QUESTIONS

Question 1 (**)
Write each of the following expressions a single simplified surd.
a) $\sqrt{150}-\sqrt{54}$.
b) $\frac{21}{\sqrt{7}}$.

\square $, 2 \sqrt{6}, 3 \sqrt{7}$

Question 2 (**)
Write each of the following surd expressions as simple as possible.
a) $(\sqrt{7}+2)(1+\sqrt{7})$.b) $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{8}}$.
\square $9+3 \sqrt{7}, 4$

Question 3 (**)
A rectangle has area $12 \mathrm{~cm}^{2}$ and length $2+\sqrt{7} \mathrm{~cm}$.

Find its width in the form $a+b \sqrt{7}$, where a and b are integers.

Question 4 (**)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{24}+\sqrt{6}$.
b) $(2+\sqrt{3})(4-\sqrt{12})$.

Question 5 (**)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{48}-\frac{6}{\sqrt{3}}+\sqrt{6} \times \sqrt{2}$.
b) $(\sqrt{7}+3)(2 \sqrt{7}-3)$.

Question 6 (**)
Write each of the following surd expressions as simple as possible.
a) $(\sqrt{5}+2)(3-\sqrt{5})$.
b) $\frac{14}{\sqrt{2}}-\sqrt{18}-(\sqrt{2})^{3}$.

Question $7 \quad\left({ }^{* *}+\right.$)
Write each of the following surd expressions as simple as possible.
a) $(4-\sqrt{5})^{2}$.
b) $2 \sqrt{5} \times \sqrt{15}-\sqrt{75}-\frac{\sqrt{60}}{\sqrt{5}}$.
\square $21-8 \sqrt{5}, 3 \sqrt{3}$

Question $8 \quad(* *+$)
Write each of the following expressions a single simplified surd.
a) $\sqrt{343}-\sqrt{28}$.
b) $\sqrt{45}+\frac{20}{\sqrt{5}}$.
\square
\square $7 \sqrt{5}$

b) Resucg two Rationanues
$\sqrt{45}+\frac{20}{\sqrt{5}}=\sqrt{9} \sqrt{5}+\frac{20}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$
$\begin{aligned} & =3 \sqrt{5}+\frac{20 \sqrt{5}}{s} \\ & =3 \sqrt{5}+4 \sqrt{5}\end{aligned}$
$=7 \sqrt{5}$

Question 9 (**+)
Write each of the following surd expressions as simple as possible.
a) $2 \sqrt{32}+\sqrt{18}-3 \sqrt{8}$.
b) $\frac{22}{4-\sqrt{5}}$. $5 \sqrt{2}, 8+2 \sqrt{5}$

Question $10 \quad(* *+)$
Write each of the following expressions a single simplified surd.
a) $\sqrt{63}+2 \sqrt{28}$.
b) $(2+\sqrt{5})(5-\sqrt{20})$.

Created by T. Madas

Question $11 \quad\left({ }^{* *}+\right.$)

Write each of the following surd expressions as simple as possible.
a) $(3-\sqrt{8})^{2}$.
b) $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}$.

Question 13 (**+)
Write the following expression in the form $k \sqrt{3}$, where k is an integer.

$$
\frac{90}{\sqrt{3}}-\sqrt{6} \times \sqrt{8}-(2 \sqrt{3})^{3}
$$

Question $14 \quad(* *+)$
Write each of the following surd expressions as simple as possible.
a) $2 \sqrt{8}+\sqrt{18}-\frac{6}{\sqrt{2}}$.
b) $\frac{\sqrt{7}+1}{\sqrt{7}-2}$.

Question 15 (**+)
Write each of the following surd expressions as simple as possible.
a) $(2+\sqrt{3})^{2}$.
b) $(2 \sqrt{3})^{3}-\frac{12}{\sqrt{3}}$.

Question $16(* *+)$
The area of a triangle is $(3+\sqrt{3}) \mathrm{cm}^{2}$.

Given the base of the triangle is $\sqrt{3} \mathrm{~cm}$, find in exact simplified surd form the height of the triangle.

Question 17 (**+)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{48}+\sqrt{27}-\frac{6}{\sqrt{3}}$.

