2D VECTORS

Created by T. Madas

Question 1 (**)
Relative to a fixed origin O, the point A has coordinates $(2,-3)$.

The point B is such so that $\overrightarrow{A B}=3 \mathbf{i}-7 \mathbf{j}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.

Determine the distance of B from O.

Created by T. Madas

Question 2 (**+)
Relative to a fixed origin O, the point A has coordinates $(-2,4)$.

The point B is such so that $\overrightarrow{B A}=5 \mathbf{i}-\mathbf{j}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.
a) Determine the distance of B from O.
b) Calculate the angle $O A B$.

Question 3 (***)
The points A, B and C lie on a plane so that

$$
\overrightarrow{A B}=2 \mathbf{i}+7 \mathbf{j} \quad \text { and } \quad \overrightarrow{A C}=4 \mathbf{i}-5 \mathbf{j}
$$

where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.

The point D lies on the straight line segment $B C$, so that $|B D|:|D C|=1: 2$.
a) Determine a simplified expression, in terms of \mathbf{i} and \mathbf{j}, for $\overrightarrow{B D}$.
b) Show that the $|\overrightarrow{A D}|$ is approximately 4 units.

Created by T. Madas

Question 4 (***)
The following information is given for four points which lie on the same plane.

$$
\overrightarrow{O A}=\mathbf{i}+4 \mathbf{j}, \quad \overrightarrow{O B}=5 \mathbf{i}+5 \mathbf{j} \quad \text { and } \quad \overrightarrow{C B}=-\mathbf{i}+6 \mathbf{j}
$$

a) Find the vector $\overrightarrow{A B}$ and hence state its length
b) Determine the length of $\overrightarrow{A C}$.
c) Calculate the size of the angle $A B C$.
\square ,$|\overrightarrow{A B}=4 \mathbf{i}+\mathbf{j}, \| \overrightarrow{A B}|=\sqrt{17}$,
$|\overrightarrow{A C}|=\sqrt{50}, \measuredangle A B C \approx 85.4^{\circ}$
\square

Created by T. Madas

Question 5 (***)

The figure above shows a trapezium $O A B C$, where O is a fixed origin.

The position vectors of A and C are $12 \mathbf{i}+4 \mathbf{j}$ and $18 \mathbf{i}-21 \mathbf{j}$, respectively.
$C B$ is parallel to $O A$, so that $|\overrightarrow{C B}|=2|\overrightarrow{O A}|$.

The point D lies on $A C$ so that $A D: D C=1: 2$.
a) Find a simplified expression, in terms of \mathbf{i} and \mathbf{j}, for the position vector of D.
b) Show that that O, D and B are collinear and state the ratio of $O D: D B$.

a) LOOLNG AT THE DIACRAM

- $\overrightarrow{A C}=\overrightarrow{A O}+\vec{C}$
$=-(n i+4])+(B i-21 i)$
$\begin{aligned} & =61-251 \\ \text { - } \overrightarrow{A D} & =\frac{1}{3} \overrightarrow{A C}=\frac{1}{3}(61-251)\end{aligned}$
$=2 i-\frac{25}{3} j$
- $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}$
$=(2 i+4 \lambda)+\left(2 i-\frac{25}{3} 1\right)$
$\left.=14 i-\frac{13}{3}\right)$
$\left\{\begin{array}{l}O A=6 i+4 J \\ \overrightarrow{O C}=18 i-22]\end{array}\right\}$
$=14 i-\frac{13}{3} j$
b)

- $\overrightarrow{C B}=2 \overrightarrow{O A}=2(12 i+4 \underline{1})=24+8]$
- $\overrightarrow{D C}=\frac{2}{3} \overrightarrow{A C}=\frac{2}{3}(6 i-25 \underline{1})=4 i-\frac{50}{3} \underline{1}$
- $\overrightarrow{D B}=\overrightarrow{D C}+\overrightarrow{C B}=\left(4 i-\frac{50}{3} \underline{j}\right)+(24 i+8 \leq)=28 i-\frac{26}{3} \underline{j}$
truct wt thot
$\left.\overrightarrow{O D}=14 i-\frac{13}{3}\right]=\frac{1}{3}(42 i-13 j)$ $\overrightarrow{D B}=28 i-\frac{25}{3} j=\frac{2}{3}(42 i-13 j)$

Created by T. Madas

Question 6 (***)
The points A and B have position vectors $\left(\begin{array}{c}-5 \\ -2 \\ 8\end{array}\right)$ and $\left(\begin{array}{c}11 \\ 6 \\ 20\end{array}\right)$, respectively.
The point M lies on $A B$ so that $|A M|:|M B|=3: 1$

The point P has position vector

$$
\left(\begin{array}{c}
10 \\
8 \\
19
\end{array}\right)
$$

Determine the position vector of the point Q, if M is the midpoint of $P Q$.

