MIXE. SURD QUESTIONS

Question 1 (**)

Write each of the following expressions a single simplified surd.

- b) $\frac{21}{\sqrt{7}}$. $\sqrt{150} - \sqrt{54} \; .$

in Cal

in the

Question 2 (**)

Write each of the following surd expressions as simple as possible.

N.

madası

- **a**) $(\sqrt{7}+2)(1+\sqrt{7}).$
- **b**) $\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}}$.

I.C.p

F.C.P.

mada

(a) $\left(\sqrt{7} + 2\right) \left(1 + \sqrt{7}\right) = \sqrt{7}$ (b) 150 + 18 = 125/2 + 19/2 = $\frac{5\sqrt{2} + 3\sqrt{2}}{2\sqrt{2}} = \frac{8\sqrt{2}}{2\sqrt{2}} = \frac{4}{2}$

Question 3 (**)

A rectangle has area 12 cm^2 and length $2 + \sqrt{7}$ cm.

K.G.B.

Find its width in the form $a + b\sqrt{7}$, where a and b are integers.

Ś

1

ths.com

A=WL	
$ 2 = w(2+k_1)$.	
$W = \frac{12}{2+\sqrt{7^{1}}}$	
$V_{*} = \frac{12(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}$	$=\frac{24-12\sqrt{7}}{4-2\sqrt{7}}+\frac{24-12\sqrt{7}}{-3}=-8+4\sqrt{7}$

(**) Question 4

COM

I.G.B.

Y.C.B.

Write each of the following surd expressions as simple as possible.

112das,

- $\sqrt{24} + \sqrt{6}$.
- **b**) $(2+\sqrt{3})(4-\sqrt{12})$. KGB Madasm

COM

K.C.B. 1112/12/351

9	$\sqrt{24^{2}+\sqrt{6}} = \sqrt{4}\sqrt{5^{2}} + \sqrt{6} = 2\sqrt{6} + \sqrt{6} = 3\sqrt{6}$
γ	And the the the the she
6)	$(2+\sqrt{3})(4-\sqrt{2}) = 8-2\sqrt{2}+4\sqrt{3}-\sqrt{3}\sqrt{2}$
	= B - 2 strig st + 4 st - st
	$= \Theta - 3 \times 2\sqrt{3} + d\sqrt{2} - C$
	- B - yelt + yelt - a
	= 2

Created by T. Madas

COM

C.F.

Question 5 (**)

Write each of the following surd expressions as simple as possible.

a) $\sqrt{48} - \frac{6}{\sqrt{3}} + \sqrt{6} \times \sqrt{2}$.

b) $(\sqrt{7}+3)(2\sqrt{7}-3).$

 $4\sqrt{3}$, $5+3\sqrt{7}$

in the second se

1

0 (NT+3)(2F-

Question 6 (**)

I.C.B.

Write each of the following surd expressions as simple as possible.

a) $(\sqrt{5}+2)(3-\sqrt{5})$.

b) $\frac{14}{\sqrt{2}} - \sqrt{18} - (\sqrt{2})^3$.

I.C.

C.P.

(a) ((5+2)(3-15) = 315 - 5+6-215 = 1+15 (b) $\frac{(4)}{\sqrt{2}} - \sqrt{6} \left(-\sqrt{2} \right)^3 = \frac{(4\sqrt{2})}{\sqrt{2}\sqrt{2}} - \sqrt{9\times 2} - \sqrt{2} \sqrt{2} \sqrt{2}$

Question 7 (**+)

Write each of the following surd expressions as simple as possible.

a) $(4-\sqrt{5})^2$.

b) $2\sqrt{5} \times \sqrt{15} - \sqrt{75} - \frac{\sqrt{60}}{\sqrt{5}}$

$\boxed{}, \boxed{21 - 8\sqrt{5}}, \boxed{3\sqrt{5}}$	3
(9) $(4 - \sqrt{5}^{-1})^2 = 4^2 - 2x4 \times \sqrt{5}^{-1} + (\sqrt{5}^{-1})^2$ for heating two bracks = $16 - 8\sqrt{5}^{-1} + 5$	>
= 21 - 843	
$ \begin{array}{c} (b) \\ 2\sqrt{15} \times \sqrt{15} - \sqrt{15} & -\frac{100}{\sqrt{15}} & = & 2\sqrt{15} - \sqrt{15} & -\sqrt{150} \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array} $	
$= \sqrt{3} \times 3^{1} = \sqrt{4} \times 3^{1}$	
$= 54\overline{3}' - 24\overline{3}'$ $= 3\sqrt{3}'$	

(C)

4

Question 8 (**+)

Write each of the following expressions a single simplified surd.

N.C.

21/2517

a) $\sqrt{343} - \sqrt{28}$.

b) $\sqrt{45} + \frac{20}{\sqrt{5}}$.

I.G.B.

 $\begin{array}{c} & \overline{SV} + \overline{VS} \\ & \overline{V} + \overline{V$

b) EFFICE AND AUTONAUEE $\gamma_{AC} + \frac{50}{42} = \gamma_{L}^{-1} \gamma_{L}^{-1} + \frac{50}{42} \gamma_{L}^{-1}$ $= 3\sqrt{2} + \frac{50}{42} \gamma_{L}^{-1}$ $= 3\sqrt{2} + 4\sqrt{2}$

Question 9 (**+)

Write each of the following surd expressions as simple as possible.

113/3SM2

ins,

a)
$$2\sqrt{32} + \sqrt{18} - 3\sqrt{8}$$
.

b)
$$\frac{22}{4-\sqrt{5}}$$
.

$5\sqrt{2}$,	$8 + 2\sqrt{5}$

1.21

COM

1+

$ \begin{array}{l} (\mathbf{q}) & 2\sqrt{32'} + \sqrt{16'} - 3\sqrt{8'} \\ & = 2\sqrt{86\times2'} + \sqrt{97\times2'} - 3\sqrt{4\times2'} \\ & = 2\times 9\sqrt{2'} + 3\sqrt{2'} - 3\times 2\sqrt{2'} \end{array} $	(b) $\frac{22}{4-\sqrt{\xi'}} = \frac{22(4+4\tilde{r})}{(4-\sqrt{\xi'})(4+4\tilde{r})}$ $= \frac{22(4+4\tilde{r})}{(4-\sqrt{\xi'})(4+4\tilde{r})}$
= 8V2" + 3V2" - 6V2"	$= \frac{22(4+\sqrt{5^{7}})}{11}$
= 542	$= 2(4+\sqrt{5}^{1})$ $= 8+2\sqrt{5}^{1}$

Question 10 (**+)

Write each of the following expressions a single simplified surd.

a) $\sqrt{63} + 2\sqrt{28}$.

I.V.G.B.

b) $(2+\sqrt{5})(5-\sqrt{20}).$

(9)	√ ^{(3]} + 2√28
-	V9×7+2V7×4
= 3	317 + 417
=	TWT

177 (S - 120) 1877 + 517 - 1100 1473 + 517 - 1100 + 516

 $7\sqrt{7}$, $\sqrt{5}$

Question 11 (**+)

Write each of the following surd expressions as simple as possible.

01

a)
$$3\sqrt{20} + \frac{10}{\sqrt{5}}$$
.
b) $\frac{26}{4 + \sqrt{3}}$.
 $\boxed{8\sqrt{5}}, \boxed{8 - 2\sqrt{3}}$.
 $\boxed{9 - 467 + 667} - \frac{10}{1607} + \frac$

Question 13 (**+)

K.C.P.

Write the following expression in the form $k\sqrt{3}$, where k is an integer.

$$\frac{90}{\sqrt{3}} - \sqrt{6} \times \sqrt{8} - (2\sqrt{3})^3$$

$$2\sqrt{3}$$

6%

1×

MANIPULATE AS Follows

- $\begin{array}{l} \displaystyle \frac{q_0}{\sqrt{c_1}} \sqrt{c_1} \langle \overline{g_1} \left(\sqrt{2\sqrt{2}} \sqrt{2} \sqrt{c_1} \sqrt{2} \sqrt{2} \sqrt{c_2} \right)^2 \\ \displaystyle = \displaystyle \frac{q_0 \sqrt{c_1}}{\sqrt{c_1} \langle \overline{f_2} \left(\sqrt{2\sqrt{2}} \sqrt{2} \sqrt{2} \sqrt{c_2} \sqrt{2} \sqrt{2} \sqrt{c_2} \sqrt{c_2}$
- $= \frac{40\sqrt{3}}{\sqrt{8}\sqrt{6}} \frac{5\times5\times\sqrt{3}}{5} \frac{5\times5\times5\times3}{5} \frac{5\times5\times5\times5}{5}$
- = 3013 442 2413
- = 213

Question 14 (**+)

Write each of the following surd expressions as simple as possible.

a) $2\sqrt{8} + \sqrt{18} - \frac{6}{\sqrt{2}}$.

 $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ **b**)

I.C.P.

(a) $2\sqrt{8}^{2} + \sqrt{18}^{2} - \frac{c}{\sqrt{2}}$ = $2\sqrt{4}\sqrt{2}^{2} + \sqrt{3}\sqrt{2} - \frac{6\sqrt{2}}{\sqrt{2}\sqrt{2}}$ = $2\sqrt{4}\sqrt{2}^{2} + \sqrt{3}\sqrt{2}^{2} - \frac{6\sqrt{2}}{\sqrt{2}}$ = $4\sqrt{2}^{2} + 3\sqrt{2}^{2} - \frac{6\sqrt{2}}{\sqrt{2}}$ = $4\sqrt{2}^{2}$ $\begin{array}{l} \textbf{(b)} \quad \frac{\sqrt{T^2}+1}{\sqrt{T^2}-2} = \frac{\sqrt{4T^2+1}/(T^2+2)}{\sqrt{4T^2-2}(\sqrt{T^2}-2)(\sqrt{T^2}+2)} \\ = \frac{T+2\sqrt{T}+\sqrt{T^2}+2}{T+2\sqrt{T}+\sqrt{T^2}+2} \\ = \frac{T+2\sqrt{T}}{\sqrt{T}+2\sqrt{T}} \\ = \frac{T+3\sqrt{T}}{\sqrt{T}} \end{array}$

i G.B.

mana.

