The American State of ALASTRATISCOM I.Y.C.B. MARIASINALISCOM I.Y.C.B. MARIASIN

Question 1 (**)

The matrices A, B and C are given below in terms of the scalar constants a, b, c and d, by

 $\mathbf{A} = \begin{pmatrix} -2 & 3 \\ 1 & a \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}.$

Given that $\mathbf{A} + \mathbf{B} = \mathbf{C}$, find the value of a, b, c and d.

$$a = 8, b = 3, c = 2, d = 3$$

$$A + B = C \Rightarrow \begin{pmatrix} -2 & 3 \\ 1 & 4 \end{pmatrix} + \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -2 & 4 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & c \\ d & 4 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -2 & 4 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} b & -1 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} c & c \\ d & 4 \end{pmatrix}$$

Question 2 (**)

Find, in terms of k, the inverse of the following 2×2 matrix.

$$\mathbf{M} = \begin{pmatrix} k & k+1 \\ k+1 & k+2 \end{pmatrix}$$

Verify your answer by multiplication.

$$\begin{split} \underbrace{\mathbb{M}}_{i} &= \begin{pmatrix} \mathbf{k} & \mathbf{k}_{i+1} \\ \mathbf{k}_{i+1} & \mathbf{k}_{i+2} \end{pmatrix} \\ & \det(\mathbb{M})_{i} &= \mathbf{k}_{i}^{(2+2)} - (\mathbf{k}_{i+1})(\mathbf{k}_{i+1}) = \mathbf{k}_{i}^{(2+2)} - (\mathbf{k}_{i}^{(2+2)}\mathbf{k}_{i+1}) \\ &= \mathbf{k}_{i}^{(2+2)} - \mathbf{k}_{i-2}^{(2-2)}\mathbf{k}_{i-1} = -\mathbf{1} \\ & \underbrace{\mathbb{M}}_{i}^{-1} &= \mathbf{1} \\ & \underbrace{\mathbb{M}}_{i}^{-1} &= \mathbf$$

 \mathbf{M}^{-1}

-k - 2

k+1

k+1

-k

Question 3 (**)

The 2×2 matrices A, B and C are given below in terms of the scalar constants a, b and c.

$$\mathbf{A} = \begin{pmatrix} a & 2 \\ 3 & 7 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 2 & 4 \\ b & 2 \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} -1 & c \\ 3 & 2 \end{pmatrix}.$$

Given that

E.B.

 $2\mathbf{A} - 3\mathbf{B} = 4\mathbf{C},$

find the value of a, b and c.

i G.B.

1+

Question 4 (**)

The 2×2 matrix A represents a rotation by 90° anticlockwise about the origin O.

The 2×2 matrix **B** represents a reflection in the straight line with equation y = -x

a) Write down the matrices A and B

The 2×2 matrix **C** represents a rotation by 90° anticlockwise about the origin *O*, followed by a reflection about the straight line with equation y = -x.

0

0 1

reflection in the y axis

b) Find the elements of **C**.

c) Describe geometrically the transformation represented by C.

B

Question 5 (**)

The 2×2 matrix **A**, is defined as

$$\mathbf{A} = \begin{pmatrix} 2 & a \\ b & -2 \end{pmatrix}$$

where a and b are constants.

The matrix A, maps the point P(2,5) onto the point Q(-1,2).

a) Find the value of a and the value of b.

A triangle T_1 with an area of 9 square units is transformed by A into the triangle T_2 .

b) Find the area of T_2

a = -1, b = 6, area = 18(a) $\begin{pmatrix} z & a \\ b & z \end{pmatrix} \begin{pmatrix} z & a \\ s \end{pmatrix} \begin{pmatrix} z$

Question 6 (**)

The 2×2 matrices **A**, **B** and **C** are given below in terms of the scalar constants x.

$$\mathbf{A} = \begin{pmatrix} 2 & x \\ 3 & 1 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \qquad \text{and} \qquad \mathbf{C} = \begin{pmatrix} 3x+2 & 7 \\ 7-x & 7 \end{pmatrix}$$

- **a**) Find an expression for AB, in terms of x.
- **b**) Determine the value of x, given $\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{C}$.

2 1

 $\begin{pmatrix} 9 & 12 \\ 4 & 5 \end{pmatrix}$

** (4+3) 2+9)

Question 7 (**)

The 2×2 matrices **A** and **B** are given by

 $\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 9 & 12 \\ 4 & 5 \end{pmatrix}$

AX = B

Find the 2×2 matrix **X** that satisfy the equation

Question 8 (**)

F.G.B.

I.C.B.

The triangle T_1 is mapped by the 2×2 matrix

onto another triangle T_2 , whose vertices have coordinates $A_2(-1,2)$, $B_2(10,15)$ and $C_2(-18,-14)$.

 $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & -1 \end{pmatrix}$

Find the coordinates of the vertices of T_1 .

F.C.B.

Question 9 (**)

A plane transformation maps the general point (x, y) onto the general point (X, Y), by

 $\begin{pmatrix} X \\ Y \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix}$

where **A** is the 2×2 matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

- a) Give a geometrical description for the transformation represented by A, stating the equation of the line of invariant points under this transformation
- **b**) Calculate A^2 and describe geometrically the transformation it represents.

shear parallel to y = 0, $(0,1) \mapsto (2,1)$ line of invariant points y = 0,

a) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ |A| = 1 |A| = 1Since $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ $A = \begin{pmatrix} 1 & 2 \\$

shear parallel to y = 0, $(0,1) \mapsto (4,1)$

Question 10 (**)

The triangle T_1 is mapped by the 2×2 matrix

onto a triangle T_2 , whose vertices are the points with coordinates $A_2(4,3)$, $B_2(4,10)$ and $C_2(16,12)$.

 $A_{1}(1,0)$,

 $\mathbf{B} = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix}$

a) Find the coordinates of the vertices of T_1 .

b) Determine the area of T_2 .

ŀ.C.B.

P.C.P.

10		- YU.
(a) $\mathbf{P} = \begin{pmatrix} 4 & -l \\ 3 & l \end{pmatrix} \implies \mathbf{B}^{-1} = \frac{l}{\mathbf{A}(l-3cd)} \begin{pmatrix} l & l \\ -3 & 4 \end{pmatrix}$ $\implies \mathbf{B}^{-1} = \frac{1}{\mathbf{T}} \begin{pmatrix} l & l \\ -3 & 4 \end{pmatrix}$	P)	9.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
• B <u>a</u> = b		(11°) 3 (4,0)
$ \Rightarrow \widehat{B}' \underline{B} \cong = \widehat{B}' \underline{\underline{b}} $ $ \Rightarrow \underline{T} \cong = \widehat{B}' \underline{\underline{b}} $		dETB = 7 (REM PART a)
$\implies \underline{\mathbf{Z}} = \frac{1}{7} \begin{pmatrix} 1 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 4 & 4 & 7 & 16 \\ 3 & 1 & 16 & 4 & 12 \end{pmatrix}$ $\mathbf{A}_{2} \mathbf{B}_{2} \mathbf{C}_{2}$: $484 \text{ of } T_2 = 6 \times 7 = 42$
$\Rightarrow \underline{x} = \frac{1}{7} \begin{pmatrix} 7 \\ 0 \\ 128 \\ 0 \end{pmatrix}$		

 $B_1(2,4) \to C_1(4,0)$

 $B_1(2,4)$, $C_1(4,0)$, area = 42

F.C.B.

