VECTOR

 QUESTIONS
Part A

Created by T. Madas

Question 1 (**)
The straight line l_{1} passes through the points with coordinates $(5,1,6)$ and $(2,2,1)$.
a) Find a vector equation of l_{1}.

A different straight line l_{2} passes though the point $C(6,6,-4)$ and is parallel to the vector $4 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.
b) Show clearly that l_{1} and l_{2} are skew.
\square , $\mathbf{r}=5 \mathbf{i}+\mathbf{j}+6 \mathbf{k}+\lambda(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})$

Created by T. Madas

Question 2 (**)
Relative to a fixed origin O, the respective position vectors of three points A, B and C are

$$
\left(\begin{array}{l}
3 \\
2 \\
9
\end{array}\right),\left(\begin{array}{r}
-5 \\
11 \\
6
\end{array}\right) \text { and }\left(\begin{array}{r}
4 \\
0 \\
-8
\end{array}\right)
$$

a) Determine, in component form, the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
b) Hence find, to the nearest degree, the angle $B A C$.
c) Calculate the area of the triangle $B A C$.

$$
\overrightarrow{A B}=-8 \mathbf{i}+9 \mathbf{j}-3 \mathbf{k}, \overrightarrow{A C}=\mathbf{i}-2 \mathbf{j}-17 \mathbf{k}, \theta \approx 83^{\circ}, \text { area } \approx 106
$$

Question 3 (**)
The straight line l_{1} passes through the points $A(2,5,9)$ and $B(6,0,10)$.
a) Find a vector equation for l_{1}.

The straight line l_{2} has vector equation
where μ is a scalar parameter.
b) Show that the point A is the intersection of l_{1} and l_{2}.
c) Show further that l_{1} and l_{2} are perpendicular to each other.

$$
\mathbf{r}=2 \mathbf{i}+5 \mathbf{j}+9 \mathbf{k}+\lambda(4 \mathbf{i}-5 \mathbf{j}+\mathbf{k})
$$

Created by T. Madas

Question 4 (**)
Relative to a fixed origin O, the points A and B have respective position vectors

$$
\mathbf{i}+7 \mathbf{j}+5 \mathbf{k} \text { and } 5 \mathbf{i}+\mathbf{j}-5 \mathbf{k}
$$

a) Find a vector equation of the straight line l_{1} which passes through A and B.

The straight line l_{2} has vector equation

$$
\mathbf{r}_{2}=5 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}+\mu(\mathbf{i}-4 \mathbf{j}+2 \mathbf{k})
$$

where μ is a scalar parameter.

The point C is the point of intersection between l_{1} and l_{2}.
b) Find the position vector of C.
c) Show that C is the midpoint of $A B$.

$$
\mathbf{r}=\mathbf{i}+7 \mathbf{j}+5 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}-5 \mathbf{k}), \quad \overrightarrow{O C}=3 \mathbf{i}+4 \mathbf{j}
$$

Question 5 (**)
The figure below shows the triangle $O A B$.

Created by T. Madas

Question 6 (** $^{\left({ }^{*}\right)}$
The points $A(2,4,4), B(6,8,4), C(6,4,0), D(2,0,0)$ and $M(4,4,2)$ are given.

The straight line l_{1} has equation

$$
\mathbf{r}_{1}=6 \mathbf{i}+4 \mathbf{j}+\lambda(\mathbf{i}+\mathbf{j})
$$

where λ is a scalar parameter.

The straight line l_{2} passes through the points C and M.
a) Find a vector equation of l_{2}.?
b) Show that $\overrightarrow{A B}$ is parallel to l_{1}.
c) Verify that D lies on l_{1}.
d) Find the acute angle between $\overrightarrow{A C}$ and l_{1}.

$$
\mathbf{r}_{2}=4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}+\mu(\mathbf{i}-\mathbf{k}), 60^{\circ}
$$

\square

Created by T. Madas

Question 7 (**+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=8 \mathbf{i}+8 \mathbf{j}+13 \mathbf{k}+\mu(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point P and find its coordinates.
b) Calculate the acute angle between l_{1} and l_{2}.

Created by T. Madas

Question 8 (**+)

Relative to a fixed origin O, the points P and Q have respective position vectors

$$
(-7 \mathbf{j}+4 \mathbf{k}) \text { and }(3 \mathbf{i}-8 \mathbf{j}+2 \mathbf{k}) .
$$

The straight line l_{1} passes through the points P and Q.
a) Determine a vector equation for l_{1}.

The straight line l_{2} has vector equation

$$
\mathbf{r}=(7 \mathbf{i}+a \mathbf{j}+b \mathbf{k})+\mu(\mathbf{i}+4 \mathbf{j}-\mathbf{k})
$$

where a and b are scalar constants, and μ is a scalar parameter.
b) Given that l_{1} and l_{2} intersect at Q, find the value of a and the value of b.
c) Calculate the acute angle between l_{1} and l_{2}.
\square $, \mathbf{r}=-7 \mathbf{j}+4 \mathbf{k}+\lambda(3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}), \quad a=8, b=-2,86.4^{\circ}$

Question 9 (${ }^{* *}{ }^{*}$)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}+2 \mathbf{j}+\lambda(\mathbf{i}+\mathbf{j}) \\
& \mathbf{r}_{2}=2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j}-\mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} do not intersect.

The point P lies on l_{1} where $\lambda=4$ and the point Q lies on l_{2} where $\mu=-1$.
b) Find the acute angle between $P Q$ and l_{1}.
\square , 56.3°

Created by T. Madas

Question $10 \quad(* *+)$
Relative to a fixed origin O, the points A, B and C have respective position vectors

$$
\mathbf{a}=8 \mathbf{i}+\mathbf{j}, \quad \mathbf{b}=5 \mathbf{j}+8 \mathbf{k} \quad \text { and } \quad \mathbf{c}=14 \mathbf{i}+\mathbf{j}+15 \mathbf{k} .
$$

a) Find a vector equation of the straight line which passes through A and B.

The point M is the midpoint of $A B$.
b) Show that $C M$ is perpendicular to $A B$.
c) Determine the area of the triangle $A B C$.

Created by T. Madas

Question $11 \quad{ }^{(* *+)}$
With respect to a fixed origin O, the respective position vectors of the points A, B and C are

$$
\left(\begin{array}{r}
2 \\
9 \\
-1
\end{array}\right), \quad\left(\begin{array}{r}
12 \\
4 \\
7
\end{array}\right) \text { and }\left(\begin{array}{r}
10 \\
-3 \\
7
\end{array}\right) .
$$

a) Find the position vector of the midpoint of $A C$.

The point D is such so that $A B C D$ is a parallelogram.
b) Determine the position vector of D.
c) Calculate, correct to one decimal place, the angle $A B C$.
d) Hence, calculate the area of the triangle $A B C$.

$$
6 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}, 2 \mathbf{j}-\mathbf{k}, \quad \theta \approx 98.6^{\circ}, \quad \text { area } \approx 49.5
$$

Question 12 (**+)
$O A B C$ is a square.

The point M is the midpoint of $A B$ and the point N is the midpoint of $M C$.
The point D is such so that $\overrightarrow{A D}=\frac{3}{2} \overrightarrow{A B}$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{c}, for each of the vectors $\overrightarrow{B D}$, $\overrightarrow{M C}, \overrightarrow{M N}, \overrightarrow{O N}$ and $\overrightarrow{N D}$.
b) Deduce, showing your reasoning, that O, N and D are collinear.

$$
\overrightarrow{B D}=\frac{1}{2} \mathbf{c}, \overrightarrow{M C}=\frac{1}{2} \mathbf{c}-\mathbf{a}, \overrightarrow{M N}=\frac{1}{4} \mathbf{c}-\frac{1}{2} \mathbf{a}, \overrightarrow{O N}=\frac{1}{2} \mathbf{a}+\frac{3}{4} \mathbf{c}, \overrightarrow{N D}=\frac{1}{2} \mathbf{a}+\frac{3}{4} \mathbf{c}
$$

Question 13 (***)
Relative to a fixed origin O, the points P and Q have respective position vectors

$$
5 \mathbf{i}+2 \mathbf{k} \text { and } 3 \mathbf{i}+3 \mathbf{j}
$$

a) Determine a vector equation of the straight line l which passes through the points P and Q.

The straight line m has a vector equation

$$
\mathbf{r}=4 \mathbf{i}+8 \mathbf{j}-\mathbf{k}+\mu(5 \mathbf{i}-\mathbf{j}+3 \mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l and m intersect at some point A and find its position vector.
c) Find the size of the acute angle θ, formed by l and m.

$$
\mathbf{r}=5 \mathbf{i}+2 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}), \overrightarrow{O A}=-\mathbf{i}+9 \mathbf{j}-4 \mathbf{k}, \theta \approx 38.8^{\circ}
$$

Question 14 (***)
The points $A(2,10,7)$ and $B(0,15,12)$ are given.
a) Determine a vector equation of the straight line l_{1} that passes through the points A and B.

The vector equation of the straight line l_{2} is

$$
\mathbf{r}_{2}=4 \mathbf{i}+\mathbf{j}-6 \mathbf{k}+\mu(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect at some point P and find its coordinates.
c) Calculate the acute angle between l_{1} and l_{2}.
\square , $\mathbf{r}_{1}=2 \mathbf{i}+10 \mathbf{j}+7 \mathbf{k}+\lambda(-2 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}), \quad P(6,0,-3), 77.4^{\circ}$

Question 15 (***)
Relative to a fixed origin O the following position vectors are given.

$$
\overrightarrow{O A}=\left(\begin{array}{c}
1 \\
6 \\
11
\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right), \overrightarrow{O C}=\left(\begin{array}{l}
6 \\
1 \\
1
\end{array}\right) \text { and } \overrightarrow{O D}=\left(\begin{array}{l}
2 \\
8 \\
9
\end{array}\right)
$$

a) Show clearly that ...
i. $\ldots \overrightarrow{A D}$ is perpendicular to $\overrightarrow{B D}$.
ii. \ldots the points A, B and C are collinear and state the ratio $A B: B C$.
b) Determine the exact area of the triangle $A B D$.

Created by T. Madas

Question 16 (***)
Relative to a fixed origin O, the points A and B have respective position vectors

$$
4 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k} \text { and } 2 \mathbf{i}+3 \mathbf{k}
$$

a) Determine a vector equation of the straight line l_{1} which passes through the points A and B.

The straight line l_{2} passes through the point C with position vector $4 \mathbf{i}-6 \mathbf{j}$ and is parallel to the vector $3 \mathbf{j}-\mathbf{k}$.
b) Write down a vector equation of l_{2}.
c) Show that l_{1} and l_{2} intersect at the point A.
d) Find the acute angle between l_{1} and l_{2}.

$$
\mathbf{r}_{1}=2 \mathbf{i}+3 \mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}), \mathbf{r}_{2}=4 \mathbf{i}-6 \mathbf{k}+\mu(3 \mathbf{j}-\mathbf{k}), 47.3^{\circ}
$$

Created by T. Madas

Question 17 (***)
Relative to a fixed origin O, the straight lines L and M have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
4 \\
5 \\
0
\end{array}\right)+t\left(\begin{array}{r}
-2 \\
4 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{r}
-4 \\
-1 \\
3
\end{array}\right)+s\left(\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right)
$$

where t and s are scalar parameters.
a) Show that L and M intersect at some point A and find its coordinates.
b) Find the size of the acute angle θ, formed by L and M.

The points B and C lie on the L where $t=3$ and $t=6$, respectively.
c) Find the ratio $A B: B C$.

Question 18 (***)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}+\mathbf{j}+\lambda(-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=\mathbf{i}+5 \mathbf{j}+4 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Verify that both l_{1} and l_{2} pass through the point P, whose position vector is $5 \mathbf{j}+6 \mathbf{k}$.
b) Find the acute angle between l_{1} and l_{2}.

The point Q has position vector $-\mathbf{i}+\mathbf{j}+\mathbf{k}$.
c) Find a vector equation of the straight line l_{3} that passes through the point Q, so that all three straight lines intersect.

Question 19 (***)
With respect to a fixed origin O, the point A has position vector $8 \mathbf{i}-6 \mathbf{j}+5 \mathbf{k}$ and the point B has position vector $t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}$.
a) Show clearly that

$$
|A B|^{2}=6 t^{2}-24 t+125
$$

Let $f(t)=6 t^{2}-24 t+125$.
b) Find the value of t for which $f(t)$ takes a minimum value.
c) Hence determine the closest distance between A and B.

Created by T. Madas

Question 20 (***)
Relative to a fixed origin O, the points A and B have respective coordinates
$(2,-3,3)$ and $(5,1, b)$,
where b is a constant.

The point C is such so that $O A B C$ is a rectangle, where O is the origin.
a) Show clearly that $b=5$.
b) Determine the position vector of C.
c) Find the vector equation of the straight line l that passes through A and C.

Question 21 (***)
The following vectors are given

$$
\mathbf{a}=6 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \mathbf{b}=(4 p+1) \mathbf{i}+(p-2) \mathbf{j}+\mathbf{k},
$$

where p is a scalar constant.

Find the value of p if \ldots
a) $\ldots \mathbf{a}$ and \mathbf{b} are perpendicular.
b) $\ldots \mathbf{a}$ and \mathbf{b} are parallel.

Created by T. Madas

Question 22 (***)
$O A B C$ is a parallelogram and the point M is the midpoint of $A B$.

The point N lies on the diagonal $A C$ so that $A N: N C=1: 2$.
Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
a) Find simplified expressions, in terms of a and \mathbf{c}, for each of the vectors $\overrightarrow{A C}$, $\overrightarrow{A N}, \overrightarrow{O N}$ and $\overrightarrow{N M}$.
b) Deduce, showing your reasoning, that O, N and M are collinear.

$$
\overrightarrow{A C}=\mathbf{c}-\mathbf{a}, \overrightarrow{A N}=\frac{1}{3} \mathbf{c}-\frac{1}{3} \mathbf{a}, \overrightarrow{O N}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{c}, \overrightarrow{N M}=\frac{1}{3} \mathbf{a}+\frac{1}{6} \mathbf{c}
$$

Coseres)

Created by T. Madas

Question 23 (***)
The points with coordinates $A(1,4,3), B(2,2,1)$ and $C(5,4,0)$ are given.
a) Find a vector equation of the straight line l, that passes through A and C.

The point $D(x, y, z)$ is such so that $B D$ is perpendicular to l.
b) Show clearly that

$$
\mathbf{r}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}+\lambda(4 \mathbf{i}-3 \mathbf{k})
$$

Question 24 (***)
The straight line L_{1} passes through the points $A(3,0,3)$ and $B(5,5,2)$.

The straight line L_{2} has a vector equation given by

$$
\mathbf{r}=\left(\begin{array}{l}
5 \\
5 \\
2
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right)
$$

where μ is a scalar parameter.
a) Write down the coordinates of the point of intersection of L_{1} and L_{2}.
b) Find the size of the acute angle θ, between L_{1} and L_{2}.
c) Calculate the distance $A B$.

