Question 1 (**)
Find the eigenvalues and the corresponding eigenvectors of the following 2×2 matrix.

$$
\mathbf{A}=\left(\begin{array}{ll}
7 & 6 \\
6 & 2
\end{array}\right)
$$

$$
\lambda=-2, \mathbf{u}=\alpha\binom{2}{-3}, \lambda=11, \mathbf{u}=\beta\binom{3}{2}
$$

\square

Question 2 (**)
A transformation in three dimensional space is defined by the following 3×3 matrix, where x is a scalar constant.

$$
\mathbf{C}=\left(\begin{array}{ccc}
2 & -2 & 4 \\
5 & x-2 & 2 \\
-1 & 3 & x
\end{array}\right)
$$

Show that \mathbf{C} is non singular for all values of x.

Created by T. Madas

Question 3 (**)
The 2×2 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 8 \\
8 & -11
\end{array}\right)
$$

a) Find the eigenvalues of \mathbf{A}.
b) Determine an eigenvector for each of the corresponding eigenvalues of \mathbf{A}
c) Find a 2×2 matrix \mathbf{P}, so that

$$
\mathbf{P}^{\mathrm{T}} \mathbf{A P}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

where λ_{1} and λ_{2} are the eigenvalues of \mathbf{A}, with $\lambda_{1}<\lambda_{2}$.

$$
\lambda_{1}=-15, \lambda_{2}=5, \mathbf{u}=\binom{1}{-2}, \mathbf{v}=\binom{2}{1}, \mathbf{P}=\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right)
$$

Question 4 (**)
Describe fully the transformation given by the following 3×3 matrix.

$$
\left(\begin{array}{ccc}
0.28 & -0.96 & 0 \\
0.96 & 0.28 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

rotation in the z axis, anticlockwise, by arcsin (0.96)

Question 5 (**)
\square

A transformation in three dimensional space is defined by the following 3×3 matrix, where k is a scalar constant.

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -2 & k \\
k & 2 & 0 \\
2 & 3 & 1
\end{array}\right)
$$

Show that the transformation defined by \mathbf{A} can be inverted for all values of k.

Question 6 (**)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 1 & -1 \\
0 & 2 & -2 \\
3 & 4 & -1
\end{array}\right)
$$

a) Find the inverse of \mathbf{A}.

The point P has been mapped by \mathbf{A} onto the point $Q(6,0,12)$.
b) Determine the coordinates of P.

Created by T. Madas

Question 7 (**)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 4 & 2
\end{array}\right)
$$

a) Find the inverse of \mathbf{A}.
b) Hence, or otherwise, solve the system of equations

$$
\begin{aligned}
x+2 y+z & =1 \\
2 x+3 y+z & =4 \\
3 x+4 y+2 z & =4 \\
\mathbf{A}^{-1} & =\left(\begin{array}{rrr}
-2 & 0 & 1 \\
1 & 1 & -1 \\
1 & -2 & 1
\end{array}\right), x=2, \quad y=1, \quad z=-3
\end{aligned}
$$

Created by T. Madas

Question 8 (**)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
-4 & -4 & 4 \\
-1 & 0 & 1 \\
-7 & -6 & 7
\end{array}\right)
$$

Given that \mathbf{I} is the 3×3 identity matrix, determine the values of the constant λ, so that $\mathbf{A}+\lambda \mathbf{I}$ is singular.

Created by T. Madas

Question 9 (**)
The 3×3 matrix \mathbf{A} is defined in terms of the scalar constant k by

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 3 \\
k & 2 & 4 \\
k-2 & 3 & k+7
\end{array}\right)
$$

Given that $|\mathbf{A}|=8$, find the possible values of k.
\square $k=-2, \quad k=-8$

Created by T. Madas

Question 10 (**)
Find the eigenvalues and the corresponding equations of invariant lines of the following 2×2 matrix

Question 11 (**)

$$
\mathbf{B}=\left(\begin{array}{ll}
4 & -5 \\
6 & -9
\end{array}\right) .
$$

A transformation in three dimensional space is defined by the following 3×3 matrix, where y is a scalar constant.

$$
\mathbf{M}=\left(\begin{array}{ccc}
y-3 & -2 & 0 \\
1 & y & -2 \\
-1 & y-1 & y-1
\end{array}\right)
$$

If $|\mathbf{M}|=0$, find the possible values of y.

Question 12 (**)
The 3×3 matrix \mathbf{M} is given below.

$$
\mathbf{M}=\left(\begin{array}{lll}
5 & 2 & 1 \\
0 & 1 & 1 \\
1 & 3 & 1
\end{array}\right)
$$

a) Find the inverse of \mathbf{M}.

The point A has been transformed by \mathbf{M} into the point $B(5,2,-1)$.
b) Determine the coordinates of A.

Created by T. Madas

Question 13 (**)
A non invertible transformation in three dimensional space is defined by the following 3×3 matrix, where a is a scalar constant.

Question 14 (**)
The 3×3 matrix \mathbf{M} is given below.

$$
\mathbf{M}=\left(\begin{array}{rrr}
3 & 2 & 1 \\
1 & -2 & -1 \\
1 & 0 & 3
\end{array}\right) .
$$

a) Find the inverse of \mathbf{M}.
b) Hence, or otherwise, solve the following system of equations.

$$
\begin{aligned}
& 3 x+2 y+z=7 \\
& x-2 y-z=1 \\
& x-3 z=11 \\
& \mathbf{M}^{-1}=\frac{1}{12}\left(\begin{array}{rrr}
3 & 3 & 0 \\
2 & -4 & -2 \\
-1 & -1 & 4
\end{array}\right), x=2, \quad y=-1, z=3
\end{aligned}
$$

Created by T. Madas

Question 15 (**)
A 3×3 matrix \mathbf{T} represents the linear transformation

$$
\begin{aligned}
& \mathbf{T}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): \mapsto\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \\
& \mathbf{T}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right): \mapsto\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right), \quad \mathbf{T}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right): \mapsto\left(\begin{array}{l}
6 \\
1 \\
5
\end{array}\right), \quad \mathbf{T}\left(\begin{array}{r}
2 \\
1 \\
-4
\end{array}\right): \mapsto\left(\begin{array}{l}
1 \\
1 \\
-1
\end{array}\right) .
\end{aligned}
$$

so that

Find the elements of \mathbf{T}.

Question 16 (**+)

Find the eigenvalues of the following 3×3 matrix.

a) Given that $\lambda=1$ is an eigenvalue of \mathbf{A} find the corresponding eigenvector.

Created by T. Madas

Question $18 \quad\left({ }^{* *}+\right.$)
A transformation in three dimensional space is defined by the following 3×3 matrix.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 3 & -1 \\
2 & 3 & 1 \\
4 & 0 & -5
\end{array}\right)
$$

a) Find the value of $\operatorname{det} \mathbf{A}$.

A cone with a volume of $26 \mathrm{~cm}^{3}$ is transformed by the matrix composition $\mathbf{A B}^{2}$.
b) Given that $\operatorname{det} \mathbf{B}=\frac{1}{13}$, calculate the volume of the transformed cone.

Created by T. Madas

Question 19 (**+)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 0 & 0 \\
1 & 1 & 1 \\
4 & -1 & 3
\end{array}\right)
$$

a) Show that \mathbf{A} only has two eigenvalues.
b) Find the eigenvectors associated with each of these eigenvalues.

Created by T. Madas

Question $20\left({ }^{* *}+\right.$)
The 3×3 matrices \mathbf{A} and \mathbf{B} are defined in terms of a scalar constant k by

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccc}
k & 9 & 2 \\
1 & k & 0 \\
5 & -1 & 1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{ccc}
1 & -3 & 2 \\
k & 2 & -1 \\
4 & 1 & 1
\end{array}\right) \\
& \text { a) Find an expression for } \operatorname{det} \mathbf{A} \text {, in terms of } k \text {. }
\end{aligned}
$$

b) Find the possible values of k given that $\mathbf{A B}$ is singular.

$$
\operatorname{det} \mathbf{A}=k^{2}-10 k-11, k=-1,11, \frac{1}{5}
$$

Question $21 \quad\left({ }^{* *}+\right.$)
It is given that \mathbf{A} and \mathbf{B} are 3×3 matrices that satisfy

$$
\operatorname{det}(\mathbf{A B})=20 \quad \text { and } \quad \operatorname{det}\left(\mathbf{A}^{-1}\right)=-4
$$

A solid S, of volume $5 \mathrm{~cm}^{3}$, is transformed by \mathbf{B} to produce an image S^{\prime}.
Find the volume of S^{\prime}.

Created by T. Madas

Created by T. Madas

Question 22 (***)

$$
\begin{array}{r}
x+3 y+2 z=14 \\
2 x+y+z=7 \\
3 x+2 y-z=7
\end{array}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

No credit will be given for alternative solution methods.

Question 23 (***)
A 2×2 matrix \mathbf{M} has eigenvalues $\lambda=-2$ and $\lambda=7$, with respective eigenvectors

$$
\mathbf{i}-\mathbf{j} \quad \text { and } \quad 4 \mathbf{i}+5 \mathbf{j} .
$$

Find the elements of \mathbf{M}.

Created by T. Madas

Question 24 (***)
The 3×3 matrix \mathbf{A} is given in terms of a constant k below.

$$
\mathbf{A}=\left(\begin{array}{lll}
k & 3 & 6 \\
1 & k & 1 \\
0 & 4 & 1
\end{array}\right)
$$

a) Show that \mathbf{A} has an inverse for all values of k.
b) Find \mathbf{A}^{-1} in terms of k.