1+

Question 11 (**)

The 2×2 matrix **C** is defined, in terms of a scalar constant *a*, by

 $\mathbf{C} = \begin{pmatrix} 3 & a \\ 5 & 2 \end{pmatrix}$

a) Determine the value of a, given that **C** is singular.

The 2×2 matrix **D** is given by

b) Find the inverse of **D**.

The point P is transformed by **D** onto the point Q(6k+1,14k+1), where k is a scalar constant.

 $\mathbf{D} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}.$

c) Determine, in terms of k, the coordinates of P.

 $\mathbf{D}^{-1} = \begin{bmatrix} \overline{2} & -\overline{2} \\ -2 & 1 \end{bmatrix}, \quad \underline{P(2k+1,2k-1)}$

	$\alpha = \frac{c}{5}$	$\mathcal{D} = \frac{1}{2} \begin{pmatrix} 3 & -\frac{1}{2} \\ -4 & 2 \end{pmatrix}$ $\mathcal{D}^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}$
$\Rightarrow f = p_{i} d$ $\Rightarrow p_{i} p_{i} = p_{i} d$ $\Rightarrow p_{i} p_{i} = p_{i} d$ $\Rightarrow p_{i} p_{i} = p_{i} d$ (c)	$= \begin{bmatrix} 9k + \frac{3}{2} \\ -i2k - 2 \end{bmatrix}$	$ \begin{pmatrix} 6k+1 \\ ilk+1 \\ -ilk+1 \\ ilk+1 \\ 2k+l_1 2k-l_1 \end{pmatrix} = \begin{bmatrix} k(2k+1) - k(2k+1) \\ -ilk+1 \\ 2k+l_1 2k-l_1 \end{bmatrix} $

Question 12 (**)

A plane transformation maps the general point (x, y) to the general point (X, Y) by

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 6.4 & -7.2 \\ -7.2 & 10.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

a) Find the area scale factor of the transformation.

The points on a straight line which passes through the origin remain invariant under this transformation.

b) Determine the equation of this straight line.

(9)	$\frac{1}{100+5000}$ = $\begin{vmatrix} 64&-7.2\\-7.2&10.6\\\end{vmatrix}$ = $\frac{67.84-51.84}{-51.84}$ = 6
Ы	$ \begin{pmatrix} \infty \\ y \end{pmatrix} = \begin{pmatrix} 64 & -72 \\ -72 & \mu, \zeta \end{pmatrix} \begin{pmatrix} \alpha \\ y \end{pmatrix} \implies \begin{pmatrix} \infty \\ y \end{pmatrix} = \begin{pmatrix} 642 & -72y \\ -72z + h, \zeta \\ y \end{pmatrix} $
	$\begin{array}{c} 1.72g = 5.4x \\ 7.2x = 96g \end{array} \text{If } g = \frac{2}{7}x \\ \end{array}$

Question 13 (**)

The distinct square matrices A and B are non singular.

Simplify the expression, showing all steps in the workings.

 $\mathbf{AB} \left(\mathbf{A}^{-1} \mathbf{B} \right)^{-1}$

 $\begin{array}{rcl} AB\left(A^{\dagger}B\right)^{-1} &=& AB\left(B^{\dagger}(A^{\dagger})^{-1}\right) &=& ABB^{\dagger}A &=& AIIA \\ &=& AA &=& A^{2} \end{array}$

 \mathbf{A}^2

Question 14 (**)

The distinct square matrices **A** and **B** have the properties

 $\mathbf{AB} = \mathbf{B}^5 \mathbf{A}$ and $\mathbf{B}^6 = \mathbf{I}$

where \mathbf{I} is the identity matrix.

Prove that

BAB = A.

Question 15 (**) The 2×2 matrix A is given by

 $\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}.$

The 2×2 matrix **B** satisfies

 $\mathbf{B}\mathbf{A}^2 = \mathbf{A}$

Find the elements of **B**.

	h.	
6	$\begin{array}{l} A = \begin{pmatrix} l & 3 \\ l & 4 \end{pmatrix} & det A \\ A_{=}^{-l} & \frac{l}{l} \begin{pmatrix} 4 & -3 \\ -1 & l \end{pmatrix} \end{array}$	= ((X4)-(1X3)=1
	NOW $BA^2 = A$ $\Rightarrow BAA = A$ $\Rightarrow BAA^2 = AA^{-1}$ $\Rightarrow BA = I$ $\Rightarrow BAA^{-1} = IA^{-1}$ $\Rightarrow BAA^{-1} = IA^{-1}$	$\stackrel{*}{\leftarrow} B = \begin{pmatrix} 4 & -3 \\ -t & 1 \end{pmatrix}$

B =

proof

Question 16 (**)

The triangle T_1 is mapped by the 2×2 matrix

onto the triangle T_2 , whose vertices have coordinates $A_2(-7,-1)$, $B_2(5,5)$ and $C_2(7,16)$.

 $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$

a) Find the coordinates of the vertices of T_1 .

b) Determine the area of T_2 .

Ĉ.B.

$A_1(-4,1)$, $B_1(2,1)$, $C_1(1,5)$, area = 60

a) STAT BY FINDING. THE INVIRES OF \$
$d_{\text{HT}}\underline{B} = (2xg) - (1x1) = S$
$\overline{\mathfrak{b}}_{-1}^{-1} = \frac{2}{2} \begin{pmatrix} z & -1 \\ -1 & z \end{pmatrix}$
LET I BE THE CO-ORDINATING OF T, & D THE CO-ORDINATING OF T
b) there to look the dead of I, since two of its chemics that the same herent
$\frac{AUA \text{ of } T}{dt \underline{B}} = 5$
$2xS = \sqrt{-30} \frac{40}{100} \therefore \qquad (4)$

i.C.B.

Question 17 (**+)

The transformation represented by the 2×2 matrix A maps the point (3,4) onto the point (10,4), and the point (5,-2) onto the point (8,-2).

Determine the elements of A.

Question 18 (**+)

The 2×2 matrix **A** is given below.

$$\mathbf{A} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}.$$

Determine the elements of \mathbf{A}^3 and hence describe geometrically the transformation represented by \mathbf{A} .

 $\mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}, \quad \text{rot} \\ \text{bo}$

rotation of 120°, anticlockwise & enlargement of S.F. 2, both about the origin and in any order.

$$\begin{split} & A_{1}^{1} = \begin{pmatrix} -1 & -1 \\ (-1$$

It is given that

1.C.B. 111303811

COM

I.C.p

0

Smaths,

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ and } \quad \mathbf{C} = \begin{pmatrix} 1 & -2 \\ 4 & -1 \end{pmatrix}.$$

- Determine the matrix AB. a)
- **b**) Find the elements of

nadasmaths.

 $BA - 2C^2$.

F.G.B.