The point C lies on L_{1} so that the distance $A B$ is equal to the distance $A C$.
d) Determine the coordinates of C.
$P(5,5,2), \theta \approx 73.2^{\circ},|A B|=\sqrt{30}, \quad C(1,-5,4)$

Created by T. Madas

Question 25 (***)

A tunnel is to be dug through a mountain in order to link two cities.

Digging at one end of the tunnel begins at the point with coordinates $(-3,-3,9)$ and continues in the direction $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

The digging at the other end of the tunnel starts at the point with coordinates $(-19,-7,-3)$ and continues in the direction $6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.

Both sections are assumed to be straight lines.

The coordinates are measured relative to a fixed origin O, where one unit is 50 metres.
a) Show that the two sections of the tunnel will eventually meet at a point P, and find the coordinates of this point.
b) Find the total length of the tunnel.

Created by T. Madas

Question 26 (***)
Relative to a fixed origin O, the straight lines l_{1} and l_{2} have respective vector equations given by

$$
\mathbf{r}_{1}=\left(\begin{array}{r}
7 \\
2 \\
-3
\end{array}\right)+\lambda\left(\begin{array}{r}
8 \\
-1 \\
2
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{l}
1 \\
p \\
1
\end{array}\right)+\mu\left(\begin{array}{r}
9 \\
-2 \\
5
\end{array}\right)
$$

where λ and μ are scalar parameters and p is a scalar constant.

The point T is the point of intersection between l_{1} and l_{2}.

Find in any order ...
a) \ldots the size of acute angle between l_{1} and l_{2}.
b) \ldots the value of p.
c) \ldots the coordinates of T.

Question 27 (***)
With respect to a fixed origin O, the points $A(2,6,5)$ and $B(5,0,-4)$ are given.
a) Find a vector equation of the straight line L_{1}, which passes through A and B.

The straight line L_{2} has a vector equation

$$
\mathbf{r}_{2}=\left(\begin{array}{r}
-4 \\
4 \\
-5
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

where μ is a scalar parameter.
b) Show clearly that L_{1} and L_{2} intersect, and find the coordinates of their point of intersection.

The straight line L_{3} is in the direction $\left(\begin{array}{l}1 \\ k \\ 1\end{array}\right)$.
c) Given the acute angle between L_{2} and L_{3} is 60°, show clearly that $k= \pm \sqrt{6}$

$$
\mathbf{r}_{1}=2 \mathbf{i}+6 \mathbf{j}+5 \mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}), \quad(3,4,2)
$$

Question 28 (***)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}+3 \mathbf{j}+\lambda(2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}) \\
& \mathbf{r}_{2}=5 \mathbf{i}+3 \mathbf{j}+9 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}-\mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point A, and find its coordinates.
b) Show further that l_{1} and l_{2} intersect at right angles.

The point B lies on l_{1} where $\lambda=-1$ and the point C lies on l_{2} where $\mu=3$.
c) Find the exact area of the triangle $B A C$.
$A(6,5,8), \quad$ area $=9 \sqrt{14}$

Question 29 (***)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=4 \mathbf{i}+7 \mathbf{j}+4 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}) \\
& \mathbf{r}_{2}=8 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}+\mu(\mathbf{i}-\mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point A and find its coordinates.
b) Calculate the acute angle between l_{1} and l_{2}.

The point $B(8,3,4)$ lies on l_{1} and the point C lies on l_{2} where $\mu=4$.
c) Find the distance $A B$.
d) Show that the area of the triangle $A B C$ is $6 \sqrt{3}$ square units.
$A(6,5,4), 60^{\circ}, \quad A B \mid=2 \sqrt{2}$
\square

Created by T. Madas

Created by T. Madas

Question 30 (***)
The figure below shows a trapezium $O B C A$ where $O B$ is parallel to $A C$.

The point D lies on $B A$ so that $B D: D A=1: 2$.

Let $\overrightarrow{O A}=4 \mathbf{a}, \overrightarrow{O B}=3 \mathbf{b}$ and $\overrightarrow{A C}=6 \mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{O C}, \overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{O D}$.
b) Deduce, showing your reasoning, that O, D and C are collinear and state the ratio of $O D: D C$.
$\overrightarrow{O C}=4 \mathbf{a}+6 \mathbf{b}, \overrightarrow{A B}=-4 \mathbf{a}+3 \mathbf{b}, \overrightarrow{A D}=-\frac{8}{3} \mathbf{a}+2 \mathbf{b}, \overrightarrow{O D}=\frac{4}{3} \mathbf{a}+2 \mathbf{b}$,
$O D: D C=1: 2$

Created by T. Madas

Question 31 (***)
The points $A(5,1,3), B(3,1,5), C(5,3,5)$ and $D(4,0,3)$ are given.
a) Show that the triangle $A B C$ is equilateral and find its area.
b) Show further that

$$
\overrightarrow{A D}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}
$$

stating the exact values of the scalar constants λ and μ.
c) Find the size of the angle $B A D$.

Question 32 (***)
With respect to a fixed origin O, the straight lines l_{1} and l_{2} have respective vector equations given by

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
9 \\
0 \\
4
\end{array}\right)+t\left(\begin{array}{l}
3 \\
1 \\
p
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{l}
0 \\
4 \\
3
\end{array}\right)+s\left(\begin{array}{r}
1 \\
-2 \\
-1
\end{array}\right),
$$

where t and s are scalar parameters.
a) If l_{1} and l_{2} are skew find the value that p cannot take.
b) If l_{1} and l_{2} are not skew find the coordinates of their point of intersection.

Created by T. Madas

Question 33 (***)
The figure below shows a triangle $O A B$.

- The point P lies on $O A$ so that $O P: P A=4: 1$.
- The point Q lies on $A B$ so that $A Q: Q B=2 ; 3$
- The side $O B$ is extended to the point R so that $O B: B R=5: 3$.

Let $\overrightarrow{P A}=\mathbf{a}$ and $\overrightarrow{O B}=5 \mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{A Q}$ and $\overrightarrow{P Q}$.
b) Deduce, showing your reasoning, that P, Q and R are collinear and state the ratio of $P Q: Q R$.

$$
\overrightarrow{A B}=5 \mathbf{b}-5 \mathbf{a}, \overrightarrow{A Q}=2 \mathbf{b}-2 \mathbf{a}, \overrightarrow{P Q}=2 \mathbf{b}-\mathbf{a}, P Q: Q R=1: 3
$$

Question 34 (***)
The straight lines l_{1} and l_{2} have respective vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
4 \\
a
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{l}
5 \\
8 \\
b
\end{array}\right)+\mu\left(\begin{array}{l}
7 \\
1 \\
0
\end{array}\right)
$$

where λ and μ are scalar parameters while a and b are positive constants.

Given that l_{1} and l_{2} intersect at some point P, forming an angle of 60°, determine in any order...
a) ... the value of a.
b) \ldots the value of b.
c) \ldots the coordinates of P.

$$
a=5, b=10, P(12,9,10)
$$

Created by T. Madas

Question 35 (***)

The points with coordinates $A(8,0,12)$ and $B(9,-2,14)$ are given.
a) Find the vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} has equation

$$
\mathbf{r}=\mathbf{i}+9 \mathbf{j}+2 \mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} are perpendicular.
c) Show further that l_{1} and l_{2} intersect at some point P and state the coordinates of P.

The point $C(9,13,2)$ lies on l_{2} and the point D is the reflection of C about l_{1}.

Question 36 (***)
Relative to a fixed origin O, the point A has position vector $7 \mathbf{i}+4 \mathbf{j}$ and the point B has position vector $-3 \mathbf{j}+7 \mathbf{k}$. The straight line L_{1} passes through the points A and B.
a) Find a vector equation for L_{1}.

The straight line L_{2} has a vector equation

$$
\mathbf{r}=3 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})
$$

where μ is a scalar parameter.
b) Show that L_{1} and L_{2} intersect at some point C, and find its position vector.
c) Show further that L_{1} and L_{2} are perpendicular.

The point D has position vector $4 \mathbf{i}-\mathbf{k}$.
d) Verify that D lies on L_{2}.

The point E is the image of D after reflection about L_{1}.
e) Find the position vector of E.
\square $, \quad \mathbf{r}=7 \mathbf{i}+4 \mathbf{j}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k}), \overrightarrow{O C}=5 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}, \overrightarrow{O E}=6 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$

Created by T. Madas

Created by T. Madas

Question 37 (***+)
Relative to a fixed origin O, the points A and C have respective coordinates

$$
(7,2,3) \text { and }(3,-2,1)
$$

a) Find the vector $\overrightarrow{A C}$.
b) State the coordinates of the midpoint of $A C$.

The straight line l has vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
1 \\
1 \\
-4
\end{array}\right)
$$

where λ is a scalar parameter.
c) Show that $\overrightarrow{A C}$ is perpendicular to l.

The point B lies on l, where $\lambda=1$.
d) Show further that the triangle $A B C$ is isosceles but not equilateral.

The point D is such, so that $A B C D$ is a rhombus.
e) Show that the area of this rhombus is $18 \sqrt{2}$ square units.

Created by T. Madas

Question 38 (***+)
Relative to a fixed origin O, the points A and B have respective position vectors

$$
3 \mathbf{i}-\mathbf{j}+2 \mathbf{k} \text { and }-\mathbf{i}+\mathbf{j}+9 \mathbf{k}
$$

a) Show that $\overrightarrow{O A}$ and $\overrightarrow{A B}$ are perpendicular.
b) Find a vector equation of the straight line l, that passes through A and B.

The point C lies on l, so that the areas of the triangles $O A B$ and $O B C$ are equal.
c) Determine the position vector of C.
\square , $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+\lambda(-4 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}), \quad \overrightarrow{O C}=-5 \mathbf{i}+3 \mathbf{j}+16 \mathbf{k}$

Created by T. Madas

Question 39 (***+)

Relative to a fixed origin O, the points A, B and C have respective position vectors

$$
\mathbf{i}+10 \mathbf{k}, \quad 4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k} \quad \text { and } \quad 8 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}
$$

a) Show that A, B and C are collinear, and find the ratio $A B: B C$.
b) Find a vector equation for the straight line l that passes through A, B and C.
c) Show that $O B$ is perpendicular to l.
d) Calculate the area of the triangle $O A C$.

$$
A B: B C=3: 4, \quad \mathbf{r}=\mathbf{i}+10 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k}), \quad \text { area }=\frac{7}{2} \sqrt{222} \approx 52.15
$$

Created by T. Madas

Question 40 (***+)
The points A and B have coordinates $(11,15,4)$ and $(13,23,7)$, respectively.
a) Find a vector equation for the straight line l that passes through A and B.

The point P lies on l, so that $O P$ is perpendicular to l, where O is the origin.
b) Show, without verification, that the coordinates of P are $(7,-1,-2)$.
c) Calculate the area of the triangle $O A B$.
\square , $\mathbf{r}=11 \mathbf{i}+15 \mathbf{j}+4 \mathbf{k}+\lambda(2 \mathbf{i}+8 \mathbf{j}+3 \mathbf{k})$, \square
area $=\frac{3}{2} \sqrt{462} \approx 32.24$

Created by T. Madas

Question 41 (***+)

Relative to a fixed origin O, the position vectors of the points A, B, C and D are $3 \mathbf{i}, \quad 2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}, \quad 4 \mathbf{i}+\mathbf{k}$ and $4 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$, respectively.
a) Show that $\overrightarrow{A B}$ and $\overrightarrow{B D}$ are perpendicular.
b) Find the exact value of the cosine of the angle $A B C$.
c) Determine the exact value of the area of triangle $A B C$.

$$
\cos (\angle A B C)=\frac{8}{9}, \quad \text { area }=\frac{1}{2} \sqrt{17}
$$

Question $42 \quad(* * *+)$
Relative to a fixed origin O, the points A, B and C have respective coordinates $(5,3,1),(2,2,0)$ and $(3,4,-1)$.
a) Find the exact value of the cosine of the angle $B A C$.
b) Show that the exact area of the triangle $A B C$ is $\frac{5}{2} \sqrt{2}$.

$$
\cos (\measuredangle B A C)=\frac{7}{33} \sqrt{11}
$$

Created by T. Madas

Question 43 (***+)
The straight line l passes through the points $P(-5,9,-9)$ and $Q(a, b, 11)$, where a and b are scalar constants.

The vector equation of l is given by

$$
\mathbf{r}=\left(\begin{array}{l}
1 \\
7 \\
c
\end{array}\right)+\lambda\left(\begin{array}{r}
d \\
-1 \\
2
\end{array}\right)
$$

where c and d are scalar constants and λ is a scalar parameter.
a) Determine in any order the value of each the constants a, b, c and d.

The point T with x coordinate 4 lies on l.
b) Show clearly that
i. $\ldots O T$ is perpendicular to l, where O is the origin.
ii. $\ldots P T: T Q=3: 7$.

Created by T. Madas

Question $44 \quad(* * *+)$

The figure above shows a trapezium $A B C D$ where $A D$ is parallel to $B C$.

The following information is given for this trapezium.

$$
\overrightarrow{B D}=5 \mathbf{a}+\mathbf{b}, \quad \overrightarrow{D C}=\mathbf{a}-10 \mathbf{b} \quad \text { and } \quad \overrightarrow{A D}=4 \mathbf{a}+k \mathbf{b}
$$

where k is an integer.
a) Find the value of k.
b) Find a simplified expression for $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.

$$
k=-6, \overrightarrow{A B}=-\mathbf{a}-7 \mathbf{b}
$$

\square

Question 45 (***+)
The straight lines L_{1} and L_{2} have respective vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{r}
4 \\
-3 \\
3
\end{array}\right)+t\left(\begin{array}{r}
5 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{r}
9 \\
8 \\
-2
\end{array}\right)+s\left(\begin{array}{r}
-5 \\
-5 \\
2
\end{array}\right)
$$

where t and s are scalar parameters.
a) Show that L_{1} and L_{2} intersect at some point P, and find its coordinates.
b) Find the exact value of the cosine of the acute angle θ, between L_{1} and L_{2}.

The point $A(9,-4,4)$ lies on L_{1} and the point $B(4,3,0)$ lies on L_{2}.
c) Find the distance of $A P$ and the distance of $B P$.
d) Show the area of the triangle $A P B$ is $9 \sqrt{14}$.

$$
P(-1,-2,2), \cos \theta=\frac{\sqrt{2}}{3}, \quad A P|=6 \sqrt{3},|B P|=3 \sqrt{6}
$$

Question 46 (***+)
With respect to a fixed origin O, the straight line l has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
a \\
b \\
10
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

where a and b are scalar constants and λ is a scalar parameter.
a) If l passes though the point $P(7,3,6)$, find the value of a and the value of b.

The point Q lies on l so that $O Q$ is perpendicular to l.
b) Find the coordinates of Q.