Created by T. Madas

Question 25 (***)

The 2×2 matrix \mathbf{M} has eigenvalues -2 and 7 .

The respective eigenvectors of \mathbf{M} are $\binom{1}{-1}$ and $\binom{4}{5}$.

Find the entries of \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right)
$$

Question 26

$$
\begin{array}{r}
2 x+5 y+3 z=2 \\
x+2 y+2 z=4 \\
x+y+4 z=11
\end{array}
$$

[16:2] [acale

Solve the above simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

No credit will be given for alternative solution methods.

$$
x=12, \quad y=-5, \quad z=1
$$

Created by T. Madas

Question 28 (***)
The 3×3 matrix \mathbf{A} below, represents a transformation such that $\mathbb{R}^{3} \mapsto \mathbb{R}^{3}$.

$$
\mathbf{A}=\left(\begin{array}{rrr}
2 & -1 & 1 \\
4 & -3 & 0 \\
-3 & 3 & 1
\end{array}\right)
$$

a) Find the entries of \mathbf{A}^{3}.
b) Determine the entries of \mathbf{A}^{-1}.

Created by T. Madas

Question 30 (***)
Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 2 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
8 \\
8
\end{array}\right)
$$

No credit will be given for alternative solution methods.

Created by T. Madas

Question 31 (***)

The 3×3 matrix \mathbf{D} is given below in terms of the constants a, b, c and d.

$$
\begin{aligned}
& \mathbf{D}=\left(\begin{array}{lll}
a & 1 & b \\
c & 7 & 0 \\
3 & d & 2
\end{array}\right) . \\
& \mathbf{k} \quad \text { and } \quad \mathbf{u}=3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

are eigenvectors of \mathbf{D} with corresponding eigenvalues λ and μ.

Determine in any order the value of a, b, c, d, λ and μ.

$$
a=6, b=-1, c=0, d=-1, \lambda=3, \mu=7 \text {, }
$$

Question 32 (***)
The 2×2 matrix \mathbf{A} and the 3×3 matrix \mathbf{B} are given below.

The straight line L_{1} with equation

$$
y=x+k
$$

where k is a constant, is transformed by \mathbf{A}.
a) Find an equation for the image of L_{1} under \mathbf{A}.

The straight line L_{2} with Cartesian equation

$$
\frac{x-1}{2}=\frac{y-3}{2}=z-2
$$

is transformed by B.
b) Find a Cartesian equation for the image of L_{2} under \mathbf{B}.

$$
2 x+3 y=16 k, \frac{x-7}{7}=\frac{y-4}{4}=\frac{z-8}{5}
$$

($2 x+3 y=16 k$

Created by T. Madas

Question 33 (***)
The 3×3 matrix \mathbf{A} is given in terms of the scalar constant k by

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -1 & 3 \\
2 & 1 & k \\
0 & 1 & 1
\end{array}\right)
$$

a) Find, in terms of k, the inverse of \mathbf{A}.
b) State the condition that k must satisfy, so that the inverse matrix exists.

Now suppose that $k=4$.

The point P has been transformed by the matrix \mathbf{A} into the point $Q(2,8,3)$.
c) Determine the coordinates of P.

$$
\mathbf{A}^{-1}=\frac{1}{k-9}\left(\begin{array}{ccc}
k-1 & -4 & k+3 \\
2 & -1 & k-6 \\
-2 & 1 & -3
\end{array}\right), k \neq 9, P(1,2,1)
$$

Question 34 (***)
The 3×3 matrix \mathbf{M} is given below, in terms of a scalar constant k.

$$
\mathbf{M}=\left(\begin{array}{rrr}
k & 0 & 2 \\
4 & 3 & 2 \\
-2 & -1 & 0
\end{array}\right)
$$

a) Show that $\lambda_{1}=1$ is an eigenvalue of \mathbf{M} for all values of k.
b) Given that $\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$ is an eigenvector of \mathbf{M} with corresponding eigenvalue $\lambda_{2} \neq 1$, find the values of λ_{2} and the value of k.
c) Find the value of the third eigenvalue of \mathbf{M}.

Created by T. Madas

Question 35 (***)

The 3×3 matrices \mathbf{A} and \mathbf{B} are given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

a) Describe geometrically the transformations given by each of the two matrices.

The matrix \mathbf{C} is defined as the transformation defined by the matrix \mathbf{A}, followed by the transformation defined by the matrix \mathbf{B}
b) Describe geometrically the transformation represented by \mathbf{C}.
\qquad $\mathrm{A}:$ reflection in the plane $y=z$
B : reflection in the $x z$ plane, C: rotation in the x axis, 90°, anticlockwise

Created by T. Madas

Created by T. Madas

Question 36 (***)

$$
\begin{aligned}
x+3 y+5 z= & 6 \\
6 x-8 y+4 z= & -3 \\
3 x+11 y+13 z= & 17
\end{aligned}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

V \square $x=-\frac{1}{2}, y=\frac{1}{2}, z=1$

Question 37 (***)
The matrix $\mathbf{A}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ and the matrix $\mathbf{B}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ are defined as

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 45^{\circ} & -\sin 45^{\circ} \\
0 & \sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right)
$$

Describe geometrically the transformations given by each of these matrices.
State in each case the equation of the line of invariant points.
\square, \mathbf{A} : shear parallel to y axis, $(1,0) \mapsto(3,1)$,
B: rotation in the x axis, 45°, anticlockwise, A:x=0, B:y=z=0, i.e. x axis

Created by T. Madas

Question 38 (***)
Find the eigenvalues and the corresponding eigenvectors of the following 2×2 matrix.

$$
\begin{aligned}
\mathbf{M}= & \left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right) . \\
& \lambda=-1, \mathbf{u}=\alpha\binom{3}{-2}, \lambda=4, \mathbf{u}=\beta\binom{1}{1}
\end{aligned}
$$

Created by T. Madas

Question 39 (***)
A transformation of the $x-y$ plane is represented by the following 2×2 matrix.

$$
\mathbf{D}=\left(\begin{array}{ll}
-5 & 9 \\
-4 & 7
\end{array}\right)
$$

The straight line with equation of the form $y=a x$, where a is the gradient, is in the direction of the eigenvector of \mathbf{D}.
a) Find the equation of this straight line, stating whether this line is an invariant line or a line of invariant points.
b) Show that all the straight lines of the form $y=a x+c$, where c is a constant, remain invariant under the transformation represented by \mathbf{D}.

Created by T. Madas

Question 40 (***)

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\left(\begin{array}{rrr}
1 & 1 & -3 \\
2 & 1 & 4 \\
5 & 2 & 16
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
4
\end{array}\right)
$$

V

$x=-10, \quad y=19, \quad z=1$

Question 41

The 3×3 matrix \mathbf{M} is given below.

$$
\mathbf{M}=\left(\begin{array}{rrr}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Mdescribes two consecutive linear transformations of 3 dimensional space, which can be carried out in any order.

Describe geometrically each these two transformations.

Created by T. Madas

Question 42 (***)

The system of simultaneous equations

$$
\begin{array}{r}
x+y+2 z=2 \\
x+2 y+z=2 \\
2 x+a y+5 z=b
\end{array}
$$

where a and b are constants, does not have a unique solution, but it is consistent.
a) Determine the value of a and the value of b.
b) Show that the general solution of the system can be written as
where t is a parameter.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2-3 t \\
t \\
t
\end{array}\right)
$$

where t is a parameter.

Question 43 (***)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
2 & -5 & 0 \\
-5 & -1 & 3 \\
0 & 3 & -6
\end{array}\right)
$$

As \mathbf{A} is a symmetric matrix, find the orthogonal 3×3 matrix \mathbf{P} and a diagonal 3×3 matrix \mathbf{D} such that $\mathbf{P}^{\mathrm{T}} \mathbf{A P}=\mathbf{D}$.

$$
\mathbf{P}=\left(\begin{array}{ccc}
-\frac{5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\
\frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} \\
1 & 1 & -3
\end{array}\right), \mathbf{D}=\left(\begin{array}{rrr}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -8
\end{array}\right)
$$

Created by T. Madas

Question 44 (***)
Find the eigenvalues and the corresponding eigenvectors of the following 3×3 matrix.

$$
\begin{array}{r}
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right) . \\
\lambda_{1}=0, \quad \mathbf{u}=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right), \quad \lambda_{2}=1, \quad \mathbf{v}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \quad \begin{array}{l}
\lambda_{3}=3, \quad \mathbf{w}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
\end{array}
\end{array}
$$

Question 45 (***)
A linear transformation T in the $x-y$ plane consists of a reflection about the straight line with equation

$$
y=x \tan \alpha^{\circ}
$$

followed by an anticlockwise rotation about the origin O, by an angle of β°.

By considering matrix compositions, or otherwise, describe T geometrically.
reflection in the line $y=\tan \left(\alpha^{\circ}+\frac{\beta^{\circ}}{2}\right)$

Question 46 (***)

$$
\begin{array}{r}
x+3 y+2 z=13 \\
3 x+2 y-z=4 \\
2 x+y+z=7
\end{array}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

No credit will be given for alternative solution methods.