2011

COM

(a) $AB = (2 - 1) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = (2)$	
(b) $BA - 2C^2 = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 - 1 \\ -2 \end{pmatrix} = 2$	$(1-2\gamma_{t}-z)$
$= \begin{pmatrix} 6 & -3 \\ 2 & -1 \end{pmatrix} = 2 \begin{pmatrix} -2 \\ -2 \end{pmatrix}$	(~7 o) (o _7)
= (6 -3) - (-14)	$\begin{pmatrix} 0 & -1 \\ -1q \end{pmatrix} = \begin{pmatrix} 2^{\circ} & -3 \\ 2 & B \end{pmatrix}$
(2 -1/ - (o	,-19/ = (2 13/

C.5.

Madasmans.com

I.C.B.

ths.com

18.CO)

110

madasn

Created by T. Madas

madasmarna Marns

2017

E.

Question 20 (**+)

Y.C.B. Ma

I.C.P.

The 2×2 matrices **A** and **B** are given below

 $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & 0 \\ -2 & 2 \end{pmatrix}.$

The matrix C represents the combined effect of the transformation represented by the B, followed by the transformation represented by A.

a) Determine the elements of C.

b) Describe geometrically the transformation represented by C.

b) Now $C = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

21/18

I.V.C.B. Mada

The Com

Created by T. Madas

Smaths,

nn

Question 21 (**+)

The 2×2 matrix **D** is given by

$$\mathbf{D} = \begin{pmatrix} 4 & -5 \\ 6 & -9 \end{pmatrix}.$$

a) Given that I is the 2×2 identity matrix, show clearly that ...

- **i.** ... $D^2 + 5D = 6I$.
- **ii.** ... $\mathbf{D}^{-1} = \frac{1}{6} (\mathbf{D} + 5\mathbf{I}).$

The transformation in the x-y plane, which is represented by the matrix **D**, maps the point P onto the point Q.

The coordinates of Q are (7-2k,9-6k), where k is a constant.

b) Determine, in terms of k, the coordinates of P.

P(2k+3,2k+1)

]

* P (26+3, 26+1

Question 22 (***)

The 2×2 matrix **B** maps the points with coordinates (-1,2) and (1,4) onto the points with coordinates (0,1) and (6,-1), respectively.

- a) Find the elements of **B**.
- b) Determine whether B has an invariant line, or a line of invariant points, or both.
- c) Describe geometrically the transformation represented by **B**.

B = $\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$, line of invariant points, y = -x, invariant line y = -x + c

shear

 $\frac{X-C}{-Y}$ $-\frac{1}{2+m}C$

> $(h+1)^{2} = 0$ (h) = -1 $= -\frac{1}{2^{-1}} \times + \frac{1}{2^{-1}} \times + \frac{1}{2$

=1 (ARIA INDALIAST) \$ ROTATION OL STAAL (NO LABODON) NAST UNF OF POINTE -3 SHAL (NO OSTATION) SST -4 SHAL, WHOL 30-2

UNIS PARAULT TO U= +X

NURVIT UNIT OF POILD

a) sout succession to be our adverte	
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -l & l \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} o & c \\ l & -l \end{pmatrix} $	$\Rightarrow 2t + mt = 2t$
⇒ <u>B</u> <u>A</u> = <u>C</u>	$=9 \frac{2+M}{1} = 2$
$\Rightarrow \underline{B} \underline{A} \underline{A}^{-} = \underline{C} \underline{A}^{-}$ $\Rightarrow \underline{B} \underline{I} = \underline{C} \underline{A}^{-}$	⇒ Y= -1/2rm ×
$ \begin{array}{c} \underline{B} \\ \underline{B} \\ \underline{B} \\ \underline{B} \end{array} = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4-2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -4-2 \\ 2 & -1 \end{pmatrix} $	COMPARE
$\implies \underline{\underline{B}} = \frac{1}{6} \begin{pmatrix} \circ & \epsilon \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -4 & 1 \\ 2 & 1 \end{pmatrix}$	
\longrightarrow $\underline{B} = \frac{1}{6} \begin{pmatrix} 12, & 6\\ -6 & 0 \end{pmatrix}$	
$\Rightarrow \underline{B} \circ \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$	
b) FERRY look for unt of 11.1421111 POINTS	
$ \begin{pmatrix} 2 & + \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ y \end{pmatrix} \implies \begin{pmatrix} 2x + y \\ -x \end{pmatrix} = \begin{pmatrix} \alpha \\ y \end{pmatrix} $.' ALSO INVALIANT
2 y=−a.	<u>wusticatr_A</u> det <u>B</u> = (2×0)-
4 UNT OF INJUMERAT POINT	
$\frac{g_{\text{unt}} + \sigma e_{\text{unt}} - g_{\text{unt}}}{(2 - 1) \left(\frac{1}{2} + \frac{1}{2}\right) \left(\frac{1}{2} + \frac{1}{2}\right)} = \left(\frac{1}{2}\right)$	KUWARHE FUTTEOF DO FULL TURNAUN

Question 23 (***)

The 2×2 matrices **A** and **B** are given by

$$\mathbf{A} = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}; \mathbf{B} = \begin{pmatrix} 19 & 36 \\ 8 & 15 \end{pmatrix}$$

Find the 2×2 matrix **X** that satisfy the equation AX = B

It is given that A and B are 2×2 matrices that satisfy

 $\det(\mathbf{AB}) = 18$ and $\det(\mathbf{B}^{-1}) = -3$.

A square S, of area 6 cm², is transformed by A to produce an image S'.

Given that S' is also a square, determine its **perimeter**.

72 cm

X =

 $\begin{array}{c} \ast \ast & A \stackrel{7}{=} \frac{1}{2} \begin{pmatrix} 1 & -7 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} -5 & -7 \\ -2 & 5 \end{pmatrix}$

 $\begin{pmatrix} 2gd-\theta g_1 & 2z-7z \\ 2f+gf- & gf+gf- \end{pmatrix} = \begin{pmatrix} 2g & f^{\dagger} \\ 2f & g \end{pmatrix} \begin{pmatrix} 7- & E \\ 2 & g \end{pmatrix}$

* X=

 $X = \overline{A''B}$ $x = \overline{A''B}$

 $\begin{array}{c} = 3 \quad = 4 \quad \text{hr} \quad \text{h$

Question 25 (***)

The 2×2 matrix **A** is given by

 $\mathbf{A} = \begin{pmatrix} 2 & a \\ 3 & b \end{pmatrix},$

where a and b are scalar constants.

a) If the point with coordinates (1,1) is mapped by A onto the point with coordinates (1,3), determine the value of a and the value of b.

b) Show that

$\mathbf{A}^2 = 2\mathbf{A} - 3\mathbf{I} \, .$

The inverse of A is denoted by A^{-1} and I is the 2×2 identity matrix.

c) Use part (b) to show further that ...