Question 19 (**+)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{98}-\sqrt{50}$.

Created by T. Madas

Question $21 \quad\left({ }^{* *}+\right.$)

Write each of the following surd expressions as simple as possible.
a) $(2 \sqrt{6}-\sqrt{3}) \times 2 \sqrt{3}$.
b) $\frac{\sqrt{12}+2}{\sqrt{12}-2}$.

$$
-6+12 \sqrt{2}, 2+\sqrt{3}
$$

Question $22{ }^{(* *+)}$

$$
f(x) \equiv(\sqrt{x}+2)^{2}+(1-2 \sqrt{x})^{2}
$$

Express $f(x), x \geq 0$ in the form $a x+b$.

Question 23 (***)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{50}+\sqrt{3} \times \sqrt{6}-\frac{14}{\sqrt{2}}$.
b) $(\sqrt{75}-\sqrt{48})^{2}$.

Question 24 (***)
Write each of the following surd expressions as simple as possible.
a) $5 \sqrt{2} \times 4 \sqrt{3}-6 \sqrt{24}$.
b) $\frac{3+\sqrt{6}}{\sqrt{3}}$.
\square $, 8 \sqrt{6}, \sqrt{3}+\sqrt{2}$

Question 25 (***)
Write each of the following surd expressions as simple as possible.
a) $(1+\sqrt{2})^{3}$.
b) $2 \sqrt{75}+\frac{3+\sqrt{3}}{3-\sqrt{3}}-\sqrt{2} \times \sqrt{2}$.
\square $, 7+5 \sqrt{2}, 11 \sqrt{3}$

Question 26 (***)
Write each of the following surd expressions as simple as possible.
a) $(\sqrt{108}-\sqrt{12})^{2}$.
b) $\frac{(2 \sqrt{3}-1)(3-3 \sqrt{3})}{\sqrt{3}}$.

Question 27 (***)
Write each of the following surd expressions as simple as possible.
a) $\frac{18}{\sqrt{3}}-2 \sqrt{27}$.

Question 29 (***)
Write each of the following surd expressions as simple as possible.
a) $(\sqrt{3}-\sqrt{2})^{2}$.
b) $\sqrt{14} \times \sqrt{42}$.
\square $, 5-2 \sqrt{6}, 14 \sqrt{3}$

Question 30 (***)
a) Simplify the following expression, writing the final answer in the form $a+b \sqrt{3}$, where a and b are integers
b) Solve the equation
\square $2-\sqrt{3}, x= \pm 4$

$$
x^{-1}=\frac{x}{16}, \quad x \neq 0 .
$$

Question 31 (***)
If $x=\sqrt{3}$ show that

Question 33 (***)
Write each of the following surd expressions as simple as possible.
a) $\sqrt{24.5}-\sqrt{12.5}$.
b) $\frac{\sqrt{2}}{1+\sqrt{2}}$.

\square $, \sqrt{2}, 2-\sqrt{2}$

$$
\frac{1}{x-\sqrt{y}}+\frac{1}{x+\sqrt{y}}
$$

Write the above expression as a single fraction in its simplest form.

$$
\begin{array}{|c|}
\hline \frac{2 x}{x^{2}-y} \\
\hline
\end{array}
$$

Question 34 (***)

Question 35 (***)

$$
\frac{2+y}{y}=\sqrt{2} .
$$

Question 37 (***)
Write each of the following surd expressions as simple as possible.
a) $\frac{(2+\sqrt{2})(1+\sqrt{2})}{\sqrt{2}}$.

Question 39 (***+)
a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{3}$.
i. $\sqrt{108}+\sqrt{3}$.
ii. $\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}$.
b) Solve the equation

$$
(5-x)^{\frac{3}{2}}=8
$$

Detailed workings must be shown in this question.

Question $40 \quad\left({ }^{* * *}+\right.$)
It is given that that for some constants a, b and c

$$
\frac{2 \sqrt{2}}{\sqrt{3}-1}-\frac{2 \sqrt{3}}{\sqrt{2}+1} \equiv a \sqrt{2}+b \sqrt{3}+c \sqrt{6}
$$

Find the value of a, the value of b and the value of c.

