) ² = 2	
		(a, y, z) = (3+4, 23+a, 3b+1)		$\implies 6(3-2b)^{L} = 3$	
1				== 6(9-12b+4b2)	
		IF THE LINE IS CONTINUED BY THE PLANE ITS DIRECTION VEETOR WAT			
		BE PREPAUDICULAR TO THE NORMAL OF THE PUBLIC		⇒ 0= b²+72b ·	
n.		=> (PLANE NORMAL) . (LINE DIRECTION WETTOR) = D		→ 0 = (b + 1)(6+71)
۰.		$\implies (1,1,-2) \cdot (1,2,b) = 0$		- b= < 1	(DO SHOTH WORK DOG
1		\implies 1+2-2b = 0	h,	-1	· 1 - 2
		-> 2b = 3	1	FINALLY TO FIND a	
		$\Rightarrow b = \frac{3}{2}$			
				I = g = −1	● IF b=
	5.55	ALSO THE POINT ON THE UNIT (71,141) MUST ALSO LLE ON THE PLANE		(21812)=(2+9,22+a,2b+1)	(AU315)=
		\Rightarrow 3.+ y - 22 = 12 \Rightarrow 9 + a - 2 = 12		$(\pi^{I}\overline{\partial}^{I}\underline{s}) = (\gamma_{H}\overline{\partial}^{I} \gamma_{H} + \sigma^{I} - \gamma_{H})$	(x18,2)=
				$(0_{1}9_{1}z) = (\lambda+9_{1}2\lambda+a_{1}-\lambda+1)$	(o ₁ y ₁ z) =
		⇒ 2=0 €	-	=9 3=-9	=) 2
	6)	IF THE LINE WHETE THE PUTNUE AT O - OTICIN = , THON IT WOIT WHET THE		⇒ 2=10	-0 -
	· '	NORMAL TO THE PUTNIF AT d= arccors,		⇒ y=-18+a	- y
		AS Q & & ARE SUPPLEMENTINGY		+nwct	thrace
		Carbo		2+4-2= 12	2+4
		$\Rightarrow (1,1,-2) \cdot (1,2,b) = 1,1,-2 1,2,b \cos \phi \qquad \qquad \boxed{56}$		0 + (-18 + a) - 2×10 = 12 -18 + a - 20 = 12	0 + (-16
		\implies 1+2-2h = $\sqrt{1+1+4}\sqrt{1+4+b^2}(asb)$		a = 50	- 18 4a ·
·		$\implies 3-2b = \sqrt{6'}\sqrt{5+b^2'} \times \frac{5}{6}$			a = 13
1		$\implies 6(3-2b) = S\sqrt{t}\sqrt{1+b^2}$			-

a = 5, b =

 $\frac{2}{3}$

(2+9, 22+0,26+1) (2+9, 22+0,-712+1

> < 11 639

= -1 = 640 a = 50

The figure above shows an irregular hollow shape, consisting of two non-congruent, non-parallel triangular faces ABC and DEF, and two non-congruent quadrilateral faces ABED and BCFE.

The respective equations of the straight lines AD and DE are

$$\mathbf{r}_1 = -5\mathbf{i} + 6\mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j})$$
 and $\mathbf{r}_2 = -\mathbf{i} + 12\mathbf{j} + \mathbf{k} + \mu(-2\mathbf{i} + 7\mathbf{j} - 7\mathbf{k})$,

where λ and μ are scalar parameters.

a) If the plane face *BCFE* has equation 21x-14y+20z=111, determine an equation of the straight line *BE*.

The straight line BC has equation

$$\mathbf{r}_3 = -\mathbf{i} - 8\mathbf{j} + \mathbf{k} + \nu \left(-2\mathbf{i} + 7\mathbf{j} + 7\mathbf{k}\right),$$

where ν is a scalar parameter.

b) Given further that the point G has position vector $5\mathbf{i} + 7\mathbf{j}$, determine the acute angle between the plane face *BCFE* and the straight line *BG*.

