The contraction of the the the contract of the contract of the the AUSTRALISCOM I.Y.C.B. MAGASMANS.COM I.Y.C.B. MAGASMANS.COM I.Y.C.B. MAGASMANS.COM I.Y.C.B. MAGASMANS.COM

Question 1 (**)

Relative to a fixed origin O, the point A has coordinates (2, -3).

The point *B* is such so that $\overrightarrow{AB} = 3\mathbf{i} - 7\mathbf{j}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.

Determine the distance of B from O.

 $|OB| = 5\sqrt{5}$

Question 2 (**+)

Relative to a fixed origin O, the point A has coordinates (-2,4).

The point *B* is such so that $\overrightarrow{BA} = 5\mathbf{i} - \mathbf{j}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.

- **a**) Determine the distance of B from O.
- **b**) Calculate the angle *OAB*.

 $||OB| = \sqrt{74}$

∡OAB ≈128°

Question 3 (***)

The points A, B and C lie on a plane so that

 $\overrightarrow{AB} = 2\mathbf{i} + 7\mathbf{j}$ and $\overrightarrow{AC} = 4\mathbf{i} - 5\mathbf{j}$,

where **i** and **j** are mutually perpendicular unit vectors lying on the same plane.

The point D lies on the straight line segment BC, so that |BD|:|DC| = 1:2.

a) Determine a simplified expression, in terms of **i** and **j**, for \overrightarrow{BD} .

b) Show that the $|\overrightarrow{AD}|$ is approximately 4 units.

Question 4 (***)

KQ,

The following information is given for four points which lie on the same plane.

$$\overrightarrow{OA} = \mathbf{i} + 4\mathbf{j}, \quad \overrightarrow{OB} = 5\mathbf{i} + 5\mathbf{j} \quad \text{and} \quad \overrightarrow{CB} = -\mathbf{i} + 6\mathbf{j},$$

- **a**) Find the vector \overrightarrow{AB} and hence state its length
- **b**) Determine the length of \overrightarrow{AC} .
- c) Calculate the size of the angle *ABC*.

ize of the angle
$$ABC$$
.

$$\overline{AB} = 4\mathbf{i} + \mathbf{j}, \quad \overline{AB} = \sqrt{17}, \quad \overline{AC} = \sqrt{50}, \quad \underline{\measuredangle ABC} \approx 85.4^{\circ}$$

a state with to have the
$\overrightarrow{Ok} = \underline{1} + 4\underline{1}$ $\overrightarrow{Ok} = \underline{S} + \underline{S} \underline{1}$
CB = -1 + 61
TWO AB, RUDWAD BY ITS LEWOTH
$\overline{AB} = \overline{AO} + \overline{OB} = -(\underline{i} + 4\underline{i}) + (\underline{SI} + \underline{SL}) = \underline{4\underline{i}} + \underline{2}$
$\left \overline{AB}\right = \left 4\underline{1} + \underline{2}\right = \sqrt{\underline{a^2 + 1^2}} = \sqrt{\underline{n}}$
b) NEXT FIND THE VECTOR AC
$\vec{AC} = \vec{AB} + \vec{BC} = \vec{AB} - \vec{CB} = (4\vec{1}+\vec{1}) - (-\vec{1}+6\vec{1}) = 5\vec{1}-5\vec{1}$
NEKT IHE MODULI OF AC
$ \overline{AC} = \underline{S_1} - \underline{S_2} = \sqrt{\underline{S^2} + (-\underline{S})^2} = \sqrt{2\underline{C} + 2\underline{S}}$
9 FINALLY THE LEWSTH OF CB
$\left \overrightarrow{CB} \right = \left -\overrightarrow{1} + 6 \overrightarrow{1} \right = \sqrt{(-1)^2 + 6^2} = \sqrt{1 + 36^2} = \sqrt{37}$
BY THE COSINE RULE
\Rightarrow $ AC ^2 = AB ^2 + CB ^2 - 2 AB CB \cos\theta$
$\Rightarrow (\sqrt{50})^2 = (\sqrt{17})^2 + (\sqrt{57})^2 - 2\sqrt{17}\sqrt{57}\cos\theta$
⇒ 50 = 17 + 37 - 24629°000
- 2. [23] (23] - 11

0

0= 85.4°

F.C.B.

0

The figure above shows a trapezium OABC, where O is a fixed origin.

C

D

The position vectors of A and C are 12i + 4j and 18i - 21j, respectively.

CB is parallel to *OA*, so that $\left| \overrightarrow{CB} \right| = 2 \left| \overrightarrow{OA} \right|$.

The point D lies on AC so that AD: DC = 1:2.

- a) Find a simplified expression, in terms of \mathbf{i} and \mathbf{j} , for the position vector of D.
- **b**) Show that that O, D and B are collinear and state the ratio of OD: DB.

 $\frac{13}{3}$ OD = 14i j |OD:DB=1:2|

LOOKING AT THE DIARDAM $\vec{AC} = \vec{AO} + \vec{C}$ -(ei+41)+(ei-211 61-251 AD = + AC = + (61-25+) 21-251 0A = 121 + 41 7 1 48 (12i+41)+(2i-251) The Nector To Vector The sources of any with $\overrightarrow{CB} = 2\overrightarrow{O4} = 2(12\underline{i}+4\underline{i}) = 24\underline{i}+8\underline{i}$ $\overrightarrow{DC} = \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}(\overrightarrow{B_1} - 2\overrightarrow{L}) = 4\overrightarrow{L} - \frac{32}{3}\overrightarrow{L}$ $\overrightarrow{DB} = \overrightarrow{DC} + \overrightarrow{CB} = (41 - \frac{591}{3}) + (241 + 81) = 281 - \frac{251}{3}$ outh aco $|\underline{u}_{1}^{\prime} - \frac{13}{2}\underline{\perp} = \frac{1}{3}(42\underline{1} - 13\underline{1})$ 助 = 281 - 普日 = 多(421 - 131) BOTH OD & JE ARE countral wint tool: 100 = 1:2 THAT O, 4 & D

Question 6 (***)

The points A and B have position vectors $\begin{pmatrix} -5 \\ -2 \\ 8 \end{pmatrix}$ and $\begin{pmatrix} 11 \\ 6 \\ 20 \end{pmatrix}$, respectively.

The point *M* lies on *AB* so that |AM| : |MB| = 3:1

The point *P* has position vector

 $\begin{array}{c} \text{ctor} & 8 \\ 19 \end{array}$

10

Determine the position vector of the point Q, if M is the midpoint of PQ.