Created by T. Madas

R.

Question 15 (**+)

a) $(2+\sqrt{3})^2$.

b) $(2\sqrt{3})^3$

Write each of the following surd expressions as simple as possible.

Question 16 (**+)

1

Y.C.

The area of a triangle is $(3+\sqrt{3})$ cm².

Given the base of the triangle is $\sqrt{3}$ cm, find in exact simplified surd form the height of the triangle.

 $h = 2 + 2\sqrt{3}$

R.

1

Question 17 (**+)

Write each of the following surd expressions as simple as possible.

Madasm.

a) $\sqrt{48} + \sqrt{27} - \frac{6}{\sqrt{3}}$.

b) $\frac{11}{\sqrt{12}-1}$.

$5\sqrt{3}$,	$1 + 2\sqrt{3}$

1

	(b) $\frac{1}{\sqrt{2}-1} = \frac{1}{\sqrt{n}-1}\sqrt{n}$
$= \sqrt{16x^3} + \sqrt{9x^3} = \frac{6\sqrt{2}}{\sqrt{3}\sqrt{4}}$	
$=4\sqrt{3}+3\sqrt{3}-\frac{6\sqrt{3}}{3}$	$= \frac{11(\sqrt{12}+1)}{(\sqrt{12}+1)}$
$= 4\sqrt{3} + 3\sqrt{3} - 2\sqrt{3}$	
= 513	$= 1 + \sqrt{4 \times 3^7}$
	$= 1 + 2N\overline{3}^{*}$

Question 18 (**+)

. V.G.B.

A rectangular room has an area of $6+3\sqrt{7}$ m².

The length of the room is $5 + 2\sqrt{7}$ m.

Find the width of the room, giving the answer as an exact surd in its simplest form.

C.P.

A=6+317 x	$\begin{cases} z_{1} = \frac{26}{25} = \frac{26}{$
S+217	$\Rightarrow x = \frac{3x + 3x7}{-x}$
$\Rightarrow (5+2\sqrt{7}) = 6+3\sqrt{7}$	$\Rightarrow Q = -\frac{1}{-1} + \sqrt{2}$
$=) a = \frac{6+3\sqrt{7}}{5+2k_7^7}$	$\Rightarrow x = 4 - \sqrt{7}$
$\gg x = \frac{(6+3k7)(5-2k7)}{(5+2k7)(5-2k7)}$	

19.6%

Inadası

Question 19 (**+)

I.G.p

Write each of the following surd expressions as simple as possible.

Created by T. Madas

I.C.P.

0

5.

Question 21 (**+)

Write each of the following surd expressions as simple as possible.

11.adası

b) $\frac{\sqrt{12}+2}{\sqrt{12}-2}$.

. G.D.

6

Madasn.

(a) $(2\sqrt{6} - \sqrt{3}) \times 2\sqrt{3}$ = $4\sqrt{16} - 2\times3$	1	(6)	$\frac{\sqrt{n_{2}}+2}{\sqrt{n_{1}^{2}-2}}=\frac{(\sqrt{n_{2}^{2}+2})(\sqrt{n_{1}^{2}+2})}{(\sqrt{n_{1}-2})(\sqrt{n_{2}^{2}+2})}$
= 4N9×21 - 6			$=\frac{12+2\sqrt{12}^{2}+2\sqrt{12}^{2}+4}{12+2\sqrt{12}^{2}-2\sqrt{12}^{2}-4}$
$= 4 \times 3\sqrt{2} - 6$ $= -6 + 12\sqrt{2}$			= (6+4.12)
			$= \frac{16 + 4\sqrt{4\times3^{1}}}{8}$ $= \frac{16 + 4\times2\sqrt{3}}{8}$
			= <u>K + 813</u>
			= 2 + 13

Question 22 (**+)

I.C.p

$$f(x) \equiv (\sqrt{x}+2)^2 + (1-2\sqrt{x})^2$$

Express f(x), $x \ge 0$ in the form ax+b.

N.

F.G.B.

$$\begin{split} & \left(\sqrt{x^{2}}+2\right)^{2}+\left(1-2\sqrt{x^{2}}\right)^{2}=\left[\left(\sqrt{x^{2}}\right)^{2}+2x2x\sqrt{x^{2}}+2^{2}\right]+\left[1^{2}-2x\sqrt{x^{2}}+\left(26C\right)^{2}\right]\\ & = 2+\frac{11}{2}\sqrt{x^{2}}+4+1-\frac{1}{2}\sqrt{x^{2}}+4x=5x+5 \end{split}$$

Question 23 (***)

Write each of the following surd expressions as simple as possible.

a)
$$\sqrt{50} + \sqrt{3} \times \sqrt{6} - \frac{14}{\sqrt{2}}$$

b) $\left(\sqrt{75} - \sqrt{48}\right)^2$.

2n	
$ \begin{array}{c} (\mathbf{e}_{1}) & \sqrt{2c} + \sqrt{2s} \times \sqrt{c} - \frac{14}{\sqrt{c_{2}}} \\ & = \sqrt{2c} \sqrt{\sqrt{2c}} + \sqrt{2s} \times \sqrt{c} - \frac{14}{\sqrt{c_{2}}} \\ & = \sqrt{2c} \sqrt{\sqrt{2c}} + \sqrt{2s} \sqrt{c} - \frac{14\sqrt{c}}{\sqrt{2s}\sqrt{c_{1}}} \\ & = 5\sqrt{c} + \sqrt{2s} \sqrt{c_{2}} - \frac{14\sqrt{c}}{\sqrt{2s}} \\ & = 5\sqrt{c} + 3\sqrt{c} - 7\sqrt{c}^{2} \\ & = \sqrt{2c} \sqrt{c} + 3\sqrt{c} - 7\sqrt{c}^{2} \end{array} $	$ \begin{array}{c} (b) (\sqrt{15} - \\ = \left[\sqrt{25} \sqrt{3} \right] \\ = \left[\sqrt{25} \sqrt{3} \right] \\ = \left[\sqrt{3} \right] \\ = \left[\sqrt{3} \right] \\ \end{array} $

 $\sqrt{2}$, 3

- JI6 J3] + J3] 2 3

1

Question 24 (***)

Write each of the following surd expressions as simple as possible.

2028n

a) $5\sqrt{2} \times 4\sqrt{3} - 6\sqrt{24}$

b) $\frac{3+\sqrt{6}}{\sqrt{3}}$

I.G.p.

 $= \frac{916}{200}$ $= \frac{1}{200} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100}$

(***) **Question 25**

Write each of the following surd expressions as simple as possible.

Madasma

a) $(1+\sqrt{2})^3$.

The Con

I.V.G.B

b) $2\sqrt{75} + \frac{3+\sqrt{3}}{3-\sqrt{3}} - \sqrt{2} \times \sqrt{2}$.

7303SIN3/IS-CON

	F.C.		E
Ŋ <u>_</u>	$1, 7+5\sqrt{2}, 1$	1√3	4
	$\begin{split} \big (1+\sqrt{2}) \big ^2 &= (1+\sqrt{2}) \Big(1+2\chi _{X} _{X}\sqrt{2} + \sqrt{2} \\ &= (1+\sqrt{2}) \Big(1+2\chi _{X}\sqrt{2} + 2_{X} \Big) \\ &= (1+\sqrt{2}) \Big(1+2\sqrt{2} + 2_{X}\sqrt{2} \\ &= 3+2\sqrt{2} + 2\sqrt{2} + 2_{X}\sqrt{2} + 4_{X} \\ &= 7+2\sqrt{2} \end{split}$	"	2
	$\frac{ (3+\sqrt{3}) }{ (3+\sqrt{3}) } = 2.$ $\frac{ \sqrt{3}\sqrt{3} +3 }{\sqrt{3}\sqrt{3}-3} = 2.$ $= 2.$		

COM

P.C.S.

6

(***) **Question 26**

Write each of the following surd expressions as simple as possible.

a)
$$(\sqrt{108} - \sqrt{12})^2$$
.

b)
$$\frac{(2\sqrt{3}-1)(3-3\sqrt{3})}{\sqrt{3}}$$
.

E.C.

hs.com	$48, 9-7\sqrt{3}$
$ \begin{array}{l} \left(\mathbf{q} \right) \left(\sqrt{160} - \sqrt{123} \right)^{2} \\ = \left[\sqrt{160} \sqrt{13}^{-1} - \sqrt{14} \sqrt{13}^{-1} \right]^{2} \\ = \left[\sqrt{16} \sqrt{13}^{-1} - \sqrt{14} \sqrt{13}^{-1} \right]^{2} \\ = \left[\sqrt{16} \sqrt{2} - \sqrt{16} \sqrt{13}^{-1} \right]^{2} \\ = \left[\sqrt{16} \sqrt{2} \sqrt{16} - \sqrt{16} \sqrt{16} \right]^{2} \\ = \frac{16}{463} \\ = \frac{16}{46} \\ \end{array} $	$ \begin{array}{l} \textbf{(b)} & (\underline{c}_{1}(\overline{x}_{1-1})(\underline{c}_{1},\underline{s}_{1},\overline{x}_{1})) \\ & -\overline{A}\overline{x}^{T} \\ & = \underline{\delta}\overline{x}_{1-}^{T}(\underline{\delta}\underline{x}_{1-3}) + \underline{s}\underline{\delta}\overline{x}_{1-3} \\ & = \underline{\delta}\overline{x}_{1-}^{T}(\underline{\delta}\underline{x}_{1-3}) + \underline{s}\underline{\delta}\overline{x}_{1-3} \\ & = \underline{\delta}\overline{x}_{1-21} \\ & = \underline{\delta}$

 $48, 9-7\sqrt{3}$

(***) **Question 27**

Write each of the following surd expressions as simple as possible.