Created by T. Madas

Question 47 (***)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
3 & 1 & -3 \\
2 & 4 & 3 \\
-4 & 2 & -1
\end{array}\right)
$$

The matrix \mathbf{A} is non singular.
a) Evaluate $\mathbf{A}^{2}-\mathbf{A}$.
b) Show clearly that

$$
\mathbf{A}^{-1}=\frac{1}{20}[\mathbf{A}-\mathbf{I}] .
$$

(a) $A^{2}=\left(\begin{array}{lll}3 & 1 & -3 \\ 2 & -3 & 3 \\ 4 & 2 & -3 \\ 4 & 2 & -1\end{array}\right)\left(\begin{array}{lll}4 & 2 & -1\end{array}\right)=\left(\begin{array}{ccc}23 & 1 & -3 \\ 2 & 4 & 3 \\ -4 & 4 & 3 \\ 1 & 2 & 19\end{array}\right)$
$\therefore A^{2}-A=\left(\begin{array}{ccc}23 & 1 & -3 \\ 2 & 24 & 3 \\ -4 & 2 & 9\end{array}\right)-\left(\begin{array}{ccc}3 & 1 & -3 \\ 2 & 4 & 3 \\ 4 & 2 & -1\end{array}\right)=\left(\begin{array}{ccc}20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20\end{array}\right)=20 I$
(b) $A^{2}-A=20 I$
$A^{-1} A^{2}-A^{-1} A=A^{-1}(205)$
$\therefore A^{-1}=\frac{1}{20}(A-I)$

$A-I=20 A^{-t} \quad A=$ revero

Created by T. Madas

Question 48 (***)
The 2×2 matrix \mathbf{P} is defined in terms of x, where $x \neq 1$.

$$
\mathbf{P}=\left(\begin{array}{ll}
2 & x \\
1 & 3
\end{array}\right)
$$

a) Find in its simplest form the matrix $\mathbf{P P}^{\mathrm{T}}-\mathbf{P}^{\mathrm{T}} \mathbf{P}$.
b) Show clearly that $\operatorname{det}\left(\mathbf{P P}^{\mathrm{T}}-\mathbf{P}^{\mathrm{T}} \mathbf{P}\right)<0$.

$$
\mathbf{P P}^{\mathrm{T}}-\mathbf{P}^{\mathrm{T}} \mathbf{P}=\left(\begin{array}{cc}
x^{2}-1 & x-1 \\
x-1 & 1-x^{2}
\end{array}\right)
$$

Created by T. Madas

Question 49 (***)

$$
\left(\begin{array}{lll}
2 & 5 & 3 \\
1 & 2 & 2 \\
1 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
10
\end{array}\right)
$$

Show that the above system of simultaneous equations ...
a) ... does not have a unique solution.
b) ... is consistent and the general solution can be written as

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
16-4 \lambda \\
\lambda-6 \\
\lambda
\end{array}\right)
$$

where λ is a scalar parameter.

Created by T. Madas

Question 50 (***)
The 3×3 matrix \mathbf{A} is given below, in terms of a scalar constant k.

$$
\mathbf{A}=\left(\begin{array}{ccc}
k & 0 & 1 \\
-11 & k-3 & 9 \\
-11 & 0 & k
\end{array}\right) .
$$

a) Given that \mathbf{A} is singular, find the value of k.
b) Given instead that $\lambda=2$ is an eigenvalue of \mathbf{A}, determine the value of k on this occasion.

Created by T. Madas

Question 51 (***)
Three planes, the equations of which are given below, intersect along a straight line L.

$$
\begin{array}{r}
x+2 y+3 z=2 \\
2 x+3 y+z=3 \\
3 x+4 y-z=k
\end{array}
$$

Show, by reducing an augmented matrix into row echelon form, that the equation of L can be written in the form
where t is a scalar parameter.

$$
\mathbf{r}=\mathbf{j}+t(7 \mathbf{i}-5 \mathbf{j}+\mathbf{k}),
$$

Created by T. Madas

Question 52 (***)
Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 3 \\
3 & 5 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

No credit will be given for alternative solution methods.

Show, by reducing the system into row echelon form, that the solution can be written in the form

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25
\end{aligned}
$$

Question 54 (***)
The 3×3 matrix \mathbf{R} is defined by

$$
\mathbf{R}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The image of the straight line L, when transformed by \mathbf{R}, is the straight line with Cartesian equation

$$
\frac{x+2}{3}=\frac{y-1}{2}=\frac{z-1}{4} .
$$

Find a Cartesian equation for L.

Created by T. Madas

Question 55 (***)

The 3×3 matrices \mathbf{A} and \mathbf{B} are given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

a) Describe geometrically the transformations given by each of the two matrices.

The matrix \mathbf{C} is defined as the transformation defined by the matrix \mathbf{A}, followed by the transformation defined by the matrix \mathbf{B}
b) Describe geometrically the transformation represented by \mathbf{C}.
\square A: rotation about x axis, 90° anticlockwise, $\mathbf{B}:$ reflection in the $x z$ plane,
$\mathbf{C}:$ reflection in the plane $y=z$

Question 56 (***)
The vectors \mathbf{u}, \mathbf{v} and \mathbf{w} are defined as

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
8
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
10 \\
5 \\
a
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
-2 \\
1 \\
2
\end{array}\right]
$$

where a is a scalar constant.

Given that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly dependent, determine the value of a and hence express \mathbf{u} in terms of \mathbf{v} and \mathbf{w}.

Created by T. Madas

Question 57 (***)
The 3×3 matrices \mathbf{A} and \mathbf{B}, are given in terms of the constants k and h below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 2 & 1 \\
2 & k & 4 \\
3 & 2 & -1
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{rrr}
15 & -4 & -1 \\
h & 4 & 2 \\
17 & -4 & -3
\end{array}\right) \text {. }
$$

a) Find the matrix composition $\mathbf{A B}$, in terms of k and h.

It is further given that $\mathbf{A B}=\lambda \mathbf{I}$ for some values of k and h.
b) Find the value of each of the constants λ, k and h.
c) Deduce \mathbf{A}^{-1}, for the values of λ, k and h, found in part (b).

$$
\mathbf{A B}=\left(\begin{array}{ccc}
2 h+32 & 0 & 0 \\
h k+98 & 4 k-24 & 2 k-14 \\
2 h+28 & 0 & 4
\end{array}\right), \lambda=4, h=14, k=7
$$

$$
\mathbf{A}^{-1}=\frac{1}{4}\left(\begin{array}{rrr}
15 & -4 & -1 \\
-14 & 4 & 2 \\
17 & -4 & -3
\end{array}\right)
$$

Created by T. Madas

Question 58 (***)
The 2×2 matrix $\mathbf{A}=\left(\begin{array}{ll}7 & 6 \\ 6 & 2\end{array}\right)$ is given.

Use the Caley-Hamilton theorem to show that

$$
\mathbf{A}^{4}=\lambda \mathbf{A}+\mu \mathbf{I}
$$

where \mathbf{I} is 2×2 identity matrix.

Created by T. Madas

Question 59 (***+)
A system of equation is given in matrix form below

$$
\left(\begin{array}{ccc}
t & 2 & 3 \\
2 & 3 & -t \\
3 & 5 & t+1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),
$$

where t is an integer constant, and a, b and c are real constants.

The system of equations does not have a unique solution, but it is consistent.

Created by T. Madas

Question $60 \quad\left({ }^{* * *}+\right.$)
Express the following 3×3 determinant as the product of three linear factors.

Question 61 (***+)
Find the eigenvalues and the corresponding eigenvectors of the following 3×3 matrix.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 4 \\
2 & 3 & 2
\end{array}\right)
$$

$\lambda_{1}=-1, \quad \mathbf{u}=\left(\begin{array}{r}-3 \\ 1 \\ 1\end{array}\right), \quad \lambda_{2}=-2, \quad \mathbf{v}=\left(\begin{array}{r}4 \\ 4 \\ -5\end{array}\right)$, \square

Created by T. Madas

Question $62 \quad\left({ }^{* * *}+\right.$)
The 3×3 matrix \mathbf{A} is defined in terms of a scalar constant k as

$$
\mathbf{A}=\left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & 1 \\
1 & 1 & k
\end{array}\right)
$$

a) Find \mathbf{A}^{-1}, in terms of k.
b) Hence solve the following simultaneous equations

$$
\begin{array}{r}
2 x-y+z=1 \\
3 y+z=2 \\
x+y+2 z=2
\end{array}
$$

$$
\mathbf{A}^{-1}=\frac{1}{6(k-1)}\left(\begin{array}{ccc}
3 k-1 & k+1 & -4 \\
1 & 2 k-1 & -2 \\
-3 & -3 & 6
\end{array}\right), \quad x=\frac{1}{2}, \quad y=\frac{1}{2}, \quad z=\frac{1}{2}
$$

Created by T. Madas

Question 63 (***+)
The 3×3 matrix \mathbf{A} is defined in terms of a scalar constant k by

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -2 & 2 \\
k & 1 & k-1 \\
2 & 2 k-1 & 2-k
\end{array}\right)
$$

a) Show that $\operatorname{det} \mathbf{A}$ is independent of k.
b) Determine, with full justification, whether the vectors

$$
\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}, \quad-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k} \text { and } 2 \mathbf{i}+\mathbf{j}
$$

are linearly dependent or linearly independent.

The equations of three planes are given below.

$$
\begin{array}{r}
x-2 y+2 z=2 \\
-2 x+y-5 z=3 \\
2 x-3 y+4 z=6
\end{array}
$$

c) Determine, with full justification, the geometrical configuration of these three planes.
linearly independent, all 3 planes meet at a single point

Created by T. Madas

Created by T. Madas

Question 64 (***+)
By using elementary row and column operations, or otherwise, factorize the following determinant completely.

The 3×3 matrices \mathbf{A} and $\mathbf{A B}$ are given below.

a) Find the inverse of $\mathbf{A B}$.
b) Hence determine the inverse of \mathbf{B}.

