VECTOR

PRACTICE

Part A

Created by T. Madas

Created by T. Madas

Question 1 (**)
The figure below shows the triangle $O A B$.

Question 2 (**+)
$O A B C$ is a square.

The point M is the midpoint of $A B$ and the point N is the midpoint of $M C$.
The point D is such so that $\overrightarrow{A D}=\frac{3}{2} \overrightarrow{A B}$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
a) Find simplified expressions, in terms of a and \mathbf{c}, for each of the vectors $\overrightarrow{B D}$, $\overrightarrow{M C}, \overrightarrow{M N}, \overrightarrow{O N}$ and $\overrightarrow{N D}$.
b) Deduce, showing your reasoning, that O, N and D are collinear.

$$
\overrightarrow{B D}=\frac{1}{2} \mathbf{c}, \overrightarrow{M C}=\frac{1}{2} \mathbf{c}-\mathbf{a}, \overrightarrow{M N}=\frac{1}{4} \mathbf{c}-\frac{1}{2} \mathbf{a}, \overrightarrow{O N}=\frac{1}{2} \mathbf{a}+\frac{3}{4} \mathbf{c}, \overrightarrow{N D}=\frac{1}{2} \mathbf{a}+\frac{3}{4} \mathbf{c}
$$

Created by T. Madas

Question 3 (***)
The figure below shows a triangle $O A B$.

- The point P lies on $O A$ so that $O P: P A=4: 1$.
- The point Q lies on $A B$ so that $A Q: Q B=2: 3$
- The side $O B$ is extended to the point R so that $O B: B R=5: 3$.

Let $\overrightarrow{P A}=\mathbf{a}$ and $\overrightarrow{O B}=5 \mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{A Q}$ and $\overrightarrow{P Q}$.
b) Deduce, showing your reasoning, that P, Q and R are collinear and state the ratio of $P Q: Q R$.

$$
\overrightarrow{A B}=5 \mathbf{b}-5 \mathbf{a}, \overrightarrow{A Q}=2 \mathbf{b}-2 \mathbf{a}, \overrightarrow{P Q}=2 \mathbf{b}-\mathbf{a}, P Q: Q R=1: 3
$$

Created by T. Madas

Question 4 (***)
The figure below shows a trapezium $O B C A$ where $O B$ is parallel to $A C$.

The point D lies on $B A$ so that $B D: D A=1: 2$.

Let $\overrightarrow{O A}=4 \mathbf{a}, \overrightarrow{O B}=3 \mathbf{b}$ and $\overrightarrow{A C}=6 \mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{O C}$, $\overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{O D}$.
b) Deduce, showing your reasoning, that O, D and C are collinear and state the ratio of $O D: D C$.
$\overrightarrow{O C}=4 \mathbf{a}+6 \mathbf{b}, \overrightarrow{A B}=-4 \mathbf{a}+3 \mathbf{b}, \overrightarrow{A D}=-\frac{8}{3} \mathbf{a}+2 \mathbf{b}, \overrightarrow{O D}=\frac{4}{3} \mathbf{a}+2 \mathbf{b}, O D: D C=1: 2$

Created by T. Madas

Question 5 (***)
$O A B C$ is a parallelogram and the point M is the midpoint of $A B$.

The point N lies on the diagonal $A C$ so that $A N: N C=1: 2$.
Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
a) Find simplified expressions, in terms of a and \mathbf{c}, for each of the vectors $\overrightarrow{A C}$, $\overrightarrow{A N}, \overrightarrow{O N}$ and $\overrightarrow{N M}$.
b) Deduce, showing your reasoning, that O, N and M are collinear.

$$
\overrightarrow{A C}=\mathbf{c}-\mathbf{a}, \overrightarrow{A N}=\frac{1}{3} \mathbf{c}-\frac{1}{3} \mathbf{a}, \overrightarrow{O N}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{c}, \overrightarrow{N M}=\frac{1}{3} \mathbf{a}+\frac{1}{6} \mathbf{c}
$$

Created by T. Madas

Question 6 (***+)
The figure below shows a trapezium $O B C A$ where $A D$ is parallel to $B C$.

The following information is given for this trapezium.
$\overrightarrow{B D}=5 \mathbf{a}+\mathbf{b}, \overrightarrow{D C}=\mathbf{a}-10 \mathbf{b}$ and $\overrightarrow{A D}=4 \mathbf{a}+k \mathbf{b}$, where k is an integer.
a) Find the value of k.
b) Find a simplified expression for $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.

$$
k=-6, \overrightarrow{A B}=-\mathbf{a}-7 \mathbf{b}
$$

Created by T. Madas

Created by T. Madas

Question 7 (***+)
$O A B$ is a triangle with the point P being the midpoint of $O B$ and the point Q being the midpoint of $A B$.

The point R is such so that $\overrightarrow{A R}=\frac{2}{3} \overrightarrow{A P}$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{A P}, \overrightarrow{A Q}$ and $\overrightarrow{A R}$.
b) By finding simplified expressions, in terms \mathbf{a} and \mathbf{b}, for two more suitable vectors, show that the points O, R and Q are collinear.

Created by T. Madas

Question 8 (***+)

The figure below shows the points O, C, A, D, B and E, which are related as follows.