Created by T. Madas

Question 7 (***+)

The figure above shows a trapezium $O B C A$ where $O B$ is parallel to $A C$.

The point D lies on $B A$ so that $B D: D A=1: 2$.
It is further given that $\overrightarrow{O A}=7 \mathbf{i}-4 \mathbf{j}, \overrightarrow{O B}=3 \mathbf{i}+2 \mathbf{j}$ and $\overrightarrow{A C}=2 \overrightarrow{O B}$, where \mathbf{i} and \mathbf{j} are mutually perpendicular unit vectors lying on the same plane.
a) Determine simplified expressions, in terms of \mathbf{i} and \mathbf{j}, for each of the vectors $\overrightarrow{O C}, \overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{O D}$.
b) Deduce, showing your reasoning, that O, D and C are collinear and state the ratio of $O C: O D$.
c) Show that $\measuredangle O B A=90^{\circ}$ and hence find the area of the trapezium $O B C A$.
d) State the size of the angle $\measuredangle A B C$.

Created by T. Madas
Question 8 (***+)

The figure above shows a trapezium $A B C D$, where $A D$ is parallel to $B C$.

The following information is given for this trapezium.

$$
\overrightarrow{B D}=5 \mathbf{i}+\mathbf{j}, \quad \overrightarrow{D C}=\mathbf{i}-10 \mathbf{j} \quad \text { and } \quad \overrightarrow{A D}=4 \mathbf{i}+k \mathbf{j}
$$

where k is an integer.
a) Use vector algebra to show that $k=-6$.
b) Find the length of $\overrightarrow{A B}$.
c) Calculate the size of the angle $A B D$.
\square , $|\overrightarrow{A B}|=\sqrt{50}=5 \sqrt{2}, \measuredangle A B D \approx 70.6^{\circ}$

a) Llotana AT TTHE DaGetiM $\Rightarrow \overrightarrow{B C}=\overrightarrow{B D}+\overrightarrow{D C}$
$\Rightarrow \overrightarrow{B C}=(5 i+1)+(1-101)$
$\Rightarrow \overrightarrow{B C}=6 i-91$

- -91

b) $\frac{\text { First fiND } \overrightarrow{A B}}{\overrightarrow{A B} \overrightarrow{H D} \vec{~}}$

NEXT THE lavort of $\overrightarrow{A B}$
$|\overrightarrow{A B}|=|-i-7 \pm|=\sqrt{(-1)^{2}+(-7)^{2}}=\sqrt{50}=5 \sqrt{2}$
c)
$\frac{\text { By THt cosind } \operatorname{RUL}(-\operatorname{ON} \dot{A B D}}{|\overrightarrow{A D}|=|4 j-61|=\sqrt{4^{2}+(-6)^{2}}}=\sqrt{52}$
$|\overrightarrow{B D}|=|s i+1|=\sqrt{s^{2}+1^{2}}=\sqrt{26}$
$\cos \theta=\frac{|A B|^{2}+|B D|^{2}-|A D|^{2}}{2|A B||B D|}=\frac{5 \rho+26-52}{2 \times \sqrt{5} \sqrt{26}}$

Created by T. Madas

Created by T. Madas
Question $9 \quad\left({ }^{(* * *)}\right.$

The figure above shows a triangle $O A B$, where O is a fixed origin.

- The point A has coordinates $(6,-8)$.
- The point P, whose coordinates are $(4,1)$, lies on $O B$ so that $O P: P B=4: 1$.
- The point Q lies on $A B$ so that $A Q: Q B=3: 2$
- The side $O A$ is extended to the point R so that $O A: A R=5: 3$.
a) Use vector methods to determine the coordinates of Q.
b) Determine expressions, in terms of \mathbf{i} and \mathbf{j}, for the vectors $\overrightarrow{P Q}$ and $\overrightarrow{Q R}$.
c) Deduce, showing your reasoning, that P, Q and R are collinear and state the ratio of $P Q: Q R$.
\square $, Q\left(\frac{27}{5},-\frac{49}{20}\right), \overrightarrow{P Q}=\frac{7}{5} \mathbf{i}-\frac{69}{20} \mathbf{j}, \overrightarrow{Q R}=\frac{21}{5} \mathbf{i}-\frac{207}{20} \mathbf{j}, P Q: Q R=1: 3$

Question $10 \quad\left({ }^{* * *}+\right.$)
The points A, B and P lie on the $x-y$ plane, where the point O is the origin.