Created by T. Madas

Question $66 \quad(* * *+)$
The 3×3 matrix \mathbf{A} is defined by

$$
\mathbf{A}=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

a) Describe geometrically the transformation given by \mathbf{A}.

The 3×3 matrix \mathbf{B} represents a rotation of 180° about the line $x=z, y=0$.
b) Determine the elements of \mathbf{B}.

The 3×3 matrix \mathbf{C} is represents the transformation defined by \mathbf{B}, followed by the transformation defined by \mathbf{A}.
c) Describe geometrically the transformation represented by \mathbf{C}.

Created by T. Madas

Question 67 (***)
The 3×3 matrix \mathbf{A} is given below.
-2

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 1 & 0 \\
3 & -3 & 1 \\
0 & 3 & 2
\end{array}\right)
$$

a) Show that

$$
13 \mathbf{A}-\mathbf{A}^{3}=15 \mathbf{I}
$$

b) Hence find an expression for \mathbf{A}^{-1} in terms of other matrices.
c) Use this expression to find \mathbf{A}^{-1}.

$$
\mathbf{A}^{-1}=\frac{1}{15}\left(13 \mathbf{I}-\mathbf{A}^{2}\right), \mathbf{A}^{-1}=\frac{1}{15}\left(\begin{array}{rrr}
9 & 2 & -1 \\
6 & -2 & 1 \\
-9 & 3 & 6
\end{array}\right)
$$

Created by T. Madas

Question $68 \quad\left({ }^{* * *}+\right.$)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 5 & 4 \\
4 & 4 & 3
\end{array}\right)
$$

a) Verify that $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ is an eigenvector of \mathbf{A} and state the corresponding eigenvalue.
b) Show that -3 is an eigenvalue of \mathbf{A} and find the corresponding eigenvector.c) Given further that $\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$ is and D such that is another eigenvector of \mathbf{A}, find 3×3 matrices \mathbf{P} $\mathbf{D}=\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}$.
$\lambda=9,\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$,
$\mathbf{D}=\left(\begin{array}{rrr}9 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3\end{array}\right)$,
$\mathbf{P}=\frac{1}{3}\left(\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right)$

Created by T. Madas

Question 69 (***+)
A system of equations is given below in terms of the scalar parameters t and s.

$$
\begin{aligned}
& 2 x+y+3 z=t+1 \\
& 5 x-2 y+(t+1) z=3 \\
& t x+2 y+4 z=s
\end{aligned}
$$

a) Show that if $t=-5$ or $t=2$, the system does not have a unique solution.
b) Determine the value of s is the system is to have infinite solutions with $t=2$.

$$
s=4
$$

Created by T. Madas

Question $70 \quad$ (***+)
The 3×3 matrix \mathbf{A} is defined in terms of a scalar constant k by

$$
\mathbf{A}=\left(\begin{array}{lll}
k & 8 & 1 \\
1 & 1 & 1 \\
3 & 4 & 1
\end{array}\right)
$$

The straight line L is a line of invariant points under \mathbf{A}.
Determine, in any order, ...
a) \ldots the value of k.
b) ... the Cartesian equation of L, giving the answer in the form

$$
\frac{x}{l}=\frac{y}{m}=\frac{z}{n}
$$

where l, m and n are integers to be found.

$$
k=8, \frac{x}{4}=\frac{y}{-3}=\frac{z}{-4}
$$

Created by T. Madas

Question 71 (${ }^{* * *+\text {) }) ~}$
The three planes defined by the equations

$$
\begin{array}{r}
x+2 y+z=2 \\
2 x+a y+z=1 \\
x+y+2 z=b
\end{array}
$$

where a and k are constants, intersect along a straight line L.

Determine an equation of L.
\qquad , $\mathbf{r}=(6-3 t) \mathbf{i}+(t-2) \mathbf{j}+t \mathbf{k}$

Created by T. Madas

Question 72 (***+)
The 3×3 matrices \mathbf{A} and \mathbf{B} are given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
5 & 2 & 4 \\
7 & 3 & 2 \\
4 & 5 & 3
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{rrr}
-1 & 14 & -8 \\
-13 & -1 & 18 \\
23 & -17 & 1
\end{array}\right)
$$

Find an expression for $\mathbf{A B}$ and use it to solve the following system of equations.

$$
\begin{array}{r}
5 x+2 y+4 z=10 \\
7 x+3 y+2 z=21 \\
4 x+5 y+3 z=5
\end{array}
$$

Question 73 (***+)
The 3×3 matrices \mathbf{A} and \mathbf{B}, are defined in terms of the scalar constants x as follows.

$$
\mathbf{A}=\left(\begin{array}{ccc}
x^{2} & x & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ccc}
x & 0 & 2 \\
0 & x & 9 \\
0 & 1 & x
\end{array}\right)
$$

a) Find an expression for $\mathbf{A B}$, in terms of x.
b) By considering the properties of the determinants, or otherwise, find $\operatorname{det}(\mathbf{A B})$ in fully factorized form.

Created by T. Madas

Question 74 (***+)
Factorize fully the following 3×3 determinant.

Created by T. Madas

Question 75 (***+)

The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
4 & -1 & 1 \\
-1 & 6 & -1 \\
1 & -1 & 4
\end{array}\right) .
$$

a) Show that $\lambda=7$ is an eigenvalue of \mathbf{A} and find the other two eigenvalues.
b) Find the eigenvector associated with the eigenvalue $\lambda=7$.

The other two eigenvectors of \mathbf{A} are

$$
\mathbf{u}=\mathbf{i}-\mathbf{k} \quad \text { and } \quad \mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k},
$$

where the eigenvalue of \mathbf{v} is greater than the eigenvalue of \mathbf{u}.
c) Find a 3×3 matrix \mathbf{P} and a 3×3 diagonal matrix \mathbf{D} such that $\mathbf{D}=\mathbf{P}^{\mathrm{T}} \mathbf{A P}$.

Created by T. Madas

Question 76 (***+)

$$
\begin{array}{r}
x+y-2 z=2 \\
3 x-y+6 z=2 \\
6 x+5 y-9 z=k
\end{array}
$$

a) Show that the system of equations does not have a unique solution.
b) Show that there exists a value of k for which the system is consistent.
c) Show, by reducing the system into row echelon form, that the consistent solution of the system can be written as

$$
x=1-t, y=3 t+1, z=t
$$

where t is a scalar parameter.

Created by T. Madas

Question 77 (***+)

$$
\begin{aligned}
4 x+2 y+7 z & =2 \\
10 x-4 y-5 z & =50 \\
4 x+3 y+9 z & =-2
\end{aligned}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\square, x=4, y=0, z=-2
$$

Created by T. Madas

Question 78 (***+)
Factorize fully the following 3×3 determinant.

Created by T. Madas

Question 79 (***+)
The 3×3 matrices \mathbf{A} and \mathbf{B} are given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 2 & -4 \\
0 & 6 & -2 \\
1 & 0 & -3
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{rrr}
9 & -3 & -10 \\
1 & 1 & -2 \\
3 & -1 & -6
\end{array}\right)
$$

a) Find the matrix composition $\mathbf{A B}$.

The point P has been transformed by \mathbf{A} into the point $Q(30,18,20)$.
b) Determine the coordinates of P.

Created by T. Madas

Question $80 \quad(* * *+)$
The 2×2 matrix \mathbf{A} maps $\mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ and is given by

$$
\mathbf{A}=\left(\begin{array}{rr}
4 & 3 \\
-3 & -2
\end{array}\right)
$$

a) Determine an equation of an invariant straight line under \mathbf{A}.
b) Find an equation of a straight line of invariant points under \mathbf{A}.

$$
y=-x+c, y=-x
$$

\square

Created by T. Madas

Question $81 \quad\left({ }^{* * *}+\right.$)
The 2×2 matrix \mathbf{A} is defined below in terms of the scalar constants p, q and r.

$$
\mathbf{A}=\left(\begin{array}{ll}
4 & p \\
q & r
\end{array}\right)
$$

It is further given that \mathbf{A} represents a shear under which the point $(2,2)$ is invariant.

Show that all straight lines of the form

$$
y=x+c
$$

where c is a constant, are invariant under the shear represented by \mathbf{A}.

Created by T. Madas

Question $82 \quad(* * *+)$
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
-1 & k & 0 \\
k & 0 & 2 \\
0 & 2 & 1
\end{array}\right) .
$$

a) If one of the eigenvalues of \mathbf{A} is 3 , find the possible values of k.
b) Determine the other two eigenvalues of \mathbf{A}, given that $k>0$.
c) Find an eigenvector corresponding to the eigenvalue 3 .

$$
\square, k= \pm 2, \quad \lambda=0, \quad \lambda=-3, \quad \mathbf{v}=\alpha(\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})
$$

Created by T. Madas

Question 83 (***+)
Consider the following matrix equation

$$
\left(\begin{array}{ccc}
k & 1 & 0 \\
3 & -2 & k-3 \\
10 k & 3 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
a \\
b \\
15
\end{array}\right),
$$

where a, b and k are scalar constants.
a) Find the values of k for which the equation has a unique solution.

It is further asserted that $k=2$.
b) Express a in terms of b if the matrix equation is to be consistent.
c) Show that if $a=1$ and $b=4$, the solution of the matrix equation is
where t is a scalar parameter.

