uas mans com Created by T. Madas

asmaths.com

ASINALIS COM INC. MISCELLANEL SEQUENCES & SERIES AUSTRALISCON I. Y. C.B. MARIASINALISCON I.Y.C.B. MARAN

The Com

proof

8430

G-P a=2 F=2 h=12

adasmaths.com

a=9 d=2 L=31 h=12

2011

\$= \$ (a+2] & +317 +

(1:0

1.4

nadasm.

Question 1 (***+)

nadasma,

Smaths.com

I.F.G.p

Show that

alasmaths.com

2r + 7 2^r 8430.

nadasn

.com

I.C.P.

1.Y.G.J

Detailed workings must be shown in this question.

Created by T. Madas

madasmaths,

00

(***+) **Question 2**

Evaluate the following sum

 $\left[\left(-2\right) ^{r}-4r-78\right] .$

Detailed workings must support the answer.	p B	- G'
	, 715,822,200	
asin Wada adasin	$\frac{MANNEXATE AC FOURNES}{\sum_{r=1}^{2n} \left[c_2 t^2 - 4r - 7e \right]} = \sum_{r=1}^{2n} \left[c_2 t^2 - 4r - 7e \right] - \sum_{r=1}^{2n} \left[c_2 t^2 - 4r - 7e \right]$ $\frac{SPUT}{C} \left[c_2 t^2 - 4r - 7e \right]$	asnar,
Alls Math	$=\begin{bmatrix}\frac{2}{n_{1}}(c_{1})^{2} & -\frac{2}{n_{1}}[e_{1}Y_{1}y_{1}] \\ \downarrow & G, \psi \\ \downarrow & G, \psi \\ \downarrow & G, \psi \\ \downarrow & A, P, \\ \hline \\ & 2AH = A H_{1}, \\ \hline \\ & & & & \\$	
m Com Scom	$= \begin{bmatrix} -\frac{1}{2}(\frac{1}{2})^{n} - \frac{1}{2} \begin{bmatrix} (k+2)k_{1} \end{bmatrix} \\ -\frac{1}{2} \begin{bmatrix} (k+2)k_{2} \end{bmatrix} \end{bmatrix} - \begin{bmatrix} -\frac{1}{2} \begin{bmatrix} (k+2)k_{2} \end{bmatrix} \\ -\frac{1}{2} - \frac{1}{2} \begin{bmatrix} (k+1)k_{1} \end{bmatrix} \end{bmatrix}$ = (15827692 - 4560) - (5736 - 1246) $= \underbrace{115 (827,200)}$	2
In the I	· · ·	· Y
	Gp GP	, C
$a_{d_{20}}$ $n_{a_{d_20}}$ $a_{d_{20}}$	nan "	202
Math Snar Ma	the aspen	- Sinan
n "On "Is.co.	S.Com "Is.	2 2
Co Co	Co Cp	·
n no nad		nad
Created by T.	Madas	Sast.

naths.com

Smains.col

N.G.S.

Question 3 (***+)

Three numbers, A, B, C in that order, are in geometric progression with common ratio r.

Given further that A, 2B, C in that order are in arithmetic progression, determine the possible values of r.

	11
without loss of privilences lit the A, B & C DE	
$ \begin{array}{l} & \overrightarrow{\mathcal{A}} = \overrightarrow{\mathcal{A}} \neq 0 \\ & \overrightarrow{\mathcal{B}} = \overrightarrow{\mathcal{A}} \Gamma \\ & C = -\overrightarrow{\mathcal{A}} \Gamma^2 \end{array} \left(\overleftarrow{\mathcal{A}} c \ \mbox{Theory All and all constraints} \ \mbox{Provenue} normalized and norm$	
NOW 4,2B & C HER IN ARTHMATIC PRESENTSION)	
$\implies 78-4 = C-28$ $\implies 48 = 4+C$ $\implies 4Ar = A + Ar^2$ $\implies 4F = 1 + r^2 \qquad (A \neq o)$	
\Rightarrow $t^2 = 4t + 1 = 0$	
$\Rightarrow (\Gamma_{-2})^{L} - 4 + 1 = 0$	
$\implies (1-z)^2 = 3$	
⇒ f 2 = <_√3	
$\Rightarrow f_{a} < \frac{2+\sqrt{3}}{2-\sqrt{3}}$	

 $=2\pm\sqrt{3}$

Question 4 (***+)

An arithmetic series has common difference 2.

The 3^{rd} , 6^{th} and 10^{th} terms of the arithmetic series are the respective first three terms of a geometric series.

Determine in any order the first term of the arithmetic series and the common ratio of the geometric series.