Created by T. Madas

Question 41 (***+)
A right angled triangle $A B C$ is shown in the figure below.

The lengths of $A C$ and $B C$ are 6 cm and $2 \sqrt{3} \mathrm{~cm}$, respectively.

Question 42 (***+)
a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{2}$.
i. $\sqrt{98}+\sqrt{2}$.
ii. $(\sqrt{2}+3)(2-3 \sqrt{2})$.
b) Solve the equation

Question 43 (***+)

$$
f(x) \equiv x^{\frac{3}{2}}-8 x^{-\frac{1}{2}}, x>0
$$

Show clearly that
where k is a constant.

$$
f(3)=k \sqrt{3}
$$

\square , proof
4

Procces is fuows
$f(x)=x^{\frac{3}{2}}-8 x^{-\frac{1}{2}}$
$f(3)=3^{\frac{3}{2}}-8 \times 3^{-\frac{1}{2}}=(\sqrt{3})^{3}-\frac{8}{\sqrt{3}}=3 \sqrt{3}-\frac{8}{\sqrt{3}}$
$=3 \sqrt{3}-\frac{8 \sqrt{3}}{\sqrt{3} \sqrt{3}}=3 \sqrt{3}-\frac{8 \sqrt{3}}{3}=3 \sqrt{3}-\frac{8}{3} \sqrt{3}$ $=\frac{1}{3} \sqrt{3} / \int_{1 \in E=\frac{1}{3}}$

Question $44 \quad\left({ }^{* * *}+\right.$)
Write each of the following surd expressions as simple as possible.
a) $\frac{36}{5-\sqrt{7}}$

Give the answer in the form $a+b \sqrt{7}$, where a and b are integers.
b) $\sqrt{\frac{8}{3}}+\frac{3}{2} \sqrt{\frac{8}{27}}$.

Give the answer in the form \sqrt{k}, where k is an integer.

Created by T. Madas

Question $45 \quad\left({ }^{* * *}+\right)$
A cylinder has a radius of $\left(\frac{1}{\sqrt{2}-1}\right) \mathrm{cm}$ and a height of $(\sqrt{2}+1) \mathrm{cm}$.

Show, by detailed working, that the volume of this cylinder is exactly

$$
\pi(7+5 \sqrt{2}) \mathrm{cm}^{3}
$$

\square , proof

Question 46 (***+)
a) Solve the equation

$$
\sqrt{525}
$$

in the form $a \sqrt{b} \sqrt{c}$, where a, b and c are prime numbers.

Question 47 (***+)
a) If x is a real number solve the following indicial equation

$$
x\left(x^{\frac{1}{2}}-2 x^{-\frac{1}{2}}\right)^{2}=0
$$

b) Express

$$
\frac{\sqrt{98}-\sqrt{8}}{1+\sqrt{2}}
$$

in the form $a+b \sqrt{2}$, where a and b are integers.
\square $, x=2,10-5 \sqrt{2}$

Question 48 (***+)
Show clearly, without approximating and without using any calculating aid that

Question $50 \quad\left({ }^{* * *}+\right.$)
a) Simplify fully each of the following expressions, writing the final answer as a single simplified surd.
i. $(2+\sqrt{3})(2 \sqrt{3}-3)$.
ii. $\frac{\sqrt{6}+3 \sqrt{2}}{\sqrt{6}+\sqrt{2}}$.
b) Solve the equation

Question $51 \quad(* * *+)$

$$
\frac{(2+\sqrt{3})^{2}-(1-\sqrt{3})^{2}}{\sqrt{3}}
$$

Write the above surd expression in the form $a+b \sqrt{3}$, where a and b are integers.
\square , $6+\sqrt{3}$

Question 52 (***+)

$$
\sqrt{3}(x-\sqrt{3})=x+\sqrt{3}
$$

Solve the above equation giving the answer in the form $a+b \sqrt{3}$, where a and b are integers.

Question 54 (****)
The two rectangles shown in the figure below are similar.