- O, B and E are collinear and $O B: B E=1: 2$
- O, C and A are collinear and $O C: C A=1: 2$
- B, D and A are collinear and $B D: D A=1: 3$

$$
\text { Let } \overrightarrow{O A}=\mathbf{a} \text { and } \overrightarrow{O B}=\mathbf{b} \text {. }
$$

a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{D B}, \overrightarrow{C D}$ and $\overrightarrow{D E}$.
b) Show that the points C, D and E are collinear, and find the ratio $C D ; D E$.
c) Show further that $B C$ is parallel to $E A$, and find the ratio $B C: E A$.

$$
\stackrel{\overrightarrow{A B}=\mathbf{b}-\mathbf{a}}{ }, \frac{\overrightarrow{D B}=\frac{1}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}}{}, \frac{\overrightarrow{C D}=-\frac{1}{12} \mathbf{a}+\frac{3}{4} \mathbf{b}}{C D: D E=1: 3}, \overrightarrow{D E}=-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b},
$$

Created by T. Madas

Question 9 (****)
Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O C}=2 \mathbf{a}$ and $\overrightarrow{O D}=2 \mathbf{a}+\mathbf{b}$.

If $\overrightarrow{O E}=\frac{1}{3} \overrightarrow{O D}$ prove that the point E lies on the straight line $A B$.

Created by T. Madas

Question 10 (****+)
The figure below shows a triangle $O A Q$.

- The point P lies on $O A$ so that $O P: O A=3: 5$.
- The point B lies on $O Q$ so that $O B: B Q=1: 2$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
a) Given that $\overrightarrow{A R}=h \overrightarrow{A B}$, where h is a scalar parameter with $0<h<1$, show that

$$
\overrightarrow{O R}=(1-h) \mathbf{a}+h \mathbf{b} .
$$

b) Given further that $\overrightarrow{P R}=k \overrightarrow{P Q}$, where k is a scalar parameter with $0<k<1$, find a similar expression for $\overrightarrow{O R}$ in terms of $k, \mathbf{a}, \mathbf{b}$.
c) Determine ...
i. ... the value of k and the value of h.
ii. ... the ratio of $\overrightarrow{P R}: \overrightarrow{P Q}$.

$$
\overrightarrow{O R}=\frac{3}{5}(1-k) \mathbf{a}+k \mathbf{b}, k=\frac{1}{6}, \quad h=\frac{1}{2}, P R: P Q=1: 5
$$

Created by T. Madas

Question 11 (*****)
$O A B$ is a triangle and $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

- The point C lies on $O B$ so that $O C: C B=3: 1$.
- The point P lies on $A C$ so that $A P: P C=2: 1$.
- The point Q lies on $A B$ so that O, P and Q are collinear.

Let $\overrightarrow{O Q}=m \overrightarrow{O P}$ and $\overrightarrow{A Q}=n \overrightarrow{A B}$

Find the value of m and the value of n, and hence write down the ratio $A Q: Q B$.

$$
m=\frac{6}{5}, n=\frac{3}{5}, A Q: Q B=3: 2
$$

Created by T. Madas

Created by T. Madas

Question 12
Find the value of λ and μ, given that the vectors \mathbf{a} and \mathbf{b} are not parallel.
a) $7 \lambda \mathbf{a}+5 \lambda \mathbf{b}+3 \mu \mathbf{a}-\mu \mathbf{b}=5 \mathbf{a}+2 \mathbf{b}$
b) $2 \lambda \mathbf{a}+3 \lambda \mathbf{b}+3 \mu \mathbf{a}-5 \mu \mathbf{b}=-5 \mathbf{a}+21 \mathbf{b}$
c) $2 \lambda \mathbf{a}+3 \mu \mathbf{b}=7 \mu \mathbf{a}+11 \lambda \mathbf{b}+57 \mathbf{a}+6 \mathbf{b}$
d) $\lambda \mathbf{a}+3 \lambda \mathbf{b}+\mu \mathbf{b}=2 \mu \mathbf{a}+5 \mathbf{a}+8 \mathbf{b}$

$$
\lambda=\frac{1}{2}, \mu=\frac{1}{2}, \lambda=2, \mu=-3, \lambda=-3, \mu=-9, \lambda=3, \mu=-1
$$

Created by T. Madas

Created by T. Madas

Question 1
Relative to a fixed origin O, the point A has coordinates $(2,1,-3)$.

The point B is such so that $\overrightarrow{A B}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$.

Determine the distance of B from O.

Question 2
Relative to a fixed origin O, the point A has coordinates $(2,5,4)$.

The points B, C and D are such so that

$$
\overrightarrow{B A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad \overrightarrow{B C}=7 \mathbf{i}+\mathbf{j}-\mathbf{k} \quad \text { and } \quad \overrightarrow{D C}=4 \mathbf{i}+2 \mathbf{k}
$$

Determine the distance of D from the origin.

Question 3

Relative to a fixed origin O, the point A has coordinates $(6,-4,1)$.

The point B is such so that $\overrightarrow{B A}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$.

If the point M is the midpoint of $O B$, show that $|\overrightarrow{A M}|=k \sqrt{10}$, where k is a rational constant to be found.

Created by T. Madas

Question 4
Relative to a fixed origin O, the point A has coordinates $(k, 3,5)$, where k is a scalar constant.