STARTUS WITH A DIAGRAM	
A M B $B = \begin{pmatrix} B \\ -2 \\ -2 \end{pmatrix}$	
o (11) (-5) (14)	
$\begin{pmatrix} 3l\\ g\\ g\\$	
• $\vec{A}\vec{M} = \frac{3}{4}\vec{A}\vec{B} = -\frac{3}{4}\begin{pmatrix} bb\\ B\\ bc \end{pmatrix} = \begin{pmatrix} bb\\ B\\ cc \end{pmatrix}$	
$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{HM} = \begin{pmatrix} -5\\ -2\\ -2\\ 8 \end{pmatrix} + \begin{pmatrix} 12\\ -4\\ 1 \end{pmatrix} = \begin{pmatrix} 7\\ 4\\ 1 \end{pmatrix}$	
ANCHER DIABAN NOW AND THE POSITION LEADE Q CAN BE BLAD	off
g M Q	
$\begin{pmatrix} 10\\ \\ 19\\ \\ 19\\ \\ \hline \\ -2 \\ \hline \\ -2 \\ \hline \\ -2 \\ \hline \\ 17\\ \hline \\ -2 \\ \hline \\ 17\\ \hline \\ -2 \\ \hline \\ -2 \\ \hline \\ -2 \\ \hline \\ 17\\ \hline \\ -2 \\ \hline \\ \\ -2 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ -2 \\ \hline \\ \\ 1 \\ \hline \\ \\ 1 \\ \hline \\ \\ 1 \\ \hline \\ 1 \\ 1$	
$\begin{pmatrix} \delta \\ 19 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 17 \\ 17 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 9 \\ 2 \end{pmatrix} \begin{pmatrix} 9 \\ 2 \end{pmatrix} \begin{pmatrix} 9 \\ 2 \end{pmatrix} \begin{pmatrix} 9 \\ 15 \end{pmatrix}$	

Question 7 (***+)

 \cap

not drawn to scale

The figure above shows a trapezium OBCA where OB is parallel to AC

The point D lies on BA so that BD: DA = 1:2.

D

It is further given that $\overrightarrow{OA} = 7\mathbf{i} - 4\mathbf{j}$, $\overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j}$ and $\overrightarrow{AC} = 2 \overrightarrow{OB}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.

- a) Determine simplified expressions, in terms of **i** and **j**, for each of the vectors \overrightarrow{OC} , \overrightarrow{AB} , \overrightarrow{AD} and \overrightarrow{OD} .
- b) Deduce, showing your reasoning, that O, D and C are collinear and state the ratio of OC:OD.
- c) Show that $\angle OBA = 90^{\circ}$ and hence find the area of the trapezium *OBCA*.
- **d**) State the size of the angle $\measuredangle ABC$.

The figure above shows a trapezium ABCD, where AD is parallel to BC.

The following information is given for this trapezium.

$$\overrightarrow{BD} = 5\mathbf{i} + \mathbf{j}, \quad \overrightarrow{DC} = \mathbf{i} - 10\mathbf{j} \text{ and } \overrightarrow{AD} = 4\mathbf{i} + k\mathbf{j},$$

where k is an integer.

- **a**) Use vector algebra to show that k = -6.
- **b**) Find the length of \overrightarrow{AB} .
- c) Calculate the size of the angle *ABD*.

], $\left| \overline{AB} \right| = \sqrt{50} = 5\sqrt{2}$, $\angle ABD \approx 70.6^{\circ}$

WORLING AT THE DUGO 41+6 $\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC}$ R $= (\underline{2}, \underline{1}, \underline{7}) + (\underline{7} - \underline{1}, \underline{7})$ REE 61-91 AD IS PARAULE TO B THE E CHEEDE COMPONIEUS LIDE BE IN PROPORTION) $\frac{4}{k} = \frac{6}{-9}$ Gt = -36 k = -6 +5 EARVIERO FIRST FIND AB $-\overline{AB} = \overline{AD} + \overline{DB} = (4\underline{1} - 6\underline{1}) - (\underline{s}\underline{1} + \underline{1}) = -\underline{1} - 7\underline{1}$ NEXT THE LONDAH OF AB $\left|\overline{AB}\right| = \left|-\underline{1}-7\underline{1}\right| = \sqrt{(c_1)^2 + (c_7)^2} = \sqrt{50^2} = 5\sqrt{2}$ BY THE WISINE RULE ON ABD c)
$$\begin{split} |\vec{\mathbf{AD}}| &= 1 |\vec{\mathbf{4}_1} - \mathbf{6L}|_{>} \sqrt{4^2 (-\mathbf{6L})^2} = \sqrt{52} \\ |\vec{\mathbf{BD}}| &= |\vec{\mathbf{5}_1} + \underline{2}| = \sqrt{-5^2 + v^2} = \sqrt{52} \end{split}$$
 $\log \theta = \frac{|AB|^{2}_{1}|BD|^{2} - |AD|^{2}_{2}}{2^{|AB||BD||}} = \frac{50 + 26 - 52}{2 \times \sqrt{B} \sqrt{20}} = 0.33282.$ 0~706

Р

Q

A

Question 9 (***+)

The figure above shows a triangle OAB, where O is a fixed origin.

- The point A has coordinates (6, -8).
- The point P, whose coordinates are (4,1), lies on OB so that OP: PB = 4:1.
- The point Q lies on AB so that AQ : QB = 3:2
- The side *OA* is extended to the point *R* so that OA: AR = 5:3.
 - a) Use vector methods to determine the coordinates of Q.
 - **b**) Determine expressions, in terms of **i** and **j**, for the vectors \overrightarrow{PQ} and \overrightarrow{QR} .

 $\overrightarrow{PQ} = \frac{7}{5}\mathbf{i} - \frac{69}{20}\mathbf{j}$

c) Deduce, showing your reasoning, that P, Q and R are collinear and state the ratio of PQ:QR.

 $, |\overrightarrow{QR} = \frac{21}{5}$

0P = 4i +1 $\begin{pmatrix} 27_{1} \\ 5- \\ -\frac{49}{20} \\ 2 \\ -\frac{1}{20} \\ -\frac{1}{2$ 00-00 - 201-00 - (22 i - 44 1) 광는 - 207 1 OR $\frac{5}{4} \overrightarrow{O}^{\beta} = \frac{5}{4} \left(4 \overrightarrow{L} + \underline{1} \right) = S_{\underline{L}}^{*} + \frac{5}{4} \underline{1}$ 오 + 여 = -27-분기 + 67-87= 7-충 <u>₹</u>1) = <u>₹</u>1 -27 + 훈키 + 옥틴 - 얇기 271 - 49 1 1.Q(S.4.-2.45)

PQ:QR = 1:3

Question 10 (***+)

The points A, B and P lie on the x-y plane, where the point O is the origin.

It is further given that

1.0.

$$|OA| = 4$$
, $|OB| = 6$ and $\measuredangle AOB = 40^{\circ}$.

If $\overrightarrow{OP} = 2(\overrightarrow{OA}) - 3(\overrightarrow{OB})$ determine the distance of *P* from the origin and the angle between \overrightarrow{OP} and \overrightarrow{OA} .