It is further given that in suitable units

$$
|A B|=\sqrt{3}, \quad|B C|=\sqrt{12}-2 \quad \text { and } \quad|F G|=\sqrt{12}+2 .
$$

Find the exact length of $E F$.
\square

$$
|E F|=3+2 \sqrt{3}
$$

\square

Created by T. Madas

Question 55 (****)
Solve the following system of simultaneous equations

Question 56 (****+)
The positive constants p and q satisfy the following equation

$$
\frac{\sqrt{p}}{2 p+\sqrt{p}}=\frac{2 \sqrt{p}-q}{3 p+q}
$$

Show by a detailed method that
\square , proof

$$
q=\frac{p+2 \sqrt{p}}{2+2 \sqrt{p}}
$$

Question 57 (${ }^{* * * *+) ~}$
Four circles are touching in such a way so that their centres form the corners of a square $A B C D$. These four circles are circumscribed by a larger circle.

This is shown in the figure below.

Show that the ratio of the total area of the four smaller circles to the area of the larger circle is given by

$$
12-8 \sqrt{2}: 1
$$

\square , proof

Question 58 (****+)
If $x=\sqrt[3]{120}$, show clearly that

$$
x^{2}+\frac{240}{x}=12 \sqrt[3]{225}
$$

Question 59 (****+)
If $x=\sqrt[3]{2000}$, show clearly that

Question $60 \quad(* * * *+)$
Show clearly, without approximating and without using any calculating aid, that
a) $\sqrt{6+2 \sqrt{6}}>\sqrt{3}+\sqrt{2}$.
b) $\sqrt[3]{3}>\sqrt{2}$.
c) $\sqrt{2}-1>\sqrt{3}-\sqrt{2}$.
\square , proof

Question $61 \quad(* * * *+)$
It is given that if k is a non zero constant then

Determine the value of k.

Created by T. Madas

Question $62\left({ }^{* * * *+)}\right.$ non calculator

$$
f(x) \equiv \frac{x+\sqrt{x^{2}+1}}{x+\sqrt{x^{2}-1}}, x \in \mathbb{R},|x| \geq 1
$$

Find without the use of a calculator the value of

$$
f\left(\frac{5}{12} \sqrt{6}\right)
$$

Detailed workings must be shown in this question.

$$
f\left(\frac{5}{12} \sqrt{6}\right)=2
$$

Question 63 (****+)
Solve the following equation.

Question $64(* * * *+)$

Show that $\sqrt{2+\sqrt{2}}+\sqrt{2-\sqrt{2}}$ can be expressed in the form

$$
\sqrt{a+b \sqrt{2}}
$$

where a and b are integers to be found.

Question 65 (*****)
Show clearly without the use of any calculating aid that

$$
\sqrt{5+2 \sqrt{6}}-\sqrt{5-2 \sqrt{6}}=a \sqrt{b}
$$

where a and b are integers to be found.

$$
a=b=2
$$

Created by T. Madas

Question 66 (*****)
Determine, in exact simplified surd form, the solution pair (a, b) of the following simultaneous equations.

$$
\sqrt{2} x+\sqrt{3} y=5 \quad \text { and } \quad(5 \sqrt{3}-\sqrt{2}) x+(5 \sqrt{2}-\sqrt{3}) y=10 \sqrt{6}
$$

Detailed workings must be shown in this question.

Created by T. Madas

Question 67 (*****)

$$
z=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}
$$

Verify that z is a solution of the equation

$$
z^{3}-3 z-8=0
$$

Question 68 (*****)
Find the rational solution of the following equation

$$
\frac{2+9 \sqrt{x}}{2 \sqrt{3}-\sqrt{3 x}}=\sqrt{3}+2 \sqrt{2}, x \in \mathbb{Q}
$$

\square ,$x=\frac{2}{3}$

Question 69 (${ }^{* * * * *) ~}$
Show clearly without the use of any calculating aid that

$$
\sqrt{12+6 \sqrt{3}}-\sqrt{3-2 \sqrt{2}}=a+\sqrt{b}-\sqrt{c}
$$

where a, b and c are integers to be found.

$$
a=4, b=3, c=2
$$

Question 70 (*****)
Show clearly without the use of any calculating aid that

$$
\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\ldots}}}}=k
$$

where k is an integer to be found.