The points B and C are such so that $\overrightarrow{B A}=3 \mathbf{i}-2 \mathbf{j}$ and $\overrightarrow{B C}=2 \mathbf{i}+c \mathbf{j}-4 \mathbf{k}$, where c is a scalar constant.

If the coordinates of C are $(1,4 k, 1)$, determine the distance $B C$.
n \square ,$|B C|=\sqrt{29}$

Foluma 4 DECTOR Equation
$\Rightarrow \overrightarrow{O A}+\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{O C}$
$\Rightarrow(k, 3,5)-(3,-2,0)+\left(2, c_{1}-4\right)=\left(1,4 k_{1} 1\right)$
$\Rightarrow(k-1, c+s, 1)=(1,4 k, 1)$
[i]: $k-1=1 \Rightarrow k=2$
$[2]: \begin{aligned} & c+5=4 \\ & c+5=8\end{aligned}$
$c=3$
$c=3$
Finfuy we Con Find the disinice BC
$\rightarrow|\overrightarrow{B C}|=|2,3,-4|$
$\rightarrow|\overrightarrow{B C}|=\sqrt{2^{2}+3^{2}+(-4)^{2}}$
$\Rightarrow|\overrightarrow{B C}|=\sqrt{4+9+16}$
$\rightarrow|\overrightarrow{R C}|=\sqrt{29} \approx 5.39$

Question 5
The points $A(5,-1,0), B(3,5,-4), C(12,2,8)$ are referred relative to a fixed origin O. The point D is such so that $\overrightarrow{A D}=2 \overrightarrow{B C}$.

Determine the distance $C D$.

$$
|C D|=\sqrt{458} \approx 21.40
$$

Question 6
The point $A(t, 2,3)$, where t is a constant, is referred relative to a fixed origin O.

Given that $|\overrightarrow{O A}|=7$, find the possible values of t.

$$
t= \pm 6
$$

Created by T. Madas

Question 7
The point $A(3 t, 2 t, t)$, where t is a constant, is referred relative to a fixed origin O.

Given that $|\overrightarrow{O A}|=7 \sqrt{2}$, find the possible values of t.

$$
t= \pm \sqrt{7}
$$

Question 8
The point $A(4,3, t+2)$, where t is a constant, is referred relative to a fixed origin O.

Given that $|\overrightarrow{O A}|=13$, find the possible values of t.

$$
t=10,-14
$$

Created by T. Madas

Question 9
The points $A(t, 3,2)$ and $B(5,2,2 t)$, where t is a scalar constant, are referred relative to a fixed origin O.

Given that $|\overrightarrow{A B}|=\sqrt{21}$, find the possible values of t.

Question 10
The variable points $A(t+1,6, t)$ and $B(2 t+1, t+1,4)$, where t is a scalar variable, are referred relative to a fixed origin O.
a) Show that

$$
|\overrightarrow{A B}|=\sqrt{3 t^{2}-18 t+41}
$$

b) Hence find the shortest distance between A and B, as t varies.

$$
|\overrightarrow{A B}|_{\min }=\sqrt{14}
$$

∞
a) $|\overrightarrow{A B}|=|\underline{b}-\underline{a}|=|(2 t+1, t+1,4)-(t+1,6, t)|$
$=|t, t-5,4-t|=\sqrt{t^{2}+(t-5)^{2}+(4-t)^{2}}$
$=\sqrt{t^{2}+t^{2}-10 t+25+16-8 t+t^{2}}$
$=\sqrt{3 t^{2}-8 t+41}$
b)

By compernag THE spondee or callus.
$\Rightarrow|\overrightarrow{A B}|=\sqrt{3 t^{2}-18 t+41}$
$\Rightarrow|\overrightarrow{A B}|=\sqrt{3\left(t^{2}-6 t+\frac{41}{3}\right)}$
$\Rightarrow|\overrightarrow{A B}|=\sqrt{3\left[(t-3)^{2}-9+\frac{4}{3}\right]}$
$\Rightarrow|\overrightarrow{A B}|=\sqrt{3(t-3)^{2}-2 \pi+41}$
$\Rightarrow|\overrightarrow{A B}|=\sqrt{3(t-3)^{2}+14}$
Hack $|\overrightarrow{A B}|_{\text {MiN }}=\sqrt{14} \quad(\pi$ recces contains $t=3$)

Question 11
The variable points $A(2 t, t, 2)$ and $B(t, 4,1)$, where t is a scalar variable, are referred relative to a fixed origin O.
a) Show that

$$
|\overrightarrow{A B}|=\sqrt{2 t^{2}-8 t+17}
$$

b) Hence find the shortest distance between A and B, as t varies.

$$
|\overrightarrow{A B}|_{\min }=3
$$

$\rightarrow \mid$ \|ck $\mid=\sqrt{2(t+-4 t+8)}$

Created by T. Madas

Question 12
The variable points $A(1,8, t-1)$ and $B(2 t-1,4,3 t-1)$, where t is a scalar variable, are referred relative to a fixed origin O.

Find the shortest distance between A and B, as t varies.

Created by T. Madas

Question 14

The points $A(2,1,-3), B(1,2,4)$ and $C(6,1,-5)$ are referred with respect to a fixed origin O.

If A, B, C and the point D form the parallelogram $A B C D$, use vector algebra to find the coordinates of D.