The point T lies on l where $\lambda=-7$.
c) Find the ratio $P Q: Q T$.
\square $, a=7, \quad b=5, Q(7,0,0), P Q: Q T=3: 2$

Created by T. Madas

Question 47 (***+)
Relative to a fixed origin O, the straight lines l and m have respective vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
6 \\
1 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
0 \\
a
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{r}
4 \\
-3 \\
7
\end{array}\right)+s\left(\begin{array}{r}
2 \\
2 \\
-5
\end{array}\right) \text {, }
$$

where t and s are scalar parameters, and a is a constant.
l and m intersect at the point $P(8,1,-3)$.
a) Find the value of a.
b) Show that the vector $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right)$ is perpendicular to both l and m.

c) Determine a vector equation of the straight line n, such that all three straight lines intersect, with the n being perpendicular to both l and m.

Question 48 (***+)
With respect to a fixed origin O, the straight line l has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
24 \\
6 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

where λ is a scalar parameter.
a) If the point $D(4, a, b)$ lies on l, find the value of a and the value of b.

The point P lies on l where $\lambda=p$, and the point C has coordinates $(18,6,36)$.
b) Show that $\overrightarrow{C P}=\left(\begin{array}{c}p+6 \\ p \\ 2 p-36\end{array}\right)$.
c) Given further that $\overrightarrow{C P}$ is perpendicular to l, find the coordinates of P.
\square
$a=-14, b=-40, P(35,17,22)$

Question 49 (***+)
The straight line l has the following vector equation

$$
\mathbf{r}=-2 \mathbf{i}-12 \mathbf{j}-9 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})
$$

where λ is a scalar parameter.

The point $P(a, b, 3)$ lies on l.
a) Find the value of each of the scalar constants a and b.

The point O represents a fixed origin.
The point Q lies on l, so that $O Q$ is perpendicular to l.
b) Show that the coordinates of Q are $(2,0,-1)$.

You may not verify this fact by using the coordinates of Q.
c) Find the exact area of the triangle $O P Q$.

Question 50 (***+)
The straight line L has the vector equation

$$
\mathbf{r}=\left(\begin{array}{r}
3 \\
-4 \\
6
\end{array}\right)+\lambda\left(\begin{array}{r}
1 \\
4 \\
-2
\end{array}\right)
$$

where λ is a scalar parameter.

The straight line M passes through the points with coordinates $A(10,6,6)$ and $B(\alpha, \beta, 3)$, where α and β are scalar constants.
L and M intersect at the point $C(6,8,0)$.
a) Find the coordinates of B.
b) Calculate the acute angle between L and M.

Question 51 (***+)
The straight line l_{1} passes through the points $A(2,8,1)$ and $B(2,4,3)$.
a) Find a vector equation for l_{1}, in terms of a scalar parameter λ.

The straight line l_{2} has a vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
5 \\
2 \\
a
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
b \\
-1
\end{array}\right)
$$

where a and b are scalar constants, and μ is a scalar parameter.

The point $C(2,-4, c)$, where c is a scalar constant, is the point of intersection between l_{1} and l_{2}.
b) Find the value of each of the scalar constants a, b and c.
c) Determine the ratio $A B: B C$.

$$
\mathbf{r}_{1}=2 \mathbf{i}+8 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{j}-\mathbf{k}), \quad a=4, \quad b=2, \quad c=7, \quad A B: B C=1: 2
$$

Created by T. Madas

Question 52 (***+)
The straight lines L_{1} and L_{2} have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{c}
12 \\
7 \\
1
\end{array}\right)+\lambda\left(\begin{array}{r}
3 \\
-3 \\
-1
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{c}
0 \\
1 \\
21
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right)
$$

where λ and μ are scalar parameters.
a) Show that L_{1} and L_{2} intersect at the point P, and find its coordinates.
b) Show further that L_{1} and L_{2} are perpendicular to each other.

The point $A(0,1,21)$ lies on L_{2} and the point B lies on L_{1} so that $|\overrightarrow{A P}|=|\overrightarrow{P B}|$.
c) Find the distance $A B$.
d) Hence state the shortest distance of P from the line through A and B.

Question 53 (***+)
The straight lines l_{1} and l_{2} have the following Cartesian equations

$$
\begin{aligned}
& l_{1}: \quad x-a=\frac{y+4}{-4}=\frac{z}{-2} \\
& l_{2}: \quad \frac{x-a}{2}=\frac{y+1}{-5}=\frac{z-1}{-3}
\end{aligned}
$$

where a is a scalar constant.
a) Show that l_{1} and l_{2} intersect at for all values of a.

The intersection point of l_{1} and l_{2} has coordinates (b, b, b), where b is a scalar constant.
b) Find the value of a and the value of b.
c) Calculate the acute angle formed by l_{1} and l_{2}.
\square , $a=6, b=4, \theta \approx 7.6^{\circ}$

Created by T. Madas

Created by T. Madas

Question 54 (***+)
$O A B$ is a triangle with the point P being the midpoint of $O B$ and the point Q being the midpoint of $A B$.

The point R is such so that $\overrightarrow{A R}=\frac{2}{3} \overrightarrow{A P}$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
a) Find simplified expressions, in terms of \mathbf{a} and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{A P}, \overrightarrow{A Q}$ and $\overrightarrow{A R}$.
b) By finding simplified expressions, in terms \mathbf{a} and \mathbf{b}, for two more suitable vectors, show that the points O, R and Q are collinear.

Question 55 (***+)

The points $A(1,1,2), B(2,1,5), C(4,0,1)$ and D form the parallelogram $A B C D$, where the above coordinates are measured relative to a fixed origin.
a) Find the coordinates of D.

The points E, B and D are collinear, so that B is the midpoint of $E D$.
b) Determine the coordinates of E.

The point F is such so that $A B E F$ is also a parallelogram.
c) Find the coordinates of F.
d) Show that B is the midpoint of $F C$.
e) Prove that $A D B F$ is another parallelogram.

$$
\square, D(3,0,-2), E(1,2,12), F(0,2,9)
$$

Question 56 (***+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}+\mathbf{j}+8 \mathbf{k}+\lambda(\mathbf{j}-2 \mathbf{k}) \\
& \mathbf{r}_{2}=\mathbf{i}+\mu(a \mathbf{i}+b \mathbf{j}+2 \mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters, and a and b are scalar constants.
l_{1} and l_{2} intersect at right angles at the point P.
a) Find the value of a and the value of b.
b) Determine the coordinates of P.

The straight line l_{3} passes through the point $Q(1,-1,-1)$.
c) Find a vector equation for l_{3}, given that all three lines intersect at the same point.

Created by T. Madas

Question 57 (***+)
The figure below shows the points O, C, A, D, B and E, which are related as follows.

- O, B and E are collinear and $O B: B E=1: 2$
- O, C and A are collinear and $O C: C A=1: 2$
- B, D and A are collinear and $B D: D A=1: 3$

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
a) Find simplified expressions, in terms of a and \mathbf{b}, for each of the vectors $\overrightarrow{A B}$, $\overrightarrow{D B}, \overrightarrow{C D}$ and $\overrightarrow{D E}$.
b) Show that the points C, D and E are collinear, and find the ratio $C D: D E$.
c) Show further that $B C$ is parallel to $E A$, and find the ratio $B C: E A$.

$$
\overrightarrow{A B}=\mathbf{b}-\mathbf{a}, \overrightarrow{D B}=\frac{1}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}, \overrightarrow{C D}=-\frac{1}{12} \mathbf{a}+\frac{3}{4} \mathbf{b}, \overrightarrow{D E}=-\frac{1}{4} \mathbf{a}+\frac{9}{4} \mathbf{b} \text {, }
$$

$$
C D: D E=1: 3, B C: E A=1: 3
$$

Created by T. Madas

Question 58 (***+)

With respect to a fixed origin O, the following points are given

$$
A(2,2,5), B(12,7,0), C(0,0,1) \text { and } D(9, k, 4)
$$

where k is a scalar constant.
a) Find the vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} passes through C and D, and intersects l_{1} at the point P.
b) Determine in any order.
i. ... the coordinates of P.
ii. ... the value of k.
iii. \ldots the acute angle between l_{1} and l_{2}.

$$
\square, \mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k}), P(6,4,3), k=6,40.2^{\circ}
$$

Created by T. Madas

Question 59 (****)

Two submarines S_{1} and S_{2}, are travelling through the ocean.

They both appeared on the radar screen of a tracking station at the same time. The distances are measured in hundreds of metres and the time t, in seconds, is measured from the instant they were both observed on the radar screen of the tracking station.

The coordinates of S_{1} and S_{2}, relative to a fixed origin O, are given by

$$
\begin{aligned}
& S_{1}: \mathbf{r}_{1}=(2 t-4) \mathbf{i}+(t-15) \mathbf{j}+(t+5) \mathbf{k} \\
& S_{2}: \mathbf{r}_{2}=10 \mathbf{i}+(-2 t+6) \mathbf{j}+(2 t-2) \mathbf{k}
\end{aligned}
$$

a) Show that S_{1} and S_{2} are travelling in perpendicular directions to each other.

Suppose that S_{1} and S_{2} continue to travel according to the above vector equations.
b) Show further that S_{1} and S_{2}, will eventually collide at some point P, and further determine the coordinates of P.
c) Calculate, to the nearest metre, the distance between S_{1} and S_{2}, when they were first observed by the tracking station.

$$
P(10,-8,12), \text { distance }=700 \sqrt{14} \approx 2619 \mathrm{~m}
$$

Created by T. Madas

Question 60 (${ }^{* * *+) ~}$
The straight line l passes through the points with coordinates

$$
A(-1,-4,8) \quad \text { and } \quad B(1,-2,5) .
$$

a) Find a vector equation of l.

The origin is denoted by O.

The point P lies on l, so that $O P$ is perpendicular to l.
b) Determine the coordinates of P.

The point Q is the reflection of O, about l.
c) State the coordinates of Q.

Created by T. Madas

Question 61 (${ }^{* * *+) ~}$
The points A and B have coordinates $(4,-7,5)$ and $(-2,8,17)$, respectively.
a) Find the equation of the straight line l, which passes through A and B.

The point C has coordinates $(6,6,1)$.
b) Find the shortest distance from C to l.

$$
\mathbf{r}=4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k}+\lambda(-2 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}), \text { shortest distance }=12
$$

Created by T. Madas

Question 62 (***+)
Relative to a fixed origin O, the points A, B and C have respective coordinates $(-2,5,13),(1,1,1)$ and $(3,5,5)$.
a) Determine the size of the angle $A B C$.

The point D has coordinates $(9,-8,6)$.
b) Show that $B D$ is perpendicular to both $A B$ and $B C$.
c) Find the distance $B D$.
d) Calculate the volume of the right triangular prism with base the triangle $A B C$ and height $B D$.

Question 63 (***+)
The points with coordinates $A(3,0,3)$ and $B(4,-1,5)$ are given.
a) Find a vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} has equation

$$
\mathbf{r}=5 \mathbf{i}+10 \mathbf{j}+4 \mathbf{k}+\mu(\mathbf{i}+3 \mathbf{j}+\mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} are perpendicular.
c) Show further that l_{1} and l_{2} intersect at some point P and find its coordinates.

The point E is on the l_{1}.

A circle with centre at E is drawn so that it cuts l_{2} at the points C and D.
d) Given that the coordinates of C are $(0,-5,-1)$, find the coordinates of D.

Created by T. Madas

Question 64 (****)

The figure above shows a solid, modelling a house with a standard slanted roof, where all the distances are measured in metres. With respect to a fixed origin, the coordinates of some of the vertices of the solid are marked in the diagram.
a) Find a vector equation of $A E$.
b) Show that $A E$ is perpendicular to $A C$.
c) Find the cosine of the angle $A B C$.

The straight line $B D$ is parallel to $A E$. The length of $B D$ is 10 metres.
d) Determine the coordinates of D.
\square $\mathbf{r}=10 \mathbf{i}+20 \mathbf{j}+6 \mathbf{k}+\lambda(3 \mathbf{i}-4 \mathbf{j})$,

$$
\cos (\angle A B C)=\frac{1}{3}, D(15,5,11)
$$

Question 65 (****)
Relative to a fixed origin O the following position vectors are given.

$$
\overrightarrow{O A}=\left(\begin{array}{l}
0 \\
8 \\
3
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{c}
1 \\
13 \\
1
\end{array}\right) .
$$

a) Find a vector equation for the line straight l_{1} which passes through A and B.

The straight line l_{2} has vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
7 \\
0 \\
9
\end{array}\right)+\mu\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} do not intersect.
c) Find the position vector of C, given it lies on l_{2} and $\measuredangle A B C=90^{\circ}$.
$\square, \mathbf{r}=8 \mathbf{j}+3 \mathbf{k}+\lambda(\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}), C(-3,15,4)$

Created by T. Madas

Question 66 (****)
The straight line L_{1} passes through the points A and B, whose respective position vectors relative to a fixed origin O are

$$
\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right) \text { and }\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right) \text {. }
$$

a) Find a vector equation for L_{1}.

The angle $A B C$ is denoted by θ, where C is the point with position vector $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$.
b) Show clearly that $\cos \theta=\frac{1}{3}$.

The straight line L_{2} passes through C and is parallel to L_{1}.

The points P and Q both lie on L_{2} so that $|A B|=|C P|=|C Q|$.
c) Determine the position vector of P and the position vector of Q, given that P is furthest away from O.
d) Show further that the area of the quadrilateral $A B P Q$ is $9 \sqrt{2}$.

$$
\mathbf{r}_{1}=\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+\mathbf{k}), \overrightarrow{O P}=4 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, \overrightarrow{O Q}=2 \mathbf{i}+\mathbf{j}
$$

\square

Created by T. Madas

Question 67 (****)
The points A and B have position vectors $9 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$ and $9 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$, respectively.
a) Find a vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} has the vector equation

$$
\mathbf{r}_{2}=6 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect and find the position vector of their point of intersection.
c) Find the acute angle between l_{1} and l_{2}.

The point C lies on l_{2} in such a position so that is closest to A.
d) Show that the position vector of C is given by

$$
\mathbf{c}=4 \mathbf{i}+\mathbf{j}-2 \mathbf{k}
$$

$$
\mathbf{r}_{1}=9 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{j}-4 \mathbf{k}), 9 \mathbf{i}+6 \mathbf{j}-7 \mathbf{k}, 45.6^{\circ}
$$

Created by T. Madas

Question 68 (****)
With respect to a fixed origin O, the points with coordinates $A(2,3,5), B(6,-1,5)$, $C(9,2,2)$ and $D(5,6,2)$ are given.

Prove that $A B C D$ is a rectangle and show that its area is $12 \sqrt{6}$ square units.

The diagonals of the rectangle intersect at the point E.
a) Find the coordinates of E.
b) Find the size of the angle $B E A$.
c) State the exact area of the triangle $B E A$.

Created by T. Madas

Question 69 (****)
Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O C}=2 \mathbf{a}$ and $\overrightarrow{O D}=2 \mathbf{a}+\mathbf{b}$.

If $\overrightarrow{O E}=\frac{1}{3} \overrightarrow{O D}$ prove that the point E lies on the straight line $A B$.