, $|\mathbf{r} = \mathbf{i} + 5\mathbf{j} + 8\mathbf{k} + t(2\mathbf{i} + 3\mathbf{j})|$, $\theta \approx 13.5^{\circ}$

[solutions overleaf]

Question 63 (****+)

The skew straight lines L_1 and L_2 have vector equations

$$\mathbf{r}_1 = (-13\mathbf{j} + \mathbf{k}) + \lambda(-3\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}),$$

$$\mathbf{r}_2 = (5\mathbf{i} + 25\mathbf{j}) + \mu(2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}),$$

where λ and μ are scalar parameters.

a) Find a vector which mutually perpendicular to L_1 and L_2 .

You may not use the vector (cross) product in answering part (a).

The point A lies on L_1 and the point B lies on L_2 .

b) Given that the distance AB is least, determine the coordinates of A and B.

13113.8m

è

				1. I.
	a)	LET 4 UERION PREPARATION OF TO BOTHWITERS BE (241)	NOW -	B NOST BE PARALLEL TO THE AS
		$\begin{array}{l} (\mathfrak{A}_{1} \mathfrak{Y}_{1} \mathfrak{E}) \cdot (-\mathfrak{A}_{1} \mathfrak{Y}_{1} - 7) = \circ \\ (\mathfrak{A}_{1} \mathfrak{Y}_{1} \mathfrak{E}) \cdot (\mathfrak{A}_{1} - \mathfrak{A}_{2} \mathfrak{A}_{3}) = \circ \end{array} \begin{array}{l} \mathfrak{I} = \mathfrak{A}_{2} \mathfrak{A}_{1} \mathfrak{A}_{2} \mathfrak{H}_{2} \mathfrak{I}_{3} \mathfrak{I}_{2} \mathfrak{I}_{3} \mathfrak{I}_{$	AB	= k(215,2) For kto
$\boldsymbol{\Sigma}$		$\begin{array}{c} 427 & 2=1 \\ -3x + 4y & -7=0 \\ 2x - 2y + 3=0 \\ \end{array} \qquad \qquad$	-Ца —	2b + 5 = 2k $2b + 38 = 5k$ $3b - 1 = 2k$ $3a + 15b$
6		ע = 1 ע = אַ ג אינטאאו אינטס שע גר (ו אַן) סר (גוגן)	159 359	$\begin{array}{c} 0 \\ +100 + 25 = -8a - 4b + 76 \\ +15b - 5 = -8a - 4b + 76 \\ \hline 3 \end{array}$
1		LOOKAND AT THE DIAGRAM	93/a 6020	+ $266b = 769$ $3 \Rightarrow 1654 = + 266b = 1134$ $3 \Rightarrow 1654 = \frac{a}{a} = \frac$
		$\begin{array}{c} \text{Let } \lambda = \alpha \text{Ar } \mathcal{A} \\ \text{Let } \varphi = b \text{Ar } \mathcal{B} \\ \mathcal{B} = (-3_{\eta}(4\alpha + \beta_{\eta}, \pi_{h} + 1)) \end{array}$		€ 23×1 14b. <u>b</u>
		$\underline{b} = (2b+c_1, z_2, z_{\underline{b}}, \underline{b})$ $= (2b+c_1, z_2, z_{\underline{b}}, \underline{b})$ $= (2b+c_1, z_2, z_{\underline{b}}, \underline{b})$ $= (2b+c_1, z_2, z_{\underline{b}}, \underline{b})$	· · · · · · · · · · · · · · · · · · ·	A(-3,-9,-4) & B(9,21,6)
		$ \begin{split} & A\overline{B} = \underbrace{b}_{-g} = \underbrace{\beta}_{-g} & \left\{ \begin{array}{c} \Gamma_{1} = \left(-3\gamma_{1} + \gamma_{2} - 13\gamma_{-} - 13\gamma_{-} \right) \\ = \left(2\beta + s_{1} + s_{2} - 2s_{3} + 2\beta + (\beta + s_{1} + s_{3} + s_{3} + 12\gamma_{-} - 13\gamma_{-} - 12\gamma_{-} $		
		= (2b+3a+51-2b-4a+381 3b+7A-1)		

A(-3, -9-6)

B(9,21,6)

Ĉ.ŀ.

mana.