Question 11 (****)

The points A(-1,4), B(2,3) and C(8,1) lie on the x-y plane, where O is the origin.

a) Show that A, B and C are collinear.

The point *D* lies on *BC* so that $\overrightarrow{BD}:\overrightarrow{BC}=2:3$

b) Find the coordinates of D.

The straight line OB is extended to the point P, so that \overrightarrow{AP} is parallel to \overrightarrow{OC} .

c) Determine the coordinates of P

	$, D\left(6,\frac{5}{3}\right), P\left(3,\frac{9}{2}\right)$
(θ_{l})	b) WOKING AT THE DIAGOMY BECOW
$\begin{array}{c} \frac{\lambda B_{i}^{k}}{\left(\frac{\lambda}{2}\right)} = \left(\frac{\lambda}{2}\right) \\ \left(\frac{\lambda}{2}\right) = \left(\frac{\lambda}{2}\right) \\ \left(\frac{\mu}{2}\right) = \left(\frac{\lambda}{2}\right) = 2\left(\frac{\lambda}{2}\right) \\ \mu B_{i}^{k} = \frac{\lambda B_{i}^{k}}{\left(\frac{\lambda}{2}\right)} \\ \mu B_{i}^{k} = \frac{\lambda B_{i}^{k}}{\left(\frac$	$\frac{4}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
$\begin{array}{c c} & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	$ \Rightarrow \begin{array}{c} \rightarrow \end{array} \begin{array}{c} \partial \left(\begin{array}{c} \overline{s} \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ \Rightarrow \end{array} \begin{array}{c} \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ = \left(\begin{array}{c} -1 \\ \overline{s} \end{array} \right) \\ =$

P(3, 2)

Question 12 (****+)

Relative to a fixed origin O on a horizontal plane, the points A and B have respective position vectors $3\mathbf{i}-2\mathbf{j}$ and $5\mathbf{i}+4\mathbf{j}$.

The point C lies on the same plane as A and B so that $\overrightarrow{AB} : \overrightarrow{BC} = 2 : 5$.

a) Find the position vector of C.

The point D lies on the same plane as A and B so that A, B and D are collinear.

b) Given that $|BD| = 6\sqrt{10}$, determine the possible position vectors of D.

• $\overrightarrow{AB} = \underline{b} - \underline{a} = (\underline{x}_1 + 4\underline{i}) - (\underline{x}_1 - 2\underline{i}) = \underline{x}_1 + 6\underline{i}$ AR : RO DIRECTION OW BE SOLED TO 1+31 HENCE SINCE [1+31]= Vi+32= JD, , ------- (L+32 (=) (+32 '=) b), we were a "intermediate stres" in finite direction from B $1: \in q = \overline{p} + e(\overline{1}+3\overline{1}) = 2\overline{1}+4\overline{3} + e\overline{1}+18\overline{5}$ $\overrightarrow{q} = \overrightarrow{p} - \mathcal{C}(\overrightarrow{\tau} + 2\overrightarrow{\eta}) = 2\overrightarrow{\tau} + d\overrightarrow{\eta} - \mathcal{C}\overrightarrow{\tau} - |B\overrightarrow{\tau}|$ 3(1)-11 = 22 : d= 111+22 00 d= -1-14) . D(-1,-14) OR (11,22) " d=-1-141 02 d'= 111+221 GRADINT AB = 4-(-2) = 6 =3 UNE THROUGH ABOD U y - 4 = 3(x - 5)y - 4 = 3x - 15A (3,-2) B(5,4) 4= 32 -11 $\begin{array}{c}\uparrow & \uparrow & \uparrow & \uparrow \\ (G_{1}7) & (J_{1},0) & (g_{1}G_{1}) & (g_{1}G_{1}) \end{array}$ HENCE D(a, 30-NOW THE DISTANCE BDI = 610 V (3a-11-4)2+ (a-5)23 = 6110 : <u>e= 101 + 191</u> $|5|^{2} + (a-5)^{2}$ AS BHORA

, $\mathbf{c} = 10\mathbf{i} + 19\mathbf{j}$, $\mathbf{d} = -\mathbf{i} - 14\mathbf{j}$ \bigcup

d = 11i + 22j

Question 13 (****+)

20

Ismaths,

I.C.B.

Smaths,

I.F.G.B

mada.

COM

The four vertices of a quadrilateral ABCD lie on the same plane.

The points M and N are the midpoints of AB and CD, respectively.

Determine the possible values of the scalar constant λ , given further that

11.202.SI

 $\left(\lambda^2 - 6\lambda + 10\right)\overline{MN} = \overline{AD} + \overline{BC}.$

COM

20351121

Madası

Created by T. Madas

nadasman

2011

I.C.B.

Question 14 (****+)

Relative to a fixed origin O, the points A and B have position vectors 3i-9j and 2i+10j, respectively.

The point *M* is the midpoint of *OB* and the point *N* lies on *OA* so that $\overrightarrow{OA} = 3\overrightarrow{ON}$.

The point P is the point of intersection of AM and BN.

Determine the ratio \overrightarrow{NP} : \overrightarrow{PB} .

Question 15 (*****)

1.0.

A triangle OAB is given.

The point M is the midpoint of OA.

The point N lies on OB so that |ON| : |NB| = 1:5

If the point *P* is the intersection of the straight lines *AN* and *BM*, use vector algebra to find the ratio of |AP|: |EP|.

Q.J.

Question 16 (*****)

N.C.

The triangle ABC is given.

The points *D* and *E* are such so that $\overrightarrow{AD} = \lambda \overrightarrow{BC}$ and $\overrightarrow{BE} = \mu \overrightarrow{AC}$, where λ and μ are positive scalar constants.

Given further that $\lambda \mu = 1$, show that D, C and E are collinear.

2012

proof

112.50

₽ŀ,

	11/2
Question 17	(****)
It is given that	~~ <i>C</i>

 $\overrightarrow{AP} + 4\overrightarrow{BP} + 3\overrightarrow{PC} = \overrightarrow{0}.$

Show that

 $\overrightarrow{AP} = \frac{1}{2} \left[\overrightarrow{AB} - 3\overrightarrow{BC} \right].$

TAKE "A" TO BE THE OR	Con).			
-AP. + 48P + 3PC	5=3			
$\overrightarrow{AP} + 4(\overrightarrow{BA} + \overrightarrow{AP}) +$	3 (PA)	= (JA	ð	
-AP + 48Å + 4AP	+ 3PA	+ 3AČ =	0	
AP + 4AP + 3PA	= -4B	f - 3AC		
AP + 4AP - 3AP			-3AČ	
2AP = -BA -3		2)		
JAP = AB -3				
$-\overrightarrow{AP} = \frac{1}{2} (-\overrightarrow{AB} \cdot$	-382)	1.		
	//	AS DEPURE		