Question 15

The points $A(4,4,1), B(2,-2,0)$ and $C(6,3,7)$ are referred with respect to a fixed origin O.

If A, B, C and the point D form the parallelogram $A B C D$, use vector algebra to find the coordinates of D and hence calculate the angle $O C D$.

Question 16
The points $A(0,-5,-4), B(2,-1,2)$ and $C(5,5,11)$ are referred with respect to a fixed origin O.

Show that A, B and C are collinear and find the ratio $A B: B C$.

Question 17
The points $A(9,10,-5), B(3,1,7)$ and $C(-5,-11,23)$ are referred with respect to a fixed origin O.

Show that A, B and C are collinear and find the ratio $A B: B C$.

Created by T. Madas

Question 18
The points $A(-2,-10,-17)$ and $B(25,-1,19)$ are referred with respect to a fixed origin O.

The point C is such so that $A C B$ forms a straight line.

Created by T. Madas

Question 19
The points $A(-3,-14,-5)$ and $B(1,-4,-1)$ are referred relative to a fixed origin O. The point C is such so that $A B C$ forms a straight line.

Created by T. Madas

Question 20

The points $A(2,-1,4), B(0,-5,10), C(3,1,3)$ and $D(6,7,-8)$ are referred relative to a fixed origin O.
a) Use vector algebra to show that three of the above four points are collinear.

A triangle is drawn using three of the above four points as its vertices.
b) Given further that the triangle has the largest possible area, determine, in exact surd form, the length of its shortest side.

Created by T. Madas

Question 21
The points $A(-3,3, a), B(b, b, b-5)$ and $C(c,-2,5)$, where a, b and c are scalar constants, are referred relative to a fixed origin O.

Ii is further given that A, B and C are collinear and the ratio $|\overrightarrow{A B}|:|\overrightarrow{B C}|=2: 3$.

Use vector algebra to find the value of a, the value of b and the value of c.

Created by T. Madas

Question 22
With respect to a fixed origin, the points A and B have position vectors $2 \mathbf{i}+4 \mathbf{j}+7 \mathbf{k}$ and $-4 \mathbf{i}+\mathbf{j}+\mathbf{k}$, respectively.

The point P lies on the straight line through A and B.
Find the possible position vectors of P if $|\overrightarrow{A P}|=2|\overrightarrow{P B}|$.

$$
\overrightarrow{O P}=\mathbf{p}=-2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \overrightarrow{O P}=\mathbf{p}=-10 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}
$$

Created by T. Madas

Question 23

With respect to a fixed origin, the points A and B have position vectors $10 \mathbf{i}+9 \mathbf{j}-6 \mathbf{k}$ and $6 \mathbf{i}-3 \mathbf{j}+10 \mathbf{k}$, respectively.

The position vector of the point C has \mathbf{i} component equal to 2 .

The distance of C from both A and B is 12 units.

Show that one of the two possible position vectors of C is $2 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$ and determine the other.

Created by T. Madas

Question 1
Find the angle between each pair of vectors.
a) $4 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $8 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$
b) $3 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ and $-\mathbf{i}-\mathbf{j}+2 \mathbf{k}$
c) $2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$
d) $6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $3 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}$
e) $2 \mathbf{i}-7 \mathbf{k}$ and $3 \mathbf{i}+8 \mathbf{j}+3 \mathbf{k}$

Question 2
Find the angle between each pair of vectors.
a) $3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
b) $4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $3 \mathbf{i}-6 \mathbf{j}+4 \mathbf{k}$
c) $\mathbf{i}-5 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$
d) $2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$
e) $8 \mathbf{i}-5 \mathbf{k}$ and $4 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k}$

Question 3
Find the angle between each pair of vectors.
a) $2 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}$ and $4 \mathbf{i}-\mathbf{j}-\mathbf{k}$
b) $4 \mathbf{i}+2 \mathbf{j}-7 \mathbf{k}$ and $\mathbf{i}-\mathbf{j}-5 \mathbf{k}$
c) $2 \mathbf{i}-6 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}+5 \mathbf{j}-\mathbf{k}$
d) $3 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$
e) $3 \mathbf{i}-\mathbf{j}-5 \mathbf{k}$ and $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$

Question 4

Find the angle between each pair of vectors.
a) $\mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $3 \mathbf{i}-\mathbf{j}+\mathbf{k}$
b) $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$
c) $3 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$
d) $\mathbf{i}-\mathbf{j}-2 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
e) $3 \mathbf{i}-4 \mathbf{j}-12 \mathbf{k}$ and $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
$84.8^{\circ}, 109.1^{\circ}, 25.2^{\circ}, 80.4^{\circ}, 75.1^{\circ}$

Created by T. Madas

Question 5
Find the angle $\measuredangle C A B$ for each set of the coordinates given.
a) $A(3,3,4), B(2,7,2), C(5,6,0)$
b) $A(6,1,4), \quad B(1,-1,5), \quad C(4,4,-3)$
c) $A(2,1,-3), B(-1,-1,4), \quad C(0,4,-7)$
d) $A(2,2,1), B(4,0,-3), \quad C(1,-3,2)$