$[], [a=14], [r=\frac{4}{3}]$
THE HE HUN OF AN ANTIMUTIC SENIS OF CONLINN DIFFERENCE 2 IS GIVEN BY
$\begin{array}{l} U_{u_{j}} \simeq \alpha + (\lambda_{j+1}) \times 2 \\ \Omega_{v_{j}} \simeq \alpha + 2(\kappa_{i+1}) \end{array}$
HAVE WE NOW HAVE
us us us
at 4 at 10 At 18
AS THESE MRS IN GEOMETRIC PROSPERSION
$\frac{a_{\pm 10}}{a_{\pm 4}} = \frac{a_{\pm 10}}{a_{\pm 10}} \longrightarrow (a_{\pm 10})^2 (a_{\pm 4})(a_{\pm 10})$
\implies $A^{n} + 20a + 100 = A^{n} + 22a + 72$
$ \Rightarrow 2^{n} = 2_{n} $ $ \Rightarrow \frac{\alpha - 14}{n} $
LI OTTAS LOHNED 34T OR
$\Gamma = \frac{a+ia}{a+i} = \frac{24}{18} = \frac{4}{3}$

Question 5 (***+)

Each of the terms of an arithmetic series is added to the corresponding terms of a geometric series, forming a new series with first term $\frac{3}{8}$ and second term $\frac{13}{16}$.

The common difference of the arithmetic series is four times as large as the first term of the geometric series. The common ratio of the geometric series is twice as large as the first term of the arithmetic series.

Determine the possible values of the first term of the geometric series.

(a+d) + [a+d+br] [d+6] : 2+1 (1) $a+d+br = \frac{13}{12}$ (Π) Γ = 20 $a + 4b + 2ab = \frac{13}{16}$ Ð 6 = 4h a+b= \$ a = 3 - 5 ζα+46+2ab=导 $\beta = \frac{3}{4} - b + 4b + 2b \left(\frac{3}{44} - b\right) = \frac{13}{16}$

(****) Question 6

Solve the following equation

nadasmaths

COM

COM

I.C.P.

 $2^{x} + 4^{x} + 8^{x} + 16^{x} + 32^{x} + \dots = 1.$

You may assume that the left hand side of the equation converges.

madası,

Con

COM

	<u> (/ /)</u>
PROCEED 45 FOLLOWS	
$\implies \Im_x + \phi_y + B_y + B_y + m_y + \dots = 1$	
$\Rightarrow 2^{k} + (2^{k})^{k} + (2^{k})^{k} + (2^{k})^{k} + \dots = 1$ $\Rightarrow 2^{k} + (2^{k})^{k} + (2^{k})^{k} + (2^{k})^{k} + \dots = 1$	
THIS is A conversions one with $a = 2^{\lambda} \neq 1 \approx 2^{\delta}$	
$\rightarrow \frac{2^{\lambda}}{1-2^{\lambda}} = 1$ $\left\{ \begin{array}{c} \sum_{\alpha=1}^{\infty} \frac{1}{1-1} \\ \sum_{\alpha=1}^{\infty} \frac{1}{1-1} \end{array} \right\}$	
\Rightarrow $2^k = 1 - 2^k$	
$\rightarrow 2 \times 2^{2} = 1$	
$ = 2^{2} = \frac{1}{2}$	

i. C.B. Madasman

di.

ths.com

x = -1

14

Madasma,

I.V.C.B. Madasn

(****) Question 7

alasmaths.com

Solve the following equation

haths.com $x - 2x^{2} + x^{3} - 2x^{4} + x^{5} - 2x^{6} + \dots = -\frac{2}{5}.$

4.6.0

6

I.V.C.B. Madasn

 $x = \frac{2}{3} \bigcup x = -$

L.C.B. Madasmaths.Com

 $\frac{1}{4}$

You may assume that the left hand side of the equation converges.

Madasm.

madasmaths.com

I.F.G.B

Created by T. Madas

P.C.P.

Y.C.B. Madasmarks.Com

(****) Question 8

Find in simplified form, in terms of n, the value of

Question 9 (****)

The 1^{st} , 3^{rd} and 11^{th} term of an arithmetic progression are the first three terms of a geometric progression.

It is further given that the sum of the first 13 terms of the arithmetic progression is 260.

Find, in any order, the common ratio of the geometric progression and the first term and common difference of the arithmetic progression.

SILLUTATO VISION 2d = 3a A.P a+60 = 20 BOW THE ARRY WY - THY ar = a+2d $(\alpha + 2d)\Gamma = \alpha + \log d$ $\frac{\alpha + 2d}{\alpha} = \frac{\alpha + \log d}{\alpha + 2d}$ $(a+2d)^2 = a(a+10d)$ 92+4ad+4d2 = 92+10ad 402 = 6ad 2d2 = 3ad NOD IN MAKE 1SE OF $\frac{13}{2} \left[2a + 12d \right] = 26c$ 13 [a+6d] = 260 a + 6d = 20

r = 4

Question 10 (****)

The 2^{nd} , 3^{rd} and 9^{th} term of an arithmetic progression are three consecutive terms of a geometric progression.