COM

proof

(*****) **Question 18**

> $\mathbf{b} = (x+y)\mathbf{i} + 2\mathbf{j}.$ +3)i+4jand a =

Determine the value of x and the value of y given that **a** and **b** are parallel.

x = 2, y = 1

$\underline{a} = \left(\frac{1}{2}a^{2}+y^{3}+3\right)\underline{i} + 4\underline{i} \underline{b} = (a+3)\underline{i} + 2\underline{i}$	
As THE VECTORS ARE PARAULE	
$\rightarrow \frac{\frac{1}{2}x^2+y^2+3}{3+y} = \frac{4}{2}$	
$\implies a^2 + 2u^2 + 6 = 4a + 4y$ $\implies a^2 - 4a + 6 + 2y^2 - 4y = 0$	
$\Rightarrow (2-2)^2 + 6 + 2(y^2-2y) = 0$	
$\implies (a-2)^{2}+2+2[(y-1)^{2}-1]=0$ $\implies (a-2)^{2}+2+2(y-1)^{2}-2=0$	
$\implies (1-2)^{2} + 2(y-1)^{2} = 0$	
: a=29 y=1	

uasinatis.com

Introducing Thementary The solution of the sol Intru Elementary 3D Vectors TH I.Y.C.B. Madasmanna I.Y.C.B. Madasu T.Y.G.B. Madasmaths.com T.Y.G.B. Madasm

asmaths.com

Question 1 (**)

Relative to a fixed origin O, the points A, B and C have respective position vectors

 $-3\mathbf{i}+\mathbf{k}$, $-\mathbf{i}+4\mathbf{j}+\mathbf{k}$ 5i + 4j. and

Calculate the size of the angle ABC and hence find the area of the triangle ABC.

nadasmath

I.G.B.

2017

I.C.B.

I.C.B. Madasm

COM

· In
$ \underbrace{ - I(-3,0,1) B(-1,4,1) C(S,4,0) }_{ I(-3,0,1) B(-1,4,1) C(S,4,0) } $
• $\left \overrightarrow{AB} \right = \left \underbrace{\mathbb{R}}_{-\underline{\alpha}} \right = \left (-1, u_1) - (-3, c_1) \right $
$= (2_{4}, 0) = \sqrt{4+16+0}$ = $\sqrt{20}$
$b = \frac{1}{1+0+2k}b = \frac{1}{1-\rho_1} = \frac{1}{2}(\rho_1\mu_1 - \frac{1}{2}-\rho_1\mu_2) = \frac{1}{2}a - \frac{1}{2}a = \frac{1}{2}a^2$
BY THE CONNE 2014
$\longrightarrow AC ^{2} = (Az)^{2} + zc ^{2} - 2 AB zc \omega \theta$ $\implies q^{2} = 20 + 37 - 2\sqrt{zz}\sqrt{37}\omega s\theta$
$\implies 2\sqrt{10}\sqrt{3}\cos\theta = 20+37-8 $
⇒ 620) = 0.441(28 ⇒ θ ≈ <u>116</u> °
FINALLY THE ARIA IS GWINN BY
$\frac{1}{2} AB BC = \frac{1}{2} \sqrt{2} \sqrt{37} \sin(10^{\circ}) \approx \frac{12.2}{2}$

nadasma,

I.C.P.

CO11

21/2.57

00

Madae,

 $\measuredangle ABC \approx 116^{\circ}$, area ≈ 12.2

Created by T. Madas

madasmath

2017

Question 2 (**)

2

Smaths,

I.G.B.

COM

i G.B.

Relative to a fixed origin O, the point A has coordinates (2,1,-3).

112/281

2017

.G.B.

The point *B* is such so that $\overrightarrow{AB} = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$.

Determine the distance of B from O.

Ingen

F.C.B.

2017

Madasma,

Madası

Question 3 (**)

.C.

Relative to a fixed origin O, the point A has coordinates (6, -4, 1).

The point *B* is such so that $\overrightarrow{BA} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}$.

If the point *M* is the midpoint of *OB*, show that $|\overline{AM}| = k\sqrt{10}$, where *k* is a rational constant to be found.

Question 4 (**+)

F.G.B.

i.C.B.

Relative to a fixed origin O, the point A has coordinates (2,5,4).

The points B, C and D are such so that

 $\overrightarrow{BA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{BC} = 7\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\overrightarrow{DC} = 4\mathbf{i} + 2\mathbf{k}$

2012.Sn

Determine the distance of D from the origin.

10

i.C.p.

|OD| = 6

2

202.80

M2(12)

Question 5 (**+)

Relative to a fixed origin O, the points A, B and C have respective position vectors $2\mathbf{i}+3\mathbf{j}-\mathbf{k}$, $5\mathbf{i}-3\mathbf{j}+4\mathbf{k}$ and $7\mathbf{j}-4\mathbf{k}$.

- a) Given that ABCD is a parallelogram, determine the position vector of D.
- **b**) Determine the distance AC and hence calculate the angle ABC.

Question 6 (***)

Relative to a fixed origin O, the point A has coordinates (k,3,5), where k is a scalar constant.

The points *B* and *C* are such so that $\overrightarrow{BA} = 3\mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{BC} = 2\mathbf{i} + c\mathbf{j} - 4\mathbf{k}$, where *c* is a scalar constant.

If the coordinates of C are (1,4k,1), determine the distance BC.

$\boxed{\qquad}, \ \left BC\right = \sqrt{2^{4}}$	9
0.	Ę
STAETING WITH A NEODE DIAGRAM	
$0 \xrightarrow{(1, uk, 1)} (k_{1}, u_{1}, u_{2}, u_{1}, u_{2}, u_{2$	~ ~ ~ ~ ~ ~
$\begin{array}{l} \hline \begin{array}{l} \hline \begin{array}{l} \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} $ \\ \\ \\ \end{array} \\ \\ \\ \\	
[[]: k-1=1 - <u>k=2</u> [J]: c+3= 4 <u>k</u> c+3= 8 <u>c=3</u>	
THURKE WE CAN FIND THE DITTAKE BC $\Rightarrow \overline{BC} = 2,3,-4 $ $\Rightarrow \overline{BC} = \sqrt{2^{4}+3^{2}+(-4)^{2^{4}}}$ $\Rightarrow \overline{BC} = \sqrt{2^{4}+3^{2}+(-4)^{2^{4}}}$ $\Rightarrow \overline{BC} = \sqrt{2^{4}} \approx 5.39$	

Question 7 (***)

The points A(4,4,1), B(2,-2,0) and C(6,3,7) are referred relative to a fixed origin O.

If A, B, C and the point D form the parallelogram ABCD, use vector algebra to find the coordinates of D and hence calculate the angle OCD.