It is further given that

$$
|O A|=4, \quad|O B|=6 \quad \text { and } \quad \measuredangle A O B=40^{\circ} .
$$

If $\overrightarrow{O P}=2(\overrightarrow{O A})-3(\overrightarrow{O B})$ determine the distance of P from the origin and the angle between $\overrightarrow{O P}$ and $\overrightarrow{O A}$.

Question 11 (****)
The points $A(-1,4), B(2,3)$ and $C(8,1)$ lie on the $x-y$ plane, where O is the origin.
a) Show that A, B and C are collinear.

The point D lies on $B C$ so that $\overrightarrow{B D}: \overrightarrow{B C}=2: 3$.
b) Find the coordinates of D.

The straight line $O B$ is extended to the point P, so that $\overrightarrow{A P}$ is parallel to $\overrightarrow{O C}$.
c) Determine the coordinates of P.
\square $D\left(6, \frac{5}{3}\right), P\left(3, \frac{9}{2}\right)$

Created by T. Madas

Question 12 (****+)

Relative to a fixed origin O on a horizontal plane, the points A and B have respective position vectors $3 \mathbf{i}-2 \mathbf{j}$ and $5 \mathbf{i}+4 \mathbf{j}$.

The point C lies on the same plane as A and B so that $\overrightarrow{A B}: \overrightarrow{B C}=2: 5$.
a) Find the position vector of C.

The point D lies on the same plane as A and B so that A, B and D are collinear.
b) Given that $|B D|=6 \sqrt{10}$, determine the possible position vectors of D.
$\square, \mathbf{c}=10 \mathbf{i}+19 \mathbf{j}, \mathbf{d}=-\mathbf{i}-14 \mathbf{j} \cup \mathbf{d}=11 \mathbf{i}+22 \mathbf{j}$

Question 13 (****+)
The four vertices of a quadrilateral $A B C D$ lie on the same plane.
The points M and N are the midpoints of $A B$ and $C D$, respectively.
Determine the possible values of the scalar constant λ, given further that

$$
\left(\lambda^{2}-6 \lambda+10\right) \overrightarrow{M N}=\overrightarrow{A D}+\overrightarrow{B C}
$$

\square , $\lambda=2 \cup \lambda=4$
\square
Eovows...
$\overrightarrow{A D}=\overrightarrow{A M}+\overrightarrow{M N}+\overrightarrow{N D}$
$\overrightarrow{B C}=\overrightarrow{B M}+\overrightarrow{M D}$
$\overrightarrow{A D}+A^{2}=\overrightarrow{A M}+B \vec{M}+2 \overrightarrow{N N}+\overrightarrow{N D}+\vec{C}$
$\xrightarrow[\overrightarrow{A N}+\overrightarrow{U S}]{\overrightarrow{\mathrm{U}} \mathrm{N} \text { " HeF MIDPONTS }}$ $\rightarrow \rightarrow$
$\overrightarrow{\underline{N D}+\overrightarrow{N C}}=$ "ztove vecor ${ }^{0}$

Created by T. Madas

Question 14 (****+)
Relative to a fixed origin O, the points A and B have position vectors $3 \mathbf{i}-9 \mathbf{j}$ and $2 \mathbf{i}+10 \mathbf{j}$, respectively.

The point M is the midpoint of $O B$ and the point N lies on $O A$ so that $\overrightarrow{O A}=3 \overrightarrow{O N}$.

The point P is the point of intersection of $A M$ and $B N$.

Determine the ratio $\overrightarrow{N P}: \overrightarrow{P B}$.