Question 70 (****)
The point A has position vector $-5 \mathbf{j}+7 \mathbf{k}$.
a) Find a vector equation of the straight line l that passes through A and is parallel to the vector $\mathbf{i}+3 \mathbf{j}-\mathbf{k}$.

The point P lies on l so that $O P$ is perpendicular to l, where O is the origin.
b) Determine the coordinates of P.
c) Show that the point $B(5,10,2)$ lies on l.

The point C is on l so that $|O B|=|O C|$.
d) Find the coordinates of C.

$$
\mathbf{r}=-5 \mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}-\mathbf{k}), P(2,1,5), C(-1,-8,8)
$$

\square

Created by T. Madas

Question 71 (****)

Relative to a fixed origin O, the straight lines l_{1} and l_{2} have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
2 \\
a \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
3 \\
-2 \\
-2
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{c}
b \\
2 \\
14
\end{array}\right)+\mu\left(\begin{array}{r}
7 \\
-4 \\
6
\end{array}\right)
$$

where λ and μ are scalar parameters, and a and b are constants.
l_{1} and l_{2} intersect at the point P, whose z coordinate is 8 .
a) Find the coordinates of the point P.
b) Show that the value of both a and b, is zero.

The point A, whose z coordinate is zero, lies on $l_{1} . \Rightarrow$

The point C lies on l_{2}, so that $A C$ is perpendicular to l_{1}
c) Determine the coordinates of C.

Created by T. Madas

Question 72 (****)
The straight line l passes through the points A and C whose respective coordinates are $(-2,7,9)$ and $(8,-3,-1)$.
a) Find a vector equation for l.

The point $E(2, p, q)$ lies on l and the point B has coordinates $(-4,1,1)$.
b) Determine the value of p and the value of q.
c) Show that $B E$ is perpendicular to l.

The point D is such, so that $A B C D$ is a kite with $\measuredangle A B C=\measuredangle A D C$.

Determine
d) \ldots the coordinates of D.
e) \ldots the area of the kite $A B C D$.
\square $, \overline{\mathbf{r}}=-2 \mathbf{i}+7 \mathbf{j}+9 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}-\mathbf{k}), \quad p=3$ and $q=5, D(8,5,9), 20 \sqrt{42}$

Created by T. Madas

Question 73 (****)
The straight line l passes through the points with coordinates $(4,-1,1)$ and $(-1,4,6)$.
a) Determine a vector equation of l.

The points C and D have coordinates $(4,-2,-3)$ and $(p, q,-1)$, respectively.

The midpoint of $C D$ is the point M, where M lies on l.

Find in any order ...
b) \ldots the coordinates of M.
c) ... the value of p and the value of q.
d) \ldots the size of the acute angle θ, between $C D$ and l.

Q4, $\mathbf{r}=4 \mathbf{i}-\mathbf{j}+\mathbf{k}+\lambda(-\mathbf{i}+\mathbf{j}+\mathbf{k}), M(7,-4,-2), p=10, q=-6, \theta \approx 51.9^{\circ}$

Created by T. Madas

Question 74 (****)
Relative to a fixed origin O, the straight lines L and M have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{c}
4 \\
10 \\
1
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
1 \\
-2
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{r}
0 \\
14 \\
-7
\end{array}\right)+\mu\left(\begin{array}{r}
2 \\
-2 \\
4
\end{array}\right),
$$

where λ and μ are scalar parameters.
a) Show that L and M represent the same straight line and find a linear relationship between λ and μ, giving the answer in the form $\lambda=f(\mu)$.

The points A, B and C lie on L, where $\lambda=3, \lambda=5$ and $\lambda=8$ respectively.
b) State the ratio $A B: B C$.

Created by T. Madas

Question 75 (****)

Relative to a fixed origin O, the points A and B have respective position vectors

$$
\mathbf{a}=2 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k} \quad \text { and } \quad \mathbf{b}=4 \mathbf{i}+4 \mathbf{j}-4 \mathbf{k} .
$$

a) Find the position vector of the point C, given that $\mathbf{c}=\mathbf{a}+\mathbf{b}$.
b) Show that $O A C B$ is a rectangle, and calculate its area.

The diagonals of the rectangle $O A C B, O C$ and $A B$, meet at the point D.
c) State the position vector of D.
d) Calculate the size of the angle $B D C$.

$$
\mathbf{c}=6 \mathbf{i}+8 \mathbf{j}+2 \mathbf{k}, \quad \text { area }=8 \sqrt{42}, \quad \mathbf{d}=3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}, 94.4^{\circ}
$$

Created by T. Madas

Question 76 (****)
With respect to a fixed origin O, the points A and B have coordinates $(5,-1,-1)$ and $(1,-5,7)$, respectively.
a) Find a vector equation of the straight line l which passes through A and B.

The point C has coordinates $(4,-2,1)$.
b) Show that C lies on l.
c) Show further that $\overrightarrow{O C}$ is perpendicular to l.

The point D lie on l so that $|\overrightarrow{C D}|=2|\overrightarrow{C A}|$.
d) Find the two possible sets for the coordinates of D.
$\square, \mathbf{r}=5 \mathbf{i}-\mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-2 \mathbf{k}), D(2,-4,5)$ or $D(6,0,-3)$

Created by T. Madas

Question 77 (****)
$O A B C$ is a rectangle, with $A(2,2,0), B(3, a, b)$, where a and b are positive constants and O is a fixed origin.
a) Given that the area of $O A B C$ is 12 square units determine the value of a and the value of b.
b) Find a vector equation of the straight line l that passes through A and C.
$a=1, b=4, \quad \mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+\lambda(-\mathbf{i}-3 \mathbf{j}+4 \mathbf{k})$

Question 78 (****)
With respect to a fixed origin O, the points A and B have coordinates $(1,5,4)$ and $(3,4,5)$, respectively.
a) Find a vector equation of the straight line l that passes through A and B.

The point C lie on l so that $\overrightarrow{A C}=\frac{1}{2} \overrightarrow{C B}$.
b) Determine the coordinates of C.
c) Calculate the size of the angle $O A C$.

$$
\mathbf{r}=\mathbf{i}+5 \mathbf{j}+4 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+\mathbf{k}), C\left(\frac{11}{5}, \frac{22}{5}, \frac{19}{5}\right), 93.6^{\circ}
$$

Question 79 (****)
Relative to a fixed origin O, the points A and B have position vectors $8 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}$ and $8 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}$, respectively.
a) Find a vector equation of the straight line l_{1} which passes through A and B.

The straight line l_{2} has the vector equation

$$
\mathbf{r}_{2}=5 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k}),
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect and find the position vector of their point of intersection.
c) Calculate the acute angle between l_{1} and l_{2}.

The point C lies on l_{2} so that C is as close as possible to A.
d) Find the position vector of C.

$$
\mathbf{r}_{1}=8 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{j}-4 \mathbf{k}), 8 \mathbf{i}+8 \mathbf{j}-5 \mathbf{k}, 45.6^{\circ}, \quad \overrightarrow{O C}=3 \mathbf{i}+3 \mathbf{j}
$$

Question 80 (****)
Relative to a fixed origin O, the position vectors of three points A, B and C are

$$
\overrightarrow{O A}=\mathbf{i}-2 \mathbf{k}, \quad \overrightarrow{A B}=2 \mathbf{i}+10 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \overrightarrow{B C}=6 \mathbf{i}-12 \mathbf{j}
$$

a) Show that $\overrightarrow{A C}$ is perpendicular to $\overrightarrow{A B}$.
b) Show further that the area of the triangle $A B C$ is $18 \sqrt{6}$.
c) Hence, or otherwise, determine the shortest distance of A from the straight line through B and C.

Question 81 (****)
The straight line l_{1} passes through the points $A(6,2,0)$ and $B(5,0,5)$.
a) Find a vector equation of l_{1}.

The straight line l_{2} has vector equation
where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect at some point C, and find its coordinates.

The point D lies on l_{2} so that $D B C=90^{\circ}$.
c) Determine the coordinates of D.

\square , $\mathbf{r}=6 \mathbf{i}+2 \mathbf{j}+\lambda(-5 \mathbf{i}+2 \mathbf{k})$ \square $C(8,6,-10), D(-22,6,2)$

Question 82 (****)
The straight lines L_{1} and L_{2} have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{c}
2 \\
10 \\
14
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{l}
a \\
8 \\
4
\end{array}\right)+\mu\left(\begin{array}{l}
4 \\
b \\
1
\end{array}\right)
$$

where λ and μ are scalar parameters, and a and b are scalar constants.
L_{1} and L_{2} intersect at the point P whose z coordinate is 6 , and the acute angle between L_{1} and L_{2}, is θ.
a) Determine the coordinates of P.
b) Find the value of a and the value of b.
c) Show that $\cos \theta=\frac{5}{18} \sqrt{3}$.

The point Q lies on L_{1} where $\lambda=1$.

The point T lies on L_{2} so that $\overrightarrow{Q T}$ is perpendicular to L_{2}.
d) Determine the exact distance $P T$.
$, P(-2,6,6), \quad a=-10, \quad b=-1,|P T|=\frac{25}{6} \sqrt{2}$

Created by T. Madas

Question 83 (****)
The points A and B have coordinates $(3,-1,2)$ and $(2,0,2)$, respectively.
a) Find a vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} has equation

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}+\mu(\mathbf{i}-\mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect at some point P and find its coordinates.
c) Verify that the point $C(9,1,-6)$ lies on l_{2}.

The point D lies on l_{1} so that $C D$ is perpendicular to l_{1}.
d) Determine the coordinates of D.
e) Calculate the area of the triangle $P D C$.
f) Deduce the acute angle between l_{1} and l_{2}.

$$
\mathbf{r}_{1}=2 \mathbf{i}+2 \mathbf{k}+\lambda(-\mathbf{i}+\mathbf{j}), P(1,1,2), D(5,-3,2), \quad \text { area }=16 \sqrt{3}, 60^{\circ}
$$

Created by T. Madas

Question 84 (****)
Relative to a fixed origin O, the points A and B have respective position vectors

$$
2 \mathbf{i}+10 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad 2 \mathbf{i}+\mathbf{j}+2 \mathbf{k} .
$$

The angle $A O B$ is θ.
a) Show that $\sin \theta=\frac{\sqrt{6}}{3}$.
b) Calculate the exact area of the triangle $A O B$.
c) Show further that the shortest distance of ...
i...A from the straight line $O B$ is $6 \sqrt{2}$,
ii. ... the straight line $A B$ from O is $2 \sqrt{2}$.
\square , area $=9 \sqrt{2}$

Created by T. Madas

Question 85 (****)

The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{k}) \\
& \mathbf{r}_{2}=2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}+\mu(\mathbf{i}+4 \mathbf{j}-\mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.

The point A is the intersection of l_{1} and l_{2}.

The point $B(b, 1,-1)$, where b is a scalar constant, lies on l_{1}.

The point $D(4, d, 3)$, where d is a scalar constant, lies on l_{2}.
a) Find the value of b and the value of d
b) Calculate the cosine of θ, where θ is the acute angle formed by l_{1} and l_{2}.

The point C is such so that $A B C D$ is a parallelogram.
c) Determine the coordinates of C.
d) Show that the area of the parallelogram $A B C D$ is $48 \sqrt{2}$ square units.

Created by T. Madas

Question 86 (****)

The straight line L_{1} passes through the point $A(5,-2,1)$ and is parallel to the vector

a) Find a vector equation for L_{1}, in terms of a scalar parameter λ.

The straight line L_{2} has a vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
0 \\
4 \\
3
\end{array}\right)+\mu\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right),
$$

where μ is scalar parameter.
b) Show that the lines intersect at some point P, and find its coordinates

The point B lies on L_{2} where $\mu=-2$.

The point C lies on a straight line which is parallel to L_{1} and passes through B.

The points A, B, C and P are vertices of a parallelogram.
c) Show that one of the possible positions for C is the origin O and find the coordinates of the other possible position for C.

Question 87 (****)
The straight line L has vector equation

$$
\mathbf{r}=\mathbf{i}-2 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

where λ is a scalar parameter.

The point A has position vector $\mathbf{i}+\mathbf{j}-\mathbf{k}$.

The point P lies on L so that $A P$ is perpendicular to L.
a) Find the position vector of P.

The point B is the reflection of A about L.
b) Determine the position vector of

$$
B
$$

\square
\square $\overrightarrow{O B}=7 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$

Question 88 (****)
All the position vectors and coordinates in this question are measured from a fixed origin O.

The point P lies on the straight line l with vector equation

$$
\mathbf{r}=\mathbf{i}-3 \mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}),
$$

where λ is a scalar parameter.

The point Q has position vector $3 \mathbf{i}+9 \mathbf{j}+6 \mathbf{k}$.
a) Determine, in terms of λ, an expression for the vector $\overrightarrow{Q P}$.
b) By considering $|\overrightarrow{Q P}|^{2}$, find the value of λ which makes $|\overrightarrow{Q P}|$ minimum.
c) Hence, or otherwise, find the shortest of distance of Q from l.
, $\overrightarrow{Q P}=(2 \lambda-2) \mathbf{i}+(3 \lambda-9) \mathbf{j}+(5 \lambda-9) \mathbf{k}, \lambda=2, \sqrt{14}$

Created by T. Madas

Question 89 (****)

The points $A(-1,4), B(2,3)$ and $C(8,1)$ lie on the $x-y$ plane, where O is the origin.
a) Show that A, B and C are collinear.

The point D lies on $B C$ so that $\overrightarrow{B D}: \overrightarrow{B C}=2: 3$.
b) Find the coordinates of D.

The straight line $O B$ is extended to the point P, so that $\overrightarrow{A P}$ is parallel to $\overrightarrow{O C}$.
c) Determine the coordinates of P.

Created by T. Madas

Question 90 (****)
Relative to a fixed origin O, the points A, B and C have respective position vectors

$$
-6 \mathbf{i}-5 \mathbf{j}-21 \mathbf{k}, \quad 8 \mathbf{i}+9 \mathbf{j} \quad \text { and } \quad u \mathbf{i}-3 \mathbf{j}+v \mathbf{k},
$$

where u and v are scalar constants.
A, B and C lie on the straight line l.
a) Find a vector equation of l.
b) Determine the value of u and the value of v.
c) Calculate the distance $A B$.

The point D lies on l so that $\overrightarrow{O D}$ is perpendicular to l.
d) Determine the position vector of D.
e) Calculate, correct to three significant figures, the area of the triangle $O A B$.

D, $\mathbf{r}=8 \mathbf{i}+9 \mathbf{j}+\lambda(2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}), u=-4, v=-18, \| B=7 \sqrt{17}$, $\mathbf{d}=4 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k}, \quad$ are $a \approx 127$

Question 91 (****)
The position vectors and coordinates in this question are relative to a fixed origin O.

The straight lines l_{1}, l_{2} and l_{3} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=10 \mathbf{i}+6 \mathbf{j}+9 \mathbf{k}+\lambda(3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}) \\
& \mathbf{r}_{2}=-4 \mathbf{j}+13 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \\
& \mathbf{r}_{3}=-3 \mathbf{i}-4 \mathbf{k}+v(4 \mathbf{i}+3 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

where λ, μ and v are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point A, and find its coordinates.
b) Verify that $B(5,6,-2)$ lies on both l_{2} and l_{3}.