2112.51

D(8,9,8), $\measuredangle OCD \approx 126.6^{\circ}$

Question 8 (***)

OABC is a square, where *O* is the origin, and the vertices *A* and *C* have respective position vectors $2\mathbf{i}+4\mathbf{j}+4\mathbf{k}$ and $4\mathbf{i}+2\mathbf{j}-4\mathbf{k}$.

The point M is the midpoint of AB and the point N is the midpoint of MC.

The point *D* is such so that $\overrightarrow{AD} = \frac{3}{2} \overrightarrow{AB}$.

a) Find the position vectors of the points B, D and N.

b) Deduce, showing your reasoning, that O, N and D are collinear.

Question 9 (***)

12

The points A(-2, -10, -17) and B(25, -1, 19) are referred relative to a fixed origin O.

The point C is such so that ACB forms a straight line.

Given further that $\frac{|AC|}{|\overline{CB}|} = \frac{2}{7}$, determine the coordinates of C.

C(4, -8, -9)

Question 10 (***)

1.0.

The points A(-3, -14, -5) and B(1, -4, -1) are referred relative to a fixed origin O.

9

The point C is such so that ABC forms a straight line.

Given further that $\frac{|AB|}{|BC|} = \frac{2}{5}$, determine the coordinates of C.

C(11,21,9)

201

Question 11 (***)

The variable points A(2t,t,2) and B(t,4,1), where t is a scalar variable, are referred relative to a fixed origin O.

a) Show that

1.0.

$$\left. \overrightarrow{AB} \right| = \sqrt{2t^2 - 8t + 17} \; .$$

b) Hence find the shortest distance between A and B, as t varies.

as t varies.	Do.
	$\left \overline{AB} \right _{\min} = 3$
$\begin{array}{c} \mathcal{A}(x_{1}t_{1}z) & \mathcal{B}(t_{1}t_{1}1) \\ \textbf{a}) & \left \mathcal{A}_{1}^{*} \mathcal{B}_{1} \right = \left \mathbf{b} - \mathbf{a} \right = \left (t_{1}t_{1}1) - \mathbf{a} \right \\ = \sqrt{\langle \mathcal{C} \mathcal{O}_{1}^{*} + (\mathcal{A} - \mathcal{O}_{1}^{*} + \mathcal{C} - \mathcal{O}_{2}^{*}) \\ = \sqrt{\langle \mathcal{D}_{2}^{*} - \mathcal{O}_{2}^{*} + \mathcal{O}_{1}^{*} + \mathcal{O}_{1}^{*} \\ \end{array} \right.$	
b) BY COMPLETING THE SPUARE (O	e Awres)
$\rightarrow \overline{AB} = \sqrt{2(k^2 + k^2 + 1)^2}$ $\rightarrow \overline{AB} = \sqrt{2(k^2 - 4k + \frac{1}{2})^2}$ $\rightarrow \overline{AB} = \sqrt{2(k^2 - 4k + \frac{1}{2})^2}$ $\rightarrow \overline{AB} = \sqrt{2(k^2 - 2)^2 - 8 + 1)^2}$ $\rightarrow \overline{AB} = \sqrt{2(k^2 - 2)^2 - 8 + 1)^2}$ $\rightarrow \overline{AB} = \sqrt{2(k^2 - 2)^2 + 1}$	
HAVE HER	Ja' WHICH occues when t=2

Question 12 (***)

The points A(5,-1,0), B(3,5,-4), C(12,2,8) are referred relative to a fixed origin O.

11_{20/281}

The point D is such so that $\overrightarrow{AD} = 2\overrightarrow{BC}$.

Determine the distance CD.

2

Smaths.

ŀ.G.B.

Ĉ.p

200

21/2.Sm

mana.

C.b.

 $|CD| = \sqrt{458} \approx 21.40$

Question 13 (***)

F.G.B.

Î. B.

The points A(t,3,2) and B(5,2,2t), where t is a scalar constant, are referred relative to a fixed origin O.

11.21/2.SI

20

C.I.

Given that $|\overrightarrow{AB}| = \sqrt{21}$, find the possible values of t.

$f = 3, t = \frac{3}{5}$ $A(t_1, t_2) = B(s, t_1, t_2) |\overline{AB}| = \sqrt{2t}$ $\Rightarrow |\overline{AB}| = 421^{\circ} (6004)$ $\Rightarrow |\overline{A} = 4004^{\circ} (6004)$

21/2.57

F.G.B.

Question 14 (***+)

F.G.B.

The variable points A(1,8,t-1) and B(2t-1,4,3t-1), where t is a scalar variable, are referred relative to a fixed origin O.

Find the shortest distance between A and B, as t varies.

nana,

,	$\left \overrightarrow{AB}\right _{\min} = \sqrt{18}$
	· h
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\frac{ \frac{1}{2}k }{2^{4-2}} = \sqrt{2k^{2-1}k^{2}} = 2k^$
$\begin{array}{l} \underline{R}^{Y} \left(CuRETING \underline{T}_{F}^{L} \cdot \underline{SgnA} \right) \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left((L^{L} \cdot L^{L} \cdot L^{L} + L^{R} \right) \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left((L^{L} \cdot L^{L}) - L + L^{R} \right) \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left(L^{L} L^{R} \right) - L + L^{R} \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left(R^{L} L^{R} \right) - L + L^{R} \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left(R^{L} L^{R} \right) - L + L^{R} \\ & \Rightarrow \left A_{R}^{R} \right = \sqrt{R} \left(R^{L} L^{R} \right) \\ & (T^{R} CuaR L CuRR L L^{R} L L^{R} \right) \\ & (T^{R} CuRR L CuRR L L L^{R} L L L L L L L $	$\begin{array}{c} \underline{BY} \underline{CAUULS} \\ \underline{BY} \underline{CAUULS} \\ \underline{C} \underline{C}$
	G.B.

202.50

C.B.

Question 15 (***+)

The points A(1,1,2), B(2,1,5), C(4,0,1) and D form the parallelogram ABCD, where the above coordinates are measured relative to a fixed origin.

a) Find the coordinates of D.

The points E, B and D are collinear, so that B is the midpoint of ED.

b) Determine the coordinates of E.

The point F is such so that ABEF is also a parallelogram.

- c) Find the coordinates of F.
- d) Show that B is the midpoint of FC.
- e) Prove that *ADBF* is another parallelogram.

D(3,0,-2)

E(1,2,12)

F(0, 2, 9)

Question 16 (***+)

With respect to a fixed origin, the points A and B have position vectors $2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ and $-4\mathbf{i} + \mathbf{j} + \mathbf{k}$, respectively.

The point P lies on the straight line through A and B.

Find the possible position vectors of P if $|\overrightarrow{AP}| = 2|\overrightarrow{PB}|$.

Question 17 (***+)

The points A(-3,3,a), B(b,b,b-5) and C(c,-2,5), where a, b and c are scalar constants, are referred relative to a fixed origin O.