6

Question 29 (***)

Write each of the following surd expressions as simple as possible.

b) $\sqrt{14} \times \sqrt{42}$.

2%

Question 30 (***)

5

I.C.P.

a) Simplify the following expression, writing the final answer in the form $a+b\sqrt{3}$, where a and b are integers

b) Solve the equation

R.

a) $\frac{3+\sqrt{3}}{3+\sqrt{3}} = \frac{(3-\sqrt{3})(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})} = \frac{9-3\sqrt{3}}{9-3\sqrt{3}}$	5-3437+3 7+3437-3
b) $\neg \frac{1}{2}^{-1} = \frac{2}{16}$ $\Rightarrow \frac{1}{2k} = \frac{2}{16}$ $\Rightarrow 3k^{2} = 16$	
$\frac{1}{2} + \frac{1}{2} = \frac{1}{2} \leftarrow \frac{1}{2}$	

ths.col

(***) Question 31

If $x = \sqrt{3}$ show that

$$(4-2x^2)(x+x^3) = -8\sqrt{3}$$
.

(***) **Question 33**

a)

Write each of the following surd expressions as simple as possible.

(***) Question 34

I.V.G.B

$$\frac{1}{x - \sqrt{y}} + \frac{1}{x + \sqrt{y}}$$

Write the above expression as a single fraction in its simplest form.

Ċ,

madasn.

 $2-\sqrt{2}$

in.

6

+(x-15))(x+15) - ng + ang 222 22+349-349-9

Question 35 (***)

 $\frac{2+y}{y} = \sqrt{2} \; .$

Solve the above equation giving the answer in the form $a+b\sqrt{2}$, where a and b are integers.

 $y = 2 + 2\sqrt{2}$

Question 36 (***)

a) Simplify the following expression, writing the final answer in the form $a+b\sqrt{3}$, where a and b are integers

 $\frac{2\sqrt{3}-1}{2-\sqrt{3}}$

b) Solve the equation

R

$$2^{x+2} = 4\sqrt{2}$$
.

 $4 + 3\sqrt{3}$

Question 37 (***)

I.G.B.

Write each of the following surd expressions as simple as possible.

Write the above surd expression in the form $a + b\sqrt{2}$, where a and b are integers.

R.

 $[26], 22-12\sqrt{2}$

i C.B.

C.S.

in the

17_{202s1}

 $\begin{array}{c} \frac{q_{0}}{q_{1}} = \frac{q_{0}}{q_{1} \cdot 6^{2} \cdot 2} = \frac{q_{0}}{11 \cdot 6^{2} \cdot 2} = \frac{q_{0}(1 \cdot 6^{2} \cdot 2)}{(1 \cdot 6^{2} \cdot 1)^{1 - 6} \cdot 2} = \frac{q_{0}(1 \cdot 6^{2} \cdot 2)}{12} = 2(1 \cdot 6^{2} \cdot 2) = 2 \cdot 26^{2} \cdot 2$

(***+) Question 39

a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{3}$.

i.
$$\sqrt{108} + \sqrt{3}$$
.
ii. $\frac{\sqrt{6} + \sqrt{3}}{\sqrt{2} + 1}$.

b) Solve the equation

C.B.

Y.C.B.

à.

$(5-x)^{\frac{3}{2}}=8.$

Detailed workings must be shown in this question.

$\boxed{}, \boxed{7\sqrt{3}}, \sqrt{3}, \boxed{x}$	=1
$\begin{array}{c} \textbf{()} \textbf{()} \textbf{()} \sqrt{166} + \sqrt{3} \\ = \sqrt{365/3} + \sqrt{3} \\ = \sqrt{365/3} + \sqrt{3} \\ = 6\sqrt{3} + \sqrt{3} \\ = 6\sqrt{3} + \sqrt{3} \\ = \frac{7}{142} \\ \end{array} \begin{array}{c} \textbf{()} \textbf{()} \textbf{()} \\ = \sqrt{3} + \sqrt{3} \sqrt{3} + \sqrt{3} + \sqrt{3} \\ = \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} \\ = \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} \\ = \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} \\ = \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} \\ = \sqrt{3} + $	
b) Here of knowl $(-1)^{2} = 8$ $(-1)^{2} = 8$ $(-1)^{2} = 8$ $(-1)^{2} = 8$ $(-1)^{2} = 8$ $(-1)^{2} = 8$ $(-1)^{2} = 8$	-

120

ths.com

.G.D.

6

.

Madasma

COM

a=1, b=2, c=-1

213

BEGONIS ENTRAMEDY MISS

Madasn

207

ŀ.G.p

me,

COM

I.Y.C.B. Madasa

(***+) **Question 40**

It is given that that for some constants a, b and c

$$\frac{2\sqrt{2}}{\sqrt{3}-1} - \frac{2\sqrt{3}}{\sqrt{2}+1} \equiv a\sqrt{2} + b\sqrt{3} + c\sqrt{6}$$

nadasmath

I.G.B.

Com

Find the value of a, the value of b and the value of c.

nadasmaths,

nn

COM

I.F.G.B

COM

E.A.

Question 41 (***+)

R,

A right angled triangle *ABC* is shown in the figure below.

The lengths of AC and BC are 6 cm and $2\sqrt{3}$ cm, respectively.

Find the area of the triangle ABC in the form $k\sqrt{2}$, where k is an integer.

k = 6

A	2ASOGAHTY9 18 @	@ +R4A = 1/48/BC
	- 32 + (2/3)2 = 62	= 1/2/2 × 2.13
a e	$\rightarrow \alpha^2 + 12 = 36$	/~
2	-> 22 = 24	= 218°
	-> -> = N24	= 2×3N2
3 213	=> = 2N6	= 6.5
		//

.

Question 42 (***+)

a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{2}$.

 $\frac{27^t}{3^{t-1}} = 3\sqrt{3} \; .$

i. $\sqrt{98} + \sqrt{2}$. ii. $(\sqrt{2} + 3)(2 - 3\sqrt{2})$.

E.A.

N.

b) Solve the equation

I.C.B.

I.V.G.P

 $\boxed{8\sqrt{2}}, \boxed{-7\sqrt{2}}, \boxed{t} = \frac{1}{4}$

1.

1:0.

6

1720251

I.C.B.

Question 44 (***+)

Write each of the following surd expressions as simple as possible.

a)
$$\frac{36}{5-\sqrt{7}}$$

F.G.B.

I.F.G.B.

Give the answer in the form $a + b\sqrt{7}$, where a and b are integers.

b)
$$\sqrt{\frac{8}{3}} + \frac{3}{2}\sqrt{\frac{8}{27}}$$
.

Give the answer in the form \sqrt{k} , where k is an integer.

Εą.	$, 10+2\sqrt{7}, \sqrt{6}$
$\frac{36}{5 - \sqrt{7^{1}}} =$	(b) $\sqrt{\frac{\theta}{3}} + \frac{3}{2\sqrt{\frac{\theta}{27}}}$
$\frac{(\overline{r_{\mu+2}})}{(\overline{r_{\mu+2}})(\overline{r_{\mu-2}})} =$	$= \frac{\sqrt{8}}{\sqrt{3}} + \frac{3}{2} \frac{\sqrt{9}}{\sqrt{27}}$ $= 2\sqrt{2} - \sqrt{2}\sqrt{27}$
36(5+NT) 25+5NT-587-7	$= \frac{2\sqrt{2}}{\sqrt{3}} + \frac{2}{\sqrt{2}} \frac{2\sqrt{3}}{\sqrt{3}}$ $= \frac{2\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}} \frac{2\sqrt{3}}{\sqrt{3}}$
$=\frac{36(S+NT')}{18}$ $=2(S+NT')$	$= \frac{3\sqrt{2}}{\sqrt{3}} = \frac{3\sqrt{2}\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{2}}{\sqrt{3}} = \sqrt{4}$
= 10+217	$\frac{A_{12}}{\sqrt{\frac{B_{1}}{3}}} + \frac{3}{2}\sqrt{\frac{B_{1}}{27}} = \sqrt{\frac{24}{9}} + \frac{3}{2}\sqrt{\frac{24}{81}}$

F.C.P.

3

1+

Madasn.

Question 45 (***+)

Сŀ.

SMaths.com

Smaths.com

I.Y.C.P

A cylinder has a radius of $\left(\frac{1}{\sqrt{2}-1}\right)$ cm and a height of $\left(\sqrt{2}+1\right)$ cm.

Show, by detailed working, that the volume of this cylinder is exactly

Madasm

nadasmaths.com

.F.G.B.

nadasn.

nn,

the COL

.C.D.

1.

.

nadasman

2017

I.V.C.B. Madasn

COM

proof

Created by T. Madas

12

00

. . .

Smaths,

(***+) **Question 46**

>

0

a) Solve the equation

I. C.B. Madasmaths.Com

man.

I.V.G.B

b) Express

$\sqrt{525}$,

SMaths.com in the form $a\sqrt{b}\sqrt{c}$, where a, b and c are prime numbers.

The Com

.F.G.B.

I.C.B.

naths.col

N.G.S.

110

-

nadasman

I.V.C.B. Madasn

haths.com

 $5\sqrt{3}\sqrt{7}$

 $\frac{3}{2}$

Created by T. Madas

nadasmana Inaths Com

Question 47 (***+)

a) If x is a real number solve the following indicial equation

b) Express

I.V.C.B. May

I.V.G.B.

 $\frac{\sqrt{98}-\sqrt{8}}{1+\sqrt{2}},$

 $x\left(x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}\right)^2 = 0.$

in the form $a+b\sqrt{2}$, where a and b are integers.

I.G.B.

Y.C.

x=2, $10-5\sqrt{2}$

COM

madas,

20

Madasn

I.G.B.

.G.D.

16

./

Created by T. Madas

0

Question 48 (***+)

Show clearly, without approximating and without using any calculating aid that

Question 50 (***+)

a) Simplify fully each of the following expressions, writing the final answer as a single simplified surd.

i.
$$(2+\sqrt{3})(2\sqrt{3}-3)$$
.
ii. $\frac{\sqrt{6}+3\sqrt{2}}{\sqrt{6}+\sqrt{2}}$.

b) Solve the equation

F.G.B.