Question 71 (*****)
Determine, in exact simplified surd form, the solution pair (a, b) of the following simultaneous equations.

$$
\sqrt{2}(a-1)+\sqrt{6} b=2(1+\sqrt{3}) \quad \text { and } \quad \sqrt{6} a-\sqrt{3} b=2 \sqrt{3} .
$$

Detailed workings must be shown in this question.
\square $a=1+\sqrt{2}, \quad b=\sqrt{2}$

$\sqrt{2}(a-1)+\sqrt{6} b=2(1+\sqrt{3})$
AbDing THE EPvitions
$\Rightarrow \sqrt{2}(a-1)+\sqrt{12} a=2(1+\sqrt{3})+2 \sqrt{6}$
$\Rightarrow \sqrt{2} a-\sqrt{2}+2 \sqrt{3} a=2+2 \sqrt{3}+2 \sqrt{6}$
$\Rightarrow \sqrt{2} a+2 \sqrt{3} a=2+2 \sqrt{3}+2 \sqrt{6}+\sqrt{2}$
$\Rightarrow(\sqrt{2}+2 \sqrt{3}) a=\sqrt{2}+2 \sqrt{3}+2+2 \sqrt{6}$
$\Rightarrow a=\frac{(\sqrt{2}+2 \sqrt{3})+2+2 \sqrt{6}}{\sqrt{2}+2 \sqrt{3}}$
"SPuTting THE fration"
$\Rightarrow a=1+\frac{2(1+\sqrt{6})}{2 \sqrt{3}+\sqrt{2}}$
$\Rightarrow a=1+\frac{2(1+\sqrt{6})(2 \sqrt{3}-\sqrt{2})}{(2 \sqrt{3}+\sqrt{2})(2 \sqrt{3}-\sqrt{2})}$
$\Rightarrow a=1+\frac{2(2 \sqrt{3}-\sqrt{2}+2 \sqrt{18}-\sqrt{12})}{4 \times 3-2}$
$\Rightarrow u=1+2(2 \sqrt{3}-\sqrt{2}+2 \times 3 \sqrt{2}-3 \sqrt{3})$
$\rightarrow a=1+\frac{2 \times 5 \sqrt{2}}{10}$
$\Rightarrow a=1+\sqrt{2}$
Fintuy io find b
$\Rightarrow \sqrt{6} a-\sqrt{3} b=2 \sqrt{3}$
$\Rightarrow \sqrt{6}(1+\sqrt{2})-\sqrt{3} b=2 \sqrt{3}$
$\Rightarrow \sqrt{6}+\sqrt{12}-\sqrt{3} b=2 \sqrt{3}$
$\Rightarrow \sqrt{6}+2 \sqrt{6}-\sqrt{3} b=2 \sqrt{3}$
$\Rightarrow \sqrt{3} b=\sqrt{6}$
$\Rightarrow \sqrt{3} b=\sqrt{3} \sqrt{2}$
$\Rightarrow \mathrm{b}=\sqrt{2}$

Created by T. Madas

Question $72(* * * *+)$ non calculator

$$
f(x) \equiv 4 x(x-2)(x+1)(x-3), \quad x \in \mathbb{R}
$$

Evaluate $f\left(1+\frac{1}{2} \sqrt{10}\right)$.

You must show detailed workings in this question.

$$
Q^{\prime}, f\left(1+\frac{1}{2} \sqrt{10}\right)=-9
$$

Question $73 \quad(* * * *+)$
Show with a detailed method that
$\frac{\sqrt[3]{16}-\sqrt[3]{2}}{\sqrt[3]{4}}=k \sqrt[3]{4}$
where k is a constant to be found.