It is further given that A, B and C are collinear and the ratio $|\overrightarrow{AB}| : |\overrightarrow{BC}| = 2:3$.

Use vector algebra to find the value of a, the value of b and the value of c.

,	[a,b,c] = [-10,1,7]
2.	9
-POTTING THE INFO	ENATION IN A DIABRAN
A(-4,3,9) 2	\$(\$1,b,c) C((-2,5) 1 3
"CALWOUATE" THE US	ato25 -4B & BC
	$= (b_1b_1b-5) - (-b_1b_3a_1) = (b_1a_1b-3, b-a-5)$ = $(c_1-2_1s) - (b_1b_2b-5) = (c_2b_1-2-b_1a_2b-5)$
looking at <u>1</u>	
-2-10 -3	
booking AT 1	
$\frac{b+3}{c-b} = \frac{2}{3}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LOOKING AT <u>k</u>	
$\frac{10-p}{p-d-2} = \frac{3}{5}$	$d_{2} - u_{2} = 21 - u_{2}^{2} - d_{2}^{2} \in u_{2}^{2}$ $2 - u_{2}^{2} = 21 - u_{2}^{2} - u_{2}^{2} = u_{2}^{2}$ $u_{2}^{2} = u_{2}^{2} - u_{2}^{2} = u_{2}^{2}$

Question 18 (***+)

The points A(7,4,3), B and C(1,2,-1) form the parallelogram OABC, where the above coordinates are measured relative to a fixed origin O.

a) Find the coordinates of *B*.

The side OC is extended in the \overrightarrow{OC} direction to a point D.

The point M is the midpoint of AC.

b) Given further that $\overrightarrow{MD} = \mathbf{i} + 7\mathbf{j} - 6\mathbf{k}$, determine $|\overrightarrow{OC}| : |\overrightarrow{CD}|$.

	16
MARTINIC + HIN ISAGE	
a to the second	01≈2=(7143) 02=≤=(1,2-1)
0 <u>5</u> c	D
08 = 0A + AB = 0A + 0C = a+	$\leq = (7,4,3) + (1,2,-1) + (8,6,2)$
	8(8,6,2)
6) Placero AS Follows	
$\vec{AC} = \vec{AO} + \vec{OC} = -2 + 5 = -($ $\vec{MC} = \frac{1}{2}\vec{AC} = \frac{1}{2}(-6, -2, -4) = (-1)$	[2(4)2)+(1,2,-1)= (-61-2,-4) ≥1-1,-2)
Finially we those	
Mb = Mc + cb $(l_17, c) = (c_1, c_1, c_2) + cb$	
$\overrightarrow{Cb} = (l_1, l_1, -\delta) - (-\delta_1 - l_1 - \delta_2)$ $\overrightarrow{Cb} = (l_1, R_1 - \delta_2) \cdot (-\delta_1 - l_1 - \delta_2)$	
$\overrightarrow{CB} = \psi(1,2,-1)$	

∴ DATIO (:4

 $\overline{B(8,6,2)}$, \overline{OC} : \overline{CD} = 1 : 4

Question 19 (***+)

The figure above shows the triangle OAB, where O is the origin and the position vectors of A and B relative to O, are $-6\mathbf{i}+27\mathbf{j}-9\mathbf{k}$ and $4\mathbf{i}+6\mathbf{j}-6\mathbf{k}$, respectively.

D

B

The point E is such so that O, B and E are collinear with OB: BE = 1:2

The point C is such so that O, C and A are collinear with OC: CA = 1:2

The point D is such so that B, D and A are collinear with BD: DA = 1:3

- a) Determine the coordinates of C, D and E, relative to O.
- **b**) Show that the points C, D and E are collinear, and find the ratio CD: DE.
- c) Show further that BC is parallel to EA, and find the ratio BC : EA.

 $\frac{27}{4}$ E(12,18,-18), CD:DE=1:3|C(-2,9,-3)|BC: EA = 1:3THET BY FINDING THE ADDITION USCIDES OF C, D & E SIMILARLY COMPARE CB & AE $\vec{CB} = \underline{b} - \underline{c} = (4_{1}6_{1} - 6) - (-2_{1}q_{1} - 3) = (6_{1} - 3_{1} - 3)$ $\left(\frac{1}{4E} = \underline{s} - \underline{a} = (12_{1}18_{1} - 18) - (-6_{1}27_{1} - 9) = (18_{1} - 9_{1} - 9) \right)$ A(-61271-9) B(416-6) $\overrightarrow{CB} = (G_1 - 3_1 - 3) = 3(2_1 - 1_1 - 1)$ $\overrightarrow{AE} = (B_1 - 4_1 - 4) = 9(2_1 - 1_1 - 1)$ AS CE & AE ARE IN THE SMUE DIRECTION, CB IS PPRAUEL TO AE C(-2,9,-3) +(-627-9)= (CB) : (AE) DD. = 0B + 1B 08+280+204 = of + 1 (50 + of) = 208+201 = 李(46-6)+ \$(-6-27-9)= (毫,祭,-翌) 1+ D(急緊-発) DETRUINE THE VECTORS TO & DE $-(-2,9,-3) = (\frac{7}{2},\frac{9}{4},-\frac{15}{4})$ (子) 袋, 子 $\left\{ \overrightarrow{\mathsf{DE}} = \underline{e} - \underline{d} = \left(v_1 | e_1 - i e \right) - \left(\frac{1}{2} \cdot \frac{U}{2} / \frac{U}{2} \right) = \left(\frac{1}{2} \cdot \frac{U}{2} / \frac{U}{2} \right)$ $\int \vec{CD} = \frac{1}{4} (14, 9, -15)$ De = = = (4,9,-15) TRI. INF

Question 20 (***+)

Y.C.

I.G.B.

The points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are referred relative to a fixed origin O.

If the point P is such so that $\overrightarrow{AP}: \overrightarrow{PB} = \lambda: \mu$, use vector algebra to show that

21/201

Y.C.B.

 $\overrightarrow{OP} = \frac{(\mu x_1 + \lambda x_2)\mathbf{i} + (\mu y_1 + \lambda y_2)\mathbf{j} + (\mu z_1 + \lambda z_2)\mathbf{k}}{\lambda + \mu}.$

STARTING WORTH & DIARR	tru_
$-\frac{1}{40} = \frac{3}{3+8} - \frac{3}{48}$	$\frac{A(a_{t_i},a_{i_j})}{\left(\frac{1}{p}\right)}$
$\overline{AP} = \frac{3}{3+\frac{1}{2}} \left(\overline{AO} + \overline{OB} \right)$	4
$\overline{AB} = \frac{\lambda}{\lambda + \mu} \left(-\underline{a} + \underline{b} \right)$	B(G, B, Z_2)
$\frac{1}{4} = \frac{1}{4+\kappa} = \frac{1}{4}$	
NOW THE POSITION USERO	R of P
$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = a$	+ $\frac{\lambda + \mu}{\Delta} (\mu - \alpha) = \frac{\omega (\lambda + \mu) + \lambda (\mu - \alpha)}{\lambda + \mu}$
= 20	t + pa + 2k - 2k - 2k - 2k + 2k + 2k + 2k + 2k
SINTRAPHICS INTO CONFORME	and a second of a second
$\bigcup_{k=1}^{\infty} = \xi = \frac{y + h}{h(\alpha^{1}\beta^{1}S^{1}) + 1}$	$\lambda(\mathfrak{s}_{\mathfrak{s}_1}\mathfrak{s}_{\mathfrak{s}_1}\mathfrak{z}_{\mathfrak{s}})$
- + (a1+9,2+	+3,2] + 2(3,2] + 9,2 + 3,2)

) + (Ha + ya) + + (+ s+ ys) F

Y.G.B.