Find the common ratio of the geometric progression.

STAT FOLLING BRUTTONS AS RUOWS
$\begin{array}{c} U_{\underline{\lambda}} & U_{\underline{\lambda}} & U_{\underline{\lambda}} \\ a+d & a+2d \\ & & \\ &$
ELIMINATE THE COULION RATIO C, BY DULLION
$\begin{array}{llllllllllllllllllllllllllllllllllll$
NOO, REPUBLING & FIGURE AND OF THE ARIGMAN QUATIONS WHICH CONTINUE a, d & C
$\implies (a+cd)r = a+2d$ $\implies (a-\frac{2}{3}a)r = a+2(-\frac{2}{3}a)$ $\implies -\frac{1}{4}ar = -\frac{3}{2}a$ $\implies \frac{1}{4}ar = -\frac{3}{2}a'$ $a\neq 0$

r = 6

F.C.P.

mada

1+

Created by T. Madas

24

Tadas,

It is given that

30387113775-COM

I.F.G.B.

Created by T. Madas
on 11 (****+)
en that

$$\frac{1}{n}\sum_{r=1}^{n}x_{r} = 2 \quad \text{and} \quad \sqrt{\frac{1}{n}\sum_{r=1}^{n}(x_{r})^{2} - \frac{1}{n^{2}}\left(\sum_{r=1}^{n}x_{r}\right)^{2}} = 3.$$

1.4.6

100

nadasm.

hs.com

I.Y.C.B. Madasa

 $\sum_{r=1}^{n} (x_r + 1)^2 = 18n$

 $\sum_{r=1}^{n} (3r_{r})^{2} + 2 \sum_{r=1}^{n} (3r_{r}) + \sum_{r=1}^{n} 1$

D

i.C.B.

Determine, in terms of n, the value of

Created by T. Madas

0

Question 13 (****+)

Solve the following equation

alasma,

K.C.B. Madasm

00

I.F.G.B.

 $\left(2^{x-r}\right)$ $=\sqrt{1+3\times 2}$

.C.A

2011

madasmans,

2017

You may assume that the left hand side of the equation converges.

nadasn.

dar -
VEITE IN EXPLICIT FORM
$\Rightarrow \sum_{r=2}^{\infty} \left(2^{2^{-r}} \right) = \sqrt{1 + 3x 2^{2^{-2^{r}}}}$
$\Rightarrow 2^{3-2} + 2^{2-3} + 2^{3-3} + 2^{3-4} + \cdots = \sqrt{1+3\times 2^{n-2}}$
$18105 S_{m}^{\prime} \circ \frac{a}{1-r} \text{with } a = 2^{n-2} \in r = \frac{1}{2}$
$\Rightarrow \frac{2^{3-2}}{1-\frac{1}{2}} = \sqrt{1+3\times 2^{3-2^{1}}}$
$\Rightarrow 3 \times 2^{3-2} = \sqrt{1+3\times 2^{3-2}}$
Separatur, bort Slats
$\Rightarrow 4 \times \left(2^{1-2}\right)^2 = 1 + 3 \times 2^{1-2}$
$\rightarrow 2^2 \times 2^{2\lambda-4} = 1 + 3 \times 2^{\lambda-\lambda}$
$\Rightarrow 2^{22-2} = 1 + 3 \times 2^{2-2}$
MUCTIPLY BOTH SIDEA BY 4 = 2ª
$\rightarrow 2^{2k} = 4 + 3 \times 2^{k}$
$\Rightarrow (2^{x})^{2} - 3(2^{x}) - 4 = 0$
$\Rightarrow (2^{\lambda} + 1) (2^{\lambda} - 4) = 0$
→ 3= < × +
PERSONAL REPORT OF A DESCRIPTION OF A DE

ths.com

x = 2

202.Sm

dasmaths.com

Question 14 (****+)

The sum of the first 2 terms of an arithmetic progression is 40.

The sum of the first 4 terms of the same arithmetic progression is 130.

a) Determine the sum of the first 5 terms of the arithmetic progression.

The sum of the first 2 terms of a geometric progression is 40.

The sum of the first 4 terms of the same geometric progression is 130.

b) Find the two possible values of the sum of the first 5 terms of the geometric progression.

 $\frac{775}{4} = 193.75$, $S_5 = 211$ or $S_5 = -275$

1= 40

40

M2(12)

Question 15 (****+)

Consider the following 2 sequences.

10, 13, 16, 19, 22, ... and 6, 12, 24, 48, 96, ...

The sum of the n^{th} term of the first sequence and the n^{th} term of the second sequence is denoted by U_n .