The point C is the intersection of l_{1} and l_{3}.
c) Find the coordinates of C.
d) Show that $|C A|=|C B|$.
e) Hence calculate the shortest distance of C from l_{2}.

Created by T. Madas

Created by T. Madas

Question 92 ($* * * *$)

The position vectors and coordinates in this question are relative to a fixed origin O.

The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(4 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=9 \mathbf{i}+\mu(\mathbf{i}-3 \mathbf{j}+a \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters, and a is a scalar constant.

The point A is the intersection between l_{1} and l_{2}, and the acute angle between them is denoted by θ.
a) Find in any order ...
i. ... the value of a.
ii. ... the coordinates of A.
iii. ... the value of θ.

The point B has coordinates $(5,13,11)$.

The point P lies on l_{1} so that the angle $A P B$ is 90°.
b) Calculate the distance $B P$.

$$
a=-2, A(7,6,4), \theta=54.2^{\circ}, \quad B P \mid=\sqrt{61}
$$

Question 93 (****)
The position vectors and coordinates in this question are relative to a fixed origin O.

The points A and B have respective position vectors

$$
2 \mathbf{i}+3 \mathbf{j} \text { and } 6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k} .
$$

a) Find a vector equation of the straight line l_{1} that passes through A and B.

The straight line l_{2} has vector equation

$$
\mathbf{r}=5 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}),
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} intersect at the point A.
c) Find the exact value of $\cos \theta$, where θ is the acute angle between l_{1} and l_{2}.

The point C with position vector $3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ lies on l_{2}.
d) Show that the shortest distance from C to l_{1} is exactly one unit.

$$
\mathbf{r}=2 \mathbf{i}+3 \mathbf{j}+\lambda(4 \mathbf{i}-5 \mathbf{j}+3 \mathbf{k}), \quad \cos \theta=\frac{2}{3} \sqrt{2}
$$

Question 94 (****)
The position vectors and coordinates in this question are relative to a fixed origin O.

The straight line l has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
10 \\
7 \\
7
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

where λ is a scalar parameter.

The point $P(14,15,15)$ lies on l and the point A has coordinates $(5,1,2)$.
a) Calculate the size of the acute angle that $A P$ makes with l.

The point B lies on l so that $A B P=90^{\circ}$.
b) Determine the coordinates of B.

The point C is such so that l is the angle bisector of $A P C$.
c) Find a set of the possible coordinates of C.

$$
\theta \approx 6.1^{\circ}, \quad B(7,1,1), C(9,1,0)
$$

Created by T. Madas

Question 95 (****)
The position vectors and coordinates in this question are relative to a fixed origin O.

The points A, B and C have coordinates $(0,0,8),(2,6,4)$ and $(8,8,0)$, respectively.

The point D is such so that $A B C D$ is a parallelogram.
The angle $A B C$ is θ.
a) Determine the coordinates of D.
b) Use the scalar product to find an exact value for $\cos \theta$ and hence show

$$
\sin \theta=\frac{2}{7} \sqrt{6}
$$

c) Explain, with reference to the calculations of part (b), why $A C$ must be perpendicular to $B D$.
d) Show that the area of the parallelogram is $16 \sqrt{6}$.
\square

Elitar Ry Mration $\overrightarrow{O R}$
$\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A B}$
$\overrightarrow{O D}=\overrightarrow{a t}+\overrightarrow{B R}$ कर $-a+c-b$
$\sigma=(0,0,8)+(8,80)-(2,6,4)$ $d=(6,2,4) / / /$
b) $\underset{\text { cookinis at the diatapm }}{\operatorname{coc}}$

$=(627-4)$

Created by T. Madas

Question 96 (****)
The position vectors and coordinates in this question are relative to a fixed origin O.
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{gathered}
\mathbf{r}_{1}=5 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \\
\mathbf{r}_{2}=-\mathbf{i}+5 \mathbf{j}+a \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k})
\end{gathered}
$$

where λ and μ are scalar parameters, and a is a scalar constant.

The point A lies on both l_{1} and l_{2}.
a) Find the value of a and the coordinates of A.

The point $P(11, p, 12)$, where p is a scalar constant, lies on l_{1}.

The point $Q(q,-9,-8)$, where q is a scalar constant, lies on l_{2}.
b) Find the value of p and the value of q.
c) Determine the coordinates of the midpoint of $P Q$.
d) Show that $|A P|=|A Q|$.
e) Hence, or otherwise, find a vector equation of the angle bisector of $\measuredangle P A Q$.
$\square, a=6, A(1,1,2), p=6, q=6, M\left(\frac{17}{2},-\frac{3}{2}, 2\right), \quad \mathbf{r}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}+t(3 \mathbf{i}-\mathbf{j})$

Created by T. Madas

Created by T. Madas

Question 97 (****)
The points with coordinates $A(4,0,-4)$ and $B(5,-1,-6)$ lie on the line L, where the point O is a fixed origin.
a) Find a vector equation of the line L.
b) Find the distance between the points A and B.

The point D lies on the line L, so that $O D$ is perpendicular to L.
c) Find the coordinates of the point D, and hence show that $|\overrightarrow{O D}|=\sqrt{8}$

The point C is such so that $O A B C$ is parallelogram.
d) Find the exact area of the parallelogram $O A B C$.

$$
\mathbf{r}=4 \mathbf{i}-4 \mathbf{k}+\lambda(-\mathbf{i}+\mathbf{j}+2 \mathbf{k}), \quad A B \mid=\sqrt{6}, \quad D(2,2,0), \quad \text { are }=4 \sqrt{3}
$$

Question 98 (****)
The lines l_{1} passes through the point $A(2,2,-2)$ and has direction vector $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
a) Find a vector equation for l_{1}.

The line l_{2} has the vector equation

$$
\mathbf{r}_{2}=7 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+\mu(2 \mathbf{i}-\mathbf{j}-\mathbf{k}),
$$

where μ is a scalar parameter.

The lines intersect at the point B and the acute angle between the two lines is θ.
b) Find the coordinates of B.
c) Show that $\cos \theta=\frac{1}{6}$.

The point $P(15,-3,-6)$ lies on l_{2} and the point Q lies on l_{1} so that $\measuredangle P Q B=90^{\circ}$.
d) Find $|\overrightarrow{B P}|$ and show that $|\overrightarrow{B Q}|=\sqrt{6}$.
e) Show that $|\overrightarrow{P Q}|=\sqrt{210}$.
f) Verify that the point Q is in fact the same the point as A.

$$
\mathbf{r}_{1}=2 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+2 \mathbf{k}), B(3,3,0),|\overrightarrow{B P}|=\sqrt{216}=6 \sqrt{6}
$$

Created by T. Madas

Question 99 (****)
With respect to a fixed origin, the points A, B and C have coordinates $(-2,-4,6)$, $(-16,1,4)$ and $(4,8,-6)$, respectively.
a) Find a vector equation for the line L_{1}, through the points A and B.
b) Find a vector equation for the line L_{2}, that passes through the point C and is parallel to the vector $p \mathbf{i}+q \mathbf{j}-4 \mathbf{k}$, where p and q are scalar constants.

The line L_{2} passes through the z axis, and is perpendicular to L_{1}.
c) Find the values of p and q.
d) Verify that L_{1} and L_{2} lines intersect at the point A.

$$
\begin{array}{r}
\mathbf{r}_{1}=-2 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}+\lambda(14 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}) \\
p=2, q=4 \\
\mathbf{r}_{2}=4 \mathbf{i}+8 \mathbf{j}-6 \mathbf{k}+\lambda(p \mathbf{i}+q \mathbf{j}-4 \mathbf{k}), \\
p=2, q
\end{array}
$$

Created by T. Madas

Question 100 (****)

The straight lines L and M have the following vector equations

$$
L: \mathbf{r}_{1}=(3 \lambda+3) \mathbf{i}+(4-4 \lambda) \mathbf{j}+2 \lambda \mathbf{k}
$$

$$
M: \mathbf{r}_{2}=(3 \mu+12) \mathbf{i}+(20-4 \mu) \mathbf{j}+(2 \mu+4) \mathbf{k}
$$

where λ and μ are scalar parameters.
a) Show that L and M are parallel.
b) Show further that $A(6,0,2)$ lies on L.

The point B lies on M so that $A B$ is perpendicular to M.
c) Find the coordinates of B.
d) Hence determine the shortest distance between L and M.

Question 101 (****)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=-2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}) \\
& \mathbf{r}_{2}=8 \mathbf{i}-5 \mathbf{j}+26 \mathbf{k}+\mu(\mathbf{i}-\mathbf{j}+4 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Given l_{1} and l_{2} intersect at the point P, find the coordinates of P.
b) Show l_{1} and l_{2} are perpendicular.

The points $A(-8, a,-2)$ and $C(c, 11,-2)$ lie on l_{1}.
c) Find the value of each of the constants a and c, and show further that P is the midpoint of $A C$.

The quadrilateral $A B C D$ is a square.
d) Determine the coordinates of the points B and D.
$P(1,2,-2), a=-7, \quad c=10, B(4,-1,10) \& D(-2,5,-14)$ in any order

Created by T. Madas

Question 102 (****)
Relative to a fixed origin, the points P and Q have position vectors $9 \mathbf{j}-2 \mathbf{k}$ and $7 \mathbf{i}-8 \mathbf{j}+11 \mathbf{k}$, respectively.
a) Determine the distance between the points P and Q.
b) Find the position vector of the point M, where M is the midpoint of $P Q$.

The points P and Q are vertices of a cube, so that $P Q$ is one of the longest diagonals of the cube.
c) Show that the length of one of the sides of the cube is 13 units.
d) Show that the origin O lies inside the cube.

Question 103 ($* * * * *)$
The points $A(7, a, 5)$ and $B(b, 1,12)$ lie on the straight line L, with vector equation

$$
\mathbf{r}=19 \mathbf{i}-2 \mathbf{j}-9 \mathbf{k}+\lambda(6 \mathbf{i}-\mathbf{j}-7 \mathbf{k}),
$$

where λ is a scalar parameter.
a) Find the value of a and the value of b.

The point C has coordinates $(-3,19,10)$ and M is the midpoint of $B C$.
b) Determine the coordinates of M.

The point D is such so that $A B M D$ is a parallelogram.
c) Find the coordinates of D.
d) Show that $|A B|=|B M|$.
e) Find the exact area of the parallelogram $A B M D$.

Created by T. Madas

Question 104 (****)
The straight line L_{1} passes through the points $A(1,-2,5)$ and $B(4,-3,3)$.
a) Find a vector equation for L_{1}.

The straight line L_{2} has a vector equation

$$
\mathbf{r}=\left(\begin{array}{l}
8 \\
p \\
q
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
4 \\
-1
\end{array}\right)
$$

where μ is a scalar parameter, and p and q are scalar constants.
b) Given that L_{1} and L_{2} intersect at B, find the value of p and the value of q.
c) Find the cosine of the acute angle θ, between L_{1} and L_{2}.

The point C is on L_{2}, so that $A C$ is perpendicular to L_{2}.
d) Show that the length of $A C$ is $\frac{\sqrt{502}}{6}$.

$$
\mathbf{r}=\mathbf{i}-2 \mathbf{j}+5 \mathbf{k}+\lambda(3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}), p=13, q=-1, \cos \theta=\frac{1}{42} \sqrt{7}
$$

Created by T. Madas

Question 105 (****)
With respect to a fixed origin O, the variable points A and B have the following position vectors

$$
\begin{aligned}
& \qquad \overrightarrow{O A}=\left(\begin{array}{c}
t-1 \\
t^{2}-6 t+14 \\
28-27 t+9 t^{2}-t^{3}
\end{array}\right) \text { and } \overrightarrow{O B}=\left(\begin{array}{c}
2 t^{2}-12 t+18 \\
3-t \\
1
\end{array}\right), \\
& \text { where } t \text { is a scalar parameter. }
\end{aligned}
$$

a) Calculate the angle $A O B$ when $t=5$
b) Find the values of t for which the angle $A O B$ is a right angle.

$$
\theta \approx 86.0, t=4 \text { or } t=\frac{13}{4}
$$

Created by T. Madas

Question 106 (****)
The points A and B have coordinates $(7,13,14)$ and $(15,19,15)$, respectively.
a) Find a vector equation of the straight line l_{1} which passes through A and B.

The line l_{2} has vector equation

$$
\mathbf{r}=5 \mathbf{i}-8 \mathbf{j}-9 \mathbf{k}+\mu(-2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k})
$$

where μ is a scalar parameter.
b) Show that l_{1} and l_{2} do not intersect.
c) Find a vector with integer components in their simplest proportions, which is perpendicular to both lines.
[you may not use the cross product for this part]

$$
\mathbf{r}=7 \mathbf{i}+13 \mathbf{j}+14 \mathbf{k}+\lambda(8 \mathbf{i}+6 \mathbf{j}+\mathbf{k}), \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}
$$

Question 107 (****)
The straight lines l_{1} and l_{2} have respective vector equations

$$
\mathbf{r}_{1}=5 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}) \quad \text { and } \quad \mathbf{r}_{2}=-3 \mathbf{i}+4 \mathbf{j}+8 \mathbf{k}+\mu(2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}),
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point P, further finding its coordinates.
b) Calculate the acute angle between l_{1} and l_{2}.

The point $A(7,5,3)$ lies on l_{1} and the point B lies on l_{2}, such that the straight line $A B$ is perpendicular to l_{2}.
c) Determine the area of the triangle $A B P$.
\square , \square
\square $\operatorname{area}(A B C)=\frac{8}{7} \sqrt{38} \approx 7.05$
 $P(3,1,-1)$, 72.0°

$\Rightarrow-\frac{2}{\sqrt{6}}=\cos \theta$ $\Rightarrow \theta \approx 107.9728338 . .$.
c) STAR WITH A PIAGRAM

- $|\overrightarrow{A P}|=|q-a|=|(3,1,-1)-(7,5,3)|=|-4,-4,-4|=\sqrt{6+16+16}=\sqrt{4 B}$,
- $\left|A_{B}\right|=|A P| \sin \theta$
- $|P B|=|A P| \cos \theta$
- $A C C A=\frac{1}{2}|A B||P B|=\frac{1}{2}|A P| \sin \theta \times|A P| \cos \theta$

$$
\left.=\frac{1}{4} \right\rvert\, A P P^{2} S m z \theta
$$

$$
=\frac{1}{4} \times 40 \times \sin \left(2 \pi 72 \cdot 0^{\circ}\right)
$$

$$
=7.04504575 \ldots
$$

$\simeq 7.05$
,

Question 108 (****)
The straight line L passes through the points $B(1,4,0)$ and $D(2,2,6)$.
a) Find a vector equation of L.

The point $A(1,0, p)$, where p is a scalar constant, is such so that $\measuredangle B A D=90^{\circ}$.
b) Find the possible values of p.