SPl $\overrightarrow{N P}: \overrightarrow{P B}=2: 3$

Stajer wirf a diacram colt to scalle) and label It $\text { - } \overrightarrow{N B}=\overrightarrow{N O}+\overrightarrow{O B}=\binom{-1}{3}+\binom{2}{10}=\binom{1}{13}$ Now Procsed as fowour $\begin{aligned} & \overrightarrow{A P}=\overrightarrow{A N}+\overrightarrow{N A}=\overrightarrow{A N}+k(\overrightarrow{N B})=\binom{-2}{6}+k\binom{1}{13}=\binom{k-2}{13 k+6} \\ & \overrightarrow{D M}=\overrightarrow{P A}+\overrightarrow{A O}+\overrightarrow{O M}=\binom{2-k}{-13 k-6}+\binom{-3}{9}+\binom{1}{5}=\binom{-k}{8-13 k} \end{aligned}$ BUT $A-P-M$ is \& stethate unt, so $\overrightarrow{A P}$ Q PM Nust BE in Proportion $\begin{aligned} & \Rightarrow \frac{k-2}{13 k+6}=\frac{-k}{8-13 k} \\ & \Rightarrow \frac{k-2}{13 k+6}=\frac{k}{13 k-6} \\ & \Rightarrow(k-2)(13 k-8)=k(13 k+6) \\ & \Rightarrow 13 k^{2}-8 k-26 k+16=13 k^{2}+6 k \\ & \Rightarrow 16=40 k \\ & \Rightarrow k=\frac{2}{5} \end{aligned}$ \therefore Requeto Ratho $\overrightarrow{N F}: \overrightarrow{P M}=2: 3$

Created by T. Madas

Question 15 (*****)
A triangle $O A B$ is given.

The point M is the midpoint of $O A$.

The point N lies on $O B$ so that $|O N|:|N B|=1: 5$

If the point P is the intersection of the straight lines $A N$ and $B M$, use vector algebra to find the ratio of $|A P|:|E P|$.
\square , $|A P|:|P N|=6: 5$

Question 16 (*****)
The triangle $A B C$ is given.

The points D and E are such so that $\overrightarrow{A D}=\lambda \overrightarrow{B C}$ and $\overrightarrow{B E}=\mu \overrightarrow{A C}$, where λ and μ are positive scalar constants.

Given further that $\lambda \mu=1$, show that D, C and E are collinear.

Question 17 (*****)
It is given that

$$
\overrightarrow{A P}+4 \overrightarrow{B P}+3 \overrightarrow{P C}=\overrightarrow{0}
$$

Show that

$$
\overrightarrow{A P}=\frac{1}{2}[\overrightarrow{A B}-3 \overrightarrow{B C}]
$$

\square , proof

Question 18
(*****)

$$
\mathbf{a}=\left(\frac{1}{2} x^{2}+y^{2}+3\right) \mathbf{i}+4 \mathbf{j} \quad \text { and } \quad \mathbf{b}=(x+y) \mathbf{i}+2 \mathbf{j} .
$$

Determine the value of x and the value of y given that \mathbf{a} and \mathbf{b} are parallel.

$$
x, x=2, y=1
$$

Introducing
 Elementary

3D Vectors

Created by T. Madas

Question 1 (**)
Relative to a fixed origin O, the points A, B and C have respective position vectors

$$
-3 \mathbf{i}+\mathbf{k}, \quad-\mathbf{i}+4 \mathbf{j}+\mathbf{k} \quad \text { and } \quad 5 \mathbf{i}+4 \mathbf{j} .
$$

Calculate the size of the angle $A B C$ and hence find the area of the triangle $A B C$.

Created by T. Madas

Question 2 (**)
Relative to a fixed origin O, the point A has coordinates $(2,1,-3)$.

The point B is such so that $\overrightarrow{A B}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$.

Determine the distance of B from O.

Created by T. Madas

Question 3 (**)
Relative to a fixed origin O, the point A has coordinates $(6,-4,1)$.

The point B is such so that $\overrightarrow{B A}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$.

If the point M is the midpoint of $O B$, show that $|\overrightarrow{A M}|=k \sqrt{10}$, where k is a rational constant to be found.

Created by T. Madas

Question 4 (**+)
Relative to a fixed origin O, the point A has coordinates $(2,5,4)$.

The points B, C and D are such so that

$$
\overrightarrow{B A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad \overrightarrow{B C}=7 \mathbf{i}+\mathbf{j}-\mathbf{k} \quad \text { and } \quad \overrightarrow{D C}=4 \mathbf{i}+2 \mathbf{k}
$$

Determine the distance of D from the origin.