Created	by T.	Madas
---------	-------	-------

Question 64 (*****)

The points A, B and C have respective position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , relative to a fixed origin O.

Show that the equation of the plane through A, B and C can be written as

 $(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{c} + \mathbf{c} \wedge \mathbf{a}) = \mathbf{a} \cdot \mathbf{b} \wedge \mathbf{c}$

	6	,	proof
2		1	
LOOKING AT THE DIAGRAM			
A Bx	7		
$\implies \underline{n} = AB_{A}AC$ $\implies \underline{n} = (\underline{b} - \underline{a})_{A}(\underline{s} - \underline{a})$			
$= \underline{h} = \underline{b}_{AS} - \underline{b}_{AS} - \underline{a}_{AS} + \underline{a}_{AS}$	na.		
$\implies p = \sigma^{\nu}p + p^{\nu}p + c^{\nu}\sigma$ $\implies p = p^{\nu}c + \sigma^{\nu}p + c^{\nu}\sigma$			
USING THE POINT & , AND LETT	NG I= (719,7)		
$\Rightarrow (\underline{1} - \underline{a}) \cdot \underline{n} = 0$			
$\implies \overline{L} \cdot \overline{p} - \overline{v} \cdot \overline{p} = 0$			
$\implies \overline{\mathbf{l}} \cdot \overline{\mathbf{p}} = \overline{\mathbf{o}} \cdot \overline{\mathbf{p}}$			
$\Rightarrow \begin{pmatrix} S \\ d \\ d \\ \sigma \end{pmatrix} \cdot (\overline{a}^{\nu}\overline{p} + \overline{p}^{\nu}\overline{c} + \varepsilon^{\nu}\overline{a}) \approx$	2. [a, b + b,s	+⊆,	<u>a]</u>
	provencente To a	7+3	PRESSURAL
$\therefore (x_1 g_1 z) \cdot (a_{\lambda} \underline{b} + b_{\lambda} \underline{c} + \underline{c})$	(vertex) = a. pre	. //	//

Question 65 (*****)

An irregular pyramid with a triangular base ABC has vertex at the point V.

The equation of the straight line VC is

$$\mathbf{r} = 2\mathbf{i} + 4\mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 4\mathbf{k})$$

where λ is a scalar parameter.

The plane face ABV has equation 2x - 3y - z = 1.

If the point *D* lies on the plane face *VBC* and has position vector $\frac{10}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} + 5\mathbf{k}$, show that the equation of the line *VB* can be written as

$$\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 8\mathbf{k} + \mu(2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}),$$

V,

WHRSEETING THE PUMM Da -34-7=1 8

> $2(\lambda+2) -3(-\lambda) - (4\lambda+4) = 1$ $2\lambda+y'+3\lambda-u\lambda-y'=1$

I= (3,-1,8) +4 (2,3,-1)

γ=1 Υ(3¹-1¹8) proof

TO FIND V

 $\begin{pmatrix} \chi \\ \eta \\ \chi \end{pmatrix} = \begin{pmatrix} \lambda + 2 \\ -\lambda \\ \lambda + 1 \end{pmatrix}$

AN STOUILLID

FINALLY THE UNIC VB, USING V(35-1,0) & DIRECTON (2,3-5)

where μ is a scalar parameter.

 $(2,3,-5) \leftarrow 2,000$

Question 66 (*****) The straight line L_1 has vector equation

$$\mathbf{\cdot} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} + \lambda (3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}),$$

where λ is a scalar parameter.

The plane Π has vector equation

$$\mathbf{r} \cdot (4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) = 17.$$

The point P is the intersection of L_1 and Π .

The acute angle θ is formed between L_1 and Π .

The straight line L_2 lies on Π , passes through P so that the acute angle between L_1 and L_2 is also θ .

 $\theta = 30^{\circ}$, $\mathbf{r}_2 = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \mu(2\mathbf{i} - 11\mathbf{j} + 5\mathbf{k})$

Determine the value of θ and find a vector equation for L_2 .