Created by T. Madas

Question 6
Find the angle $\measuredangle C A B$ for each set of the coordinates given.
a) $A(2,-2,4), B(1,3,2), C(5,-4,1)$
b) $A(2,0,0), \quad B(0,0,1), \quad C(3,1,3)$
c) $\quad A(1,5,3), B(2,8,6), \quad C(-1,-10,-5)$
d) $A(5,0,-2), B(0,-1,4), C(9,4,0)$
$105.8^{\circ}, 82.3^{\circ}, 162.1^{\circ}, 104.7^{\circ}$

Created by T. Madas

Created by T. Madas

Question 7
The vectors \mathbf{a} and \mathbf{b} are perpendicular, and λ is a scalar constant.
Find in each case the possible value(s) of λ.
a) $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}+\lambda \mathbf{k}$ and $\mathbf{b}=5 \mathbf{i}+\lambda \mathbf{j}-5 \mathbf{k}$
b) $\mathbf{a}=4 \mathbf{i}-\mathbf{j}+2 \lambda \mathbf{k}$ and $\mathbf{b}=\lambda \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
c) $\mathbf{a}=4 \lambda \mathbf{i}+(\lambda+1) \mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-6 \mathbf{j}+12 \mathbf{k}$
d) $\mathbf{a}=(2 \lambda+2) \mathbf{i}+\mathbf{j}+(\lambda+1) \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+6 \lambda \mathbf{j}+\lambda \mathbf{k}$
e) $\mathbf{a}=6 \mathbf{i}+(\lambda+1) \mathbf{j}+(\lambda-4) \mathbf{k}$ and $\mathbf{b}=\lambda \mathbf{i}+(\lambda-2) \mathbf{j}+6 \mathbf{k}$

$$
\lambda_{a}=5, \lambda_{b}=1, \lambda_{c}=9, \lambda_{d}=1,-4, \lambda_{e}=2,-13
$$

(m)		(4) $(2 \pi, 1,1,4,4,(34,8)=$ $-4 \lambda-4+2 \lambda+\lambda^{2}+\lambda=$ $(\lambda-1)(\lambda+4)=0$
(1)		

Question 8
The vectors \mathbf{a} and \mathbf{b} are given by

$$
\mathbf{a}=5 \mathbf{i}-4 \mathbf{j}+a \mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}+b \mathbf{j}-3 \mathbf{k}
$$

a) If \mathbf{a} and \mathbf{b} are perpendicular find a relationship between a and b.
b) If instead \mathbf{a} and \mathbf{b} are parallel find the value of a and the value of b.

$$
3 a+4 b=10, a=-\frac{8}{5}, \quad b=-\frac{15}{2}
$$

Question 9
Find a vector with integer components which is perpendicular to both the vectors given below.
(Do not use the cross product)
a) $2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{i}+\mathbf{j}-3 \mathbf{k}$
b) $6 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $-\mathbf{i}-3 \mathbf{j}+\mathbf{k}$
c) $7 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ and $6 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$
d) $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $4 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
e) $8 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $6 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$

$$
\mathbf{i}+2 \mathbf{j}+\mathbf{k}, 5 \mathbf{i}-8 \mathbf{j}-19 \mathbf{k}, 9 \mathbf{i}+41 \mathbf{j}-19 \mathbf{k},-16 \mathbf{i}+3 \mathbf{j}+11 \mathbf{k}, \quad \mathbf{i}-22 \mathbf{j}-36 \mathbf{k}
$$

Created by T. Madas

Question 10
The points A, B and C have coordinates $(1,2,1),(5,1,4)$ and $(7,6,3)$, respectively. Show that $\measuredangle A B C=90^{\circ}$ and hence find the exact area of the triangle $A B C$.

Created by T. Madas

Question 1
a) Find a vector equation of the straight line l, that passes through the point $A(7,-1,2)$ and is in the direction $-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.
b) If $B(p, q, 6)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=7 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+\lambda(-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}), p=-1, q=11
$$

(2)

Question 2
a) Find a vector equation of the straight line l, that passes through the point $A(2,-6,-4)$ and is parallel to the vector $\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}$.
b) If $B(p, 0, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=2 \mathbf{i}-6 \mathbf{j}-4 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}), p=5, q=11
$$

Created by T. Madas

Question 3

a) Find a vector equation of the straight line l, that passes through the point $A(3,-1,8)$ and is in the direction $2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}$.
b) If $B(9, p, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=3 \mathbf{i}-\mathbf{j}+8 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}), p=-10, q=23
$$

Question 4

a) Find a vector equation of the straight line l that passes through the point $A(2,-1,-5)$ and is in the direction $2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}$
b) If $B(-10, p, q)$ lies on l find the values o p and the value of q.

$$
\mathbf{r}=2 \mathbf{i}-\mathbf{j}-5 \mathbf{k}+\lambda(2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}), p=-31, q=-23
$$

Created by T. Madas

Question 5

a) Determine a vector equation of the straight line l that passes through the point $A(4,-1,2)$ and is in the direction $2 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}$.
 $A(-7,10,-1)$ and is parallel to the vector $3 \mathbf{j}-4 \mathbf{k}$.
b) If $B(p, q,-21)$ lies on l find the value of p and the value of q.