Created by T. Madas

Question 5 (**+)
Relative to a fixed origin O, the points A, B and C have respective position vectors $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}, 5 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ and $7 \mathbf{j}-4 \mathbf{k}$.
a) Given that $A B C D$ is a parallelogram, determine the position vector of D.
b) Determine the distance $A C$ and hence calculate the angle $A B C$.
\square , $\mathbf{d = - 3 \mathbf { i } + 1 3 \mathbf { j } - 9 \mathbf { k }}$, \square $|A C|=\sqrt{29}, \measuredangle A B C \approx 1.11^{\circ}$ $|A C|=\sqrt{29}, \measuredangle A B C \approx 1.11^{\circ}$

Created by T. Madas

Question 6 (***)
Relative to a fixed origin O, the point A has coordinates $(k, 3,5)$, where k is a scalar constant.

The points B and C are such so that $\overrightarrow{B A}=3 \mathbf{i}-2 \mathbf{j}$ and $\overrightarrow{B C}=2 \mathbf{i}+c \mathbf{j}-4 \mathbf{k}$, where c is a scalar constant.

If the coordinates of C are $(1,4 k, 1)$, determine the distance $B C$.
2) $\square,|B C|=\sqrt{29}$

Created by T. Madas

Created by T. Madas

Question 7 (***)
The points $A(4,4,1), B(2,-2,0)$ and $C(6,3,7)$ are referred relative to a fixed origin O.

If A, B, C and the point D form the parallelogram $A B C D$, use vector algebra to find the coordinates of D and hence calculate the angle $O C D$.

Question 8 (***)
$O A B C$ is a square, where O is the origin, and the vertices A and C have respective position vectors $2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$ and $4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$.

The point M is the midpoint of $A B$ and the point N is the midpoint of $M C$.

The point D is such so that $\overrightarrow{A D}=\frac{3}{2} \overrightarrow{A B}$.
a) Find the position vectors of the points B, D and N.
b) Deduce, showing your reasoning, that O, N and D are collinear.
\square $\overrightarrow{O B}=6 \mathbf{i}+6 \mathbf{j}, \overrightarrow{O D}=8 \mathbf{i}+7 \mathbf{j}-2 \mathbf{k}, \overrightarrow{O N}=4 \mathbf{i}+\frac{7}{2} \mathbf{j}-\mathbf{k}$

$\overrightarrow{O N}=(3,3,0)+\left(1, \frac{1}{2},-1\right)$ $\overrightarrow{O N}=\left(4, \frac{7}{2},-1\right)$
$\therefore \quad \underline{n}=4 \underline{i}+\frac{7}{2} \underline{j}-\underline{k}$
b) COMPARNO-vetrois FOUND AMRLINR
$\overrightarrow{O D}=8 i+7 \underline{1}-2 k$ $\overrightarrow{O D}=2\left(4 i+\frac{1}{2} \underline{1}-\underline{k}\right)$ $\overrightarrow{O D}=2 \overrightarrow{O N}$

Created by T. Madas

Question 9 (***)
The points $A(-2,-10,-17)$ and $B(25,-1,19)$ are referred relative to a fixed origin O.

The point C is such so that $A C B$ forms a straight line.
Given further that $\frac{|\overrightarrow{A C}|}{|\overrightarrow{C B}|}=\frac{2}{7}$, determine the coordinates of C.
\square
$\square, C(4,-8,-9)$

Created by T. Madas

Question 10 (***)
The points $A(-3,-14,-5)$ and $B(1,-4,-1)$ are referred relative to a fixed origin O. The point C is such so that $A B C$ forms a straight line.

Created by T. Madas

Question 11 (***)
The variable points $A(2 t, t, 2)$ and $B(t, 4,1)$, where t is a scalar variable, are referred relative to a fixed origin O.
a) Show that

$$
|\overrightarrow{A B}|=\sqrt{2 t^{2}-8 t+17}
$$

b) Hence find the shortest distance between A and B, as t varies.
\square ,$|\overrightarrow{A B}|_{\min }=3$

Created by T. Madas

Question 12 (***)
The points $A(5,-1,0), B(3,5,-4), C(12,2,8)$ are referred relative to a fixed origin O. The point D is such so that $\overrightarrow{A D}=2 \overrightarrow{B C}$.