Question 74
(*****)

$$
f(p) \equiv(p-\sqrt{2})^{2}+\left(\frac{1}{p}-\sqrt{2}\right)^{2}, p \in \mathbb{R}, p \neq 0
$$

Given that $p+\frac{1}{p}<\sqrt{2}$, find $\sqrt{f(p)}$ in its simplest form.
\square , proof
$\sqrt{(p-\sqrt{2})^{2}+\left(\frac{1}{p}+\sqrt{2}\right)^{2}}$
$=\sqrt{p^{2}-2 p \sqrt{2}+2+\frac{1}{p^{2}}+2 \times \frac{1}{p} \times \sqrt{2}+2}$
Now REGCovip THE THEMS AF Follows
$=\sqrt{p^{2}+2+\frac{1}{p^{2}}+2-2 \times \sqrt{2} \times p-2 \times \sqrt{2 \times 1} p}$
$=\sqrt{(p)^{2}+(\sqrt{2})^{2}+\left(\frac{1}{p}\right)^{2}+\left(2 \times \frac{1}{p} \times p\right)-(2 \times \sqrt{2} \times p)-\left(2 \times \sqrt{2} \times \frac{1}{p}\right)}$
Now using THE TERNOMAL SquAtence
$(A+B+C)^{2} \equiv A^{2}+B^{2}+C^{2}+2 A B+2 B C+2 C A$
$(A-B-C)^{2} \equiv A^{2}+B^{2}+C^{2}$
$(A-B-C)^{2} \equiv A^{2}+B^{2}+C^{2}-2 A B+2 B C-2 C A$
$=\sqrt{\left(p+\frac{1}{p}-\sqrt{2}\right)^{2}}$
$=\left|p+\frac{1}{p}-\sqrt{2}\right|$
brits $p+t<\sqrt{2}$
$=\sqrt{2}-p-\frac{1}{p}$

Created by T. Madas

Question 75 (*****)

$$
\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\ldots}}}}}
$$

It is given that the above nested radical converges to a limit $L, L \in \mathbb{R}$.

Determine the range of possible values of x.
\square $x \geq-\frac{9}{4}$

Question 76 (*****)
Show clearly that

$$
\sqrt{4+2 \sqrt{3}}=1+\sqrt{3}
$$

\square

Question 77 (*****)
Show that

$$
\frac{3}{\sqrt[3]{4}-1}
$$

can be written in the form $\sqrt[3]{a}+\sqrt[3]{b}+1$, where a and b are integers to be found.

Question 78 (*****)
Show clearly that

$$
\frac{4}{\sqrt{3}+\sqrt{2}+1}=2+\sqrt{2}-\sqrt{6}
$$

\square $\sqrt[3]{16}+\sqrt[3]{4}+1$

- NSing The Differguce of cores inNoly

$$
\begin{aligned}
(\sqrt[3]{4})^{3}-1^{3} & =(\sqrt[3]{4}-1)\left[(\sqrt[14]{4})^{2}+\sqrt[3]{4}+1\right] \\
4-1 & =\left(\sqrt[3]{4^{1}}-1\right)\left[\sqrt[216^{1}]{ }+\sqrt[2]{4^{2}}+1\right]
\end{aligned}
$$

H HWCE we ohn whupuatte the expressial As freaws $\frac{3}{\sqrt[3]{t}-1}=\frac{3(\sqrt[2]{16}+\sqrt[3]{4}+1)}{(\sqrt[3]{t}-1)(\sqrt[2]{16}+\sqrt[3]{4}+1)}$ $=\frac{3(\sqrt[3]{16}+\sqrt{41}+1)}{3}$ $=\sqrt[2]{16}+\sqrt[3]{4^{4}}+1$

You may not use verification in this question

Question 79 ($* * * * *$)
Show clearly that

$$
\sqrt{\frac{1+4 \sqrt{3}}{3}}=a+b \sqrt{3}
$$

where a and b are constants to be found.

$$
a=1, b=\frac{2}{3}
$$

$$
6125^{\frac{1}{4}}+5^{\frac{5}{4}}
$$

can be written in the form $\sqrt{10}(a \sqrt{5}+b \sqrt{7})^{\frac{1}{2}}$, where a and b are positive integers to be found.