C.H.

b

proof

20,

Question 21 (***+)

¥.G.B.

Relative to a fixed origin, the coordinates of three points A(1,1,1), B(4,-1,3) and C(2,5,-1), are given.

Find the position vector of the point P if $4\overrightarrow{PA} + 3\overrightarrow{PB} = 5\overrightarrow{PC}$.

11.202.SI

APA + 3PB = SPC	
→ 4(a-p)+3(b-p) = 5(c-p)	
=> 4a+3b - 4p-3p = 5c - 5p	
$\Rightarrow 4a + 3b - 5c = 3p$	
=> 4(1+1+k)+3(41-1+3k)-5(2	2(+52-k) = 3k
- 61-242 1 181 - 3p	
- = - 21-81+6k	
/	
	20

 $\mathbf{p} = 2\mathbf{i} - 8\mathbf{j} + 6\mathbf{k}$

21/281

Сŀ.

Created by T. Madas

C.S.

Question 22 (****)

.C.

Relative to a fixed origin O, the positions vectors of the points A, B and C are defined below.

 $\overrightarrow{OA} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, $\overrightarrow{OC} = 4\mathbf{i} + 12\mathbf{k}$.

If $\overrightarrow{OD} = \frac{1}{3} \overrightarrow{OC}$ prove that the point *D* lies on the straight line *AB*.

proof

2112.51

Question 23 (****)

Relative to a fixed origin O, the position vectors of three points A, B and C are

$$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{k}$$
, $\overrightarrow{AB} = 2\mathbf{i} + 10\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{BC} = 6\mathbf{i} - 12\mathbf{j}$.

- **a**) Show that \overrightarrow{AC} is perpendicular to \overrightarrow{AB} .
- **b**) Show further that the area of the triangle ABC is $18\sqrt{6}$.
- c) Hence, or otherwise, determine the shortest distance of A from the straight line through B and C.

distance = $\frac{6}{5}\sqrt{30}$

Question 24 (****)

The points A(2,-1,4), B(0,-5,10), C(3,1,3) and D(6,7,-8) are referred relative to a fixed origin O.

a) Use vector algebra to show that three of the above four points are collinear.

A triangle is drawn using three of the above four points as its vertices.

b) Given further that the triangle has the largest possible area, determine, in exact surd form, the length of its shortest side.

C(3,1,3)

√94

- $=\sqrt{9+36+121}=\sqrt{166}$
 - · THE SHOERT SIDE OF THE TEINORE WHICH HAN THE

(****) Question 125

Relative to a fixed origin, the points P and Q have position vectors 9j-2k and $7\mathbf{i} - 8\mathbf{j} + 11\mathbf{k}$, respectively.

- a) Determine the distance between the points P and Q.
- **b**) Find the position vector of the point M, where M is the midpoint of PQ.

The points P and Q are vertices of a cube, so that PQ is one of the longest diagonals of the cube.

 $\left|PQ\right| = \sqrt{507} \, | \, ,$

c) Show that the length of one of the sides of the cube is 13 units.

- d) Calculate the distance of the point M from the origin O.
- e) Show that the origin O lies inside the cube.

 $\left|\overline{OM}\right| = \frac{7}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{9}{2}\mathbf{k} |, ||OM| = \frac{1}{2}\sqrt{131}$

les wride the sphere O LIFT INSTOR THE CUB

Question 26 (****+)

The points A(3,2,14), B(0,1,13) and C(5,6,8) are defined with respect to a fixed origin O.

The straight line L passes through A and it is parallel to the vector \overrightarrow{BC}

The point D lies on L so that ABCD is a parallelogram.

- **a**) Find the coordinates of D.
- **b)** If instead ABCD is an isosceles trapezium and the point D still lies on L, determine the new coordinates of D.

00 = 02 + 00 = 02 + 53 = = C L (a-h = (8) . D(81719) $D(\theta_i, \eta)$ $= \left(\frac{B}{3}\right) - \left(\frac{3}{2}\right)$ $\begin{pmatrix} z \\ z \\ z \end{pmatrix}$

SOMUE THE VECTOR $\begin{pmatrix} z \\ z \\ z \end{pmatrix}$ to $\begin{pmatrix} z \\ z \\ z \end{pmatrix}$ • AD'= k (1) • $\left| \overrightarrow{AB} \right| = \left| \overrightarrow{B} - \overrightarrow{a} \right| = \left| \left(\begin{array}{c} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right) \left(\begin{array}{c} 3 \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right) \right| = \left| \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \right| = \sqrt{9 + 1 + 1} = \sqrt{11}$ • $\overrightarrow{CD}' = \overrightarrow{d}' - \underline{C} = \begin{pmatrix} \chi \\ g \\ \chi \end{pmatrix} - \begin{pmatrix} \chi \\ g \\ g \\ \chi \end{pmatrix} = \begin{pmatrix} \chi \\ g \\ \chi - g \\ \chi - g \end{pmatrix}$ • $\left| \overline{CD}' \right| = \left| \begin{array}{c} 2-5 \\ \frac{1}{2}-6 \\ \frac{1}{2}-8 \end{array} \right| = \sqrt{(2-3)^2 + (2-4)^2 + (2-4)^2} = \sqrt{11}$ $\sim \boxed{\left(3-2\right)^2 + \left(6-6\right)^2 + \left(3-8\right)^2 = 1}$ $k \mathcal{T} \quad \overrightarrow{\mathsf{HD}}' = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathsf{AND} \quad \overrightarrow{\mathsf{AD}}' = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$ $\Rightarrow \begin{pmatrix} S-bh \\ \partial-S \\ X-3 \end{pmatrix} = \begin{pmatrix} -K \\ F \\ K \end{pmatrix}$ $= \frac{3}{2} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z+y \\ z+y \end{pmatrix}$ the $(y-6)^{2}+(z-8)^{2}=$ \rightarrow $(x-s)^{2}+$

k2-8k+16 - 1)(r - $\begin{pmatrix} 3+3\\ 3+2\\ 2-15 \end{pmatrix} = \begin{pmatrix} 6\\ 1\\ 11 \end{pmatrix} \leftarrow PonJT D$: D(G15,11)

D(8,7,9),

D(6,5,11)

Question 27 (*****)

With respect to a fixed origin, the points A and B have position vectors $10\mathbf{i} + 9\mathbf{j} - 6\mathbf{k}$ and $6\mathbf{i} - 3\mathbf{j} + 10\mathbf{k}$, respectively.