 $\mathbf{i.} \quad \dots \quad \mathbf{A}^3 = \mathbf{A} - 6\mathbf{I} \, .$

ii. ... $A^{-1} = \frac{1}{3}(2I - A)$

(a) <u>By "Promutinos"</u> ($\begin{pmatrix} 2 & a \\ 3 & b \end{pmatrix}$ (1) = ($\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \rightarrow ($\begin{pmatrix} 2x + 4xi \\ 3xi + bxi \end{pmatrix}$) = ($\begin{pmatrix} 1 \\ 3 \end{pmatrix}$) \Rightarrow $\begin{pmatrix} a + 2 = 1 \\ bxi 3 - 3 \end{pmatrix}$ $\therefore a - 1 \neq b = 0$ ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) $\therefore a - 1 \neq b = 0$ ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) $\therefore a - 1 \neq b = 0$ ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) $\therefore a - 1 \neq b = 0$ ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) $\therefore a - 1 \neq b = 0$ ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) = ($\begin{pmatrix} 2x - 1 & 3 \\ 2xi + 6 \end{pmatrix}$) ($\begin{pmatrix} a - 2 \\ 3 \end{pmatrix}$) ($\begin{pmatrix} a -$

a=-1, b=0

Question 26 (***)

A transformation in the x-y plane is represented by the 2×2 matrix

$$\mathbf{T} = \begin{pmatrix} 1 & -3 \\ -1 & 4 \end{pmatrix}.$$

A quadrilateral Q has vertices at the points with coordinates (20,6), (26,9), (50,15) and (44,12). These coordinates are given in cyclic order.

The vertices of Q are transformed by **T**.

- **a**) Find the positions of the vertices of the image of Q.
- **b**) Determine the area of Q, fully justifying your reasoning.

Question 27 (***)

The 2×2 matrix **B** is given by

$$\mathbf{B} = \begin{pmatrix} a & 2 \\ 3 & b \end{pmatrix},$$

where a and b are scalar constants.

The point with coordinates (3,1) is mapped by **B** onto the point with coordinates (5,13).

a) Determine the value of a and the value of b.

The inverse of **B** is denoted by \mathbf{B}^{-1} and **I** is the 2×2 identity matrix.

b) Show that

 $\mathbf{B}^2 = 5\mathbf{B} + 2\mathbf{I} \,.$

c) Show further that ...

- **i.** ... $\mathbf{B}^3 = 27\mathbf{B} + 10\mathbf{I}$.
- **ii.** ... $\mathbf{B}^{-1} = \frac{1}{2} (\mathbf{B} 5\mathbf{I})$

a = 1, b = 4 $\begin{pmatrix} \sigma & s \\ s & p \end{pmatrix} \begin{pmatrix} l \\ s \end{pmatrix} = \begin{pmatrix} l \\ s \end{pmatrix}$ $\Rightarrow \begin{array}{c} 3a + 2 = 5 \\ q + b = 13 \end{array} \Rightarrow \begin{array}{c} a = 1 \\ b = 4 \end{array}$ $B^2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ 5B + 21 : B2 = SP B- 58 101 ⇒ BB = SBB+QIR BB = SBB + 2IB $\Rightarrow B^3 = 5B^2 + QB$ ⇒ B = 5I + 28 = 5(58+21)+ ⇒B-SI = 28 = B-1 = 1 (B-SI) B = 27B+101

Question 28 (***)

A transformation in the x-y plane consists of ...

- ...a reflection about the line with equation y = x
- ... followed by an anticlockwise rotation about the origin by 90°
- ... followed by a reflection about the x axis.

Use matrices to describe geometrically the resulting combined transformation.

Question 29 (***+)

The 2×2 matrices **A** and **B** are defined by

$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 2 & -1 \\ -3 & 5 \end{pmatrix}$$

- **a**) Find A^{-1} , the inverse of A.
- **b**) Find a matrix **C**, so that

 $\left(\mathbf{B}+\mathbf{C}\right)^{-1}=\mathbf{A}.$

c) Describe geometrically the transformation represented by C.

Question 30 (***+)

The 2×2 matrices

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix},$$

represent linear transformations in the x-y plane.

a) Give full geometrical descriptions for each of the transformations represented by A and B.

The figure below shows a right angled triangle T, with vertices at the points A(1,-1), B(3,-1) and C(3,3).

The triangle T is first transformed by A and then by B, producing the triangle T'

- **b**) Find the single matrix that represents this composite transformation.
- c) Determine the coordinates of the vertices of T'.
- **d**) Calculate the area of T'

[continues overleaf]

[continued from overleaf]

The triangle T' is then reflected in the straight line with equation y = -x to give the triangle T''.

e) Find the single matrix that maps T'' back onto T.

, rotation about O, 90° , clockwise, enlargement, in x only, scale factor 2 $\mathbf{BA} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}, \quad \underline{A'(-2,-1), B'(-2,-3), C'(6,-3)}, \quad \underline{\text{area} = 8}, \quad \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$

 $\underline{B} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ 4 der B = 2 dETA = +1 (NEERLE DOTATION) $i = \binom{1}{0} \mapsto \binom{3}{3} = 2i$ $\mathcal{T} = \begin{pmatrix} i \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} i \\ 0 \end{pmatrix} = \mathcal{T}$ $\begin{array}{c} \overset{i}{\underline{i}} & \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} & \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} & \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} & \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} \\ \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} \begin{array}{c} \overset{i}{\underline{i}} \end{array} \xrightarrow{} } \xrightarrow{} \end{array} \xrightarrow{} } \end{array} \xrightarrow{} \end{array} \xrightarrow{} } \end{array} \xrightarrow{} } \end{array} \xrightarrow{} } \xrightarrow{} \end{array} \xrightarrow{} } \xrightarrow{} \end{array} \xrightarrow$ ALDON O, BY 903 LOURDENIG TRANSPORTATIONS A FOLLOWIND BY B, IS BA $\underline{\underline{B}} \underline{\underline{A}} = \begin{pmatrix} \underline{\underline{a}} & \underline{o} \\ \underline{o} & \underline{i} \end{pmatrix} \begin{pmatrix} \underline{o} & \underline{i} \\ -\underline{i} & \underline{o} \end{pmatrix} = \begin{pmatrix} \underline{o} & \underline{z} \\ -\underline{i} & \underline{o} \end{pmatrix}$ 4 WELTING $\underline{\underline{B}}\underline{\underline{A}} \underline{\underline{x}} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ -1 & -1 & 3 \\ k & k & c \end{pmatrix} = \begin{pmatrix} -2 & -2 & k \\ -1 & -3 & -3 \\ k' & k' & c'' \end{pmatrix}$ $A'(-2_1-1)$, $B'(-2_1-3) = C'(6_1-3)$ d) the of T, BY INSPECTION IS \$2x2x4 = 4 owns: der (AR) = det A x det B = 1x2 =2 4854 T' 15 4 x2

HICH REPRESED REFLECTER ABOUT 14 $1 = \binom{1}{2} \longrightarrow -\frac{1}{2} = \binom{0}{2}$ $\vec{\eta} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow \vec{\eta} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -14 : REQUIRED MATRIX IS (0 -1) THE MATTER WHICH DOES THE 3 TEAMOREMATIONS IN THE CORRECT ORDER IS $\begin{pmatrix} \circ & -1 \\ -1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \circ & 2 \\ -1 & 0 \\ \bullet \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ Lifetoria) BA FINALLY WE RE-GOINED THE INVERSE OF THE ABOUT MATER • det $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} = -2$ $\bullet \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}^{-1} = \frac{1}{-2} \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

Question 31 (***+)

The 2×2 matrix **A** given below, represents a transformation in the x-y plane.

 $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

a) Describe geometrically the transformation represented by A.