Question 81 (*****)

$$
A=\frac{3}{2} x y+2 y z+2 x z
$$

Given that $x=\left(\frac{4}{3}\right)^{\frac{1}{3}}, y=\left(\frac{4}{3}\right)^{\frac{1}{3}}$ and $z=\left(\frac{3}{4}\right)^{\frac{2}{3}}$, show clearly that $A=3 \sqrt[3]{6}$
\square , proof

Question 82 (*****)
Find an exact simplified value for

$$
\sqrt{73-40 \sqrt{3}}
$$

\square

Created by T. Madas

Question 83 (*****)
Rationalize the denominator of the following surd.

$$
\frac{4}{\sqrt{3}+\sqrt{2}+1}=2+\sqrt{2}-\sqrt{6}
$$

Show detailed workings in this question.

Created by T. Madas

Question 84 (*****)
Show that

$$
\frac{\sqrt[3]{49}-2 \sqrt[3]{7}-4}{\sqrt[3]{7}+1}
$$

can be written in the form $a \sqrt[3]{7}+b$, where a and b are integers to be found.

Question 85 (*****)
Solve the following quadratic equation

$$
(\sqrt{3}-1) x^{2}-2 \sqrt{3} x=3+3 \sqrt{3}
$$

Give one of the roots in the form $p+q \sqrt{3}$ and the other root in the form $r \sqrt{3}$, where p, q and r are integers.

Question 87 (*****)
Solve the following simultaneous equations, to find in exact form where appropriate, the value or values of x and k.

Question 88
Find in exact simplified form

Question 89
The functions f and f are defined as

$$
\begin{aligned}
f(x) & \equiv \frac{2 \sqrt{1-x}}{\sqrt{1-x}-3 \sqrt{1+x}},-1 \leq x \leq 1
\end{aligned}, \quad \begin{aligned}
& g(x) \\
& \equiv \frac{3 x}{2(x+2)-4 \sqrt{1-x^{2}}},-1 \leq x \leq 1 .
\end{aligned}
$$

Show that $f(x)+g(x)$ is a constant function.
\square , proof

Question 90
$(* * * * *)$

$$
f(a) \equiv \frac{a}{a+1}+\sqrt{1+a^{2}+\frac{a^{2}}{a^{2}+2 a+1}}, a \in \mathbb{R}, a \neq-1
$$

Show that $f(a)$ can be simplified to a linear polynomial in a.

Created by T. Madas

Question 91
$(* * * * *)$

$$
h(x) \equiv \frac{1}{\sqrt{x+\sqrt{x^{2}-1}}}, x \in \mathbb{R}, x \geq 1 .
$$

Show that $h(x)$ can be expressed in the form

$$
\sqrt{f(x)}-\sqrt{g(x)}
$$

where $f(x)$ and $g(x)$ are linear functions to be found.
$\square, h(x)=\sqrt{\frac{x+1}{2}}-\sqrt{\frac{x-1}{2}}$

Created by T. Madas

Question 92 ($* * * * *$)
Using a detailed method show that

Created by T. Madas

Question 93
(******)

$$
f(x, y) \equiv \sqrt{\frac{x^{4}}{y^{4}}+\frac{y^{4}}{x^{4}}-2\left(\frac{x^{3}}{y^{3}}+\frac{y^{3}}{x^{3}}\right)+3\left(\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}\right)-4\left(\frac{x}{y}+\frac{y}{x}\right)+5} .
$$

Simplify $f(x, y)$ in a form not involving square roots.
$\square, f(x, y) \equiv \pm\left(\frac{x^{2}}{y^{2}}-\frac{x}{y}+1-\frac{y}{x}+\frac{y^{2}}{x^{2}}\right)$

Question 94 ($* * * * * *)$
Sketch the graph of

$$
\left[x+\sqrt{x^{2}+4}\right]\left[y+\sqrt{y^{2}+1}\right]=2, \quad x \in(-\infty, \infty), y \in(-\infty, \infty)
$$