The position vector of the point C has **i** component equal to 2.

The distance of C from both A and B is 12 units.

Show that one of the two possible position vectors of C is $2\mathbf{i}+5\mathbf{j}+2\mathbf{k}$ and determine the other.

 $\mathbf{c} = 2\mathbf{i} + \frac{61}{25}\mathbf{j} + \frac{2}{25}\mathbf{k}$

 $\begin{array}{rcl} & \underline{MK} & \underline{MK} & \underline{Q} & \underline{MK} & \underline{M$

 $\Rightarrow 352^2 - 522 + 4 = 0$ $\Rightarrow (z - 2)(25z - 2) = 0$ $\Rightarrow 2 = < \frac{2}{2}$

Finally raing 3y = 4z + 7• If z = 2 • IF 3y = 15y = 5

 $\therefore \begin{pmatrix} 2_1 & 5_1 & 2 \end{pmatrix} \notin \begin{pmatrix} 2_1 & \frac{61}{25} & \frac{2}{25} \end{pmatrix}$

 $3y = \frac{183}{25}$ $3y = \frac{183}{25}$ $y = \frac{61}{25}$

^{Va} das	2	E
$\begin{array}{c} \left(A(0, q, -6) \\ B(6, -3, 10) \\ \hline \\ $	$o(q_1-c_1) = (-8, y_1-1, z_1+c_1)$ $o(q_1-c_2) = (-4, y_1-1, z_1+c_2)$	ļ
$\begin{split} & \longrightarrow \left\{-8(q-q,2+k_0\right] \in 12 \\ & \implies \int e^{k_1}(q-q)^2 + (g^k q_0)^2 + 12 \\ & \implies 6k + (q-q)^2 + (g_k q_0)^2 = 14k_1 \\ & \implies (q-q)^2 + (g_k q_0)^2 = 6k_2 \\ & \implies (q^2-1)^2 + (g^2 + q_0)^2 = 6k_2 \\ & \implies (q^2-1)^2 + (g^2 + q_0)^2 + 12k_2 = -k_1^2 \end{split}$	$\begin{array}{c} \rightarrow & \left[-4 , \frac{1}{2} + 3 , 2 - 10 \right] + 12 \\ \qquad \rightarrow & \sqrt{16 + (\frac{1}{2} + 1)^2 + (2 - 0)^2} + 12 \\ \qquad \rightarrow & (6 + (\frac{1}{2} + 1)^2 + (2 - 0)^2 - 143) \\ \qquad \rightarrow & (\frac{1}{2} + 3)^2 + (2 - 0)^2 - 123 \\ \qquad \rightarrow & \sqrt{16} + 2^2 - 32 + 8x + 126 \\ \qquad \rightarrow & \sqrt{16} + 2^2 - 32 + 8x + 126 \\ \qquad - \dots & \sqrt{3} + 2^2 - 32 + 8x - 126 \end{array}$	
$\frac{SO(W_{4})_{C}}{3} = \frac{SO(W_{4})_{C}}{3} $		

Created	by	T.	Mada
---------	----	----	------

Question 28 (*****)

The vertices of the triangle *OAB* have coordinates A(6,-18,-6), B(7,-1,3), where *O* is a fixed origin.

The point N lies on OA so that ON : NA = 1:2.

The point M is the midpoint of OB.

The point P is the intersection of AM and BN.

By using vector methods, or otherwise, determine the coordinates of P.

STARTING WITH A DIAGRAM	BUT P, M & A ARE DOWINHAL
$\begin{array}{c} \text{Lensure } \psi \in (-p, p) \\ (-p, p) \\ (-p, p) \\ (\frac{1}{2}, t^2, \frac{1}{2}) \\ \end{pmatrix} \\ \qquad \qquad$	$\begin{array}{rcl} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$
$O \qquad \qquad$	$5k - \frac{3}{2} = -5\lambda k + 4\lambda $ $\longrightarrow 5k$ $3k - 4k = -5\lambda k - 12\lambda $ $\longrightarrow 5k$
$\frac{\text{work Ar Founds}}{\delta \vec{P} = k (\vec{k}, 3) = k \left[(7, i_1, 3) - (2, i_1, 2) \right] = k (\vec{n}, 5, 5)$	
$\overline{NP} = (2k_1 + k_2 + k_3)$	ALLING.
NEXT WE WORK AN EXPRESSION GE MP	
$\widetilde{MP} = \overline{MQ} + \overline{ON} + \overline{UP}$ $\widetilde{MP} = -\overline{MP} + \underline{M} + (Sk_1 sk_2)$	afecting for consistival ite there a
$\vec{M}_{P}^{2} = -\left(\vec{z} + \vec{z}_{1} + \vec{z}_{1}\right) + \left(2, 4_{1}, 2_{1}\right) + \left(3z_{1}, 4z_{1}, sz_{1}\right)$ $\vec{M}_{P}^{2} = \left(3z_{1} - \frac{z}{2} + 3z_{1} - \frac{z}{2} + 3z_{1} - \frac{z}{2}\right)$	$\frac{g_{k}-\frac{2}{2}}{-S\lambda k+k\lambda} = -\frac{5}{2}x\frac{1}{2}x\frac{2}{2}, -\frac{2}{2}z - \frac{3}{2}z - \frac{3}{2}z$
NORT 4 Smither expression for \vec{PA}_{\perp} $\vec{PA}_{\perp} = \vec{PN} + \vec{NA}$	hindury we Harre
$\begin{array}{l} p_{i}^{2} &= -\overline{\mu}_{i}^{2} + 3 \overline{ch} \\ \overline{p}_{i}^{2} &= (-\alpha_{i}, \alpha_{i}, \alpha_{i}) + (-\alpha_{i}, \alpha_{i}) \\ p_{i}^{2} &= (-\alpha_{i} + a_{j} - \alpha_{i} - \alpha_{i} - \alpha_{i}) \end{array}$	$\begin{array}{l} \overrightarrow{OP} &\in \overrightarrow{OR} + \overrightarrow{IP} \\ &= (?, c_i z_i) + (z_{k_1} z_{k_2} z_k) \\ &= (?, c_i z_i) + (z_{i_1} z_{i_2} z_i) \\ &= (4_i - 4_{i_1} O) \end{array}$

P(4,-4,0)

SCALAR ()

(ALL FILE!)

 $:= P(4,-4_{10})$