Determine the distance $C D$.
\square , $|C D|=\sqrt{458} \approx 21.40$

Created by T. Madas

Question 13 (***)
The points $A(t, 3,2)$ and $B(5,2,2 t)$, where t is a scalar constant, are referred relative to a fixed origin O.

Given that $|\overrightarrow{A B}|=\sqrt{21}$, find the possible values of t.

Created by T. Madas

Question $14 \quad(* * *+)$
The variable points $A(1,8, t-1)$ and $B(2 t-1,4,3 t-1)$, where t is a scalar variable, are referred relative to a fixed origin O.

Find the shortest distance between A and B, as t varies.

Created by T. Madas

Question 15 (***+)
The points $A(1,1,2), B(2,1,5), C(4,0,1)$ and D form the parallelogram $A B C D$, where the above coordinates are measured relative to a fixed origin.
a) Find the coordinates of D.

The points E, B and D are collinear, so that B is the midpoint of $E D$.
b) Determine the coordinates of E.

The point F is such so that $A B E F$ is also a parallelogram.
c) Find the coordinates of F.
d) Show that B is the midpoint of $F C$.
e) Prove that $A D B F$ is another parallelogram.
\square $D(3,0,-2), E(1,2,12), F(0,2,9)$

Created by T. Madas

Question 16 (***+)
With respect to a fixed origin, the points A and B have position vectors $2 \mathbf{i}+4 \mathbf{j}+7 \mathbf{k}$ and $-4 \mathbf{i}+\mathbf{j}+\mathbf{k}$, respectively.

The point P lies on the straight line through A and B.
Find the possible position vectors of P if $|\overrightarrow{A P}|=2|\overrightarrow{P B}|$.

Created by T. Madas

Question $17 \quad(* * *+)$
The points $A(-3,3, a), B(b, b, b-5)$ and $C(c,-2,5)$, where a, b and c are scalar constants, are referred relative to a fixed origin O.

Ii is further given that A, B and C are collinear and the ratio $|\overrightarrow{A B}|:|\overrightarrow{B C}|=2: 3$.

Use vector algebra to find the value of a, the value of b and the value of c.

Question $18 \quad\left({ }^{* * *}+\right.$)
The points $A(7,4,3), B$ and $C(1,2,-1)$ form the parallelogram $O A B C$, where the above coordinates are measured relative to a fixed origin O.
a) Find the coordinates of B.

The side $O C$ is extended in the $\overrightarrow{O C}$ direction to a point D.
The point M is the midpoint of $A C$.
b) Given further that $\overrightarrow{M D}=\mathbf{i}+7 \mathbf{j}-6 \mathbf{k}$, determine $|\overrightarrow{O C}|:|\overrightarrow{C D}|$.

$$
\square, B(8,6,2),|\overrightarrow{O C}|:|\overrightarrow{C D}|=1: 4
$$

Created by T. Madas

Question $19(* * *+)$

The figure above shows the triangle $O A B$, where O is the origin and the position vectors of A and B relative to O, are $-6 \mathbf{i}+27 \mathbf{j}-9 \mathbf{k}$ and $4 \mathbf{i}+6 \mathbf{j}-6 \mathbf{k}$, respectively.

The point E is such so that O, B and E are collinear with $O B: B E=1: 2$
The point C is such so that O, C and A are collinear with $O C: C A=1: 2$
The point D is such so that B, D and A are collinear with $B D: D A=1: 3$
a) Determine the coordinates of C, D and E, relative to O.
b) Show that the points C, D and E are collinear, and find the ratio $C D: D E$.
c) Show further that $B C$ is parallel to $E A$, and find the ratio $B C: E A$.
 $C(-2,9,-3), D\left(\frac{3}{2}, \frac{45}{4},-\frac{27}{4}\right), E(12,18,-18), C D: D E=1: 3$,

Created by T. Madas

Question $20 \quad(* * *+)$
The points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ are referred relative to a fixed origin O.

If the point P is such so that $\overrightarrow{A P}: \overrightarrow{P B}=\lambda: \mu$, use vector algebra to show that领 $=\frac{\left(\mu x_{1}+\lambda x_{2}\right) \mathbf{i}+\left(\mu y_{1}+\lambda y_{2}\right) \mathbf{j}+\left(\mu z_{1}+\lambda z_{2}\right) \mathbf{k}}{\lambda+\mu}$.

Created by T. Madas

Question 21 ($* * *+$)
Relative to a fixed origin, the coordinates of three points $A(1,1,1), B(4,-1,3)$ and $C(2,5,-1)$, are given.