<u>A</u>			
START BY FINDLING THE CO-ORDIN	DATHS OF \$ 4 THE ADONE \$	• 2 5 Motored Prephistowale to 4 g 12	Εσωιως Σιμυσημοκοσαι (σπη της ενων το Ger T
(287+16-125) (257) = -25	$\begin{array}{l} V = \{1, 1, 5\} \\ (x_1, y_2) = (2 - 1)^2 \\ (x_1, y_2) = (2 - 1)^2 \\ (x_2, y_3) = (2 - 1)^2 \\ (x_3, y_4) = (2 - 1)^2 \\ (x_3, y_4) = (2 - 1)^2 \\ (x_4, y_4) = (2 - 1)^2 $	$\begin{array}{c} \underline{\alpha} \text{is in the Direction } (T_{1}-I_{2}) \\ \underline{\alpha}_{1} \stackrel{\text{D}}{=} \underline{\alpha}_{1} \text$	$\begin{array}{c} J_{a} = \Delta I + I_{a} \\ I_{b} = 3 + 3, & \{ & \{ 4, + 3 + 3 + 5 + 5 = 17 \\ = 4 + 2 + 3 + 1 \\ = 4 + 2 + 3 + 2 \\ I_{b} = 4 + 2 + 3 + 2 + 3 \\ I_{b} = 1 \\ = 5 + 2 \\ I_{b} = -2 \\ I_{b} = -2$
3 = -1	$\begin{array}{c} & \left(\left[\left(1,1,2 \right) \right] \right) \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right) \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \\ & \Rightarrow \left[\left(\left[\left(1,1,2 \right) \right] \right] \\ & \Rightarrow \left[\left(1,1,2 \right) $	$\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ $\mathbf{A} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$	$f: T(2, \frac{4}{2}, \frac{4}{2})$ $f: T = \underbrace{L - \underbrace{1}_{2} \in (2, \frac{4}{2}, \underbrace{1}_{2}) - (1, 1, 2) = (1, -\underbrace{1}_{1}, \underbrace{1}_{2})}_{\text{IS MOTHE DUBUTION OF } L_{2} ONTE - SCALES X2}$ $IS 409N (2, -11, 5)$ $AS SHOLE$
How is the diver structure l_{1} The l_{2} must be as the R breaking structure l_{1} $\underline{\alpha} = (4l_{1}s)_{\alpha}(s_{1}, a_{1}s)$ $\underline{\alpha} = (\frac{1}{2}s_{1})_{\alpha}(s_{1}, a_{2})$	A CONTRACTOR	AUTEONATIVE APPEORACI TO FIND THE DIRECTION OF THE UNK L PICK IN NEUTONS (PAIX ON L SAY $\lambda = 1$ YALLS $Q(4,3,7)$ THE REPORTS OF A THEORODURAL UNK THRUGH Q UNK BE D = (4,3,7) + 3(4,3,5) D = (4,3,7) + 3(4,3,5)	

(*****) Question 67

With respect to a fixed origin O, the points A, B and C have respective position vectors

 $\mathbf{a} = 3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 6\mathbf{i} + 2\mathbf{k}$ and $\mathbf{c} = 3\mathbf{j} + 5\mathbf{k}$

so that the plane Π contains A, B and C.

The straight line L is **parallel** to Π and has vector equation

$$\mathbf{r} = (13\mathbf{i} - 9\mathbf{j}) + \lambda(-7\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}),$$

where λ is a scalar parameter.

The point P lies outside the plane so that PC is perpendicular to Π .

The point Q lies on L so that PQ is perpendicular to L.

Given further that P is equidistant from Π and L, find the position vector of P and the position vector of Q.