The transformation described by A is equivalent to a reflection about the straight line with equation y = -x, followed by another transformation described by the matrix C.

b) Find the matrix **C**, and describe it geometrically.

2	
a) LOOKING AT THE BASE -DECTORS	
$\frac{1}{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{2}$	19
$\vec{\eta} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix} = -\vec{1}$	- 10 - 12
: BUTATION HAOST O, BY 90°, AVIO	
SETTING OP 4 MATRIX EQUATION).	- LET ATE REGOILING MATTER BAC
$\Rightarrow \underline{A} = \underline{C} \underline{B}$	
- Rifuedia te	
⇒ ±B = ⊆BB	$\underline{i} \leftrightarrow -\underline{i}$ $\underline{j} \leftrightarrow -\underline{i}$ $\underline{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
→ AB' = CI	-AND ITS INVASSE IS ALSO R. (RATIONTICA) IN A SPLF
⇒⊆ = <u>A</u> 8 ⁻¹	K, (EHERIA) A & SHIT INVELST PROCESS)
$\rightarrow \underline{C} = \underline{A}\underline{B}$	
$\rightarrow \underline{C} - \begin{pmatrix} \circ & -1 \\ 1 & \circ \end{pmatrix} \begin{pmatrix} \circ & -1 \\ + & \circ \end{pmatrix}$	
$\Rightarrow \underline{C} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
- 10 11	
det C = -1 with2+ (°) + (energia) (°) +	$\rightarrow \begin{pmatrix} \circ \\ -1 \end{pmatrix} \qquad \stackrel{i}{\leftarrow} \mapsto \stackrel{i}{\leftarrow} \stackrel{i}{\leftarrow} \rightarrow \stackrel{i}{\leftarrow} \stackrel$
o: REFRICTION ABOUT THE O	AXU

Question 32 (***+)

The 2×2 matrix **M** is defined by

 $\mathbf{M} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}.$

Find, by calculation, the equations of the two lines which pass through the origin, that remain invariant under the transformation represented by M.

no.	, <u>y</u> =±
$\begin{array}{c} \underline{\text{MET}} \xrightarrow{\text{MET}} -A \\ \hline & \underline{\text{MET}} \xrightarrow{\text{MET}} A & \underline{\text{LWE}} THE OBSAN TIME $	• FINDING THE ENFORMEDRES AND HEAVE THE WARS $\frac{16 3-3}{3y_1 = 32} \qquad \frac{16 9 = -3}{3y_2 = -33}$ $\frac{3x_2 = 3y}{3x_3 = -3y}$ $\therefore y = x \qquad \therefore y = -x$
$\begin{array}{c c} \underbrace{\texttt{H}}_{\text{Inst}} (\textit{uc} \textit{astinus} \text{ the quantitaty} \\ & \times = 3m_{2k} \\ & m_{1}^{N} = 3m_{k} \end{array} \Big\} \longrightarrow \underbrace{\texttt{DivDinst}}_{\substack{\text{Inst} = 1 \\ m_{1}^{k} = 1 \\ m_{1}^{k} = 1 \\ m_{2} = 1 \\ m_{1} = 1 \end{array}$	
$\therefore \text{ THE PERIODO LAWS ARE } \underline{Q = 2} \ \underline{Q} + \underline{Q} = 2 \ \underline{Q} + \underline{Q} = 2 \ \underline{Q} + \underline{Q} = 2 \ \underline{Q}$	

Question 33 (***+)

I.C.B.

I.C.B.

Find the image of the straight line with equation

2x + 3y = 10,

 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$

under the transformation represented by the 2×2 matrix

	1.1
11x + y = 70	asm.
$\begin{array}{rcl} & \overline{\mathcal{M}} & \mathcal{M$	
$\begin{array}{c} \underbrace{y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{-}y_{s}}_{y_{1}} = \mathcal{N}\left(\Sigma-X_{s}\right)\\ \underbrace{y_{-}y_{-}y_{-}y_{-}y_{-}y_{-}y_{-}y_{-$	>
$\begin{split} \underbrace{y}_{g} &= -\frac{2}{3}2 + \frac{10}{3} \\ LSTA POWT (III FOR A CONF (IN) FANJE CONFOLUMATION CONFOLUMATION (IN) FANJE CONF$	
Add lawing 332+34 = 210 112+4 = 70 43 3426	

arns

I.F.G.B.

Madasn.

200

nn

Question 34 (***+)

F.C.B.

The 2×2 matrix $\mathbf{M} = \begin{pmatrix} -2 & 1 \\ -9 & 4 \end{pmatrix}$ is given.

Under the transformation represented by \mathbf{M} a straight line passing through the origin remains invariant.

21/20

v = 3x

1+

212.SM

Madasn.

C.B.

bluer $Unit^{ij}$ g = mx $Uhite Unit^{ij}$ Y = mX-2 $() <math>\begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} x \\ mX \end{pmatrix}$

Determine the equation of this line.

Question 35 (****)

I.C.B.

The 2×2 matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -6 & 3 \end{pmatrix}$ is given.

Under the transformation represented by A, a straight line passing through the origin is reflected about the y axis.

Determine the possible equations of this line.

y = x

y = -6x

1+

21/2sm

madasn

i C.P.

(****) Question 36

N.C.B. Madasm

20

I.F.G.B.

Find the image of the circle with equation

 $x^2 + \underline{y}^2 = 4 ,$

under the transformation represented by the 2×2 matrix $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$

2011

	······································
	$\begin{bmatrix} 20x^2 - 32xy + 13y^2 = 16 \end{bmatrix}$
\mathcal{O}_{α} , \mathcal{Q}	2. 9
1900 -	Let THE SHORE (b ordewatts be (x,y) and the spectrum order of the second the between the two others by (x,y)
ash.	$ \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} z & z \\ z & q \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad \text{ if } \underbrace{ A }_{z} = \underbrace{ A }_{z} z $
1210	$\underline{A}_{-1} = \frac{(q_0, z_0)}{(q_0, z_0)} \begin{pmatrix} + -z \\ + -z \end{pmatrix} = \frac{1}{2} \begin{pmatrix} + -z \\ -z & z \end{pmatrix}$
	Hence we was chose
	$ \begin{pmatrix} \alpha \\ g \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4X & -3Y \\ -2X + 2Y \end{pmatrix} = \begin{pmatrix} 2X & -\frac{3}{2}Y \\ -X + Y \end{pmatrix} $ Substitute has the order of the set
C_{0} , C_{0}	$\Rightarrow \mathcal{J}_{y} + \hat{\eta}_{y} = \hat{\eta}$
Son 1	$ \Rightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2}$
· · · · ·	$\Rightarrow 20x^{2} - 32xy + 13y^{2} = 16$ $1t - 20x^{2} - 32xy + 8y^{2} = 16$
	40
h SB	
12.	h Q

nadasmaths.

I.F.G.B.

Inadasn

2017

 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$

hs.com

1+

Created by T. Madas

dasmarna ins

Question 37 (****)

The 2×2 matrix **R** represents a reflection where the point (2,1) gets mapped onto the point (6,-5), and the line with equation $y = -\frac{1}{2}x$ is a line of invariant points.

a) Determine the elements of **R**.