Created by T. Madas

Question $84 \quad\left({ }^{* * *}+\right.$)
The 3×3 matrix \mathbf{A} is defined as

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & a & 0 \\
2 & b & 0 \\
c & 0 & 1
\end{array}\right)
$$

where a, b and c are scalar constants.
a) If $\mathbf{A}=\mathbf{A}^{-1}$, find the value of a, b and c,
b) Evaluate the determinant of \mathbf{A}
c) Determine an equation of a plane of invariant points under the transformation described by \mathbf{A}.
$a=-4, b=-3, c=0, \operatorname{det} \mathbf{A}=-1, \quad$ plane: $x=2 y$

Question $85 \quad(* * *+)$

$$
\begin{aligned}
x+5 y+7 z & =41 \\
5 x-4 y+6 z & =2 \\
7 x+9 y-3 z & =k
\end{aligned}
$$

Find the solution of the system of simultaneous equations above, giving the answers in terms of the constant k.
$\square, x=\frac{k-27}{13}, y=\frac{k+77}{26}, \quad z=\frac{105-k}{26}$

Question 86 (***+)
The matrices \mathbf{A} and \mathbf{B}, where k is a scalar constant, are given below.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
4 & k & -2 \\
0 & 0 & -1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{ccc}
-k & 2 & k-4 \\
4 & -1 & -2 \\
0 & 0 & k-8
\end{array}\right)
$$

a) Find $\mathbf{A B}$ in its simplest form.
b) Hence, or otherwise, find the inverse of \mathbf{A} in terms of k, stating the condition for its existence.
c) Use the inverse of \mathbf{A} to solve the equation $\mathbf{A x}=\mathbf{c}$ where

Question 87 (****)
A 3×3 matrix \mathbf{A} has characteristic equation

$$
2 \lambda^{3}-7 \lambda^{2}+\lambda+10=0
$$

a) Show that $\lambda=2$ is an eigenvalue of \mathbf{A} and find the other two eigenvalues.
b) Show further that

$$
2 \mathbf{A}^{4}+71 \mathbf{A}^{2}=27 \mathbf{A}^{3}+100 \mathbf{I}
$$

An eigenvector corresponding to $\lambda=2$ is \mathbf{u}.

It is further given that $\mathbf{u}=\left(\begin{array}{r}2 \\ -4 \\ -5\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}0.4 \\ -0.8 \\ -1\end{array}\right) \quad$ and $\quad \mathbf{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
c) Evaluate each of the following expressions.
i. Au .
ii. $\quad A^{2} v$.
d) Solve the equation $\mathbf{A x}=\mathbf{v}$.

$\mathbf{A u}=\left(\begin{array}{c}4 \\ -8 \\ -10\end{array}\right)$,
$\mathbf{A}^{2} \mathbf{v}=\left(\begin{array}{c}1.6 \\ -3.2 \\ -4\end{array}\right)$,
$\mathbf{x}=\left(\begin{array}{r}0.2 \\ -0.4 \\ -0.5\end{array}\right)$

a) O्NNG THE FACET THAT $(1-2)$ is + fitual $\begin{aligned} \Rightarrow & 2 \lambda^{3}-7 \lambda^{2}+\lambda+m=0 \\ \Rightarrow & 2 \lambda^{2}(\lambda-2)-3 \lambda(\lambda-2)-5(\lambda-2)=0 \\ \Rightarrow & (\lambda-2)\left(2 \lambda^{2}-3 \lambda-5\right)=0 \\ \Rightarrow & (\lambda-2)(2 \lambda-5)(\lambda+1)=0 \\ & \lambda=<_{-1}^{2} \end{aligned}$ affenctrastic equation $\begin{aligned} & \Rightarrow 2 A^{2}-7 A^{2}+A+10 I=0 \\ & \Rightarrow 2 A^{3} A-7 A^{2} A+A A+10 I A=0 \\ & \Rightarrow 2 A^{4}-7 A^{2}+A^{2}+10 A=0 \\ & \Rightarrow 2 A^{4}-7 A^{5}+A^{2}+10\left[-2 A^{3}+7 A^{2}-107=0\right. \end{aligned}$	$\begin{aligned} & \Rightarrow 2 A^{4}-7 A^{3}+A^{2}-20 A^{3}+70 A^{2}-100 I=0 \\ & \Rightarrow 2 A^{4}-27 A^{3}+71 A^{2}-100 I=0 \\ & \Rightarrow 2 A^{4}+71 A^{2}=27 A^{3}+100 I \end{aligned}$ c) I) $\underline{A_{u}}=\lambda \underline{u}=2 \underline{u}=\left(\begin{array}{c}4 \\ - \\ 10\end{array}\right)$ $\text { II) } \begin{aligned} A^{2} v & =A^{2}\left(\frac{1}{5} \underline{u}\right)=\frac{1}{5} A(A u) \\ & =\frac{1}{5} A(2 \underline{4})=\frac{2}{5} A y \\ & =\frac{2}{5}\left(\begin{array}{c} 4 \\ -8 \\ -10 \end{array}\right)=\left(\begin{array}{c} 1 \\ -1.2 \\ -4 \end{array}\right) \end{aligned}$ d) $\begin{array}{l\|l} \text { d) } \Rightarrow A \underline{A}=\underline{v} & \Rightarrow 10 \underline{x}=\underline{y} \\ \Rightarrow \underline{A} \underline{x}=\frac{1}{5} \underline{u} & \Rightarrow \underline{x}=\frac{1}{6} \underline{u} \\ \Rightarrow 10 A \underline{u}=2 \underline{u} & \Rightarrow \underline{x}=\left(\begin{array}{c} 002 \\ -0.4 \\ -0.5 \end{array}\right) \end{array}$

Created by T. Madas

Created by T. Madas

$$
\begin{aligned}
x-2 y+a z & =5 \\
(a+1) x+3 y & =a \\
2 x+y+(a-1) z & =3
\end{aligned}
$$

a) Determine the two values of the constant a for which the above system of equations does not have a unique solution.
b) Show clearly that the system is consistent for one of these values and inconsistent for the other.

Question 89 (****)
Find in Cartesian form the image of the straight line with equation

$$
\frac{x-2}{3}=\frac{y+2}{4}=\frac{1-z}{2},
$$

under the transformation represented by the 3×3 matrix \mathbf{A}, shown below.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
x-3=\frac{y-3}{8}=\frac{1-z}{2}
$$

Created by T. Madas

Question 90 (****)
The 3×3 matrix \mathbf{C} represents a geometric transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$.

$$
\mathbf{C}=\left(\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

a) Find the eigenvalues and the corresponding eigenvectors of \mathbf{C}.
b) Describe the geometrical significance of the eigenvectors of \mathbf{C} in relation to T.

$$
\lambda=1, \alpha\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right), \lambda=4, \quad \beta\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad \gamma\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),
$$

$\lambda=1 \Leftrightarrow$ invariant line of points through the origin,
$\lambda=4 \Leftrightarrow$ invariant plane through the origin

Created by T. Madas

Question 91 ($* * * * *)$
A 3×3 determinant, Δ, is given below.

$$
\Delta=\left|\begin{array}{ccc}
n(n+1) & n+1 & -1 \\
0 & 1 & n \\
1 & -n-1 & 1
\end{array}\right|
$$

a) Show that

$$
\Delta=\left(a n^{2}+b n+c\right)^{2}
$$

where a, b and c are constants.
b) Show further that

$$
\Delta=[n(n+1)]^{2}+n^{2}+(n+1)^{2}
$$

c) Hence or otherwise express 24649 as the sum of three square numbers.

$$
\Delta=\left(n^{2}+n+1\right)^{2}, 24649=156^{2}+13^{2}+12^{2}
$$

Created by T. Madas

Question 92 (****)
0

$$
\begin{gathered}
3 x-y+5 z=5 \\
2 x+y-5 z=10 \\
x+y+k z=7
\end{gathered}
$$

where k is a constant.
a) Given that $k \neq-5$ find the unique solution of the system of equations.
b) Given instead that $k=-5$ show, by reducing the system into row echelon form, that the consistent solution of the system can be written as

$$
x=3, \quad y=4, z=0
$$

Question 93 (****)
The 3×3 matrix \mathbf{A}, where a is a scalar constant, is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
a & -1 & 1 \\
1 & 0 & -1 \\
3 & -2 & 1
\end{array}\right)
$$

a) Find the elements of \mathbf{A}^{-1}, in terms of a where appropriate.

The straight line L_{1} was mapped onto another straight line L_{2} by the following 3×3 matrix .

$$
\left(\begin{array}{rrr}
2 & -1 & 1 \\
1 & 0 & -1 \\
3 & -2 & 1
\end{array}\right)
$$

b) Given that L_{2} has vector equation

$$
[\mathbf{r}-(4 \mathbf{i}+\mathbf{j}+7 \mathbf{k})] \wedge(4 \mathbf{i}+\mathbf{j}+3 \mathbf{k})=\mathbf{0}
$$

find a vector equation for L_{1}.

$$
\mathbf{A}^{-1}=\frac{1}{2-2 a}\left(\begin{array}{ccc}
-2 & -1 & 1 \\
-4 & a-3 & a+1 \\
-2 & 2 a-3 & 1
\end{array}\right), \mathbf{r}=\mathbf{i}-2 \mathbf{j}+\lambda(3 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k})
$$

Created by T. Madas

Question 94 (****)
The 2×2 matrix \mathbf{D} shown below, represents a linear transformation in the $x-y$ plane.

$$
\mathbf{D}=\left(\begin{array}{rr}
-2 & -1 \\
0 & 1
\end{array}\right)
$$

The straight line with equation $y=m x$ is rotated by 90° about the origin under the transformation represented by \mathbf{D}.

Determine the possible values of m.

