CONSISTENCY

EQUATIONS

Created by T. Madas

Question 1 (***)

The system of simultaneous equations

$$
\begin{array}{r}
x+2 y+z=1 \\
2 x+3 y+z=3 \\
3 x+4 y+z=k
\end{array}
$$

where k is a scalar constant, does not have a unique solution, but is consistent.
a) Determine the value of k.
b) Show that the general solution of the system can be written as
where t is a scalar parameter.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
t+3 \\
-t-1 \\
t
\end{array}\right)
$$

Created by T. Madas

Question 2 (***)

$$
\left(\begin{array}{lll}
2 & 5 & 3 \\
1 & 2 & 2 \\
1 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
10
\end{array}\right)
$$

Show that the above simultaneous equations ...
a) \ldots do not have a unique solution.
b) ... are consistent and their general solution can be written as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
16-4 \lambda \\
\lambda-6 \\
\lambda
\end{array}\right)
$$

\square
proof
where λ is a scalar parameter.

Created by T. Madas

Question 3 (***)

The system of simultaneous equations

$$
\begin{array}{r}
x+y+2 z=2 \\
x+2 y+z=2 \\
2 x+a y+5 z=b
\end{array}
$$

where a and b are constants, does not have a unique solution, but it is consistent.
a) Determine the value of a and the value of b.
b) Show that the general solution of the system can be written as
where t is a parameter.

$a=1, b=4$

Created by T. Madas

Created by T. Madas

Question 4 (***)

$$
\begin{array}{r}
x+2 y+z=1 \\
x+y+3 z=2 \\
3 x+5 y+5 z=4
\end{array}
$$

Show that the solution of the above simultaneous equations is

$$
x=3-5 t, \quad y=2 t-1, \quad z=t
$$

where t is a parameter.

Created by T. Madas

Question 5 (***)

$$
\begin{array}{r}
x+y+2 z=2 \\
2 x-y+z=-2 \\
3 x+y+4 z=2
\end{array}
$$

Show, by reducing the augmented matrix of the above system of equations into row echelon form, that the solution can be written as

$$
x=-t, \quad y=2-t, \quad z=t
$$

where t is a scalar parameter.

Created by T. Madas

Question 6 (***)
A system of equation is given in matrix form below

$$
\left(\begin{array}{ccc}
t & 2 & 3 \\
2 & 3 & -t \\
3 & 5 & t+1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),
$$

where t is an integer constant, and a, b and c are real constants.

The system of equations does not have a unique solution, but it is consistent.

Question 7 (***)
A system of equations is given below in terms of the scalar parameters t and s.

$$
\begin{aligned}
& 2 x+y+3 z=t+1 \\
& 5 x-2 y+(t+1) z=3 \\
& t x+2 y+4 z=s
\end{aligned}
$$

a) Show that if $t=-5$ or $t=2$, the system does not have a unique solution.
b) Determine the value of s is the system is to have infinite solutions with $t=2$.

$$
s=4
$$

Question 8 (***)
The three planes defined by the equations

$$
\begin{array}{r}
x+2 y+z=2 \\
2 x+a y+z=2 \\
x+y+2 z=b
\end{array}
$$

where a and k are constants, intersect along a straight line L.

Determine an equation of L.
\square , $\mathbf{r}=(6-3 t) \mathbf{i}+(t-2) \mathbf{j}+t \mathbf{k}$

\square

Created by T. Madas

Question 9 (***)

$$
\begin{array}{r}
x+y-2 z=2 \\
3 x-y+6 z=2 \\
6 x+5 y-9 z=k
\end{array}
$$

a) Show that the system of equations does not have a unique solution.
b) Show that there exists a value of k for which the system is consistent.
c) Show, by reducing the system into row echelon form, that the consistent solution of the system can be written as

$$
x=1-t, \quad y=3 t+1, \quad z=t
$$

where t is a scalar parameter.

Created by T. Madas

Question 10 (***)

$$
\begin{aligned}
3 x-y+5 z & =5 \\
2 x+y-5 z & =10 \\
x+y+k z & =7
\end{aligned}
$$

where k is a constant.
a) Given that $k \neq-5$ find the unique solution of the system of equations.
b) Given instead that $k=-5$ show, by reducing the system into row echelon form, that the consistent solution of the system can be written as

$$
x=3, y=4, z=0
$$

Question 11 (***)
A system of equations is given below

$$
\begin{array}{r}
x+2 y-z=4 \\
2 x-y+z=5 \\
4 x-7 y+5 z=7
\end{array}
$$

a) Show that the system does not have a unique solution but is consistent.
b) Show that the general solution of the system can be written as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2-t \\
3+3 t \\
4+5 t
\end{array}\right)
$$

where t is a parameter.