I.G.p.

 $8w^{\frac{1}{2}} - w^{-1} = 0,$ $w \neq 0$.

(a) (1) (2+N3)(2N3-3)= 4N3-6+K-3N3=N3 (I) 46+3V2

C.p.

nadasn

 $\sqrt{3}$, $\sqrt{3}$,

 $w = \frac{1}{4}$

5

Question 51 (***+)

Write the above surd expression in the form $a + b\sqrt{3}$, where a and b are integers.

nadasn.

 $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{$

Con

 $, 6+\sqrt{3}$

Question 52 (***+)

I.C.B.

 $\sqrt{3}\left(x-\sqrt{3}\right)=x+\sqrt{3}.$

Solve the above equation giving the answer in the form $a + b\sqrt{3}$, where a and b are integers.

$$\begin{split} & -\sqrt{s}\left((2_{-}, \zeta_{1}^{-}) = 2_{+}, \zeta_{1}^{-}\right) \\ & = \sqrt{s}(2_{-}, \zeta_{-}) = 2_{-}, 4/3 \\ & = \sqrt{s}(2_{-}, -2_{-}) = 2_{+}, 4/3 \\ & = \sqrt{s}(2_{-}, -2_{+}) = 2_{+}, 4/3 \\ & =$$

C.P.

nadası,

 $x = 3 + 2\sqrt{3}$

(****) **Question 53**

Show clearly that

Question 54 (****)

The two rectangles shown in the figure below are similar.

It is further given that in suitable units

$$AB = \sqrt{3}$$
, $|BC| = \sqrt{12} - 2$ and $|FG| = \sqrt{12} + 2$.

Find the exact length of EF.

F.G.B.

I.C.P.

 $\Box, |EF| = 3 + 2\sqrt{3}$

A 3 (12 ¹ -2 5 (12 ¹ -2 5 (12 ¹ +2) 6	$\mathcal{P} \frac{\sqrt{3}}{\mathcal{R}} = \frac{\sqrt{n}-2}{\sqrt{n}+2}$ $\mathcal{P} \frac{\sqrt{3}}{\mathcal{R}} = \frac{\sqrt{n}+2}{\sqrt{n}+2}$ $\mathcal{P} \frac{\sqrt{3}}{\mathcal{R}} + 2\sqrt{3}$
	√12-2 ⇒ 2= 6+218
RATIONALIZE THE DEJONINATOR	243-2
$\mathcal{K} = \frac{(6+2\sqrt{3})(2\sqrt{3}+2)}{(2\sqrt{3}-2)(2\sqrt{3}+2)} =$	$\frac{12\sqrt{3} + 12 + 12 + 4\sqrt{3}}{12 + 4\sqrt{3} - 4} = \frac{\frac{3}{24} + \frac{1}{16\sqrt{3}}}{\frac{12}{12} + \frac{1}{16\sqrt{3}}}$
: x = 3+213	

R.H.

(****) **Question 55**

, I.Y.C.B. IN21/35112/18.COM I.Y.C.B. IN21/35112/18.COM Solve the following system of simultaneous equations

asmans.com

TASIDALISCOD I. V. C.P. DARIES DALLSCOD I.V. C.P. MARAN

Question 56 (****+)

The positive constants p and q satisfy the following equation

$$\frac{\sqrt{p}}{2p+\sqrt{p}} = \frac{2\sqrt{p}-q}{3p+q}$$

Show by a detailed method that

ŀG.B.

I.G.B.

$$q = \frac{p + 2\sqrt{p}}{2 + 2\sqrt{p}} \,.$$

R

COM

proof

ŀ.C.p.

madasn

Question 57 (****+)

E.

Four circles are touching in such a way so that their centres form the corners of a square *ABCD*. These four circles are circumscribed by a larger circle.

This is shown in the figure below.

A

D

Show that the ratio of the total area of the four smaller circles to the area of the larger circle is given by

 $12 - 8\sqrt{2}:1$

, proof

1

(****+) Question 60

a)

204

Smaths.c.

'smaths.com

I.F.G.B.

Show clearly, without approximating and without using any calculating aid, that

 $\sqrt{6+2\sqrt{6}} > \sqrt{3} + \sqrt{2} \, .$ **b**) $\sqrt[3]{3} > \sqrt{2}$. c) $\sqrt{2} - 1 > \sqrt{3} - \sqrt{2}$ proof SUPPOSE THAT $\sqrt{6+2\sqrt{6}} \leq \sqrt{3}+\sqrt{2}$ CONPRESENTION 6+256 5 ALTINENATIVE APPR J6+216 (5 + 12)2 2 JEt 2.6 $\sqrt[3]{3} = 3^{\frac{1}{3}}$ $\sqrt{2} = 2^{\frac{1}{2}}$ $a \begin{pmatrix} 3^{\frac{1}{2}} \\ a^{\frac{1}{2}} \end{pmatrix}^{c} = 3$: 151 > 52 $(3^{\frac{1}{2}})^{c} \leq (2^{\frac{1}{2}})^{c}$ CONTRADICTION) 3/3 > 12 Suffer 3 25 CR+1

.G.D.

K

21/18

00

I.V.C.B. Madasn

m

Created by T. Madas

COM

.Y.C.F.

(****+) **Question 61**

It is given that if k is a non zero constant then

Madasmaths.com

 $\left(1 + k\sqrt{3}\right)^4 \equiv 892 - 336\sqrt{3} \; .$

madasm

Determine the value of k.

Smarns com trees

I.V.C.B. Madasman

Smaths.com I.K.

I.F.G.B.

0

(Third) a lose baoks
$ \Rightarrow 1 + \frac{4}{1} \left(\sqrt{62} \right) + \frac{4\sqrt{3}}{132} \left(\sqrt{62} \right)^2 + \frac{4\sqrt{3}\sqrt{2}}{13233} \left(\sqrt{62} \right)^3 + \frac{4\sqrt{3}\sqrt{2}}{132334} \left(\sqrt{62} \right)^4 = 612 - 3 $ $ \Rightarrow 1 + 4\sqrt{65} + \frac{108\sqrt{2}}{108\sqrt{2}} + \frac{12\sqrt{3}\sqrt{2}}{104} + 2\sqrt{2} + \frac{2}{2} = 622 - 336\sqrt{2} $
$\Rightarrow (1 + 18k^2 + 9k^4) + (4k + 12k^3)\sqrt{3^2} \equiv 892 - 336\sqrt{3^2}$
• $3k' + 18k' + 1 = 892$ $\Rightarrow 9k' + 18k^2 - 891 = 0$ $\Rightarrow k + 3k^3 = -84$
⇒ K'+ 2k°-99 =0 (= 3k ² +k 101
(k + (i)(k - 9)=0 () 16 k-2
=> k ² = 3×3 ³ +3+84= 162
$\Rightarrow k_{2} < \frac{3}{2}$ (IF k_{2-3}
-3 2 2(-3)-3+84=0
· K=-3

I.C.p

COM

Ths.com

<u>k=-3</u>

the COL

1.6.5

1.6

nadasman

COM

I.V.C.B. Madasm

Created by T. Madas

madasmaths,

(****+) non calculator Question 62

$$f(x) \equiv \frac{x + \sqrt{x^2 + 1}}{x + \sqrt{x^2 - 1}}, \ x \in \mathbb{R}, \ |x| \ge 1.$$

Find without the use of a calculator the value of

 $f\left(\frac{5}{12}\sqrt{6}\right)$

Detailed workings must be shown in this question.

naths.com

K.C.B. Madasmaths.Com

Y.C.A

I.V.G.B

 $f\left(\frac{5}{12}\sqrt{6}\right) = 2$

I.G.B.

ths.com

the COL

.G.D.

· Car

.

1202SIN20

	and the second sec
	OBITAN PARTIAL CAWULATION
<i>ns.</i> q	$\begin{aligned} 1^{c} \chi_{i} = \frac{5}{12\sqrt{c^{2}}} \sqrt{c^{2}} & \implies \sqrt{\chi_{i}^{2}\chi_{i}^{2}} = \sqrt{\left(\frac{\chi_{i}^{2}}{\chi_{i}^{2}} \frac{1}{c^{2}}\right)^{2} + \frac{1}{c^{2}}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} = \frac{1}{c^{2}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} = \frac{1}{c^{2}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} = \frac{1}{c^{2}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} \frac{1}{c^{2}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} \frac{1}{c^{2}} \\ &= \sqrt{\frac{\chi_{i}^{2}}{\chi_{i}^{2}}} = \frac{1}{c^{2}} \frac{1}{c^{2}} \end{aligned}$
ь.	The war and the
6	$-\left\{\left(\frac{s}{h}\hat{\alpha}\right) = \frac{\frac{h}{h}\hat{\alpha}}{\frac{h}{h}\hat{\alpha}} + \frac{h}{h}\hat{\alpha} = \frac{\hat{\alpha}}{\frac{h}{h}\hat{\alpha}} = \frac{1}{h}\hat{\alpha}$
G_{j}	S.

nadasm.

20

21/18.1

COM

I.V.C.B. Madasn

Created by T. Madas

Smaths,

na

3

Solve the following equation.

Created by T. Madas
(f)
mation.

$$\frac{2+\sqrt{2}x}{x^2+\sqrt{2}x+1} + \frac{2-\sqrt{2}x}{x^2-\sqrt{2}x+1} = 2, x \in \mathbb{R}.$$

asiliatilis.com

Y.G.B.

N.G.

Madasman Alasman

I.V.C.B. Madasm

I.F.G.B. Created by T. Madas

Question 64 (****+)

Show that $\sqrt{2+\sqrt{2}} + \sqrt{2-\sqrt{2}}$ can be expressed in the form

 $\sqrt{a+b}\sqrt{2}$

where a and b are integers to be found.