Question 7

a) Determine a vector equation of the straight line l that passes through the point $A(7,1,1)$ and is parallel to the vector $2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$.
b) If $B(1, p, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=7 \mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}), p=16, q=-2
$$

Question 8

The straight line l passes through the point $A(5,-1,3)$ and is parallel to the vector $p \mathbf{i}+q \mathbf{j}+3 \mathbf{k}$.

If $B(8,8,12)$ lies on l find the value of p and the value of q.

Question 9
a) Determine a vector equation of the straight line l that passes through the point $A(p, 2,3)$ and is in the direction $6 \mathbf{i}-2 \mathbf{j}+q \mathbf{k}$, where p and q are scalar constants.
b) If l passes through the origin, find the value of p and the value of q.

$$
\mathbf{r}=p \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\lambda(6 \mathbf{i}-2 \mathbf{j}+q \mathbf{k}), p=-6, q=-3
$$

Question 10
a) Determine a vector equation of the straight line l that passes through the point $A(5,-1,-3)$ and is parallel to the vector $-\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$.
b) If both the points $B(p, 5, q)$ and $C(m, n, 7)$ lie on l, find the distance $B C$.

$$
\mathbf{r}=5 \mathbf{i}-\mathbf{j}-3 \mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}), \quad B C=24
$$

Question 11
a) Determine a vector equation of the straight line l that passes through the points $A(2,1,2)$ and $B(3,-1,5)$.
b) Given that $P(p,-3,8)$ lies on l find the value of p.

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}), p=4
$$

Question 12
a) Find a vector equation of the straight line l that passes through the points $A(1,2,-2)$ and $B(-1,3,1)$.
b) Given that $P(-5, p, 7)$ lies on l find the value of p.

$$
\mathbf{r}=\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}+\lambda(-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}), p=5
$$

Question 13
a) Determine a vector equation of the straight line l that passes through the points $A(-4,1,-2)$ and $B(5,-1,2)$.
b) Given that $P(41,-9, p)$ lies on l find the value of p.

$$
\mathbf{r}=-4 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+\lambda(9 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}), p=18
$$

Question 14
a) Find a vector equation of the straight line l that passes through the points $A(1,1,-6)$ and $B(3,2,-9)$.
b) Given that $P(-3,-1, p)$ lies on l find the value of p.

$$
\mathbf{r}=\mathbf{i}+\mathbf{j}-6 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}), p=0
$$

Question 15
a) Determine a vector equation of the straight line l that passes through the points $A(8,-1,2)$ and $B(10,2,1)$.
b) Given that $P(20, p,-4)$ lies on l find the value of p.

$$
\mathbf{r}=8 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}), p=17
$$

Question 16
a) Find a vector equation of the straight line l that passes through the points $A(6,-3,2)$ and $B(5,-1,3)$.
b) Given that $P(p, 5,6)$ lies on l find the value of p.

$$
\mathbf{r}=6 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+\mathbf{k}), p=2
$$

Created by T. Madas

Question 17
a) Determine a vector equation of the straight line l that passes through the points $A(-2,4,-4)$ and $B(-17,-1,-14)$.
b) Given that $P(7, p, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=-2 \mathbf{i}+4 \mathbf{j}-4 \mathbf{k}+\lambda(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}), p=7, q=2
$$

Question 18
a) Find a vector equation of the straight line l that passes through the points $A(8,6,2)$ and $B(13,-4,-3)$.
b) Given that $C(10, p, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=8 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+\mathbf{k}), p=2, q=0
$$

Created by T. Madas

Question 19
a) Determine a vector equation of the straight line l that passes through the points $A(6,5,1)$ and $B(4,4,-1)$.
b) Given the point $C(p, q, q)$ lies on l find the value of p and the value of q.

$$
\mathbf{r}=6 \mathbf{i}+5 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}), p=14, q=9
$$

Question 20
Given that the points $A(4,6,-2), B(9,1,3)$ and $C(1, p, q)$ lie on a straight line find a vector equation for the straight line and hence find the value of p and the value of q.

$$
\mathbf{r}=4 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+\mathbf{k}), p=9, q=-5
$$

Question 21
Show that the straight line with vector equation

$$
\mathbf{r}=2 \mathbf{i}+4 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k})
$$

where λ is a scalar parameter
and the straight line through the points $A(1,-1,1)$ and $B(3,7,7)$ are parallel.

a) Find a vector equation of the straight line l that passes through the points $A(5,-2,-7)$ and $B(8,2,5)$.
b) Find the coordinates of the point C which also lies on l with $|A B|=|A C|$,

$$
\mathbf{r}=5 \mathbf{i}-2 \mathbf{j}-7 \mathbf{k}+\lambda(3 \mathbf{i}+4 \mathbf{j}+12 \mathbf{k}), C(2,-6,-19)
$$

Created by T. Madas

Question 23

a) Find a vector equation of the straight line l-through the points $A(1,4,4)$ and $B(10,1,-2)$.
b) Find the coordinates of the point C, given that it lies on l so that $|A B|=|A C|$.