Created by T. Madas

Question 12 (***)

$$
\mathbf{A}=\left(\begin{array}{crr}
9 & 2 & k \\
1 & -1 & -3 \\
k-1 & 1 & 3
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) .
$$

Consider the homogeneous system of simultaneous equations

$$
\mathbf{A x}=\mathbf{0}
$$

a) Find the values of k for which the system has a non trivial solution.
b) If $k \neq 0$ find the general, non trivial solution of the system.

Question 13 (***)
Consider the system of simultaneous equations

$$
\begin{aligned}
k x+k y-z & =-1 \\
k y+2 z & =2 k \\
x+2 y+z & =1
\end{aligned}
$$

where the constant k can only take the values 0,1 and 2 .

Determine for each of the possible values of k whether the system ...
i. ... has a unique solution
ii. ... has no unique solution, but it is consistent.
iii. ... is inconsistent.

$$
k=0 \Rightarrow \text { incosistent }, k=1 \Rightarrow \text { no unique solution/consistent, }
$$

Created by T. Madas

Question 14 (***)

$$
\mathbf{A}=\left(\begin{array}{ccc}
k+1 & 1 & k \\
1 & 2 & k \\
2 & k & 1
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
3 \\
2
\end{array}\right) .
$$

Show that the system of equations $\mathbf{A x}=\mathbf{b}$ does not have a unique solution, but is consistent if $k=1$, and its general solution in this case can be written as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
t \\
1+t \\
1-3 t
\end{array}\right)
$$

where t is a scalar parameter.

Question 15 (***)
A system of equations is given below

$$
\left(\begin{array}{rrr}
2 & 1 & 3 \\
1 & -2 & 2 \\
4 & 7 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
3
\end{array}\right)
$$

Show that the system does not have a unique solution but is consistent and its general solution can be written as

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-8 t \\
t-1 \\
5 t+2
\end{array}\right)
$$

Created by T. Madas

Question 16 (***)

$$
\left(\begin{array}{ccc}
3 & k & -1 \\
2 k & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
3 \\
1 \\
-2
\end{array}\right)
$$

a) Determine the values of k for which the above system of equations does not have a unique solution.
b) Show, that one of these values of k leads to inconsistency and the other produces a general solution of the form

$$
x=-t, \quad y=4 t+1, \quad z=5 t-1
$$

where t is a scalar parameter.
\square $, k=-1,2$

Created by T. Madas

Question 17 (***)

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 3 \\
4 & 5 & 7
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
3 \\
b
\end{array}\right)
$$

Show that the system of equations $\mathbf{A x}=\mathbf{b}$ does not have a unique solution, but for a certain value of b is consistent and its general solution can be written as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3+4 \lambda \\
\lambda \\
-1-3 \lambda
\end{array}\right)
$$

where λ is a parameter.

Created by T. Madas

Question $18 \quad(* * *+)$

Consider the following matrix equation

$$
\left(\begin{array}{ccc}
k & 1 & 0 \\
3 & -2 & k-3 \\
10 k & 3 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
a \\
b \\
15
\end{array}\right),
$$

where a, b and k are scalar constants.
a) Find the values of k for which the equation has a unique solution.

It is further asserted that $k=2$.
b) Express a in terms of b if the matrix equation is to be consistent.
c) Show that if $a=1$ and $b=4$, the solution of the matrix equation is
where t is a scalar parameter.

Created by T. Madas

Question 19 (***+)

$$
\begin{aligned}
x-2 y+a z & =5 \\
(a+1) x+3 y & =a \\
2 x+y+(a-1) z & =3
\end{aligned}
$$

a) Determine the two values of the constant a for which the above system of equations does not have a unique solution.
b) Show clearly that the system is consistent for one of these values and inconsistent for the other.

Created by T. Madas

Question 20 (***+)
 A system of equations is given below

$$
\begin{aligned}
3 x+2 y-z & =10 \\
5 x-y-4 z & =17 \\
x+5 y+p z & =q
\end{aligned}
$$

where p and q are constants.

a) Find the value of the constant p so that the system of equations does not have a unique solution.
b) Show that for this value of p the system is consistent if $q=3$.
c) Show that the general solution of the system can be written as

$$
\mathbf{r}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+\lambda(9 \mathbf{i}-7 \mathbf{j}+13 \mathbf{k})
$$

Created by T. Madas

Question 21 (****)
A system of equation is given below

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25
\end{aligned}
$$

a) Show, by reducing the system into row echelon form, that the solution of the system can be written as

$$
\mathbf{r}=8 \mathbf{i}+9 \mathbf{j}+\lambda(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
$$

where λ is a scalar parameter.

A new system is now given

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25 \\
& 7 x+k y+2 z=20
\end{aligned}
$$

where k is a constant.
b) Determine if the system has solutions for different values of k.