MCTHOD A O USING THE ANALVER OWEN

- $\Rightarrow \sqrt{2+\sqrt{2}}^{1} + \sqrt{2-\sqrt{2}}^{2} \equiv \sqrt{\alpha+b\sqrt{2}}^{1}$ $\Rightarrow \left[\sqrt{2+\sqrt{2}}^{1} + \sqrt{2-\sqrt{2}}^{1}\right]^{2} \equiv \left(\overline{\alpha+b\sqrt{2}}^{0}\right)^{2}$ $\Rightarrow \left(2+\sqrt{2}\right)^{1} + 2\sqrt{2+\sqrt{2}}^{1} \sqrt{2-\sqrt{2}}^{1} + \left(2-\sqrt{2}\right)^{2} \equiv \alpha+b\sqrt{2}$
- $\implies 4 + 2\sqrt{4-2} \equiv a + b\sqrt{2}$ $\implies 4 + 2\sqrt{2} \equiv a + b\sqrt{2}$

METHOD B

BY DIRECT MANIPOLATION
⇒ √2+427 + √2-227 = 32

 $\sqrt{2 + \sqrt{2}} + \sqrt{2 - \sqrt{2}} = \sqrt{4 + 2\sqrt{2}}$

- SQUALING BOTH SIDES & WATNO , 2>0
- $\Rightarrow (2+\sqrt{2})+2\sqrt{2+\sqrt{2}}\sqrt{2-\sqrt{2}} + (2-\sqrt{2}) = \chi^2$
- $\Rightarrow 4 + 2\sqrt{(2+\sqrt{2})(2-\sqrt{2})} = x^{2}$ $\Rightarrow 4 + 2\sqrt{4-2} = 2^{2}$
- $\Rightarrow 4 + 2\sqrt{4 2} = 3$ $\Rightarrow 4 + 2\sqrt{2} = 32^{2}$
- $\lambda = \pm \sqrt{4 \pm 2\sqrt{2}}$ (40 x)0)

Question 65 (*****)

5

Show clearly without the use of any calculating aid that

$$\sqrt{5+2\sqrt{6}} - \sqrt{5-2\sqrt{6}} = a\sqrt{b}$$

where a and b are integers to be found.

a=b=2

$$\begin{split} & 5 + 2\sqrt{6^{-1}} - \sqrt{5 - 2\sqrt{c^{-1}}} = \sqrt{5 + 2\sqrt{c^{+}} + 2} - \sqrt{3 - 2\sqrt{c^{+}} + 2} \\ & = \sqrt{\left(\sqrt{3}\right)^2 + 2\sqrt{c}} + \left(\sqrt{c^{-1}}\right)^2 - \sqrt{\left(\sqrt{3}\right)^2 + 2\sqrt{c}} + \left(\sqrt{c^{-1}}\right)^2 \end{split}$$

- $= \sqrt{\left(\sqrt{2} + \sqrt{2}_{1}\right)_{p_{1}}} \sqrt{\left(\sqrt{2}_{1} \sqrt{2}_{1}\right)_{p_{1}}}$

if deb=2

(*****) **Question 66**

Determine, in exact simplified surd form, the solution pair (a,b) of the following simultaneous equations.

> $(5\sqrt{3}-\sqrt{2})x+(5\sqrt{2}-\sqrt{3})y=10\sqrt{6}$. $\sqrt{2} x + \sqrt{3} y = 5$ and

> > Madas,

Detailed workings must be shown in this question.

L.C.B.

3

2017

F.G.B.

adasmaths.

Y.C.B. Madasm

Com

, K.G.B.

 $x = \sqrt{3} + \sqrt{2},$ $v = \sqrt{3} - \sqrt{3}$ STARLE WITH THE SECOND CONATION → (SV5-V2)x + (SV2-V3)y = 101 → SV5x - N2x + SV2y - V3y = SV3x + SV24 = 10V2 + 12: ove 513 x+ 5124 124 = 216 + NZX + VZy = S VSX + VZy = 2N6'+1 $\sqrt{6_{x}} + 3y = 5\sqrt{3}$ $\sqrt{6_{x}} + 2y = 2\sqrt{2} + \sqrt{2}$ SUBTRACTING $y = SV_3^{-} (2\sqrt{12} + \sqrt{2})$ y = 5v3 - 4v8 - v2 y= 15-12

: 2= JS+VZ

V22 + V34 V2x+V3(15-12)

> = 252 + 512 252 + 213

200

. C.H.

2 V2x = 2+ . G.D.

1

2112.5172

2017

Created by T	. Mada	as
12.	Č,	

Question 67 (*****)

 $z = \sqrt[3]{4 + \sqrt{15}} + \sqrt[3]{4 - \sqrt{15}} \ .$

Verify that z is a solution of the equation

 $z^3 - 3z - 8 = 0$

proof

3

1

Question 68 (*****)

I.C.P.

Find the rational solution of the following equation

 $\frac{2+9\sqrt{x}}{2\sqrt{3}-\sqrt{3x}} = \sqrt{3}+2\sqrt{2} , x \in \mathbb{Q}.$

 $x = \frac{2}{3}$

$\begin{array}{c} 2 + 9\sqrt{5^{-1}}\\ 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}\sqrt{5^{-1}}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}}\\ \hline 2\sqrt{5^{-1}\sqrt{5^{-1}}}}\\ \hline 2\sqrt{5^{$

Question 69 (*****)

Show clearly without the use of any calculating aid that

$$\sqrt{12 + 6\sqrt{3}} - \sqrt{3 - 2\sqrt{2}} = a + \sqrt{b} - \sqrt{c}$$

where a, b and c are integers to be found.

Question 70 (*****)

10

Show clearly without the use of any calculating aid that

$$\sqrt{6+\sqrt{6+\sqrt{6+\dots}}}=k\;,$$

where k is an integer to be found.

k = 3

Question 71 (*****)

C.B.

I.C.B.

Determine, in exact simplified surd form, the solution pair (a,b) of the following simultaneous equations.

 $\sqrt{6} \ a - \sqrt{3} \ b = 2\sqrt{3}$ $\sqrt{2}(a-1) + \sqrt{6} b = 2(1+\sqrt{3})$ and

Detailed workings must be shown in this question.

12.	2~ ~
$ \left\{ \begin{array}{c} \sqrt{2} \left((a-1) \right) + \sqrt{6} \left(b = 2 \cdot 2 \cdot (1 \cdot \sqrt{3}) \right) \\ \sqrt{6} \left(a - \sqrt{3} \left(b \right) = 2 \cdot \sqrt{3} \right) \\ \sqrt{6} \left(a - \sqrt{3} \left(b \right) \right) = 2 \cdot \sqrt{3} \right) \\ \end{array} \right\} $	$= u = 1 + \frac{2(2f5 - f2 + 2x3(5 - 2f5))}{10}$ $= u = 1 + \frac{2x5f2}{10}$
SOUTHOR BY ELLINGTON - MULTRY THE 2 ⁶⁰ RATION by $\overline{\delta_2}$ $\sqrt{2}(\alpha-1) + \sqrt{c} \frac{1}{2} = 2(1+\sqrt{c})$ $\sqrt{2^2} \alpha - \sqrt{c} \frac{1}{2} = 2(c)$	⇒ <u>α = 1+ NΣ</u> Γιναγ το Γιν <u>η</u> <u>b</u>
$\begin{array}{rcl} \underline{\lambda S \Delta u_{1}} & The \underline{guint on \underline{S}} \\ & \implies \sqrt{12}(\alpha - 1) + \sqrt{12}, \alpha = 2(1+13') + 2\sqrt{6} \\ & \implies \sqrt{12}, \alpha - \sqrt{2} + 2\sqrt{12}, \alpha = 2 + 2\sqrt{1} + 2\sqrt{1} \\ & \implies \sqrt{12}, \alpha + \sqrt{12}, \alpha = 2 + 2\sqrt{1} + 2\sqrt{1} \\ & \implies \sqrt{12}, \alpha + \sqrt{12}, \alpha = \sqrt{12} + 2\sqrt{12} + 2 + 2\sqrt{1} \\ & \implies (\frac{12}{2} + 2\sqrt{2})^{2} + 2 + 2\sqrt{12} \\ & \implies \alpha = \frac{(\sqrt{12} + 2\sqrt{2})^{2} + 2 + 2\sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{(\sqrt{12} + 2\sqrt{2})^{2} + 2 + 2\sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{(\sqrt{12} + 2\sqrt{2})^{2} + 2 + 2\sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{(\sqrt{12} + 2\sqrt{2})^{2} + 2 + 2\sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{(\sqrt{12} + 2\sqrt{12})^{2} + 2 + 2\sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{(\sqrt{12} + \sqrt{12})^{2} + \sqrt{12}}{\sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{1}{2} + \frac{2(\sqrt{12} + \sqrt{12} + \sqrt{12})^{2} + \sqrt{12}}{\sqrt{12} + \sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{1}{2} + \frac{2(\sqrt{12} + \sqrt{12} + \sqrt{12} + \sqrt{12})}{\sqrt{12} + \sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{1}{2} + \frac{2(\sqrt{12} + \sqrt{12} + \sqrt{12} + \sqrt{12})}{\sqrt{12} + \sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{1}{2} + \frac{2(\sqrt{12} + \sqrt{12} + \sqrt{12} + \sqrt{12})}{\sqrt{12} + \sqrt{12} + \sqrt{12}} \\ & \qquad \overrightarrow{\alpha} = \frac{1}{2} + \frac{2(\sqrt{12} + \sqrt{12} + \sqrt{12} + \sqrt{12})}{\sqrt{12} + \sqrt{12} + \sqrt{12}} \\ \end{array}$	$\Rightarrow \sqrt{6}a - \sqrt{5}b = 2\sqrt{3}$ $\Rightarrow \sqrt{6}(a - \sqrt{5}b = 2\sqrt{3})$ $\Rightarrow \sqrt{6}(a + \sqrt{2}) - \sqrt{6}b = 2\sqrt{3}$ $\Rightarrow \sqrt{6}(a + \sqrt{2}) - \sqrt{6}b = 2\sqrt{3}$ $\Rightarrow \sqrt{6}(a + \sqrt{2}) - \sqrt{6}b = 2\sqrt{3}$ $\Rightarrow \sqrt{6}(a + \sqrt{6}) - \sqrt{6}b = 2\sqrt{3}$

 $a=1+\sqrt{2}, \quad b=\sqrt{2}$

E.B.