Question 95 (****)
The 2×2 matrix \mathbf{C} is given below.

$$
\mathbf{C}=\left(\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right)
$$

a) Find the eigenvalues of \mathbf{C} and their corresponding eigenvectors.
b) Find a 2×2 matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{C P}$ is a diagonal 2×2 matrix and evaluate $\mathbf{P}^{-1} \mathbf{C P}$ explicitly.
c) Hence show that

$$
\mathbf{C}^{7}=\left(\begin{array}{ll}
349526 & 349525 \\
699050 & 699051
\end{array}\right)
$$

$$
\lambda_{1}=1, \quad \mathbf{u}=\binom{1}{-1}, \quad \lambda_{2}=1, \quad \mathbf{v}=\binom{1}{2}, \quad \mathbf{P}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right)
$$

Question 96 (****)
Consider the system of simultaneous equations

$$
\begin{aligned}
k x+k y-z & =-1 \\
k y+2 z & =2 k \\
x+2 y+z & =1
\end{aligned}
$$

where the constant k can only take the values 0,1 and 2 .

Determine for each of the possible values of k whether the system ...
i. ... has a unique solution
ii. ... has no unique solution, but it is consistent.
iii. ... is inconsistent.

$$
a=0 \Rightarrow \text { incosistent }, a=1 \Rightarrow \text { no unique solution/consistent, }
$$

$$
a=2 \Rightarrow \text { unique solution }
$$

Question 97 ($* * * *$)
The 2×2 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{ll}
7 & 6 \\
6 & 2
\end{array}\right)
$$

A straight line with equation $y=m x$, where m is a constant, remains invariant under the transformation represented by \mathbf{A}.
a) Show that

$$
\begin{gathered}
7+6 m=\lambda \\
6+2 m=\lambda m
\end{gathered}
$$

where λ is a constant.
b) Hence find the two possible equations of this straight line.

$$
y=\frac{2}{3} x, y=-\frac{3}{2} x
$$

Question 98 (****)
A plane Π is defined parametrically by

$$
\mathbf{r}=\mathbf{i}+\mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-2 \mathbf{k})+\mu(\mathbf{i}-\mathbf{j}+\mathbf{k})
$$

where λ and μ are a scalar parameters.

Determine a Cartesian equation for the transformation of Π under the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
2 & 1 & 0
\end{array}\right)
$$

\square

$$
4 x+3 y-z=6
$$

Question 99 (****)
The 3×3 matrix \mathbf{C} is defined by

$$
\mathbf{C}=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Find, in Cartesian form, the image of the plane with Cartesian equation

$$
2 x+y-z=12
$$

under the transformation defined by \mathbf{C}.

Created by T. Madas

Question 100 (****)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- ... a reflection about the line $y=-x$, followed by
- a translation such that $(x, y) \mapsto(x+2, y+2)$.
a) Show that the matrix that represents T is given by the matrix

$$
\mathbf{T}=\left(\begin{array}{rrr}
0 & -1 & 2 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

b) Determine the invariant line under T.

Created by T. Madas

Question 101 (****)
The matrices \mathbf{A} and \mathbf{B} are defined as

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
0 & 0
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & k
\end{array}\right)
$$

where k is a scalar constant.
a) Without calculating $\mathbf{A B}$, show that $\mathbf{A B}$ is singular for all values of k.
b) Show that $\mathbf{B A}$ is non singular for all values of k.

When $k=-2$ the matrix BA represents a combination of a uniform enlargement with linear scale factor \sqrt{a} and another transformation T.
c) Find the value of a and describe T geometrically.
$\square, a=8$, rotation about O, clockwise, by 45°

Question 102 (****)
The equation of a plane Π is given by

$$
\mathbf{r}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

where λ and μ are parameters.

The plane Π is transformed to the plane Π^{\prime} by the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right)
$$

Find a Cartesian equation of Π^{\prime}.

Question 103 ($* * * *$)
The Cartesian equation of a plane Π is given by

$$
x+2 y+z=2
$$

The plane Π is transformed to the plane Π^{\prime} by the matrix

Find a Cartesian equation of Π^{\prime}.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 0 \\
1 & 2 & 4
\end{array}\right)
$$

Question 104 (****)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- \ldots a reflection about the line $y=-x$, followed by ...
- ... a translation such that $(x, y) \mapsto(x+a, y+b)$.

The transformation T is represented by the matrix \mathbf{T}.
a) Given the point $(1,1)$ is mapped to $(2,4)$, find the matrix \mathbf{T}.
b) Determine the equation of the image of the curve with equation $y=x^{2}$, under the transformation represented by \mathbf{T}.

$$
\mathbf{T}=\left(\begin{array}{rrr}
0 & -1 & 3 \\
-1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right), y^{2}-10 y+x+22=0
$$

\square
 Thtos $\left.\begin{array}{l}x=3-t^{2} \\ y=s-t\end{array}\right\}$ \square
$\Rightarrow t^{2}=y^{2}-10 y+25$
$\Rightarrow-t^{2}=-y^{2}+10 y-25$ $\Rightarrow 3-t^{2}=-y^{2}+10 y-22$
$\Rightarrow x=-y^{2}+10 y-22$ $\Rightarrow y^{2}-10 y+x+22=0$

Question 105 (****)
The 3×3 matrix \mathbf{A}, is defined in terms of a scalar constant k, below.

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 2 & 5 \\
3 & 3 & 4 \\
k & 4 & 3
\end{array}\right)
$$

a) If $k=3$, verify that \mathbf{A} maps every point of the three dimensional space onto the plane with Cartesian equation

$$
x-2 y+z=0
$$

b) If $k \neq 3$, determine the value k so that the transformation represented by \mathbf{A} has a line of invariant points, and state the Cartesian equation of this line.

Question 106 (****)
The 2×2 matrix \mathbf{M} satisfies $\mathbf{M}=\mathbf{P D P}^{-1}$ where

$$
\mathbf{P}=\left(\begin{array}{rr}
-1 & 4 \\
3 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{D}=\left(\begin{array}{cc}
1 & 0 \\
0 & 27
\end{array}\right)
$$

a) Determine the elements of \mathbf{M}.
b) State the eigenvalues, and the corresponding eigenvectors of \mathbf{M}.
c) Find an equation of the straight line of invariant points under the transformation described by \mathbf{M}.

It is further given that

$$
\mathbf{M}^{n}=\frac{1}{13}\left(\begin{array}{cc}
4 \times 3^{3 n+1}+1 & 4 \times 3^{3 n}-4 \\
3^{3 n+1}-3 & 3^{3 n}+12
\end{array}\right)
$$

d) Deduce that $3^{3 n+2}+4$ is divisible by 13 , for all positive integers n.

人) $\square, \square \mathbf{M}=\left(\begin{array}{rr}25 & 8 \\ 6 & 3\end{array}\right), \quad \begin{array}{lll}\lambda_{1}=1, \quad \lambda_{2}=27, \quad \mathbf{u}_{1}=4 \mathbf{i}+\mathbf{j}, \quad \mathbf{u}_{2}=-\mathbf{i}+3 \mathbf{j}\end{array}, \quad y=-3 x$

Created by T. Madas

Created by T. Madas

Question 107 ($* * * *$)
Factorize fully the following 3×3 determinant.

Question 108 (****)
A system of equations is given below

$$
\begin{aligned}
3 x+2 y-z & =10 \\
5 x-y-4 z & =17 \\
x+5 y+p z & =q
\end{aligned}
$$

where p and q are constants.
a) Find the value of p so that the above system does not have a unique solution.
b) Show that for this value of p the system is consistent if $q=3$.
c) Show that the general solution of the system can be written as

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+\lambda(9 \mathbf{i}-7 \mathbf{j}+13 \mathbf{k})
$$

where λ is a scalar parameter.

Question 109
The following three vectors are given.

$$
\mathbf{u}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right] .
$$

a) Show that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly dependent.
b) Find a linear relationship, with integer coefficients, between \mathbf{u}, \mathbf{v} and \mathbf{w}.

$$
\mathbf{u}=3 \mathbf{v}-4 \mathbf{w}
$$

Created by T. Madas

Created by T. Madas

Question 110 (****)

The 2×2 matrix \mathbf{A} is defined in terms of a constant k.

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 7 \\
4 & k
\end{array}\right)
$$

a) Given that $\binom{1}{1}$ is an eigenvector of \mathbf{A}, find.
i. ... the corresponding eigenvalue to the eigenvector.
ii. ... the value of k
b) Find another eigenvector and the corresponding eigenvalue of \mathbf{A}.

It is further given that $\mathbf{A}=\mathbf{P D P}^{-1}$, where \mathbf{D} is a diagonal matrix and \mathbf{P} is another matrix.
c) Write down possible forms for the matrices \mathbf{D} and \mathbf{P}.
d) Hence show clearly that

$$
\mathbf{A}^{7}=\left(\begin{array}{ll}
1739180 & 3043789 \\
1739308 & 3043661
\end{array}\right)
$$

$$
\lambda=9, k=5, \lambda=-2, \mathbf{u}=\binom{7}{-4}, \mathbf{D}=\left(\begin{array}{rr}
9 & 0 \\
0 & -2
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{rr}
1 & 7 \\
1 & -4
\end{array}\right)
$$

Question 111 (****)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & -1 & 1 \\
3 & -3 & 1 \\
3 & -5 & 3
\end{array}\right)
$$

a) Given that $\mathbf{u}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ i is an eigenvector of \mathbf{A}, find the corresponding eigenvalue.
b) Given that $\lambda=-2$ is an eigenvalue of \mathbf{A}, find a corresponding eigenvector \mathbf{v}.

The vector \mathbf{w} is defined as $\mathbf{w}=\mathbf{u}+\mathbf{v}$.
c) Determine the vector $\mathbf{A}^{7} \mathbf{w}$.