The rectangle $A B C D$ has an area of $12 \sqrt{2}$ square units.
c) Find the coordinates of C.
\square $, \mathbf{r}=\mathbf{i}+4 \mathbf{j}+\lambda(\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}), \quad p=2,4, \quad C(2,6,2)$

Question 109 (****)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=12 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+\mathbf{k}) \\
& \mathbf{r}_{2}=\mathbf{i}+3 \mathbf{j}+\mu(3 \mathbf{i}-\mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point A, further finding its coordinates.
b) Calculate the acute angle between l_{1} and l_{2}.

The point $B(16,9,5)$ lies on l_{1} and the point D lies on l_{2}.
c) If $B D$ is perpendicular to l_{2} find the coordinates of D.
d) Find the coordinates of a point C so that the triangle $A B C$ is isosceles.
\square

Question 110 ($* * * * *)$
The vectors \mathbf{p} and \mathbf{q} are defined as

$$
\mathbf{p}=\mathbf{a}+2 \mathbf{b} \quad \text { and } \quad \mathbf{q}=5 \mathbf{a}-4 \mathbf{b}
$$

where \mathbf{a} and \mathbf{b} are unit vectors.

Given that \mathbf{p} and \mathbf{q} are perpendicular, determine the acute angle between a and \mathbf{b}.

Question 111 (****)
The straight lines l_{1} and l_{2} have the following Cartesian equations

$$
l_{1}: \quad \frac{x-8}{1}=\frac{y+1}{-1}=\frac{z-2}{1}
$$

$$
l_{2}: \quad \frac{x-3}{-1}=\frac{y-4}{1}=\frac{z-1}{1}
$$

a) Show that l_{1} and l_{2} intersect at some point P, and find its coordinates.
b) Find the exact value of $\cos \theta$, where θ is the acute angle formed by l_{1} and l_{2}.

The point $A(6,1,0)$ lies on l_{1} and the point $B(4,3,0)$ lies on l_{2}.
c) By considering $|A P|$ and $|B P|$ show further that the angle bisector of $\measuredangle A P B$ is parallel to the vector \mathbf{k}.
\square
\square $\cos \theta=\frac{1}{3}$

$|\overrightarrow{A B}|=|p-\underline{g}|=|(5,2-1)-(5,1,0)|=|-1,1,-1|=\sqrt{3}$ $|\overrightarrow{B P}|=|f-b|=|(s, 2,-1)-(4,3,0)|=|1,-1,-1|=\sqrt{3}$
 $M\left(\frac{6+4}{2}, \frac{3+1}{2}, \frac{0+0}{2}\right) \rightarrow M(s, 2,0)$ $\overrightarrow{M \vec{P}}=f-m_{M}=(s, 2,-1)-(s, 2,0)=(0,0,-1)$
if uncrat of k
Pretut To k

Created by T. Madas

Question 112 (****+)
The figure below shows a triangle $O A Q$.

- The point P lies on $O A$ so that $O P: O A=3: 5$.
- The point B lies on $O Q$ so that $O B: B Q=1: 2$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
a) Given that $\overrightarrow{A R}=h \overrightarrow{A B}$, where h is a scalar parameter with $0<h<1$, show that

$$
\overrightarrow{O R}=(1-h) \mathbf{a}+h \mathbf{b} .
$$

b) Given further that $\overrightarrow{P R}=k \overrightarrow{P Q}$, where k is a scalar parameter with $0<k<1$, find a similar expression for $\overrightarrow{O R}$ in terms of $k, \mathbf{a}, \mathbf{b}$.
c) Determine ...
i. ... the value of k and the value of h.
ii. ... the ratio of $\overrightarrow{P R}: \overrightarrow{P Q}$.

$$
\text { Q. }, \overrightarrow{O R}=\frac{3}{5}(1-k) \mathbf{a}+k \mathbf{b}, k=\frac{1}{6}, h=\frac{1}{2}, P R: P Q=1: 6
$$

Created by T. Madas

Question 113 (****+)
The points A and B have coordinates $(4,0,2)$ and $(7,0,-1)$, respectively.
a) Find the vector $\overrightarrow{A B}$.

The straight line l has vector equation

$$
\mathbf{r}=-3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}+\lambda(7 \mathbf{i}+4 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.
b) Show that A lies on l.
c) Calculate the acute angle between $\overrightarrow{A B}$ and l.

The point C lies on l so that $A B C D$ is a rectangle.
d) Find the coordinates of D.

Question 114 (****+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=3 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) \\
& \mathbf{r}_{2}=2 \mathbf{i}+7 \mathbf{k}+\mu(\mathbf{i}-\mathbf{j}+2 \mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point P and find its position vector.

The points A and C lie on l_{1} and the points B and D lie on l_{2}.

The point A has position vector $4 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$.

The quadrilateral $A B C D$ is a parallelogram with an area of 54 square units.
b) State the position vector of the point C.
c) Show that the distance of the point B from l_{1} is 3 units.

Created by T. Madas

Question 115 (****+)
With respect to a fixed origin O, the points A and B have respective position vectors

$$
\mathbf{i}+11 \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad 11 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}
$$

a) Find a vector equation for the straight line l, which passes through A and B.

The point C is the point on l closest to the origin O.
b) Determine the position vector of C.

The point D is the reflection of O about l.
c) State the position vector of D.
d) Show that the area of the kite $O A D B$ is $25 \sqrt{42}$ square units.

$$
\mathbf{r}=\mathbf{i}+11 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}), \overrightarrow{O C}=5 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}, \overrightarrow{O D}=10 \mathbf{i}+10 \mathbf{j}+10 \mathbf{k}
$$

Created by T. Madas

Question 116 (****+)
Relative to a fixed origin O, the points $A(3 t-19,2 t-14,28-t), B(t+1, t-2,5 t)$ and $C(2 t-11,10-t, 2 t+4)$, represent the coordinates of the paths of three helicopters, where t represents the time in minutes after a certain instant.

All distances are in kilometres with the coordinates axes $O x, O y, O z$ oriented due east, due north and vertically upwards, respectively.
a) Show that all three helicopters pass through a point P and find its coordinates.
b) Explain why only two of the helicopters will collide at the point P if they maintain their courses as described in this problem.
c) Show that the paths of A and B are perpendicular.

Created by T. Madas

Question 117 (****+)
The straight lines l_{1} and l_{2}, where λ and μ are scalar parameters, have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=(\lambda+2) \mathbf{i}+(2 \lambda+6) \mathbf{j}+(-\lambda-1) \mathbf{k} \\
& \mathbf{r}_{2}=(2 \mu-4) \mathbf{i}+(4-\mu) \mathbf{j}+(3-\mu) \mathbf{k}
\end{aligned}
$$

l_{1} and l_{2} intersect at the point A and the acute angle between l_{1} and l_{2} is θ.
a) Find in any order...
i. ... the coordinates of A.
ii. ... the exact value of $\cos \theta$.

The point B lies on l_{1} and the point C lies on l_{2}. The triangle $A B C$ is isosceles with $|A B|=|A C|=6 \sqrt{6}$.
b) Find the two possible sets of coordinates for the points B and C.
c) Show that either $|B C|=6 \sqrt{14}$ or $|B C|=6 \sqrt{10}$

In the triangle $A B C$ the angle $B A C$ is acute.
a) In the triangle $A B C$, determine the two possible pairings for the coordinates of the point B and the corresponding coordinates of the point C.

Created by T. Madas

Question 118 (****+)
Relative to a fixed origin O, the points A, B, C and D have coordinates $(7,6,2)$, $(12,10,5),(1,-4,-8)$ and $(11,4,-2)$, respectively.
a) Find the vector equation of the straight line l_{1} which passes through the point A and B and the vector equation of the straight line l_{2} which passes through the point C and D.
b) Explain why l_{1} and l_{2} do not intersect.

The point P lies on l_{2}.
c) Find an expression for $|\overrightarrow{A P}|^{2}$, in terms of μ.
d) Calculate the distance between l_{1} and l_{2}.

$$
\mathbf{r}_{1}=7 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}+\lambda(5 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}), \mathbf{r}_{2}=\mathbf{i}-4 \mathbf{j}-8 \mathbf{k}+\mu(5 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}),
$$

$$
|\overrightarrow{P A}|^{2}=50 \mu^{2}-200 \mu+236,6 \text { units }
$$

Created by T. Madas

Question 119 (****+)
Relative to a fixed origin O, the points A, B and C have coordinates $(2,3,5)$, $(1,1,1)$ and $(4,3,1)$, respectively.

The line segment $C B$ is extended to the point P.

It is further given that P lies on the line segment $O A$ so that $|O P|:|P A|=1: k$. Determine the value of k.

Created by T. Madas

Question 120 (****+)
The straight line l_{1} passes through the points with coordinates $A(-2,3,4)$ and $B(8,-1,14)$.
a) Find a vector equation for l_{1}.

The straight line l_{2} has vector equation

$$
\mathbf{r}=\mathbf{i}+5 \mathbf{j}-5 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+7 \mathbf{k})
$$

where μ is a scalar parameter.

The point C lies on l_{2} so that $A C$ is perpendicular to $B C$.
b) Show that one possible position for the point C has coordinates $(2,3,2)$ and find the other.
c) Assuming further that C has coordinates $(2,3,2)$, show that the area of the triangle $A B C$ is $14 \sqrt{5}$ square units.

$$
\mathbf{r}_{1}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}+\lambda(5 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}),(4,-1,16)
$$

\square

Created by T. Madas

Question 121 (${ }^{* * * *+) ~}$
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=13 \mathbf{i}-5 \mathbf{j}+8 \mathbf{k}+\lambda(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \\
& \mathbf{r}_{2}=-5 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point C and find its coordinates.
b) Find the cosine of the acute angle between l_{1} and l_{2}.

The point A lies on l_{1} where $\lambda=-1$ and the point B lies on l_{2} where $\mu=4$.
c) Determine a vector equation of the angle bisector of $\measuredangle A C B$

$$
\square, C(1,-1,2), \cos \theta=\frac{4}{21}, \quad \mathbf{r}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}+t(32 \mathbf{i}+\mathbf{j}-5 \mathbf{k})
$$

Question 122 (****+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=9 \mathbf{i}+7 \mathbf{j}+1 \mathbf{1} \mathbf{k}+\lambda(4 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}) \\
& \mathbf{r}_{2}=-2 \mathbf{i}+5 \mathbf{j}-4 \mathbf{k}+\mu(3 \mathbf{i}-4 \mathbf{j}+a \mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters and a is a scalar constant.

The point A is the intersection of l_{1} and l_{2}.
b) Find in any order ...
i. ... the value of a.
ii. ... the coordinates of A.

The acute angle between l_{1} and l_{2} is θ.
c) Show that $\theta=60^{\circ}$.

The point B lies on l_{1} and the point C lies on l_{2}.

The triangle $A B C$ is equilateral with sides of length $15 \sqrt{2}$.
d) Find the two possible pairings for the coordinates of B and C.
\square
$B(13,10,16) \& C(10,-11,16)$ or $B(-11,-8,-14) \& C(-8,13,-14)$

Created by T. Madas

Question 123 (${ }^{(* * * *)}$
The points $A(3,2,14), B(0,1,13)$ and $C(5,6,8)$ are defined with respect to a fixed origin O.
a) Show that the cosine of the angle $A B C$ is $\frac{3}{\sqrt{33}}$.

The straight line L passes through A and it is parallel to the vector $\overrightarrow{B C}$.
b) Find a vector equation of L.

The point D lies on L so that $A B C D$ is a parallelogram.
c) Find the coordinates of D.
d) If instead $A B C D$ is an isosceles trapezium and the point D still lies on L, determine the new coordinates of D.
\square , $\mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+14 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k}), D(8,7,9), D(6,5,11)$

Question 124 (****+)
With respect to a fixed origin O, the point A and the point B have position vectors $\mathbf{i}-7 \mathbf{j}+5 \mathbf{k}$ and $-9 \mathbf{j}+6 \mathbf{k}$, respectively.
a) Find a vector equation of the straight line l which passes through A and B.

A variable vector is defined as

$$
\mathbf{p}=(p+6) \mathbf{i}+(2 p+3) \mathbf{j}-p \mathbf{k},
$$

where p is a scalar parameter.
b) Show that for all values of p, the point P with position vector \mathbf{p}, lies on l.
c) Determine the value of p for which $\overrightarrow{O P}$ is perpendicular to l.
d) Hence, or otherwise, find the shortest distance of l from the origin O.
\square $, \mathbf{r}=\mathbf{i}-7 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-\mathbf{k}), p=-2$, shortest distance $=\sqrt{21}$

Question 125 ($* * * *+$)
The points with coordinates $A(7,6,10), B(6,5,6)$ and $C(1,0,4)$ are the vertices of the parallelogram $A B C D$.
a) Find ...
i. ... the coordinates of D.
ii. ... a vector equation of the straight line l which passes through the points A and C.
iii. ... the distance $A C$.
b) Show that the shortest distance of l from B is $\sqrt{6}$ units.
c) Hence find the exact area of the parallelogram $A B C D$.
\square

\square

Question 126 (****+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=\mathbf{i}-5 \mathbf{j}+\lambda(4 \mathbf{j}-\mathbf{k}) \\
& \mathbf{r}_{2}=4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}+\mu(3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Given that l_{1} and l_{2} intersect at some point Q, find the position vector of Q.
b) Given further that the point P lies on l_{1} and has position vector $\mathbf{i}+p \mathbf{j}-3 \mathbf{k}$, find the value of p.

The point T lies on l_{2} so that $|\overrightarrow{P Q}|=|\overrightarrow{Q T}|$.
c) Determine the two possible position vectors for T.
$, \mathbf{q}=\mathbf{i}-\mathbf{j}-\mathbf{k}, p=7, \mathbf{t}=-5 \mathbf{i}+3 \mathbf{j}-5 \mathbf{k}$ or $\mathbf{t}=7 \mathbf{i}-5 \mathbf{j}+3 \mathbf{k}$

Created by T. Madas

Question 127 (****+)
The point P has position vector $2 \mathbf{i}+2 \mathbf{j}+21 \mathbf{k}$.
a) Find the vector equation of the straight line l which passes through P and is parallel to the vector $\mathbf{i}-\mathbf{j}+5 \mathbf{k}$.

The points A and B have coordinates $(-1,2,3)$ and $(2,5,3)$, respectively.