The 2×2 matrix **M** represents the combined transformation of the reflection represented by **R**, followed by another transformation *T*.

$\mathbf{M} = \begin{pmatrix} 0 & -0.4 \\ 2.5 & 2.8 \end{pmatrix}.$

b) Given that T is also a reflection determine, in exact simplified form, the equation of the line of reflection of T.

2

R =

2

Question 38 (****)

Under the transformation represented by the 2×2 matrix

the straight line with equation y = mx is reflected about the x axis.

Find the possible values of m.

i.G.B.

I.F.G.B.

ne,

F.C.B.

M21/2

20

COM

è

Question 39 (****)

A transformation in two dimensional space maps a general point with coordinates (x, y) onto the point with coordinates (X, Y) according to the equation

= B

where **B** is the 2×2 matrix $\begin{pmatrix} 3 & -2 \\ 4 & -6 \end{pmatrix}$.

Investigate whether this transformation has any lines of invariant points or any invariant lines, giving any relevant equations of such lines if they exist.

You may not use eigenvalue/eigenvector methods in this question

Y///	* # # APA
, no lines of invariant points , invarian	t lines : $y = \frac{1}{2}x \cup y = 4x$
US CO	· · · Con
, On Y	$\begin{array}{c} \underline{(cot be lands of multiplicative (\overline{a_1}, y_1) \rightarrow (\overline{a_2}, y_2) \\ \times = 3x - 2y \int \rightarrow x = 3x - 2y \rightarrow x = 3x - 2y \rightarrow x = 3x - 2y \rightarrow y = 4x - 2y \rightarrow y = 4x - 2y \rightarrow y = 4x - 2y \rightarrow x = 5x - 2y x = 5x $
	Wat book for invitaint which of the form growatc trajacy.
10. I.V.	$X = 3_{h} - 2(p_{02}+c)$ $Y = 4_{h} - 6(p_{01}+c)$ Substitute for $Y = w_{h} X + c_{h}$
~B ~C>	$\Rightarrow 4_{2} - 6(\mu_{1} \cdot c) = m [2 \cdot 2(\mu_{1} \cdot c)] + c$ $\Rightarrow 4_{2} - 6(\mu_{2} - 6c = 3\mu_{2} - 2\mu_{2} - 2\mu_{1} - 2\mu_{1} - 2\mu_{2} + c)$ $\Rightarrow 2\mu_{1}^{2} - 3\mu_{2} + 4\mu_{2} = 7c - 2\pi c$
in s	$ \Rightarrow \left(2u_{1}^{2} - {}^{q}(w + q) \right) \mathfrak{L} = \mathcal{L} \left(\mathcal{I} - 2w \right) $ $ \Rightarrow \left(2u_{1} - 1 \right) \left(u_{1} - 4 \right) - \mathcal{L} \left(2u_{1} - 7 \right) = 0 $
3 20 1	THIS BEINTIANSAND OND OWNY BE SATISFING IF Annoty J C=0 V2 m-4 JC=0
20 950	$\frac{1}{2}$ denotes the $\frac{3+2}{3-5}$
Sh. War	- asp
dri ch	12-

a.

Question 40 (****) The 2×2 matrix A is given below.

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}.$$

a) Find scalar constants, k and h, so that

 $\mathbf{A}^2 + k\mathbf{I} = h\mathbf{A} \,.$

b) Use part (**a**) to determine \mathbf{A}^{-1} , the inverse of \mathbf{A} .

No credit will be given for finding A^{-1} by a direct method.

2	-0
a)	BY COMPACING ELEMANTS IN THE MATERY EQUATION)
	$\underline{A}^2 + \underline{k} \underline{I} = \underline{h} \underline{A}$
	$ \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 7 & 5 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = k \begin{pmatrix} 2 & 2 \\ 7 & 5 \end{pmatrix} $
	$ \begin{pmatrix} 23 & l_{h} \\ 56 & 3q \end{pmatrix} \downarrow \begin{pmatrix} k & o \\ o & k \end{pmatrix} = \begin{pmatrix} 3l_{h} & 2k \\ \neg l_{h} & \leq l_{h} \end{pmatrix} $
	$\begin{array}{c c} \underline{lock}_{1N} & \underline{Ar} & \underline{a}_{1N} \\ \hline \underline{l}_{N} & \underline{a}_{2N} \\ \hline \underline{b}_{N} & \underline{B}_{N} \\ \hline \underline{b}_{N} & \underline{B}_{N} \end{array} \qquad \begin{array}{c} \underline{lock}_{2N} & \underline{Ar} & \underline{a}_{N} \\ \hline \underline{2s} + \underline{k} & \underline{s}_{N} \\ \underline{2s} + \underline{k} & \underline{s}_{N} \\ \underline{k} & \underline{k} & \underline{k} \\ \underline{k} & \underline{k} \\ \end{array}$
P)	$\begin{array}{c} \underline{A}^{(1)} = & \underline{A}^{(2)} = &$
	$A^{-1} = \begin{pmatrix} 3 & -2 \\ -7 & -3 \end{pmatrix}$

, k=1, h=8,

Question 41 (****)

The 2×2 matrix **A** given below represents a transformation in the x-y plane.

$$\mathbf{A} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}.$$

The straight line L with equation

$$y = 2x + 1$$

is transformed by \mathbf{A} into the straight line L'.

a) Find a Cartesian equation of L'.

The straight line M is transformed by A into the straight line M' with equation

11x + 6y = 4.

b) Find a Cartesian equation of M.

	3h		
L': y = 1 - x	,	M: y = 4 - 3x	r

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		and the second se	and the second se
	$ \begin{array}{l} (\searrow (-st+4ev2) \\ \times = t-1 \\ y = 2-t \end{array} \right\} Add the parametria \\ \end{array} \qquad \qquad$	$\begin{split} & \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \\ & \begin{array}{l} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \\ & \begin{array}{l} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \bigg \bigg \bigg \bigg$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \rightarrow \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array} \rightarrow \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array} \rightarrow \end{array} \rightarrow \begin{array} \rightarrow \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \begin{array}{c} \end{array} \rightarrow \end{array} \rightarrow \begin{array} \rightarrow \end{array} \rightarrow \end{array}$	$\begin{array}{l} = & A^{-1}_{-\infty} \\ = & A^{-1}_{-\infty} \\ A$
$ \begin{array}{c} \sum_{i=1}^{n} - \frac{ie^{in}}{2e^{in}} = 2p_i (0, b) \\ = \sum_{i=1}^{n} \frac{1}{e^{in}} = \frac{1}{e^{in}} \\ = \sum_{i=1}^{n} \frac{1}{e^{in}} = \frac{1}{e^{in}} \\ = \sum_{i=1}^{n} \frac{1}{e^{in}} \\ = \frac{1}{e^{in}} \\ \end{array} $			} ≃ - (1 (2 1. (-2)
	$\begin{array}{c} \mathfrak{A} = \left(\begin{array}{c} \mathfrak{a} \ \mathfrak{B}\right) \left(-\mathfrak{a} \ \mathfrak{b} \ \mathfrak{b} \right) \\ \mathfrak{A} = \left(\begin{array}{c} \mathfrak{a} \ \mathfrak{b} \ b$			$= \frac{4_{02} - y_1}{x_2 - x_1} = \frac{-2 - 1}{2 - 1}$ $= \frac{y_1}{y_2} - \frac{y_0}{y_0} = \gamma_{01}(\chi - \frac{y_1}{y_1} - 1) = -3(-x - \frac{y_1}{y_1} - 1) = -3x + 3$

Question 42 (****)

Describe fully the transformation given by the following 2×2 matrix

5 3 The description must be supported by mathematical calculations. reflection in y = 2x $-\frac{3}{5}\times\frac{3}{5}-\frac{4}{5}\times\frac{4}{5}=$ cos20 sm20 -60520 Sin20 ∃= ·126·87 ±360; F= 233·13 ± 360; tay (63.43); Y.C.B. Ma $hs \quad \cos \theta = + \frac{1}{\sqrt{2}} (\theta + s + \theta \cos \theta)$ tom 0=2 21/18 m Y.C.B. Mada I.C.B. Created by T. Madas

Question 43 (****)

A composite transformation in the *x*-*y* plane consists of ...