Question 112 (****)
The following four vectors are given.

$$
\mathbf{u}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

a) Show that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent.
b) Express \mathbf{p} in terms of \mathbf{u}, \mathbf{v} and \mathbf{w}.

$$
\mathbf{p}=2 \mathbf{u}-4 \mathbf{v}-7 \mathbf{w}
$$

Question 113 (****)
A plane Π has Cartesian equation

$$
2 x+3 y+4 z=24
$$

Determine a Cartesian equation for the transformation of Π under the matrix

$$
\left(\begin{array}{lll}
2 & 3 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

\square

$$
\text { , } x+3 y=24
$$

MERDO A $\begin{aligned} 2 x+3 y+4 z=2 x \quad \Rightarrow & A(12,0, n) \\ & B(9,8,0) \\ & C(0,96) \end{aligned}$ Tehnsform These thete poins $\left.\begin{array}{ccc} \left(\begin{array}{lll} 2 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}\right)\left(\begin{array}{ccc} 12 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 6 \end{array}\right) \\ 4 & 4 & 4 \\ 4 & 2 & 1 \end{array}\right)=\begin{array}{ccc} 24 & 24 & 6 \\ 0 & 0 & 6 \\ 12 & 0 & 6 \\ 4 & 4 & 4 \\ n^{\prime} & 3^{\prime} & c^{\prime} \end{array}$ NOD LOCLNO AT THE DIARCAM $\begin{aligned} & \overrightarrow{B^{\prime} A^{\prime}}=(24,0,6)-(24,0,0)=(2,0,12) \\ & B^{\prime} C^{\prime}=(6,6,6)-(24,0,0)=(8,6,0) \end{aligned}$ SCAlt THESt VEETORS a FIND GIMMON PERPANDICUITR $(0,0,1)$ \& $(3,1,1)$ Aet muraxely pretwotware to $n=(a, b, c)$ - (9a1) $\cdot(a, b, c)=0 \Rightarrow c=0$ - $(-3,1,1) \cdot(a, b, c)=0 \rightarrow-2 a+b+r=0$ $\Rightarrow-3 a+b=0$ $\Rightarrow b=3 a$ (Wit coons Hent usso The cooss Prosut thes) $\therefore n=(1,3,0)$

\square
Tenasform USNG THE MATDPX $\left(\begin{array}{lll}2 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{l}3 \lambda \\ 8-2 \lambda-4 \varphi \\ 3 \mu\end{array}\right)=\left(\begin{array}{l}6 x+24-6 \gamma-12 \mu+3 \mu \\ 3 \mu \\ 34+3 \mu\end{array}\right)=\left(\begin{array}{c}24-9 \mu \\ 3 \mu \\ 3 x+3 \mu\end{array}\right)$ EUMINATNG. TH+ PARAMETUSS $x=24-9 \mu$
$y=3 \mu$
$z=3+3 \mu$

Created by T. Madas

Question 114 (****+)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- ... a translation such that $(x, y) \mapsto(x+2, y+4)$, followed by ...
- ... an anticlockwise rotation about the origin by $\frac{\pi}{2}$.

Determine the coordinates of the invariant point under T.
\square , (-3,-1)

Created by T. Dadas

Created by T. Madas

Question 115 (****+)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

Question 116 (****+)
The 3×3 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
3 & 0 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

Find in Cartesian and parametric form the equation of the invariant line and the equation of the invariant plane under the transformation represented by \mathbf{A}.

$$
\mathbf{r}=\lambda \mathbf{i}+\lambda \mathbf{j}+\lambda \mathbf{k}, \quad x=y=z, \quad \mathbf{r}=(\lambda+\mu) \mathbf{i}+(\lambda+2 \mu) \mathbf{j}+\mu \mathbf{k}, \quad x-y+z=0
$$

Question 117 (****+)
The following four vectors are given.

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
3 \\
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
0
\end{array}\right]
$$

a) Show that these four vectors are linearly dependent.
b) Express \mathbf{p} in terms of \mathbf{u}, \mathbf{y} and \mathbf{w}.

$$
\mathbf{p}=\frac{3}{2} \mathbf{u}-\mathbf{v}+\frac{5}{2} \mathbf{w}
$$

\square

Created by T. Madas

Question 118 (${ }^{* * * *+)}$
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- ... a translation such that $(x, y) \mapsto(x+2, y-3)$, followed by ...
- ... a rotation about the origin, by $\frac{1}{2} \pi$, anticlockwise.

Show that under T, the curve with equation

$$
x^{2}-y^{2}=4 \text {, }
$$

is mapped onto the curve with equation

$$
x^{2}-y^{2}-6 x+4 y+9=0
$$

\square , proof
\square AlIENATUE-APPROACH

- OBTAN A ROUATION MATEIX in THE Dy Pante 16

- Substitutina wio tite equation of the colue
$\Rightarrow(y-2)^{2}-(3-x)^{2}=4$
$\Rightarrow y^{2}-4 y+4-x^{2}+6 x-9=4$
$\Rightarrow y^{2}-x^{2}-4 y+6 x-9=0$
$\Rightarrow x^{2}-y^{2}-6 x+4 y+9=0$

Question 119 (****+)
The 2×2 matrix \mathbf{C} is defined as

$$
\mathbf{C}=\left(\begin{array}{cc}
a & b+a \\
b-a & -a
\end{array}\right)
$$

where a and b are constants.
a) Determine the eigenvalues of \mathbf{C} and their corresponding eigenvectors, giving the answers in terms of a and b where appropriate.

It is further given that $\mathbf{C}=\mathbf{P D} \mathbf{P}^{-1}$, where \mathbf{D} is a diagonal matrix and \mathbf{P} is another 2×2 matrix.
b) Write down the possible form of \mathbf{D} and the possible form of \mathbf{P} and hence show that

$$
\mathbf{C}^{9}=b^{8} \mathbf{C}
$$

$$
\mathbf{D}=\left(\begin{array}{rr}
b & 0 \\
0 & -b
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{rr}
b+a & 1 \\
b-a & -1
\end{array}\right)
$$

Question 120 (****+)
A system of equation is given below

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25
\end{aligned}
$$

a) Show, by reducing the system into row echelon form, that the solution of the system can be written as

$$
\mathbf{r}=8 \mathbf{i}+9 \mathbf{j}+\lambda(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.

A new system is now given

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25 \\
& 7 x+k y+2 z=20
\end{aligned}
$$

where k is a constant.
b) Determine if the system has solutions for different values of k.

Created by T. Madas

Question 121 (****+)
The following vectors, given in terms of a scalar constant n, are linearly dependent.

$$
\begin{aligned}
& \mathbf{a}=n \mathbf{i}+2 n \mathbf{j}+(n-1) \mathbf{k}, \\
& \mathbf{b}=\left(n^{2}+n-1\right) \mathbf{i}+\left(2 n^{2}+n\right) \mathbf{j}+\left(n^{2}-1\right) \mathbf{k}, \\
& \mathbf{c}=-\mathbf{i}+\mathbf{j}+\left(n^{2}-1\right) \mathbf{k} .
\end{aligned}
$$

Determine possible values of n.

Question 122 (****+)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- ... a translation such that $(x, y) \mapsto(x+h, y+k)$, followed by
- $\quad .$. a reflection about the line $y=x$.
a) Determine, in terms of k and h, the equations of the two straight lines which map onto each other under T.
b) Find, in terms of k and h, the equation of the invariant line under T.
c) Give a full geometrical description for T, in the case where $h+k=0$, by considering the single transformation that is equivalent to T applied twice in succession.
\square $, y=x-h, \quad y=x+k, y=x+\frac{1}{2}(k-h)$,
Reflection about the line $y=x-k$

b) Now let THe LANE Have fpuition $y=$ max $+c$
\qquad
By Mrotetow if THE unis the to is THF Stor $m=+1$
- If $m=1$

 Rew $\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1 \quad$ So A Eratetion
 $\left.\begin{array}{lccc}0 & 1 & k & x \\ 1 & 0 & -k & y \\ 0 & 0 & 1 & 1\end{array}\right) \begin{array}{l}y+k \\ x-k\end{array} \quad$ l.E $\left.\quad \begin{array}{l}x=y+k \\ y=x-k\end{array}\right\} y=x-k$ \therefore Reflegion, ABOOT Tite unt $y=x-k$

Question 123 ($* * * *+$)
The 2×2 matrix \mathbf{A} is defined as

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)
$$

Use linear matrix algebra techniques to show that

$$
\mathbf{A}^{n}=\frac{1}{5}\left(\begin{array}{ll}
\alpha \times 4^{n}+\beta(-1)^{n} & \beta \times 4^{n}-\beta(-1)^{n} \\
\alpha \times 4^{n}-\alpha(-1)^{n} & \beta \times 4^{n}+\alpha(-1)^{n}
\end{array}\right)
$$

where α and β are positive constants.

You may not use proof by induction in this question.
\square
$\alpha=2, \quad \beta=3$

$\begin{aligned} & \text { - Now if we dofint MATDICES } \\ & \qquad \cdot\left(\begin{array}{cc} 1 & 3 \\ 1 & -2 \end{array}\right) \cdot P^{-1}=-\frac{1}{5}\left(\begin{array}{cc} -2 & -3 \\ -1 & 1 \end{array}\right)=\frac{1}{5}\left(\begin{array}{c} 2 \\ 1 \\ 1 \end{array}-1\right) \\ & \bullet D=\left(\begin{array}{cc} 4 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$

- we con now rasse A to the Poure of n
$\Longrightarrow A=P D P^{-1}$
$\Longrightarrow A^{n}=\left(P D P^{-1}\right)^{n}$
$\Rightarrow A^{4}=P D P^{-1} P D P^{-1} P D P^{-1} \cdots P D P^{-1}$ $\Longrightarrow A^{n}=P D^{n} P^{-1}$

Question 124 (****+)
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- \ldots a reflection about the line $y=x$, followed by
- ... a translation such that $(x, y) \mapsto(x+1, y-1)$, followed by
- ... a clockwise rotation about the origin O by 90°.