You must show a detailed method in this question
\square proof

AlTENATNE Withar HyGEROUCS $\left[x+\sqrt{x^{2}+4}\right]\left[y+\sqrt{y^{2}+1}\right]=2$ LET $u=x+\sqrt{x^{2}+4}$ $\Rightarrow u\left(y+\sqrt{y^{2}+1}\right)=2$
Bor $u=x+\sqrt{x^{2}+4}$ $\Rightarrow y+\sqrt{y^{2}+1}=\frac{2}{4} \quad \Rightarrow \frac{1}{4}=\frac{1}{x+\sqrt{x^{2}+4}}$ $\begin{aligned} & \Rightarrow \sqrt{y^{2}+1}=\frac{2}{4}-y \\ & \Rightarrow y^{2}+1=\frac{4}{4}-4 y+y^{2}\end{aligned} \Rightarrow \frac{1}{4}=\frac{x-\sqrt{2 \times 4}}{[x+\sqrt{2 \times 4}]\left[\sqrt{2}-\sqrt{\left.x^{2}+4\right]}\right.}$ $\Rightarrow y^{2}+1=\frac{4}{4^{2}}-\frac{4 y}{4}+y^{2}$ $\Rightarrow \frac{1}{4}=\frac{x-\sqrt{x^{2}+4}}{x^{2}-\left(x^{2}+4\right)}$
$\rightarrow \frac{1}{4}=\frac{x-\sqrt{x^{2}+4}}{}$ $\Rightarrow u=4-4 y u$
$\Rightarrow 4 y u=4-u^{2}$ $\Rightarrow y=\frac{1}{u}-\frac{u}{4}$
$\Rightarrow \frac{1}{4}=-\frac{1}{4} x+\frac{1}{4} \sqrt{x^{2}+4}$

Consinina samuls

$$
\begin{aligned}
y=\frac{1}{4}-\frac{1}{4} u & =-\frac{1}{4} x+\frac{1}{4} \sqrt{x^{2}+4}-\frac{1}{4}\left[x+\sqrt{x^{2}+4}\right] \\
& =-\frac{1}{4} x+\frac{1}{4} \sqrt{x^{2}+4}-\frac{1}{4} x-\frac{1}{4} \sqrt{x^{2}+4}
\end{aligned}
$$

$$
=-\frac{1}{2} x
$$

Created by T. Madas

Question 95
(*****)
By using the substitution $\sqrt[3]{10 \pm 6 \sqrt{3}}=u \pm \sqrt{v}$, where $u \in \mathbb{Q}, v \in \mathbb{Q}$, simplify fully the following cubic radical expression.

Created by T. Madas

Question 96
$(* * * * *)$
By using the substitution $\sqrt[3]{20 \pm 14 \sqrt{2}}=u \pm \sqrt{v}$, where $u \in \mathbb{Q}, v \in \mathbb{Q}$, simplify fully the following cubic radical expression.

Created by T. Madas

Question 97 (*****)

$$
f(x) \equiv x^{2}+\frac{2 x}{2+\sqrt{3}}-1, x \in \mathbb{R}
$$

Factorize $f(x)$ into a product of 2 simple linear factors.
\square

$$
(x+\sqrt{6}-\sqrt{3}-\sqrt{2}+2)(x-\sqrt{6}-\sqrt{3}+\sqrt{2}+2)
$$

- Sther By compleming the sponles
$x^{2}+\frac{2 x}{2+\sqrt{3}}-1=\left[x+\frac{1}{2+\sqrt{3}}\right]^{2}-\frac{1}{(2+\sqrt{3})^{2}}$
- week we note that
\qquad
(3) THOS WHE CAF RID OF THE FRACTIONS
$=[2+(2-\sqrt{3})]^{2}-(2-\sqrt{3})^{2}-1$
$=[x+(2-\sqrt{3})]^{2}-[4-4 \sqrt{3}+3]-1$
$=[x+(2-\sqrt{3})]^{2}-[8-4 \sqrt{3}]$
$=[x+(2-\sqrt{4})]^{2}-2[4-2 \sqrt{3}]$
$=[x+2-\sqrt{3}]^{2}-2[3-2 \sqrt{3}+1]$
$=[x+2-\sqrt{3}]^{2}-2\left[\sqrt{3}^{2}-2 x+x \sqrt{3}+1^{2}\right]$
$=[x+2-\sqrt{3}]^{2}-2[\sqrt{3}-1]^{2}$
$=[x+2-\sqrt{3}]^{2}-[\sqrt{2}(\sqrt{3}-1)]^{2}$
$=[x+2-\sqrt{3}]^{2}-[\sqrt{6}-\sqrt{2}]^{2}$