Question 24

$$
\mathbf{r}=\mathbf{i}+4 \mathbf{j}+4 \mathbf{k}+\lambda(3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}), \quad B(-8,7,10)
$$

a) Find a vector equation of the straight line l that passes through the point $A(-1,4,6)$ and is parallel to the vector $2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
b) Given that $B(p, q, 1)$ lies on l, find the value of p and the value of q.
c) Find the coordinates of the point C, given that it lies on l with $|A B|=|A C|$.

$$
\mathbf{r}=-\mathbf{i}+4 \mathbf{j}+6 \mathbf{k}+\lambda(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}), \quad p=-11, q=14, C(9,-6,11)
$$

Created by T. Madas

Question 25

a) Find a vector equation of the straight line l that passes through the point $A(10,2,-1)$ and is parallel to the vector $6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.
b) Find the two possible sets of coordinates of the point B given that it lies on l and that $|A B|=21$ units.

$$
\mathbf{r}=10 \mathbf{i}+2 \mathbf{j}-\mathbf{k}+\lambda(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}), \quad B(28,-4,8) \text { or } B(-8,8,-10)
$$

Question 26

a) Find a vector equation of the straight line l which passes through the points $A(2,-1,-3)$ and $B(3,1,-1)$.
b) Find the two possible sets of coordinates of the point C given that it also lies on l and that $|B C|=9$ units.

Created by T. Madas

Created by T. Madas

Question 27

The point $A(6,1,0)$ lies on the straight line l with equation

$$
\mathbf{r}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.
If the point B also lies on l so that the distance $A B$ is 15 units find the possible coordinates of the point B.

$$
B(16,-4,10) \text { or } B(-4,6,-10)
$$

Question 28

The point $A(7,0,-4)$ lies on the straight line l with equation

$$
\mathbf{r}=5 \mathbf{i}-\mathbf{j}-5 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.

If the point B also lies on l so that $|A B|=\sqrt{96}$, find the possible coordinates of B.

$$
B(15,4,0) \text { or } B(-1,-4,-8)
$$

Created by T. Madas

Question 29

For each of the pairs of the straight lines shown below,
i. ... prove that they intersect.
ii. ... find the coordinates of their point of intersection.
iii. ... calculate the acute angle between them.
$\mathbf{r}_{1}=3 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})$
$\mathbf{r}_{2}=2 \mathbf{i}+15 \mathbf{j}+17 \mathbf{k}+\mu(-\mathbf{i}+\mathbf{j}+2 \mathbf{k})$
b) $\mathbf{r}_{1}=14 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}+\lambda(-2 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$
$\mathbf{r}_{2}=10 \mathbf{i}+8 \mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j}-5 \mathbf{k})$
c) $\mathbf{r}_{1}=8 \mathbf{i}+\mathbf{j}+7 \mathbf{k}+\lambda(-2 \mathbf{i}+\mathbf{j}-4 \mathbf{k})$
$\mathbf{r}_{2}=5 \mathbf{i}+7 \mathbf{k}+\mu(\mathbf{i}-3 \mathbf{j}+8 \mathbf{k})$

$$
(9,8,3) \& 56.9^{\circ},(18,4,-12) \& 23.6^{\circ},(4,3,-1) \& 20.2^{\circ}
$$

Created by T. Madas

Question 30

For each of the pairs of the straight lines shown below,
i. ... prove that they intersect.
ii. ... find the coordinates of their point of intersection.
iii. ... calculate the acute angle between them.
a)

$$
\begin{aligned}
& \mathbf{r}_{1}=5 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}+\lambda(2 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \\
& \mathbf{r}_{2}=-2 \mathbf{i}-10 \mathbf{j}+5 \mathbf{k}+\mu(\mathbf{i}+3 \mathbf{j}-\mathbf{k})
\end{aligned}
$$

b) $\mathbf{r}_{1}=7 \mathbf{i}+4 \mathbf{j}-8 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-3 \mathbf{k})$
$\mathbf{r}_{2}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})$
c)

$$
\begin{aligned}
& \mathbf{r}_{1}=\mathbf{i}-\mathbf{j}+\lambda(\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}) \\
& \mathbf{r}_{2}=5 \mathbf{i}-8 \mathbf{j}+7 \mathbf{k}+\mu(\mathbf{i}-3 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

Question 31
For each of the pairs of the straight lines shown below,
i. ... prove that they intersect.
ii. ... find the coordinates of their point of intersection.
iii. ... calculate the acute angle between them.
a)

$$
\begin{aligned}
& \mathbf{r}_{1}=4 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}+\mathbf{k}) \\
& \mathbf{r}_{2}=2 \mathbf{i}+11 \mathbf{j}-\mathbf{k}+\mu(5 \mathbf{i}+2 \mathbf{k})
\end{aligned}
$$

b)

$$
\begin{aligned}
& \mathbf{r}_{1}=9 \mathbf{i}+15 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}) \\
& \mathbf{r}_{2}=-7 \mathbf{i}+9 \mathbf{j}-\mathbf{k}+\mu(-3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})
\end{aligned}
$$

c)

$$
\begin{aligned}
& \mathbf{r}_{1}=8 \mathbf{i}+6 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) \\
& \mathbf{r}_{2}=5 \mathbf{i}-8 \mathbf{j}+17 \mathbf{k}+\mu(3 \mathbf{i}+4 \mathbf{j}-5 \mathbf{k})
\end{aligned}
$$

$$
(7,11,1) \& 57.9^{\circ},(-1,5,-5) \& 90^{\circ},(11,0,7) \& 45^{\circ}
$$

Question 32
For each of the pairs of the straight lines shown below,
i. ... prove that they intersect.
ii. ... find the coordinates of their point of intersection.
iii. ... calculate the acute angle between them.
a)