Question 72 (****+) non calculator

 $f(x) \equiv 4x(x-2)(x+1)(x-3), x \in \mathbb{R}.$

7201

Evaluate $f\left(1+\frac{1}{2}\sqrt{10}\right)$.

1.G.B.

ŀ.G.B.

You must show detailed workings in this question.

$f(x) = (x_2(x_{-2})(x_{+1})(x_{-2}), x \in \mathbb{R})$ $f(x) = (x_2(x_{-2})(x_{+1})(x_{-2}), x \in \mathbb{R})$ $f(x) = (x_2(x_{-2})(x_{+1})(x_{-2}), x_{-2})$

(1+

/10

 $\begin{array}{l} \frac{402}{7} & 402^{\circ} & \text{constant Theme } \overset{(1)}{2} - 2x^{\circ}, \ (4party \ 224h) \\ \frac{4}{7} (x) &= \ \psi \left(x^{2} - 2x\right) \left(x^{4} - 2x - 3\right) \\ \frac{4}{7} (x) &= \ \psi \left[\left(x^{2} - 2x\right)^{2} - 2\left(x^{4} - 2x\right) \right] \\ \frac{4}{7} (x) &= \ \psi \left(x^{2} - 2x\right)^{2} - 12\left(x^{2} - 2x\right) \end{array}$

HOUCE WE HAVE IN STRES

$$\begin{split} & \overset{2}{\sqrt{2}} = \left(1 + \frac{1}{2}\sqrt{\omega}\right)^2 = 1 + 2x_1 \lambda + \frac{1}{2}\sqrt{\omega} + \left(\frac{1}{2}\sqrt{\omega}\right)^4 = 1 + \sqrt{\omega} + \frac{10}{2}\\ & = 1 + \sqrt{\omega} + \frac{1}{2\omega} = -\frac{7}{2\omega} + \sqrt{\omega}\\ & \overset{2}{\sqrt{2}} - 2\lambda = \left(\frac{1}{2} + \sqrt{\omega}\right) - 2\left(1 + \frac{1}{2}\sqrt{\omega}\right) + \frac{7}{2} + \sqrt{\omega}^2 - 2 - \sqrt{\omega}^2 = \frac{3}{2} \end{split}$$

Thus we have the function $(\frac{1}{2})^2 - (\frac{3}{2})$

Ĉ,

Madasn

 $= 4 \times \frac{9}{4} - 18$ = 9 - 18 = -9

The COL

Y.G.

.G.

1

nadasman

I.V.C.B. Madasn

Ths.com

 $k = \frac{1}{2}$

 $\frac{(2^{*})^{\frac{1}{2}}-2^{\frac{1}{2}}}{(2^{*})^{\frac{1}{2}}}=\frac{2^{\frac{1}{2}}-2^{\frac{1}{2}}}{2^{\frac{1}{2}}}$

I.C.p.

L.C.B. Madasmaths.Com

(****+) **Question 73**

>

2

Smaths.com

Show with a detailed method that

$$\frac{\sqrt[3]{16} - \sqrt[3]{2}}{\sqrt[3]{4}} = k \sqrt[3]{4}$$

madasm.

where k is a constant to be found.

madasmaths.com

I.V.G.B.

I.V.C.B. Madasman

Smarths Com Lives

I.V.G.B.

Created by T. Madas

E.B.

Question 74 (*****)

 $f(p) \equiv \left(p - \sqrt{2}\right)^2 + \left(\frac{1}{p} - \sqrt{2}\right)^2, \ p \in \mathbb{R}, \ p \neq 0.$

Given that $p + \frac{1}{p} < \sqrt{2}$, find $\sqrt{f(p)}$ in its simplest form.

.V.G.B.

I.V.G.B.

madası,

 $\sqrt{\left(\rho - \sqrt{2}\right)^2 + \left(\frac{1}{\rho} + \sqrt{2}\right)^2}$ $\sqrt{p^2 - 2p(2) + 2} + \frac{1}{p^2} + 2x \frac{1}{p} \times \sqrt{2} + 2$ ZUNDING 24- 2MINT

COM

proof

1.G.D.

4.6

.

2017

I.Y.C.B. Madasn

p2+2+1 + 2 - 2x12×p - 2x13×1

 $= \sqrt{\left(\frac{p}{p}\right)^2 + \left(\sqrt{2}\right)^2 + \left(\frac{1}{p}\right)^2 + \left(2 \times \frac{1}{p} \times p\right) - \left(2 \times \sqrt{2} \times p\right) - \left(2 \times \sqrt{2} \times p\right)}$

NG THE TRINOMIAL SQUARING $(A+B+C)^2 \equiv A^2+B^2+C^2+2AB+2BC+2CA$ $(A-B-C)^2 \equiv A^2+B^2+C^2-2AB+2BC-2CA$

 $\sqrt{\left(p + \frac{1}{p} - \sqrt{2}\right)^{2}}$

.F.G.B.

Created by T. Madas

0

F.C.A.

Question 75 (*****)

 $\sqrt{x+2}+\sqrt{x+2}+\sqrt{x+2}+\sqrt{x+2}+\sqrt{x+2}+...}$,

It is given that the above nested radical converges to a limit $L, L \in \mathbb{R}$

Determine the range of possible values of x.

Question 76 (*****) Show clearly that

5

 $\sqrt{4+2\sqrt{3}} = 1+\sqrt{3}$.

nana.

 $\sqrt{\frac{4+2\zeta_{5}^{-1}}{4+2\zeta_{5}^{-1}}} = \sqrt{\frac{3+1+2\chi_{1}\chi_{3}\zeta_{5}^{-1}}{3+1+\chi_{5}^{-1}\chi_{5}^{-1}\zeta_{5}^{-1}}} = \sqrt{\zeta_{5}^{-1}+1} + \sqrt{\frac{4+\zeta_{5}^{-1}}{1+\zeta_{5}^{-1}+1+\chi_{5}^{-1}}}$

Question 77 (*****)

Show that

 $\frac{3}{\sqrt[3]{4}-1}$

can be written in the form $\sqrt[3]{a} + \sqrt[3]{b} + 1$, where a and b are integers to be found.

	$], \sqrt[3]{16} + \sqrt[3]{4} +$
<u>.</u>	
ALLAND THE I	WARENES OF OUBES" LOUTITY
Q ³ -	$b^3 \equiv (a-b)(a^2+ab+1)$
	$= ^{2} = (\sqrt[3]{4^{1}} - 1) [(\sqrt[3]{4}]^{2} + \sqrt[3]{4^{1}} + 1]$ - 1 = $(\sqrt[3]{4^{1}} - 1) [\sqrt[3]{6^{1}} + \sqrt[3]{4^{1}} + 1]$
 Himae we c 	ith MhupOUTT THE EXPRESSION AS FOLLOWS
<u>3</u> 34-1	$=\frac{3(\overline{16^{\prime}}+\overline{14^{\prime}}+1)}{(\overline{14^{\prime}}-1)(\overline{16^{\prime}}+\overline{14^{\prime}}+1)}$
	3(1161+1+1)
	× 16" + 1/4" + 1
	1

Question 78 (*****)

Show clearly that

You may not use verification in this question

	$\frac{4(\sqrt{5}-\sqrt{5}-1)}{(\sqrt{5}+\sqrt{5}-1)(\sqrt{5}-\sqrt{5}-1)} = \frac{4(\sqrt{5}-\sqrt{5}-1)}{(\sqrt{5})^{2}-(\sqrt{5}+1)^{2}}$ $\xrightarrow{(1)}{(\sqrt{5})^{2}-(\sqrt{5}+1)^{2}}$ $\xrightarrow{(2)}{(\sqrt{5})^{2}-(\sqrt{5}+1)^{2}}$	
=	$\frac{4\left(\sqrt{3}-\sqrt{2}^{-}-1\right)}{3-\left(2+26^{2}+1\right)} = \frac{4\left(\sqrt{3}-\sqrt{2}^{-}-1\right)}{-242^{2}} = \frac{2\left(1+\sqrt{2}^{-}-\sqrt{3}^{-}\right)}{42}$	
-	$\frac{2\sqrt{2}\left(1+\sqrt{2}-\sqrt{2}\right)}{\sqrt{2}\sqrt{2}} = \frac{\sqrt{2}\sqrt{2}\left(1+\sqrt{2}-\sqrt{2}\right)}{\sqrt{2}} = \sqrt{2}\left(1+\sqrt{2}-\sqrt{2}\right)$	
	2 + NZ - NG - +5 ELQUIEND	

Question 79 (*****)

Show clearly that

$$\sqrt{\frac{1+4\sqrt{3}}{3}} = a + b\sqrt{3} ,$$

where *a* and *b* are constants to be found.

a = 1

b =

 $=\frac{3+2\sqrt{3}}{3}=1+\frac{2}{3}\sqrt{3}$

Question 80 (*****) Show that

$6125^{\frac{1}{4}} + 5^{\frac{5}{4}}$

can be written in the form $\sqrt{10} \left(a\sqrt{5} + b\sqrt{7} \right)^{\frac{1}{2}}$, where *a* and *b* are positive integers to be found.