Find, under T, the equation of the image of the straight line with equation $y=3 x-1$.
\square $3 x+y+3=0$

Created by T. Madas

Question 125 (${ }^{* * * *+) ~}$
A linear transformation T, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane, consists of \ldots

- ... a reflection about the line $y=x$, followed by ...
- ... a translation such that $(x, y) \mapsto(x-2, y+2)$, followed by ...
- \ldots a reflection about the line $y=0$,

The point P is invariant under T.

Determine the coordinates of P.

Question 126 (****+)
The 3×3 matrix \mathbf{T} is given below.

$$
\mathbf{T}=\left(\begin{array}{rrr}
-1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

The matrix \mathbf{T} describes a composite transformation in the $x-y$ plane.
a) Verify that \mathbf{T} consists of ...

- $\quad .$. a reflection in the line $y=-x$, followed by ...
\ldots a translation by the vector $2 \mathbf{i}-\mathbf{j}$, followed by ...
- ... a clockwise rotation by $\frac{1}{2} \pi$, about the origin O.
b) Determine the inverse of the matrix \mathbf{T}.

The straight line with equation $2 x+y+1=0$ is transformed by \mathbf{T}.
c) Find a Cartesian equation of the image of the line after the transformation.

$$
\mathbf{T}^{-1}=\left(\begin{array}{rrr}
-1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), y=2 x-1
$$

Created by T. Madas

Question 127 (****+)
A linear transformation T, acting in the $\boldsymbol{x} \boldsymbol{- y}$ plane, consists of \ldots

- \ldots an anticlockwise rotation about the origin O by a non zero angle θ, . followed by ...
- ... a translation such that $(x, y) \mapsto(x+h, y+k)$

Under this transformation $(0,1) \mapsto(1,2)$ and $(3,0) \mapsto(4,3)$.

Find the value of each of the constants θ, k and h.
\square $\theta=\arctan \frac{3}{4}, h=\frac{8}{5}, k=\frac{6}{5}$

Question 128 (******)
An equation in x is summarized by the following determinant.

$$
\left|\begin{array}{rrl}
1 & a-1 & (x-b)(x+b) \\
-1 & b+1 & (x-a)(x+a) \\
1 & x-1 & (a-b)(a+b)
\end{array}\right|=0
$$

Give the solutions in terms of a and/or b where appropriate.
\square , $x=a \cup x=-b \cup x=\frac{1}{2}(b-a)$

Question 129 (*****)
An equation in x is summarized by the following determinant.

$$
\left|\begin{array}{ccc}
a & x^{2} & x+b \\
x & a^{2} & a+b \\
x+a & 2 x^{2} & b
\end{array}\right|=0
$$

Give the solutions in terms of a and/or b where appropriate.
\square $x=0 \cup x=a \cup x=-a-b \cup x=\frac{1}{2} a$

Einathe cliftt ane mort zino in A_{31} twio apanio
$r_{B}(-1) \Rightarrow(a-a)(x+a+b)\left|\begin{array}{ccc}1 & x^{2} & x+b \\ 0 & a+x & 1 \\ 0 & x^{2} & -2\end{array}\right|=0$
$\Rightarrow a(a-x)(a+a+b)\left|\begin{array}{ccc}1 & x^{2} & x+b \\ 0 & a+x & 1 \\ 0 & x & -1\end{array}\right|=0$
$\Rightarrow x(a-x)(x+a+b)[(a+x)-x]=0$
$\Rightarrow x(a-x)(x+a+b)(-a-2 x)=0$
$\Rightarrow x(x-a)(y+a+b)$
$\Rightarrow x(x-a)(x+a+h)(2 x+a)=0$

Question 130 (*****)
A transformation is defined by the 2×2 matrix

$$
\mathbf{T}=\left(\begin{array}{cc}
-a & b-a \\
a+b & a
\end{array}\right)
$$

where a and b are scalar constants.

If n is an odd integer prove that

$$
\mathbf{T}^{n}=b^{n-1} \mathbf{T}
$$

\square , proof

\square

Question 131 (${ }^{(* * * * *) ~}$
A rotation R, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane is given by the following 3×3 matrix.

$$
\mathbf{R}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 2 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Find the centre and angle of this rotation.
\square centre $(1-\sqrt{3}, 1+\sqrt{3}), \quad \theta=\frac{1}{3} \pi$

- We Mai suspeer ther me roralion tnort is $\frac{\pi}{3}$ intlacclawist, By looling at The Matrix

- using vatior do confirn. That $\theta=\frac{\pi}{2}-\operatorname{cocking}-4 T$ THet Tetwsformation of $(1,0), 1, \in \underline{1}$ $\left[\begin{array}{ccc}\frac{1}{2} & -\frac{T}{2} & 2 \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{5}{2} \\ 2+\sqrt{3} \\ 1\end{array}\right]$
- $\vec{A}=a-c=\left(1_{1}, 0\right)-(1-\sqrt{3} 1+\sqrt{3})=(\sqrt{3}-1-\sqrt{3})$ \qquad (3) THe Iot pronuet $\Rightarrow \overrightarrow{C A} \cdot \overrightarrow{C A^{\prime}}=|\overrightarrow{C A}||\overrightarrow{C A}| \cos \theta$ $\left.\Rightarrow(\sqrt{3}, 1-\sqrt{3}) \cdot\left(\frac{3}{2}+\sqrt{3}, 1-\frac{\sqrt{3}}{2}\right)=|\sqrt{3},-1-\sqrt{3}|\left|\frac{3}{2}+\sqrt{3}, 1-\frac{\sqrt{3}}{2}\right| \cos \theta\right)$ $\Rightarrow \frac{3}{2} \sqrt{3}+3-1+\frac{\sqrt{3}}{2}-\sqrt{3}+\frac{3}{2}=\sqrt{3+1+2 \sqrt{3}+3} \sqrt{\frac{9}{7}+3 \sqrt{3}+3+1-\sqrt{3}+\frac{7}{4}} \cos \theta$ $\Rightarrow \frac{7}{2}+\sqrt{3}=\sqrt{7+2 \sqrt{3}} \sqrt{7+2 \sqrt{3}} \cos \theta$ $\Rightarrow \frac{7}{2}+\sqrt{3}=(7+2 \sqrt{3}) \cos \theta$ $\Rightarrow \cos \theta=\frac{\frac{1}{2}(7+2 \sqrt{3})}{7+2 \sqrt{3}}=\frac{1}{2}$ $\Rightarrow \theta=\frac{\pi}{3}$

Created by T. Madas

Question 132 (*****)
A rotation R, acting in the $\boldsymbol{x}-\boldsymbol{y}$ plane is given by the following 3×3 matrix.

$$
\mathbf{R}=\left(\begin{array}{rrr}
0 & -1 & -3 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Find centre and angle of this rotation.

Created by T. Madas

Question 133 (*****)
The point $P(x, y)$ is mapped onto the point $Q(X, Y)$ by the rotation described by the matrix transformation

$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

The above transformation is used to rotate the hyperbola with equation

$$
4 x^{2}-44 x y-29 y^{2}=120
$$

onto the hyperbola with equation

$$
\frac{X^{2}}{a}-\frac{Y^{2}}{b}=1
$$

where a and b are positive constants.
a) Given that the rotation is by angle θ, such that θ is acute, find the exact value of $\tan \theta$.
b) Determine the value of a and the value of b.
\square $, \tan \theta=\frac{1}{2}, a=8, b=3$

Created by T. Madas

Created by T. Madas

Question 134 (*****)
A parabola has the following equation

$$
y^{2}=A x, x \geq 0, A>0 .
$$

The parabola is rotated about O onto a new parabola with equation

$$
16 x^{2}-24 x y+9 y^{2}+30 x+40 y=0 .
$$

Use algebra to determine the value of A.

$A=2$

Question 135 (******)
Use the properties of determinants to express the following determinant in fully factorized form.

$$
\left|\begin{array}{ccc}
-b c & b^{2}+b c & c^{2}+b c \\
a^{2}+a c & -a c & c^{2}+a c \\
a^{2}+a b & b^{2}+a b & -a b
\end{array}\right|
$$

\square $(a b+b c+c a)^{3}$
 $\left|\begin{array}{ccc}-b c & b^{2}+b c & c^{2}+b c\end{array}\right|$ $\left|\begin{array}{ccc}a^{2}+a c & -a c & c^{2}+a c \\ a^{2}+a b & b^{2}+a b & -a b\end{array}\right|$

$c_{31}(-1)$	0	0	1
$c_{32}(-1)$	0	$-a b-b c-c a$	$b c+a b$
$a b+b c+c a$	$a b+b c+c a$	$-a b$	

- Expandina by tite fiest cocumn (or by tit fiest bac)
$=(a b+b c+a c)\left|\begin{array}{cc}0 & 1 \\ -a b-b c-a c & b c+a b\end{array}\right|(a b+b c+c a)$
$=(a b+b c+c a) \times(a b+b c+c a) \times(a b+b c+c a)$
$=(a b+b c+c a)^{3}$