The point C lies on l so that the triangle $A B C$ is equilateral.
b) Find the two possible position vectors for C.
$\square, \mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+21 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+5 \mathbf{k}), \quad \mathbf{c}=-\mathbf{i}+5 \mathbf{j}+6 \mathbf{k} \quad$ or $\mathbf{c}=-\frac{17}{9} \mathbf{i}+\frac{53}{9} \mathbf{j}+\frac{14}{9} \mathbf{k}$ $\mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+21 \mathbf{k}+\lambda(\mathbf{i}$ \square
 b)
$\Rightarrow(9+35)(\lambda+3)=0$

- $\left|B C^{\prime}\right|=\sqrt{\left(2+\frac{7}{9}\right)^{2}+\left(5-\frac{5}{9}\right)^{2}+\left(3-\frac{14}{9}\right)^{2}}=\sqrt{\left(\frac{3}{3}\right)^{2}+\left(\frac{8}{9}\right)^{2}+\left(\frac{B}{9}\right)^{2}}$

0 LET $C(x, y, z)$
$|A C|=|\underline{q}-\underline{q}|=|(x, y, z)-(-1,2,3)|=|(x+1),(y-2),(z-3)|$ $\begin{aligned} &=\sqrt{\frac{1225+64+169}{81}}=\sqrt{\frac{1458}{81}}=\sqrt{18} \\ & \therefore \text { BOT WORK SO } \quad C(-1,56)\end{aligned}$
$\Rightarrow \sqrt{18}=|(x+1),(y-2),(z-3)|$
$\Rightarrow \sqrt{18}=\sqrt{(x+1)^{2}+(y-2)^{2}+(z-3)^{2}}$
$\Rightarrow(x+1)^{2}+(y-2)^{2}+(z-3)^{2}=18$
0 सा $C(x, y, z)$ US ON l
$\rightarrow(\lambda+2+1)^{2}+(2-\lambda-2)^{2}+(51+21-3)^{2}=18$
$\Rightarrow(\lambda+3)+(-\lambda)^{2}+(5 \lambda+18)^{2}=18$
$\Rightarrow \lambda^{2}+6 \lambda+9+\lambda^{2}+25 \lambda+180 \lambda+324=18$
$-\frac{-35}{9}-c^{\prime}\left(-\frac{12}{9}, \frac{53}{9}, \frac{14}{9}\right)$
O ateak |BC| witt enat of THest C_{s}
$B(2,5,3) \quad C(-1,5,6) \quad C^{\prime}\left(-\frac{17}{4}, \frac{83}{4}, \frac{14}{4}\right)$

- $|B C|=\sqrt{3^{2}+0^{2}+3^{2}}=\sqrt{18}$ \therefore BOTH wark so $C(-1,5,6)$

Question 128 (****+)
The quadrilateral $A B C D$ is a rectangle with the vertex A having coordinates $(2,1,2)$.

The diagonals of the rectangle intersect at the point with coordinates $(7,0,4)$.
a) Find the coordinates of the point C.

The points B and D both lie on the straight line with vector equation

$$
\mathbf{r}=4 \mathbf{i}+15 \mathbf{j}+10 \mathbf{k}+\lambda(\mathbf{i}-5 \mathbf{j}-2 \mathbf{k})
$$

where λ is a scalar parameter.
b) Determine the coordinates of B and D.
$\square, C(12,-1,6), B(6,5,6), D(8,-5,2)$ in any order

Question 129 (****+)
The vectors \mathbf{a} and \mathbf{b} are such so that

$$
|\mathbf{a}|=3,|\mathbf{b}|=12 \quad \text { and } \quad \mathbf{a} \cdot \mathbf{b}=18
$$

Question 130
$(* * * *+)$
It is given that
where $\mathbf{w}=2 \mathbf{i}+8 \mathbf{j}-\mathbf{k}$.

Given further that \mathbf{u} is in the direction $\mathbf{i}+\mathbf{j}+\mathbf{k}$, and the vectors \mathbf{u} and \mathbf{v} are perpendicular to one another, determine \mathbf{u} and \mathbf{v} in component form.
\square $, \mathbf{u}=3 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}, \mathbf{v}=-\mathbf{i}+5 \mathbf{j}-4 \mathbf{k}$

Question 131 (****+)
The points $A(3,3,2), B(6,4,3)$ and $C(5,1,4)$ are referred with respect to a fixed origin O. The point M is the midpoint of $A C$.
a) Show that $\overrightarrow{B M}$ is perpendicular to $\overrightarrow{A C}$.

The point D is such so that $A B C D$ is a kite with an area of $6 \sqrt{6}$.

The straight line $B D$ is a line of symmetry for the kite $A B C D$.
b) Find the coordinates of D.
\square
$D(0,-2,3)$
\square

Question 132 (****+)
Relative to a fixed origin O, the straight lines l and m have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
p \\
4 \\
5
\end{array}\right)+t\left(\begin{array}{r}
q \\
-1 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{c}
9 \\
0 \\
16
\end{array}\right)+s\left(\begin{array}{r}
1 \\
-2 \\
7
\end{array}\right)
$$

where t and s are scalar parameters, and p and q are scalar constants.

The point A is the intersection of l and m, and the cosine of acute angle θ between l and m is $\frac{1}{3} \sqrt{6}$.
a) Find the value of p and the value of q, given that q is a positive integer.
b) Determine the coordinates of A.

The point B has coordinates $B(12,5,9)$.
c) Find the cosine of the acute angle φ between $A B$ and l.
d) Hence show, without the use of any calculating aid, that

$$
\varphi=2 \theta
$$

$$
p=0, q=2, A(8,2,9), \quad \cos \varphi=\frac{1}{3}
$$

Created by T. Madas

Question 133 (****+)

The straight lines l_{1} and l_{2} have the vector equations given below

$$
\begin{aligned}
& \mathbf{r}_{1}=3 \mathbf{i}+\mathbf{j}+7 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}), \\
& \mathbf{r}_{2}=3 \mathbf{i}+3 \mathbf{k}+\mu(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}),
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} intersect at some point P and find its coordinates.

The points A and C lie on l_{1} and the points B and D lie on l_{2}, such that $A B C D$ forms a parallelogram.

The point A has coordinates $(7,-1,13)$.
b) Find ...
i. ... the coordinates of C.
ii. ... the coordinates of B and D, given further that $|B D|=12$.
iii. ... the angle $\measuredangle B A D$.
c) Show that the exact area of the parallelogram $A B C D$ is $36 \sqrt{13}$.
$P(1,2,4), C(-5,5,-5), B(5,-2,2), D(-3,6,6)$ in any order,$\measuredangle B A D \approx 55.3^{\circ}$

Question 134 (****+)
The straight lines l_{1} and l_{2} have the following vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=7 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+a \mathbf{k}) \\
& \mathbf{r}_{2}=3 \mathbf{i}+b \mathbf{j}+5 \mathbf{k}+\mu(\mathbf{i}-\mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters, and a and b are scalar constants.

It is further given that the point A is the intersection of l_{1} and l_{2}, and the acute angle between l_{1} and l_{2} is 60°.

Find in any order ...
the two possible pairings for the value of a and the value b. the possible coordinates of A for each possible pair of a and b.
\square

Question 135 (****+)
The point A has position vector $-\mathbf{i}+7 \mathbf{j}-\mathbf{k}$.
a) Find the vector equation of the straight line l_{1} which passes through A and is parallel to the vector $3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.

The straight line l_{2} has equation

$$
\mathbf{r}_{2}=9 \mathbf{i}-9 \mathbf{j}+8 \mathbf{k}+\mu(3 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}),
$$

where μ is a scalar parameter.
b) Show that...
i. $\ldots l_{1}$ and l_{2} do not intersect.
ii. \ldots the vector $2 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}$ is perpendicular to both l_{1} and l_{2}.

The point P lies on l_{1} and the point Q lies on l_{2} so that the distance $P Q$ is least.
c) Find the coordinates of P and Q.

$$
\mathbf{r}_{1}=-\mathbf{i}+7 \mathbf{j}-\mathbf{k}+\lambda(3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}), P(5,3,3) \& Q(3,-3,0)
$$

Created by T. Madas

Question 136 (****+)

With respect to a fixed origin O, the straight lines L_{1} and L_{2} have respective vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{r}
-1 \\
5 \\
-1
\end{array}\right)+t\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{r}
-3 \\
1 \\
5
\end{array}\right)+s\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

where t and s are scalar parameters.

The points A and C lie on L_{1} and L_{2}, where $t=0$ and $s=0$, respectively.
a) Find $|\overrightarrow{A C}|$, in exact surd form.
b) Show that L_{1} and L_{2} intersect at some point B and find its coordinates.
c) Find the size of the angle θ, between L_{1} and L_{2}.

The point D is such so that $A B C D$ is a kite.
d) Show further that ...
i. ... the area of the kite is $16 \sqrt{3}$ square units.
ii. ... the length of $B D$ is $\frac{8}{7} \sqrt{42}$.

$$
\Delta \overrightarrow{A C} \mid=2 \sqrt{14}, \quad B(1,1,1), \theta=90^{\circ}
$$

Question 137 (****+)
A person standing at a fixed origin O observes an insect taking off from a point A on level horizontal ground. The position vector of the insect \mathbf{r} metres, t seconds after taking off, is given by

$$
\mathbf{r}=(t+1) \mathbf{i}+\left(2 t+\frac{1}{2}\right) \mathbf{j}+2 t \mathbf{k}
$$

All distances are in metres and the coordinates axes $O x, O y, O z$ are oriented due east, due north and vertically upwards, respectively.
a) Find ...
i. ... the bearing of the insect's flight path.
ii. (... the angle between the flight path and the horizontal ground.

The roof top of a garden shed is located at $B\left(5, \frac{9}{2}, 3\right)$.
b) Calculate the shortest distance between the insect's path and the point B.

When the insect reaches a height of 20 metres above the ground, at the point C, the insect gets eaten by a bird.
c) Determine the coordinates of C.
\square , bearing $\approx 027^{\circ}, \theta \approx 42^{\circ}, \sqrt{5}, C\left(11, \frac{41}{2}, 20\right)$

Question 138 (****+)
With respect to a fixed origin O, the points with coordinates $A(4,3,-1), B(5,1,2)$, $C(2,0,3)$ and $D(4,2,-1)$ are given.
a) Find the vector equation of the line l_{1} which passes through A and B, and the vector equation of the line l_{2} which passes through C and D.
b) Show that l_{1} and l_{2} do not intersect.

The point E is on l_{2} so that $\angle A E B=90^{\circ}$.
c) Show that one possible position for E has coordinates $\left(\frac{25}{6}, \frac{13}{6},-\frac{4}{3}\right)$ and find the coordinates of the other possible position.

$$
\begin{array}{ll}
\hline \mathbf{r}_{1}=4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k})
\end{array}, \begin{aligned}
& \mathbf{r}_{2}=2 \mathbf{i}+3 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-2 \mathbf{k})
\end{aligned}, E(3,1,1)
$$

Question 139 (****+)
Relative to a fixed origin O, the points A and B have respectively position vectors $\mathbf{i}-3 \mathbf{j}-9 \mathbf{k}$ and $-4 \mathbf{j}-10 \mathbf{k}$.
a) Find the vector equation of the straight line l_{1} which passes through A and B.

The straight line l_{2} has the vector equation

$$
\mathbf{r}_{2}=6 \mathbf{i}+\mathbf{k}+\mu(-\mathbf{i}+p \mathbf{j}+q \mathbf{k})
$$

where μ is a scalar parameter, and p and q are scalar constants.
b) Given that l_{1} and l_{2} are perpendicular, write an equation in terms of p and q.
c) Given further that l_{1} and l_{2} intersect, find the value of p and the value of q.
d) Determine the position vector of the point of intersection of l_{1} and l_{2}.

$$
\mathbf{r}_{1}=\mathbf{i}-3 \mathbf{j}-9 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}), p+q=1, p=-3, q=4,7 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}
$$

Question 140 (${ }^{* * * *+) ~}$
The straight lines l_{1} and l_{2} have respective vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=3 \lambda \mathbf{i}+(6-2 \lambda) \mathbf{j}+(2 \lambda+1) \mathbf{k} \\
& \mathbf{r}_{2}=(3 \mu+10) \mathbf{i}+(-3 \mu-10) \mathbf{j}+(4 \mu+10) \mathbf{k}
\end{aligned}
$$

where λ and μ are scalar parameters.
a) Show that l_{1} and l_{2} do not intersect.

The point P lies on l_{1} and the point Q lies on l_{2} so that the distance $P Q$ is least.
b) Find the coordinates of P and the coordinates of Q.

Created by T. Madas

Question 141 ($* * * *+$)
Relative to a fixed origin O, the straight lines l_{1} and l_{2} have the following respective vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{r}
8 \\
q \\
-3
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
p
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{r}
3 \\
-4 \\
-5
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

where λ and μ are scalar parameters, and p and q are scalar constants.
a) Given that l_{1} and l_{2} are perpendicular, determine the value of p.

The point D is the intersection of l_{1} and l_{2}
b) Find the value of q and the coordinates of D.

Another straight line l_{3} intersects both l_{1} and l_{2}, and is also perpendicular to both l_{1} and l_{2}.
c) Find a vector equation for l_{3}.

You may not use the vector (cross) product in this part

The points $A(8,1,-3), B(8,1,0)$ and $C(8,-1,-1)$ lie on l_{1}, l_{2} and l_{3}, respectively.
d) Show that the volume of the triangle based pyramid with vertices at A, B, C and D is 1 cubic unit.

$p=-2, q=1$

$$
D(7,0,-1), \mathbf{r}=7 \mathbf{i}-\mathbf{k}+v(\mathbf{i}-\mathbf{j})
$$

Created by T. Madas

Question 142 (*****)
©

The figure above shows the rectangle $A B C D$, where $C(3,7,12)$ and $D(5,1,4)$.

The point $E(2,1,0)$ is such so that $B D E$ and $E C$ are straight lines.

Use vector methods to determine the coordinates of A.

Created by T. Madas

Question 143 (*****)
The coordinates in this question are relative to a fixed origin O at $(0,0,0)$.

The straight line l_{1} has vector equation

$$
\mathbf{i}+3 \mathbf{j}+5 \mathbf{k}+\lambda(-\mathbf{i}+3 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.

The straight line l_{2} passes thought the point with coordinates $(6,0,6)$ and is in the direction $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$.
a) Verify that $A(4,3,5)$ is the intersection of l_{1} and l_{2}, and show further that $B(12,-9,9)$ lies on l_{2}.

The point $C(6,-3,3)$ lies on l_{1}.

The straight line l_{3} passes through B and C.

The straight line l_{4} is parallel to l_{2} and passes through C.

The straight line l_{5} is perpendicular to l_{3} and passes through A.
b) Given that l_{4} and l_{5} intersect at the point D, find the coordinates of D.

Created by T. Madas

Question 144 (*****)
Relative to a fixed origin O at $(0,0,0)$ the points A, B and C have coordinates $(0,4,6),(3,5,4)$ and $(2,0,0)$, respectively.

- The straight line l_{1} passes through A and B.
- The straight line l_{2} passes through C and is parallel to l_{1}.
- The point D lies on l_{1} so that $\measuredangle A C D=90^{\circ}$.
- The point E lies on l_{2} so that $\measuredangle C D E=90^{\circ}$.
- The point F lies on l_{2} so that $|E C|=2|E F|$.

Determine the coordinates of the possible positions of F.

Question 145 (*****)
With respect to a fixed origin O, the points A, B and C have position vectors

$$
\mathbf{a}=\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right), \mathbf{b}=\left(\begin{array}{l}
8 \\
2 \\
7
\end{array}\right) \text { and } \mathbf{c}=\left(\begin{array}{c}
11 \\
0 \\
1
\end{array}\right) .
$$

a) Determine the volume of the cube, with vertices the points A, B and C.