 $\sqrt{10} \left(6\sqrt{5}+5\sqrt{7}\right)^{\frac{1}{2}}$

4	da.
loceeo As, A	čucu&,siNCE 6125 = 49×125
6125 ^{\$} + 5	5 [‡] = (49×125) [‡] + 5 [±]
	= 49 [‡] × 125 [‡] + 5 [‡]
	$= (2^2)^{\frac{1}{2}} \times (3^3)^{\frac{1}{2}} + 5^{\frac{3}{2}}$
	$= \left[\left(\gamma^{\pm} \times S^{\frac{1}{2}} + S^{\frac{1}{2}} \right)^2 \right]^{\frac{1}{2}}$
	$= \left[\left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right] \right] \frac{1}{2}$
	$= \left[7 \times S^{\frac{1}{2}} + 2 \times 7^{\frac{1}{2}} \times S^{2} + S^{\frac{1}{2}}\right]^{\frac{1}{2}}$
	$= (7 \times 5\sqrt{5} + 2 \times \sqrt{7} \times 25 + 5 \times 5 \times \sqrt{5})^{\frac{1}{2}}$
	= (3515' + 5017' + 2515') ±
	= (60(5'+ 50)) ²
	= [10 (6/5 + 5/7)] 2
	= ve (65 + 5v7) 2
	4 1400/00

(*****) **Question 83**

2014

2

Rationalize the denominator of the following surd.

 $\frac{4}{\sqrt{3} + \sqrt{2} + 1} = 2 + \sqrt{2} - \sqrt{6} \,.$

madasmarh

Show detailed workings in this question.

manaer

	· · · · · · · · · · · · · · · · · · ·		
-0-		asmarhs.	
	100		$4\sqrt{2} - 3\sqrt{3} - 1$ $(4\sqrt{2} - 3\sqrt{3} - 1)\left[1 - 2\sqrt{2} - \sqrt{3}\right]$
12 V2	SID2/2	26	$\frac{\frac{4\sqrt{2}-3\sqrt{2}^{2}-1}{(-2\sqrt{2}+\sqrt{2})}}{(-2\sqrt{2}+\sqrt{2})} = \frac{(\frac{4\sqrt{2}-3\sqrt{2}-1}{(2-\sqrt{2})+\sqrt{2}})(-\sqrt{2}\sqrt{2}-\sqrt{2})}{(\sqrt{2}-2\sqrt{2})+\sqrt{2}}$
Sh 90.	, , , , , , , , , , , , , , , , , , ,	20	$(1-2\sqrt{2})^2 - (\sqrt{3})^2 = 4 - 1 - 4\sqrt{2} + 8 - 3 = 6 - 4\sqrt{2}$
12. 9	S.	Son a	$ \begin{array}{lllllllllllllllllllllllllllllllllll$
SCh.	02	dre	
18	911	20	$\cdots = \frac{6\sqrt{2} + 2\sqrt{6} - 2\sqrt{5} - 8}{6 - 4\sqrt{2}} = \frac{3\sqrt{2} + \sqrt{6} - 4}{3 - 2\sqrt{2}}$
Co.	18	20	$= \frac{(3 + 2\sqrt{2})(3\sqrt{2} + \sqrt{4} - \sqrt{3} - 4\sqrt{2})}{(3 + 2\sqrt{2})(3\sqrt{2} + \sqrt{4} - \sqrt{3} - 4\sqrt{2})} = 0$
	°Co.	-0	TIDY THE NOWY CHEER
2 Y	× 1	3	$\begin{array}{c} \dots & \P \sqrt{2} + 3 \left(\overline{c} - 3 \left(\overline{c} - 1 \right) \right) \\ & - e \sqrt{2} - 2 \sqrt{c} + 2 \left(\overline{c} + 1 \right) \\ & - e \sqrt{2} - 2 \sqrt{c} + \sqrt{c} \end{array}$
·			$\cdots = \frac{\sqrt{6^{1}} + \sqrt{2} + \sqrt{2}}{\sqrt{2}} = \sqrt{6^{2} + \sqrt{2}} + \sqrt{2}$
1. D	10	1.	
S.O.	63	· · / a	10 × 10 ×
62	-0-	· · 6 / 2	S.P.
	· · · ·		· · · · ·
2. 15		2.	A 4
05. V2	.)	05	$\mathcal{O}_{\mathcal{O}}$.
Sh 4	2	982	900
12.	Sh.	102	9.0
alls of	421	912	No.
18	Ch.		911
Co.	1	· · · ()	6. Ve
	· · · · · ·	2	10 4
	<u>, </u>	ϕ	× ,
· .	1.1.	× >	/ Y.
6.12	"In	6.15	11
	100.1	10	

I.V.C.B. Madasmarks.Com

M21/201

I.G.B.

Smaths.com

], proof

SMarns.col

I.Y.G.S.

1.4

1.

nadasman

I.V.C.B. Madasn

asing	nadasn.	12025	
		hs.com	alls.Con
1. Y.C.			I.C.S
20/2	11 ₂₀₂₀	Created by	T. Madas

(*****) **Question 84**

nadasmaths.com

I.V.C.B. Madasmaths.Com

I.Y.C.B.

Show that

SMaths.com

I.F.G.B

1

0

$$\frac{\sqrt[3]{49} - 2\sqrt[3]{7} - 4}{\sqrt[3]{7} + 1}$$

can be written in the form $a\sqrt[3]{7} + b$, where a and b are integers to be found.

Madasmath

the second se				7
			2∛7 −4	
		,	2. 1 4	h
			1	
	12.5			1 m
			to an and the second	
	USING THE LONGTITY (a	$(a^2 \mp ab + b^2 \equiv a^3 \equiv$	<u>Eb³</u>	111
	$\left(\frac{\sqrt{7}}{1+1}\right)\left[\left(\sqrt{7}\right)^2 - \sqrt{7}\times1\right]$	+ 1 ²]		9
	$= (7^{\pm}+1)(7^{\pm}-7^{\pm}+1)$			
h.,	$= 7' - 7^{\frac{3}{2}} + 7^{\frac{1}{2}} + 7^{\frac{1}$			- N
	- 7+1	-		
al 2 s	= 8			
	HOWCE WE HAVE ON THE W	UNATOP_		
	(2. J.49-217-4)(J-	7-17+1)		
	= $(2x7^{\frac{3}{2}} - 2x7^{\frac{1}{2}} - 4)(7^{\frac{3}{2}})$	- 7 + 1)		
· · · · · ·	= 7x7 = 7x7 + 2x7			
	$-2N7 + 2N7^{\frac{3}{2}} - + + 2N7^{\frac{3}{2}} + + + + + + + + + + + + + + + + + + $	- 2×7* + 4×7 [‡] - 4		day.
	$= 2x7^{\frac{1}{2}} - 20 + 2x7^{\frac{1}{2}} - 4$			
	$= 2x7^{\frac{1}{2}} - 20 + 2x7^{\frac{1}{2}} - \frac{1}{2}$ = $2x7x7^{\frac{1}{2}} - 32 + 2x7^{\frac{1}{2}}$ = $16x7^{\frac{1}{2}} - 32$			
	and the second sec			·
	FINALLY WE THANK	-t. x. + + .	. +	
5	$\frac{\sqrt[3]{44}-2\sqrt[3]{7}-4}{\sqrt[3]{7}+1} = \frac{(7^{\frac{3}{2}}-2x}{(7^{\frac{3}{2}}+1)}$	$\frac{\gamma^{\frac{1}{2}}-\psi)(\gamma^{\frac{1}{2}}-\gamma^{\frac{1}{2}}+1)}{\gamma(\gamma^{\frac{3}{2}}-\gamma^{\frac{1}{2}}+1)} =$	<u>16×7[±]-32</u> 0	
P			217-4	
·				
		T . P		
		· • / .	1 m	
Sol Y.				
- " (x ')			1	
~ ~ / /	P		9	
				b
			- V	10 .
				del
	Neg A	26		The second
P.,				
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		10.		
al a s		On.		
YIL.				
- In		- X	12	
100	n	14	2 la	
	\mathcal{D} .		V.V	
	Un.		- Y. /	2
			- T.C.	<i>n</i>
	- V			
		- >		
- <u>)</u>		/ x		
	1	τ. Γ.	ь.	-10
		· /		
0 K.		- T . A		

Ths.com

The COL

3

nadasman

.

I.V.C.B. Madasa

Created by T. Madas

nadasmarks.com

Question 85 (*****)

Solve the following quadratic equation

$$\sqrt{3}-1$$
) $x^2-2\sqrt{3}x=3+3\sqrt{3}$.

Give one of the roots in the form $p+q\sqrt{3}$ and the other root in the form $r\sqrt{3}$, where p, q and r are integers.

Question 86 (*****) Express

5

 $\frac{1}{\sqrt{5+\sqrt{24}}}$

in the form $\sqrt{p} - \sqrt{q}$, where p and q are integers.

 $\frac{1}{\sqrt{5+\sqrt{24^{-1}}}} = \frac{\sqrt{5-\sqrt{24^{-1}}}}{\sqrt{5+\sqrt{24^{-1}}}} = \frac{\sqrt{5-\sqrt{24^{-1}}}}{\sqrt{5+\sqrt{24^{-1}}}} = \frac{\sqrt{5-\sqrt{24^{-1}}}}{2t-2t+}$

 $= \sqrt{5-24} = \sqrt{2-\sqrt{24}+3} = \sqrt{2-2\sqrt{6}+3}$

- $=\sqrt{(\sqrt{2})^2 2\sqrt{2}\sqrt{3} + (\sqrt{3})^2}$
- $= < \sqrt{(\sqrt{2} \sqrt{3})^{2}} \sqrt{(\sqrt{3} \sqrt{3})^{2}}$
- = < (CARREESSION IS ROSTING)
- 15-12

Question 87 (*****)

I.V.G.B.

I.C.B.

I.C.B.

Solve the following simultaneous equations, to find in exact form where appropriate, the value or values of x and k.

 $x^2 - 9x + 10 = 0$ and $k = \sqrt{x - \sqrt{x + 6}}$

Madası,

¥.G.p.

5

.