$$
\begin{aligned}
& \mathbf{r}_{1}=-2 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\
& \mathbf{r}_{2}=3 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})
\end{aligned}
$$

b)

$$
\begin{aligned}
& \mathbf{r}_{1}=8 \mathbf{i}-3 \mathbf{j}-7 \mathbf{k}+\lambda(-6 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=8 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})
\end{aligned}
$$

c)

$$
\begin{aligned}
& \mathbf{r}_{1}=6 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}+\lambda(2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=6 \mathbf{i}+10 \mathbf{j}-12 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})
\end{aligned}
$$

$$
(2,3,5) \& 63.6^{\circ},(2,-1,-4) \& 79.0^{\circ},(2,2,0) \& 44.5^{\circ}
$$

Question 33
Prove that the straight line through $A(3,8,9)$ and $B(5,12,11)$ intersects with the straight line through $C(-5,6,8)$ and $D(13,0,5)$.

Find the point of intersection and the acute angle between the two straight lines.

Created by T. Madas

SHORTEST DISTANCES
INVOLVING LINES

Question 1
The straight line l has vector equation

$$
\mathbf{r}=8 \mathbf{i}+5 \mathbf{k}+\lambda(3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
Find the coordinates of P and the distance $O P$.

$$
P(2,4,1), \mid O P=\sqrt{21}
$$

\square

Question 2
The straight line l has vector equation

$$
\mathbf{r}=2 \mathbf{i}-9 \mathbf{j}-6 \mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k})
$$

where λ is a scalar parameter.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
Find the coordinates of P and the distance $O P$.

$$
P(4,-1,0), \quad|O P|=\sqrt{17}
$$

Created by T. Madas

Question 3
The straight line l has vector equation

$$
\mathbf{r}=9 \mathbf{i}+11 \mathbf{j}-\mathbf{k}+\lambda(2 \mathbf{i}+4 \mathbf{j}-\mathbf{k})
$$

where λ is a scalar parameter.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
Find the coordinates of P and the distance $O P$.

$$
P(3,-1,2),|O P|=\sqrt{14}
$$

Question 4

The straight line l has vector equation

$$
\mathbf{r}=-16 \mathbf{i}+10 \mathbf{j}-7 \mathbf{k}+\lambda(6 \mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.
The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.

Find the coordinates of P and the distance $O P$.

Created by T. Madas

Question 5
The straight line l has vector equation

$$
\mathbf{r}=-4 \mathbf{i}-2 \mathbf{j}+8 \mathbf{k}+\lambda(3 \mathbf{i}+\mathbf{j}-3 \mathbf{k})
$$

where λ is a scalar parameter.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
Find the coordinates of P and the distance $O P$.

$$
P(2,0,2),|O P|=2 \sqrt{2}
$$

\square

Question 6
The straight line l has vector equation

$$
\mathbf{r}=\mathbf{i}+13 \mathbf{j}-3 \mathbf{k}+\lambda(\mathbf{i}-4 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
Find the coordinates of P and the distance $O P$.

$$
P(4,1,0),|O P|=\sqrt{17}
$$

Question 7
The straight line l has vector equation

$$
\mathbf{r}=4 \mathbf{i}+\mathbf{j}-3 \mathbf{k}+\lambda(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.

The point A has coordinates $(22,-5,21)$. The point P lies on l so that $A P$ is perpendicular to l.

Find the coordinates of P and the distance $A P$.

Question 8
The straight line l has vector equation

$$
\mathbf{r}=2 \mathbf{i}-2 \mathbf{j}+\lambda(-\mathbf{i}+2 \mathbf{k})
$$

where λ is a scalar parameter.

The point A has coordinates $(1,0,7)$.

The point P lies on l so that $A P$ is perpendicular to l.

Find the coordinates of P.

Question 9
The straight line l has vector equation

$$
\mathbf{r}=17 \mathbf{i}+6 \mathbf{j}+47 \mathbf{k}+\lambda(\mathbf{i}+7 \mathbf{j}+6 \mathbf{k})
$$

where λ is a scalar parameter.

The point A has coordinates $(-15,16,12)$. The point P lies on l so that $A P$ is perpendicular to l.

Find the coordinates of P and the distance $A P$.

$$
P(15,-8,35), \quad A P \mid=\sqrt{2005}
$$

Created by T. Madas

Created by T. Madas

Question 10
The parallel lines l_{1} and l_{2} have respective vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=\mathbf{i}+6 \mathbf{j}+\mathbf{k}+\lambda(3 \mathbf{i}+5 \mathbf{j}-4 \mathbf{k}) \\
& \mathbf{r}_{2}=8 \mathbf{i}+\mathbf{j}+25 \mathbf{k}+\mu(3 \mathbf{i}+5 \mathbf{j}-4 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.

Find the distance between l_{1} and l_{2}.

Created by T. Madas

Question 11
The parallel lines l_{1} and l_{2} have respective vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=8 \mathbf{i}+3 \mathbf{j}+\lambda(2 \mathbf{i}-\mathbf{k}) \\
& \mathbf{r}_{2}=-\mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mu(2 \mathbf{i}-\mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.

Find the distance between l_{1} and l_{2}.