The points P, Q and R are vertices of a different cube, so that

$$
\overrightarrow{P Q}=\left(\begin{array}{c}
0 \\
1 \\
7
\end{array}\right) \text { and } \overrightarrow{P R}=\left(\begin{array}{l}
k \\
4 \\
3
\end{array}\right)
$$

where k is a positive constant.
b) Given that $\measuredangle Q P R=60^{\circ}$, determine \ldots
i. ... the value of k.
ii. ... the length of the diagonal of the second cube.
\square , volume $=343, k=5, \sqrt{75}=5 \sqrt{3}$

$|\overrightarrow{A B}|=|\underline{b}-a|=|(8,2,7)-(a, 5,2)|-|0,3,3|-\sqrt{64+4+23}=\sqrt{98}$ $|\overrightarrow{A C}|=|\underline{c}-a|=\left|(1,0,1)-\left(q, \frac{1}{2}\right)\right|=|11,-s,-1|=\sqrt{12 \mid+25+1}=\sqrt{47}$
$|\overrightarrow{B C}|=|\leq-b|=|(1,1,1)-(8,2,7)|=|3,-2,-6|=\sqrt{9+4+36}=\sqrt{49}=7$
III looking At THE PRNious diAfeAM $|P Q|=|Q R|=|P R|=\sqrt{50}$

THAS THE CONFGORATTON IS AS OPPOSTT \therefore sadet laverf is 7 ravits $\begin{aligned} \therefore \text { vowert } & =7 \times 7 \times 7 \\ & =7 \times 49\end{aligned}$

b)I) Drawing the second OURE

B/ THe vir-Tosevu
$\Rightarrow \overrightarrow{P R} \cdot \overrightarrow{P R}=|\overrightarrow{P Q} \| \overrightarrow{P R}| \cos \theta$

$\Rightarrow 25=\sqrt{50} \sqrt{t^{2}+25} \times \frac{1}{2}$
$\Rightarrow 50=\sqrt{50} \cdot \sqrt{t^{2}+25}$
$\Rightarrow 50=\sqrt{50} \sqrt{t^{2}+25}$
$\Rightarrow 50=\sqrt{t^{2}+25}$
$\Rightarrow \frac{50}{\sqrt{50}}=\sqrt{t^{2}+25}$
$\Rightarrow \frac{2500}{50}=k^{2}+25$ Now looking tr P合T, ON TGe "Fmor"

$$
\begin{aligned}
& \sum_{p}^{s} \int_{a}^{p} \\
& x^{2}+x^{2}=(\sqrt{50})^{2} \\
& \begin{array}{l}
2 x^{2}=50 \\
x^{2}=25
\end{array} \\
& x=5 \\
& \begin{array}{l}
4 \\
\text { Silot ting it } \\
\hline
\end{array} \\
& \begin{aligned}
\therefore \text { LINGTH OF THE CONGEET DIAGONAL IS } & \sqrt{5^{2}+5^{2}+5^{2}} \\
= & \sqrt{75} \\
= & 5 \sqrt{3}
\end{aligned}
\end{aligned}
$$

Created by T. Madas

Question 146 (*****)

Relative to a fixed origin O at $(0,0,0)$ the points A, B and C have coordinates $(1,2,5),(-1,0,7)$ and $(4,-2,8)$, respectively.

The point D is such so that $A B C D$ is an isosceles trapezium with $|B C|=|A D|$.

Determine the coordinates of D.

$D\left(\frac{14}{3},-\frac{4}{3}, \frac{22}{3}\right)$

Question 147 (*****)
Relative to a fixed origin O, the points A and B have position vectors $4 \mathbf{i}+5 \mathbf{j}+8 \mathbf{k}$ and $6 \mathbf{i}+6 \mathbf{j}+7 \mathbf{k}$, respectively. The straight line l_{1} passes through A and, B and crosses the $y-z$ plane at the point C. The straight line l_{2} passes through the point D with position vector $p \mathbf{j}+(2 p+2) \mathbf{k}$, where p is a scalar constant.

Given that l_{1} and l_{2} are perpendicular, and intersect at C, find the value of p.
\square , $p=5$

\square

- lines hre also prrpguncuint, so thifir dirgetion vietors $(a, b, c) \cdot\left(2_{1}, 1,-1\right)=0$
$20+b-c=0$
$b=c$
- HFwle THE \underline{j} \& k componen ri uvations betant $\left.\begin{array}{l}\mu b+p=3 \\ \mu c+2 p+2=10\end{array}\right\} \Rightarrow \begin{aligned} & \mu b+p=3 \\ & \mu b+2 p+2=10\end{aligned}$ $p=5$

Created by T. Madas

Question 148 (*****)
The points A and B, have respective position vectors a and \mathbf{b}, relative to a fixed origin O.

The point C lies on $A B$ produced such that $|A B|:|A C|=1: 4$

The point D lies on $O B$ produced such that $|O B|:|O D|=1: k$, where $|O B|:|O D|=1: k$ is a scalar constant.

Given that $A B$ is perpendicular to $C D$ show that

$$
\text { 昰 } \quad k=\frac{3|\mathbf{a}|^{2}-7 \mathbf{a} \cdot \mathbf{b}+4|\mathbf{b}|^{2}}{|\mathbf{b}|^{2}-\mathbf{a} \cdot \mathbf{b}}
$$

Question 149 (*****)
$O A B$ is a triangle and $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

- The point C lies on $O B$ so that $O C: C B=3: 1$.
- The point P lies on $A C$ so that $A P: P C=2: 1$.
- The point Q lies on $A B$ so that O, P and Q are collinear.

Determine the ratio $A Q: Q B$.

Question 150 (*****)
Relative to a fixed origin O, the straight lines l_{1} and l_{2} have vector equations

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
7 \\
1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
2 \\
0 \\
-1
\end{array}\right) \text { and } \mathbf{r}_{2}=\left(\begin{array}{r}
14 \\
19 \\
3
\end{array}\right)+\mu\left(\begin{array}{r}
-2 \\
4 \\
-3
\end{array}\right)
$$

where λ and μ are scalar parameters.

The point A lies on l_{1} and the point B lies on l_{2}, so that the distance $A B$ is least.

Find the coordinates of A and the coordinates of B.
\square
$\square, A(13,1,-1), B(18,11,9)$

Question 151 (*****)
The point P lies on the straight line L_{1}, which is parallel to the vector $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and passes through the point with coordinates $(10,3,7)$, relative to an origin at $(0,0,0)$.

The point Q lies on another straight line L_{2}, which is in the direction of the vector $4 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and passes through the point with coordinates $(9,1,0)$.

The straight line L_{3} is perpendicular to both L_{1} and L_{2}, and meets L_{1} and L_{2} at the points P and Q, respectively.

Find the coordinates of P and Q.
\square $P(4,0,1), Q(5,2,-1)$

Question 152 (*****)
The straight line l_{1}, where λ is a scalar parameter, has vector equation

$$
\mathbf{r}=10 \mathbf{i}+8 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}) .
$$

The points $A(4,1,3)$ and $B(6,5,-3)$ lie on the straight line l_{2}.
a) Given that l_{1} and l_{2} lie on the same plane, show that l_{1} is perpendicular to l_{2}.

The points C and D lie on l_{1} so that the resulting quadrilateral $A C B D$ is a kite, whose line of symmetry is l_{2}.
b) Given further that the area of the kite is $8 \sqrt{42}$ square units, determine the possible coordinates of the points C and D.

$$
\frac{\square, \frac{\mathbf{r}=4 \mathbf{i}+\mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})}{},|C D|=8 \sqrt{3}}{\square C(9,7,4) \& D(1,-1,-4) \text { in any order }},
$$

\square
\square

Question 153 (*****)
The straight line L_{1} passes through the points A and B, whose respective position vectors relative to a fixed origin O are

The point C has position vector $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$.
The straight line L_{2} passes through C and is parallel to L_{1}.

The points P and Q both lie on L_{2} so that $|C P|=|C Q|=2|A B|$.

Find the area of the quadrilateral with vertices at A, B, P and Q.
\square , $15 \sqrt{2}$

Question 154 (*****)
Relative to a fixed origin O, the straight line l passes through the points $A(a,-3,6)$, $B(2, b, 2)$ and $C(3,3,0)$, where a and b are constants.
a) Find the value of a and the value of b, and hence find a vector equation of l.

The points P and Q lie on the l so that $|O P|=|O Q|$ and $\measuredangle P O Q=90^{\circ}$.
b) Find the coordinates of P and the coordinates of Q.
$\square, a=0, b=1, \quad \mathbf{r}=-3 \mathbf{j}+6 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}),(1,-1,4) \&(3,3,0)$

Created by T. Madas

Question 155 (*****)
The straight line l has vector equation

$$
\mathbf{r}=3 \mathbf{i}+3 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})
$$

where λ is a scalar parameter.

The point A has coordinates $(3,3,-3)$, relative to a fixed origin O.

The points P and Q lie on the l so that $|A P|=|A Q|$.

Given further that $\measuredangle P A Q=90^{\circ}$, find the coordinates of P and the coordinates of Q.

Question 156 (*****)
In the acute triangle $A B C$ the following information is given.

- The point P lies on $A B$ so that $A P: P B=1: 2$.
- The point Q lies on $A C$ so that $A Q: Q C=1: 3$.
- The point D is the intersection of $C P$ and $B Q$.

The straight line through A and D is extended so that it meets $B C$ at the point R. Determine the ratio $B R: R C$.

- Let $\begin{aligned} & \overrightarrow{A P}=\underline{b} \\ & \overrightarrow{A Q}=\underline{a} \end{aligned}$ - consequenily $\begin{aligned} & \overrightarrow{P B}=2 \underline{b} \\ & \overrightarrow{Q E}=3 \underline{a} \end{aligned}$ - mhor THese onto the Dhaitar apresir
$\begin{aligned} & \overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A C}=-3 b+4 a=4 a-3 \underline{b} \\ & \overrightarrow{B Q}=\overrightarrow{B A}+\overrightarrow{A Q}=-3 b+a=a-3 \underline{b} \\ & \overrightarrow{C P}=\vec{C}+\overrightarrow{A B}=-4 \underline{a}+b \end{aligned}$ NEXT we look AT THE vitwor $\overrightarrow{A D}$

, $B R: R C=2: 5$

Question 157 (*****)
Relative to a fixed origin O, the position vectors of two points A and B are denoted by \mathbf{a} and \mathbf{b}. The point P is the foot of the perpendicular from O to the straight line through A and B.

Show that if \mathbf{p} denotes the position vector of P, then

Question 158 (*****)
Relative to a fixed origin O located at the point with coordinates $(0,0,0)$, the points $A(8,1,4)$ and $B(4,-1,8)$ are given.

A circle, with centre at the point P and radius r, is drawn so that the three sides of the triangle $O A B$ are tangents to this circle.

Determine the coordinates of P and the exact value of r.
P P位, $\left., 0, \frac{9}{2}\right), r=\frac{3}{2} \sqrt{2}$

- Finaluy to find the rxous of The arat we consinhe - UNE OA: $\quad(x, y, z)=(0,0,0)+t(8,1,4)$ $(x, y, z)=(8, t, 4 t)$
- Duthace sampere of the revierte foint (bit,, , t)
$d^{2}=\left(8 t-\frac{9}{2}\right)^{2}+t^{2}+\left(4 t-\frac{9}{2}\right)^{2}$
$\frac{d}{d t}\left(d^{2}\right)=k\left(8 t-\frac{q}{2}\right)+2 t+B\left(d t-\frac{q}{2}\right)$
- sourc roe zonem
$0=8\left(8 t-\frac{9}{2}\right)+t+4\left(9 t-\frac{9}{2}\right)$
$0=64 t-36+t+16 t-18$
$54=81 t$
$t=54$
$t=\frac{54}{81}=\frac{6}{9}=\frac{2}{3}$
$\therefore d^{2}=\left(8 \times \frac{2}{3}-\frac{q}{2}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(4 \times \frac{2}{3}-\frac{q}{2}\right)^{2}$
$d^{2}=\left(\frac{16}{3}-\frac{4}{2}\right)^{2}+\frac{4}{9}+\left(\frac{8}{2}-\frac{9}{2}\right)^{2}$
$d^{2}=\left(\frac{32-27}{6}\right)^{2}+\frac{4}{9}+\left(\frac{16-27}{6}\right)^{2}=\left(\frac{5}{6}\right)^{2}+\frac{4}{9}+\left(\frac{11}{6}\right)^{2}$
$d^{2}=\frac{25}{36}+\frac{16}{36}+\frac{121}{36}=\frac{162}{36}=\frac{81}{18}=\frac{9}{2}$
$d^{2}=\frac{15}{4}=\frac{4}{4} \times 2$
$d=\frac{3}{2} \sqrt{2}$

Question 159 ($* * * * *$)
The points $A(-3,1,5), B(1,1,1)$ and $C(-1,5,-1)$ are three of the vertices of the kite $A B C D$, which is circumscribed by a circle.
a) Given that $|A B|=|A D|$ and $|B C|=|D C|$, find the exact coordinates of D.

A smaller circle is circumscribed by the kite, and a smaller kite similar to $A B C D$ is circumscribed by the smaller circle.
b) Determine in exact form the area of the smaller kite.

Created by T. Madas

Question 160 (*****)
The points $A(14,1,15), B(8,1,0)$ and $C(-16,7,-18)$ are three of the vertices of the kite $A B C D$. A circle of radius r is circumscribed by the kite.

Find the area of the kite and hence or otherwise determine, in exact simplified surd form, the value of r.
\square , area $=270, r=\frac{6}{5}(2 \sqrt{26}-\sqrt{29})$

Created by T. Madas

Question 161 (*****)
Use a vector method involving the scalar product to prove the validity of the Cosine Rule.

Question 162 (*****)
Three points in space A, B and K are such so that $\overrightarrow{K B}=2 \overrightarrow{A K}$.

Prove that if M is a fourth distinct arbitrary point in space, then

Question 163 ($* * * * *$)
Use a vector method involving the scalar product to prove the validity of Pythagoras' Theorem.

Question 164 (*****)
Find the modulus of $6 \mathbf{a}-\mathbf{b}$, given that the equation $|x \mathbf{a}+\mathbf{b}|=2 \sqrt{3}$ has repeated roots in x, where \mathbf{a} and \mathbf{b} are constant vectors.
\square , $4 \sqrt{13}$

Created by T. Madas

Question 165 (*****)

Use a vector method involving the scalar product to prove that an inscribed angle in a circle which corresponds to a diameter is always a right angle.

Question 166 (*****)

The vertices of the triangle $O A B$ have coordinates $A(6,-18,-6), B(7,-1,3)$, where O is a fixed origin.

The point N lies on $O A$ so that $O N: N A=1: 2$.

The point M is the midpoint of $O B$.
The point P is the intersection of $A M$ and $B N$.
By using vector methods, or otherwise, determine the coordinates of P.