Find the position vector of the point P if $4 \overrightarrow{P A}+3 \overrightarrow{P B}=5 \overrightarrow{P C}$.

Created by T. Madas

Question 22 (****)
Relative to a fixed origin O, the positions vectors of the points A, B and C are defined below.

$$
\overrightarrow{O A}=\mathbf{i}+\mathbf{j}+4 \mathbf{k}, \quad \overrightarrow{O B}=2 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}, \quad \overrightarrow{O C}=4 \mathbf{i}+12 \mathbf{k} .
$$

If $\overrightarrow{O D}=\frac{1}{3} \overrightarrow{O C}$ prove that the point D lies on the straight line $A B$.
\square , proof

Question 23 (****)
Relative to a fixed origin O, the position vectors of three points A, B and C are

$$
\overrightarrow{O A}=\mathbf{i}-2 \mathbf{k}, \quad \overrightarrow{A B}=2 \mathbf{i}+10 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \overrightarrow{B C}=6 \mathbf{i}-12 \mathbf{j}
$$

a) Show that $\overrightarrow{A C}$ is perpendicular to $\overrightarrow{A B}$.
b) Show further that the area of the triangle $A B C$ is $18 \sqrt{6}$.
c) Hence, or otherwise, determine the shortest distance of A from the straight line through B and C.

Created by T. Madas

Question 24 (****)

The points $A(2,-1,4), B(0,-5,10), C(3,1,3)$ and $D(6,7,-8)$ are referred relative to a fixed origin O.
a) Use vector algebra to show that three of the above four points are collinear.

A triangle is drawn using three of the above four points as its vertices.
b) Given further that the triangle has the largest possible area, determine, in exact surd form, the length of its shortest side.

Question 125 (****)
Relative to a fixed origin, the points P and Q have position vectors $9 \mathbf{j}-2 \mathbf{k}$ and $7 \mathbf{i}-8 \mathbf{j}+11 \mathbf{k}$, respectively.
a) Determine the distance between the points P and Q.
b) Find the position vector of the point M, where M is the midpoint of $P Q$.

The points P and Q are vertices of a cube, so that $P Q$ is one of the longest diagonals of the cube.
c) Show that the length of one of the sides of the cube is 13 units.
d) Calculate the distance of the point M from the origin O.
e) Show that the origin O lies inside the cube.

$$
\text { TN, }|P Q|=\sqrt{507}, \overrightarrow{O M}=\frac{7}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}+\frac{9}{2} \mathbf{k},|O M|=\frac{1}{2} \sqrt{131}
$$

d) $M\left(\begin{array}{l}2,2,1, f_{2} \\ 2\end{array}\right.$
|owl $=\sqrt{\frac{9}{4}+\frac{1}{4}+\frac{8}{4}}=\sqrt{\frac{\sqrt{31}}{4}}=\frac{1}{2} \sqrt{13}$
e) bookara AT TE Dinceru betan

Created by T. Madas

Question 26 (****+)
The points $A(3,2,14), B(0,1,13)$ and $C(5,6,8)$ are defined with respect to a fixed origin O.

The straight line L passes through A and it is parallel to the vector $\overrightarrow{B C}$.

The point D lies on L so that $A B C D$ is a parallelogram.
a) Find the coordinates of D.
b) If instead $A B C D$ is an isosceles trapezium and the point D still lies on L, determine the new coordinates of D.

Created by T. Madas

Question 27 (*****)
With respect to a fixed origin, the points A and B have position vectors $10 \mathbf{i}+9 \mathbf{j}-6 \mathbf{k}$ and $6 \mathbf{i}-3 \mathbf{j}+10 \mathbf{k}$, respectively.

The position vector of the point C has \mathbf{i} component equal to 2 .
The distance of C from both A and B is 12 units.

Show that one of the two possible position vectors of C is $2 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$ and determine the other.

Created by T. Madas

Created by T. Madas

Question 28 ($* * * * * *)$
The vertices of the triangle $O A B$ have coordinates $A(6,-18,-6), B(7,-1,3)$, where O is a fixed origin.

The point N lies on $O A$ so that $O N: N A=1: 2$.

The point M is the midpoint of $O B$.

The point P is the intersection of $A M$ and $B N$.
By using vector methods, or otherwise, determine the coordinates of P.

\square $P(4,-4,0)$