Inadasn

Created by T. Madas

0

Question 89 (*****)

2

The functions f and f are defined as

$$f(x) \equiv \frac{2\sqrt{1-x}}{\sqrt{1-x} - 3\sqrt{1+x}}, \ -1 \le x \le 1$$

$$f(x) = \frac{2\sqrt{1-x}}{\sqrt{1-x} - 3\sqrt{1+x}}, \ -1 \le x \le 1.$$
$$g(x) = \frac{3x}{2(x+2) - 4\sqrt{1-x^2}}, \ -1 \le x \le 1.$$

Show that f(x) + g(x) is a **constant** function.

I.C.P.

V.G.B. May

I.V.G.B.

COM

Ś

5

.

Madasn

$f(\lambda) = \frac{2\sqrt{1-\lambda'}}{\sqrt{1-\lambda'}-3\sqrt{1+\lambda'}} =$ 2 N 1-2 N1-2 + 34112 [V1-2 - 34112][V1-2 + 34112]

- $\frac{2(j-\chi) + 6\sqrt{(j-\chi)(+\chi)^2}}{(j-\chi) 9(j+\chi)} = \frac{2(j-\chi) + 6\sqrt{(j-\chi)^2}}{(j-\chi) 9(j+\chi)}$
- $\frac{2(1-2) + 6\sqrt{1-2^2}}{-8 10x} = \frac{1-2 + 3\sqrt{1-2^2}}{-4 5x} = \frac{2 1 5\sqrt{1-2^2}}{52 + 4}$

- $\frac{(242) + 122\sqrt{1-2^2}}{(242)^2 16\sqrt{(-2^2)}} = \frac{62(242) + 122\sqrt{1-2^2}}{42^2 + 162 + 162^2}$
- $\frac{f_{\Omega}(2t+2) + 12 \cdot 2\sqrt{1-\chi^2}}{2 \cdot \alpha x^2 + 16 \cdot \chi} = \frac{3(2t+2) + 6\sqrt{1-\chi^2}}{10 \cdot \alpha + 8}$
- $= \frac{30.+6+6\sqrt{1-\chi^2}}{2(5x+4)}$

ADDING THE TWO FUNDTION

- $f(x) + \hat{q}(x) = \frac{2^{\omega + 1} 3\sqrt{1 2_{\omega}}}{2^{\omega + 1}} + \frac{3(\omega + 1)}{3^{\omega + 0} + 6\sqrt{1 2_{\omega}}}$
- = 22-2-6452" + 32+6+6452"
 - 2(52+4)

I.F.G.B.

Created by T. Madas

D

K.C.A

(****) **Question 90**

(*a*) =
$$\frac{a}{a+1} + \sqrt{1+a^2 + \frac{a^2}{a^2+2a+1}}$$
, *a* ∈ ℝ, *a* ≠ -1.

Question 91 (*****)

V.C.B. Mada

I.G.B

$$h(x) \equiv \frac{1}{\sqrt{x + \sqrt{x^2 - 1}}}, \ x \in \mathbb{R}, \ x \ge 1.$$

Show that h(x) can be expressed in the form

I.C.P.

$\sqrt{f(x)} - \sqrt{g(x)} ,$

where f(x) and g(x) are linear functions to be found.

I.G.B.

2017

4.40

.

COM

I.F.G.B.

Created by T. Madas

2017

E.C.A

>

Using a detailed method show that

(*****) Question 94

Sketch the graph of

hs.com $\left[x+\sqrt{x^2+4}\right]\left[y+\sqrt{y^2+1}\right]=2, \quad x\in(-\infty,\infty), \ y\in(-\infty,\infty)$

You must show a detailed method in this question

I.Y.C.B.

I.F.G.B.

	1 A	
i h	LOOKING AT THE QUATION	ľ
10 s .	● Y-THUN IS THE 4057WINTS OF 4 loc. Por answly ● J-THUN ALCO bocks like 4 siminale loca answly	
C. 90/	$ \begin{array}{c} (2+\sqrt{32^{k+1}})(\underline{y}+\sqrt{y^{k+1}}) = 2 \\ \hline \\ (2+\sqrt{32^{k+1}})(\underline{y}+\sqrt{y^{k+1}}) = h_{2} \end{array} $	
m. a.	$ \begin{array}{c} & \longrightarrow & h_1[\zeta_{24}, \frac{1}{42^4+\mu^2}](\underline{y} + 4\sqrt[3]{4^2+1}) = h_2] \\ & \longrightarrow & h_1(\zeta_{24}, \frac{1}{42^4+\mu^2}) + h_1(\underline{y} + 4\sqrt[3]{4^2+\mu^2}) = h_2] \\ & \longrightarrow & h_1(\zeta_{24}, \frac{1}{42^4+\mu^2}) + h_2(\underline{y} + 4\sqrt[3]{4^2+\mu^2}) = h_2]. \end{array} $	
12xx 3/2	$\begin{array}{l} \hline \\ Minula XATE THE (OG4RTH[M] SO THE DADIAL HYB "1" WEETAD OF 4 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\$	
~(h. ~())	$h \left[2 \left(\frac{1}{2} x + \sqrt{\frac{1}{2}} x \right)^2 + \alpha r s n h y = h 2 \right]$	
	$= \int_{0}^{1} dx + \ln \left[\frac{1}{2} x + \ln \left[$	
· ()	⇒ accondr (ξ2) = − accondr y	
-Op	$\frac{3\sigma + 4204 + 5 + 10 + 10 + 10 + 10 + 10 + 10}{-3 + 10 + 10 + 10 + 10}$	Ľ
~//	$\frac{\partial u_{\text{MAM}}}{\partial t} = \frac{\partial t}{\partial x} = \frac{\partial t}{\partial x}$	
· · · · · · · · · · · · · · · · · · ·	$\rightarrow y_{z} - \frac{1}{2}\lambda$	
1	((*+124))(y+134))=5	
	0 7.6	
10 10	a sel	
		1.
5/5		2
	12 0	
, m	12.	
0 120	400	
	de.	
10 TO	Son-	
111 M	200	
- CD C	911 10.	l
		r
Cn.		Ľ
~m	Co.	
	m	
SP C	n sp	

$\begin{array}{c} \underbrace{ \operatorname{AUTOATW} \operatorname{Winfor } \operatorname{Hyrece} \\ \underbrace{ \left[2 + \sqrt{2^{2} \mathrm{H}^{2}} \right] \left[y + \sqrt{y^{2} \mathrm{H}^{2}} \right] = \\ \underbrace{ \operatorname{Isr} b = 2 + \sqrt{2^{2} \mathrm{H}^{2}} \\ \Rightarrow \ u \left(y + \sqrt{y^{2} \mathrm{H}^{2}} \right) = 2 \\ \Rightarrow \ y + \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - \frac{2}{\pi} - y \\ \Rightarrow \ \sqrt{y^{2} \mathrm{H}^{2}} = \frac{2}{\pi} - \frac{2}{\pi} - \frac{2}{\pi} + \frac{2}{$	
$g = \frac{1}{4} - \frac{1}{2} = \frac{1}{4} - \frac{1}{2}$ (a) Shows	$\frac{1}{2} \left[\frac{1}{2} + 1$

Madasm.

nn,

21/18.1

, proof

100

nadasm.

CD11

I.V.C.B. Madasn

Created by T. Madas

SMaths.

(*****) **Question 95**

By using the substitution $\sqrt[3]{10\pm 6\sqrt{3}} = u \pm \sqrt{v}$, where $u \in \mathbb{Q}$, $v \in \mathbb{Q}$, simplify fully the following cubic radical expression.

 $\sqrt[3]{10+6\sqrt{3}} + \sqrt[3]{10-6\sqrt{3}}$. Y.G.B. 2 Madas, LET \$10±613 = U±1 BOTH SLDES WE OBTAIN 10±6V3 = (4±VV 13+342V+ 341 + VIV $(3uv) \pm (3u^2 + v)\sqrt{v} - (I)$ 64 = 10 3 10+6J3 + J 10-6J I.C.B. ·G.P. I.G.p. ŀG.B. madasn

2

(****) **Question 96**

2

Ĉ,

By using the substitution $\sqrt[3]{20\pm 14\sqrt{2}} = u \pm \sqrt{v}$, where $u \in \mathbb{Q}$, $v \in \mathbb{Q}$, simplify fully the following cubic radical expression.

 $\sqrt[3]{20+14\sqrt{2}}$. $2 - \sqrt{2}$ - NV1 = \$ 20 - 14/21 U+ NV = \$ 20+14427 6 × 20-14/2 = 2-12 WBING GACH OF THE ABOVE TW $\Rightarrow ((1 \pm \sqrt{7})^3 = (\sqrt{20 \pm 1442})^3$ $\Rightarrow U^{\lambda} \pm 3U^{2}\sqrt{v} + 3UV \pm V\sqrt{v} = 20 \pm 14\sqrt{2}$ $+34N)\pm(34^{2}\sqrt{2}+V=\sqrt{2}) = 20\pm14\sqrt{2}^{2}$ 3UV $\pm (3u^2 + v)\sqrt{v} = 20 \pm 14\sqrt{2^3} - (1)$ $\Rightarrow (U - \sqrt{v^{1}})(U + \sqrt{v}) = \sqrt[3]{20 - U\sqrt{2}} \sqrt[3]{20 + U\sqrt{2}}$ $\Rightarrow U^{2}_{v} - V = \sqrt[3]{400 - U^{2}_{v} \times 2}$ - 11²-V = ∛ 400 - 196×2 $\rightarrow u^2 - v = \sqrt[3]{8}$ $: [u^2 - v = 2] - (II)$ THE 2470 mult PMPTS of (I), FOLLOWED BY SUBSTITUTION OF (II) 43 + 34V = 20 $u^3 + 3u(u^2 - 2) = 20$ $\sigma_g + 3\sigma_g - \Theta^{\ast} = 50$ 443-64-20 = 0 2112.sm Gp ŀ.G.B. madasn

I.G.B.

I.G.B.

 $f(x) \equiv x^2 + \frac{2x}{2 + \sqrt{3}} - 1, \ x \in \mathbb{R}.$

Factorize f(x) into a product of 2 simple linear factors.

K.G.B.

mana,

Ś

Created by T. Madas

R.