, p	$=-6\mathbf{i}-4\mathbf{k}$, $\mathbf{q}=-\mathbf{i}+\mathbf{j}+6\mathbf{k}$
	- C.
$\begin{split} \underbrace{j(x_1, y_2, y_1)}_{j(x_1, y_2)} & \underbrace{(\mathcal{L}_1(y_2) - (\mathcal{L}_1(y_1)) - (\mathcal{L}_1(y_1))}_{(y_1, y_2)} & \underbrace{(\mathcal{L}_2(y_1)) - (\mathcal{L}_1(y_1))}_{(y_1, y_2)} & \underbrace{(\mathcal{L}_2(y_1)) - (\mathcal{L}_2(y_1))}_{(y_1, y_2)} & \underbrace{(\mathcal{L}_2(y_1)) - (\mathcal{L}_2(y_2))}_{(y_1, y_2)} & \underbrace{(\mathcal{L}_2(y_2)) - (\mathcal{L}_2(y_2))}_{(y_2)} & \underbrace{(\mathcal{L}_2(y_2)) - (\mathcal{L}_2(y_2))}_{(y_2)$	Not use Use the first that $\overline{QS} \perp \underline{L}$ $\Rightarrow (2p, r_{12}-r_{2}, r_{2}) + 2r_{2}(r_{2}, s_{2}-2r_{1}r_{2}) - (-r_{1}, s_{1}) = 0$ $-r_{12}-r_{2}+r_{2} + r_{2} + s_{2} = 0$ $\neq r_{12}-r_{2} + r_{2} + r_{2} = 0$ $\neq r_{2}-r_{2} + r_{2} + r_{2} = 0$ $\Rightarrow -r_{2}-r_{2} + r_{2} + r_{2} = 0$ $\Rightarrow -r_{2}-r_{2} + r_{2} + r_{2} = 0$ $\Rightarrow -r_{2}-r_{2} + r_{2} $
$\begin{split} & \hat{F} = (3_{1}, P_{1}, 3_{2}, 5_{2}, f_{1}) & \text{ for some } P = P \\ & \hat{G} = (3_{1}, 2_{1}, 4_{1}, 3_{2}, f_{1}) & \text{ for some } h_{1} \neq q \\ & \mathcal{L} = (0_{1}, h_{2}) \\ & \hat{C} = P_{-5} = (2_{1}, P_{1}, h_{3}, 3_{2}, f_{2}) - (h_{3}, f_{3}) \\ & = (3_{1}, P_{3}, 3_{2}) - (h_{3}, f_{3}) \\ & = (3_{1}, P_{3}, 3_{2}) - (h_{3}, f_{3}) \\ & \hat{C} = P_{-5} = (2_{1}, P_{1}, h_{3}, 3_{2}, f_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{1}, h_{3}, h_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) - (h_{3}, f_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) - (h_{3}, h_{3}, h_{3}) \\ & \hat{C} = (2_{1}, P_{3}, h_{3}, h_{3}) \\ & \hat{C} = (2_{1}, h_{3}, h_{3}) \\ & \hat{C} = (2_{1}, h_{3}, h_{3}, h_{3}) \\ & \hat{C} = (2_{1}, h_{3}) \\ & \hat{C} = (2_{1}, h_{$	$\Rightarrow \frac{p_{-3}}{p_{-6}} = -3$ Evelow we than $\frac{p(-6, 0, -p)}{p_{-6}} = \frac{q(-1, 1, 6)}{p_{-6}}$

The figure above shows an irregular hollow shape, consisting of two non-congruent, non-parallel triangular faces ABC and DEF, and two non-congruent quadrilateral faces ABED and BCFE.

The respective equations of the straight lines AD, DE and BC are

$$\mathbf{r}_1 = -5\mathbf{i} + 6\mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j})$$

$$\mathbf{r}_2 = -\mathbf{i} + 12\mathbf{j} + \mathbf{k} + \mu(-2\mathbf{i} + 7\mathbf{j} - 7\mathbf{k})$$

$$\mathbf{r}_3 = -\mathbf{i} - 8\mathbf{j} + \mathbf{k} + \nu(-2\mathbf{i} + 7\mathbf{j} + 7\mathbf{k})$$

where λ , μ and ν are scalar parameters.

If the plane face *BCFE* has equation 21x-14y+20z=111 and the point *G* has position vector 5i+7j, show that the acute angle between the plane face *BCFE* and the straight line *BG* is

 $\frac{\pi}{2} - \arccos\left[\frac{13}{\sqrt{3111}}\right].$

, proof

[solutions overleaf]