- i. ... a uniform enlargement about the origin of scale factor k, k > 0, denoted by the matrix **E**.
- ii. ... a shear parallel to the straight line L, denoted by the matrix **S**.
- It is given that $\mathbf{ES} = \mathbf{SE} = \begin{pmatrix} 12 & 16 \\ -9 & 36 \end{pmatrix}$
 - a) Show clearly that k = 24.
 - **b**) Find a Cartesian equation of L.

AWST BE N \$76 = 24

 $y = \frac{3}{4}x$

(=) DIVIDE GUATIONS

: m = 3

· y= = = = =

Question 44 (****)

A plane transformation maps the general point (x, y) onto the general point (X, Y), by

- a) Find the area scale factor of the transformation.
- **b**) Determine the equation of the straight line of invariant points under this transformation.
- c) Show that all the straight lines with equation of the form

where c is a constant, are invariant lines under this transformation.

x + y = c ,

d) Hence describe the transformation geometrically.

SF=3, y=x, stretch perpendicular to the line y = x, by area scale factor 3

 $\binom{-1}{2} = 2\chi_2 - (-1)(-1) = 3$ AREA SCALE FATORE IS 3 $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ y \end{pmatrix}$

 $x + 2y = y \rightarrow y = 2$ LANST LINE (POINS NOT INVARIANT)

 $\binom{-1}{2}\binom{\alpha}{-2+c}$ $\begin{pmatrix} 2\alpha + \alpha - c \\ -\alpha - 2\alpha + bc \end{pmatrix} = \begin{pmatrix} 3\alpha - c \\ -3\alpha + 2c \end{pmatrix}$

Adding guis X+Y

Question 45 (****)

A transformation $T: \mathbb{R}^2 \mapsto \mathbb{R}^2$ is represented by the following 2×2 matrix.

 $\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -1 & 3 \end{pmatrix}.$

- a) Find the determinant of A and explain its significance with reference to its sign and its magnitude.
- b) Find the equation of the straight line of the invariant points under the transformation represented by A.
- c) Determine the entries of the 2×2 matrix **B** which represents a reflection about the straight line found in part (b), giving all its entries as simple fractions.

The transformation represented by A, consists of a shear represented by the matrix C, followed by a reflection represented by the matrix B.

d) Determine the matrix C and describe the shear.

(9)	$d_{LT}\mathcal{B} = \begin{vmatrix} \mathcal{B} & \mathcal{B} \\ -1 & \mathcal{B} \end{vmatrix} = -q_{-}(\mathcal{B}) = -l \qquad (ABA \cup PELSEUM) \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} & \mathbf{F} \\ F$
(b)	$\begin{pmatrix} -3 & 8\\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{pmatrix} -3x + \delta y = x \\ -x + \delta y = y \end{pmatrix} \implies 4x = \delta y \implies y = \frac{1}{2}x$
(•)	$ \begin{array}{c} \mbox{Returns Battitis (HUSTRA) } & \mbox{MS } & \mbox{Lab} & $
(d)	$\begin{array}{c} \omega_{120}=\omega_{2}^{2}\Theta-\omega_{4}^{2}D+\left(\frac{\omega_{1}}{2}\right)^{-\frac{1}{2}}\frac{1}{2}\\ \vdots b=\left(\frac{\omega_{1}}{2}-\frac{\omega_{1}}{2}\right)^{-\frac{1}{2}}\frac{1}{2}\\ A=BC\end{array}$
2) 17	$\vec{B}A = \vec{B}BC$ $C = \vec{B}A$ $\therefore C = \begin{pmatrix} -\frac{13}{2} & \frac{36}{2} \\ -\frac{36}{2} & \frac{36}{2} \end{pmatrix}$
=	$ \begin{array}{c} C = \underbrace{1}_{\neg \left(-\frac{1}{2}, -\frac{1}{2}\right)} \begin{pmatrix} -3 & 0 \\ -1 & 0 \end{pmatrix} & Shrift Product To g = \frac{1}{2} \\ C = \underbrace{1}_{\varsigma} \begin{pmatrix} 3 & 0 \\ (-1, -1) \end{pmatrix} & Shrift \begin{pmatrix} -1 \\ 0 \end{pmatrix} & Shrift \begin{pmatrix} -1 \\ 0 \end{pmatrix} & Shrift \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{pmatrix} $
19	$C = \frac{1}{5} \begin{pmatrix} -13 & 36 \\ -9 & 23 \end{pmatrix}$

Question 46 (****+)

A transformation in two dimensional space maps a general point with coordinates (x, y) onto the point with coordinates (X, Y) according to the equation

 $\begin{pmatrix} X-4 \\ Y+4 \end{pmatrix}$

where **A** is the 2×2 matrix $\begin{pmatrix} -2 & 2 \\ 3 & -1 \end{pmatrix}$.

Investigate whether this transformation has any lines of invariant points or any invariant lines, giving any relevant equations of such lines if they exist.

line of invariant points: 3x - 2y = 4, invariant line : y = -x + Cwhen of involutions points , it (244) in (244) $\begin{pmatrix} 2-4\\ y+4 \end{pmatrix} = \begin{pmatrix} -2 & 2\\ 3 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \implies \begin{pmatrix} x-4\\ y+4 \end{pmatrix} = \begin{pmatrix} -2x+2y\\ 3x-g \end{pmatrix}$ 100 C=-2 i 2 2y= 32-4 0= 32-2y AST 101521 -4+32-(WX+C)=[4-22+2(WX+C)]m+c -4+32-W2-C=(4-22+2)M2+2C)M+C ma - c = 44-2ma+2ma+2ma+2ma+c+c -2c -44 -2nc = -2max +2max +ma -32 $2mc + 4m + 2c + 4] = [2m^2 - m - 3]x$ $\left[2m(c+2) + 2(c+2) \right] = (2m-3)(m+1) 3$ $(2m+2)(C+2) = (2m-3)(m+1)\alpha$ 2(m+1)(c+2) = (2m-3)(m+1).

Question 47 (****+)

A transformation T, maps the general point (x, y) onto the general point (X, Y), by

- a) Find the area scale factor of the transformation.
- b) Determine the equation of the line of invariant points under this transformation.

y = x + c,

c) Show that all the straight lines of the form

where c is a constant, are invariant lines under T.

- **d)** Hence state the name of T.
- e) Show that the acute angle formed by the straight line with equation y = -x and its the image under T is

 $\frac{3\pi}{4} - \arctan\left(\frac{5}{3}\right)$

a) def $\begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$ b) NUMPLIAR SELECTION (2) = -3 + 4 = 1 $4 \le x = \frac{1}{2}$ $4 \le x = \frac{1}{2}$ $4 \le x = \frac{1}{2}$

SF=1, y=x, shear

Question 48 (****+)

A curve has equation

 $5x^2 - 16xy + 13y^2 = 25.$

This curve is to be mapped onto another curve C, under the transformation defined by the 2×2 matrix **A**, given below.

 $\mathbf{A} = \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}.$

= 25 .

Show that the equation of C is the circle with equation

	100
DETMUNNE THE TRANSPORMATION SPURITONS	
$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \iff \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-3+4} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$	-2 -1][X Y]
4 frace we three	
• a= 3x-27	
• y = 2x - Y	

proof

BETTUTE INTO THE EPORTION $5x^2 - 6xy + 13y^2 = 25$ $\Rightarrow 5(3x - 2x)^2 - K(3x - 2x)(2x - x) + 13(2x - x)^2 = 25$

- $\Rightarrow 5(5x-27) l_{6}(5x-27)(x+1)(x+1)(2x+7) = 25$ $\Rightarrow 5(9x^{2}-12x)(4x^{2}) - l_{6}(6x^{2}-7x)(x+2y^{2}) + l_{5}(4x^{2}-4x)(x+y^{2}) = 25$
- $= \frac{43x 60xy + 20y^2}{-90x^2 + 112xy 32y^2} = 25$

Question 49 (****+) The 2×2 matrix **P** is given below.

$$\mathbf{P} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$

The points on the x-y plane which lie on the curve with equation

 $13x^2 - 16xy + 5y^2 + 8x - 6y = 4,$

are transformed by \mathbf{P} onto the points which lie on another curve C.

Determine an equation for C and hence describe it geometrically.

START BY OBTAINING THE INVARE OF P $\underline{\mathbb{P}}^{-1} = \frac{1}{2x_2 - 3x_1} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ ZINTENTS WOTTHING BEINT VE OFFICIEN SE WAS LITT $\begin{pmatrix} \chi \\ \gamma \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix} \iff \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ \gamma \end{pmatrix}$ SUBSTITUTING INTO THE GRUATION WE OBTIMIN $\begin{array}{l} \stackrel{\longrightarrow}{\longrightarrow} 3\mathcal{Z}^2 - l\omega_{24} + \mathcal{S}_{2}^2 + \mathcal{B}x - \mathcal{E}_{3} = 4 \\ \stackrel{\longrightarrow}{\longrightarrow} l_2(2x+\gamma)^2 - l_2(2x+\gamma)(3x+2\gamma) + \mathcal{L}(2x+2\gamma)^2 + \mathcal{B}(2x+\gamma) - \mathcal{E}(3x+2\gamma) = 4 \\ \stackrel{\longrightarrow}{\longrightarrow} l_2(\mathcal{B}^2+\mathcal{W}+\gamma^2) - l_2(\mathcal{D}_{2}^2+\mathcal{W}+\mathcal{D}_{2}^2) + \mathcal{L}(\mathcal{W}+\gamma^2) - 2x-4\gamma = 4 \end{array}$ 52x2+ 52x4+ 13y2 $-96\chi^2 - 112\chi\gamma - 32\chi^2$ $45\chi^2 + 60\chi\gamma + 20\chi^2 - 2\chi - 4\chi = 4$ $\chi^2 + \gamma^2 - 2\chi - \psi \chi = \psi$ $\Rightarrow (X-1)^2 - 1 + (Y-2)^2 - 4 = 4$ $(X-1)^{2} + (Y-2)^{2} = 9$: A above of RMDIUS 3, CHUTRE AT (1.2)

 $(x-1)^{2} + (y-2)^{2} = 9$

Question 50 (****+)

I.F.G.B.

1.C.B. 1120

I.C.B.

20

The points P(7,5) and Q(4,-3) are given.

is.

The point Q is rotated by 90° anticlockwise about the point P.

madas

20

12

00

ŀ.G.B.

10	
THE STANDARD ROTATION FOR 90° AROUT O IS GIVIN BY	
$\begin{array}{ccc} \underline{i} & & \underline{j} $	
Remarkate the cente of 2014/100 on the origin	
$\begin{pmatrix} 7\\ z \end{pmatrix} \longmapsto \begin{pmatrix} 0\\ c \end{pmatrix} \qquad \qquad$	
DO THE SAMLE FOR THE OBJECT POINT	
$\begin{pmatrix} \psi \\ -3 \end{pmatrix} + \begin{pmatrix} -\gamma \\ -4 \end{pmatrix} = \begin{pmatrix} -3 \\ -8 \end{pmatrix} \qquad \text{ for } = \begin{pmatrix} -2 \\ -8 \end{pmatrix}$	
ROMAT ABOUT THE SECON	
$\begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -9 \\ -3 \end{pmatrix} = \begin{pmatrix} 9 \\ -3 \end{pmatrix}$	
HANY DELEDE THE TRANSCATION	
$\begin{pmatrix} 0\\ -4 \end{pmatrix} + \begin{pmatrix} 7\\ 3 \end{pmatrix} = \begin{pmatrix} 15\\ 2 \end{pmatrix}$	

G.B.

I.F.C.P.

madasn.

277

1.4

nadasm.

Mada.

V

], R(15,2)

Question 51 (*****) A shear is defined by the 2×2 matrix

$$\mathbf{M} = \begin{pmatrix} a & b \\ c & 4 \end{pmatrix},$$

where a, b and c are scalar constants.

Under this transformation the point with coordinates (1,2) is mapped onto the point with coordinates (-8,11).

The shear defined by **M** has an invariant line L, which passes through the point with coordinates (0,1).

Determine an equation of L.

Co.
AS THES IS A SHEAR THE DETROMINIANT WOLT BE !
$\Rightarrow \begin{bmatrix} 4_{a-bc} = 1 \end{bmatrix}$
CANCE THE MAPPING (1/2) +-> (-9/7)
$\begin{pmatrix} a & b \\ c & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{bmatrix} = \begin{pmatrix} -6 \\ 1l \end{pmatrix} \implies \begin{cases} a+2b=-6 \\ c+6=1l \end{cases}$
SOLUMING TO GET
• $f = 3$ • $f = 3b = 3$ • $f = 2b = 3b$ • $f = 2b = -2b$ • $f =$
NOOD WE LOCK FOR WURRIGHT UNKES OF THE FORM Y= Wa+1
$ \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{array}{c} X = & -2x - 3y \\ Y = & 3x + 4y \end{array} $
$ \Rightarrow $
$ \begin{array}{c} \longrightarrow \\ \end{array} \begin{array}{c} \times = -2\lambda - 3w_{2} - 3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\$
the state of the second s

BP M=-1 : HOUMEINST LINE IS

L : y = 1 -