Show algebraically that

 $U_{n+1} = U_n + 3(1+2^n).$

-(m)= 10, 13, 16, 19, 22, 3n+7
$ \begin{aligned} & f(y_1) = -10_1 1_3_1 1_6_3_1 1_9_3_2 2_3_3 \dots & 3n + 7 \\ & g(y_1) = -6_3 1_2_3_2 2_4_1 4_8_1_9 9_3_2_3_3 \dots & 3\times 2^n \end{aligned} $
-ADDINIO-THE MH TREWS
$U_q = -(f_k) + g(k) = 3h + 7 + 3 \times 2^{h}$
$U_{h_{H}} = 3(n+1) + 7 + 3 \times 2^{n_{H}} = 3n + 10 + 3 \times 2^{n+1}$
SUBTRACTING GYES
$U_{n_{H}} - U_{s} = (3n + 10 + 3x2^{s_{H}}) - (3n + 7 + 3x2^{s_{H}})$
= 3h+10 + 3x2h+1 - 3h-7-3x2h
= 3 + 3×2×2" - 3×2"
$= 3 + 6x2^{b} - 3x2^{b}$
- 3 + 3×2 ⁴
= 3(1+2")
Finitury air that
() , , , , , , , , , , , , , , , , , , ,

AN REFUIEND

Question 16 (****+)

0

Solve the following equation

nadasma

I.F.G.B

Com I.V.C.S

 $\sum_{r=0} (\sin x)^{2r} = 2 \tan x \, .$

You may assume that the left hand side of the equation converges.

.com

nadasn.

nadasmaths.com

2017

212.SM

The COM

140

Created by T. Madas

2017

Question 17 (*****) The product operator \prod , is defined as

$$\prod_{i=1}^{n} [u_i] = u_1 \times u_2 \times u_3 \times u_4 \times \dots \times u_{k-1} \times u_k.$$

Solve the equation

 $\prod_{r=1}^{\infty} \left[\sqrt[2r]{2^x} \right] = 2^{-(x+2)}.$

You may assume that the left hand side of the equation converges.

	- 10 A
WORK AS POlyacis	
$\implies \prod_{l=1}^{\infty} \left[\frac{1}{2} \left[\frac{1}{2^{n}} \right] = 2^{-C(42)} \right]$	
-> \2x1 \$\2x1 \$\2x1 \$\2x1 \$\2x1 = 2^{2x-2}	
\Rightarrow $(2^{n})^{\frac{1}{2}}(2^{n})^{\frac{1}{2}}(2^{n})^{\frac{1}{2}}(2^{n})^{\frac{1}{2}}$ \cdots $=$ 2^{n-2}	
⇒ 3 + 3 + 3 + 2 + 3	
THENO LOGARTHUS, SHE THO, ON BUTH SIDES	
$\Rightarrow \log \left[2^{\frac{1}{2}} 2^{\frac{1}{2}} 2^{\frac{1}{2}} 2^{\frac{1}{2}} 2^{\frac{1}{2}} \dots \right] = \log \left(2^{-\lambda-2} \right)$	
$\rightarrow \log_2 2^{\frac{1}{2}} + \dots = \log_2 2^{\frac{1}{2}}$	(2 ⁻³⁻²)
→ \$20 1952 + \$1982 + \$21982 + \$181982 + = €	2-2)/052
$= \frac{1}{2}x + \frac{1}{2}$	
$\Rightarrow x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\cdots\right) = -x-2$	
G.P with $\beta_{\infty}^* = \frac{1}{1-\frac{1}{2}} = 1$	
°-∋ 0. ≈ -12.	ti na ti
⇒ 2=-1	

G.B.

x = -1

Question 18 (*****) It is given that

$$\sum_{r=1}^{n} u_r = \frac{1 + 3^{2n+2} - 2 \times 5^{n+1}}{8}$$

where u_n is the n^{th} term of a sequence.

Find a simplified expression for u_n .

K.G.B.

I.G.B.

15

K.G.B.

$\sum_{n=1}^{n} u_n = \frac{(+3^{2n+2}-2x_5)}{8}$

PLOCERO 48 FOLLOWS

 $\begin{aligned} & \int_{P_{H}}^{1} = \frac{\sum_{k=1}^{h} U_{k}}{8} = \frac{1 + 3^{2n+2} - 2x 5^{N+1}}{8} \\ & \int_{P_{H}}^{1} = \sum_{k=1}^{n-1} U_{k} = \frac{1 + 3^{2n+2} - 2x 5^{N+1}}{8} = \frac{1 + 3^{2n} - 2x 5^{N}}{8} \end{aligned}$

SUBTRACTING WOOLD YIELD UN

- $\implies n^{\mu} = 2^{\mu-1} \sum_{i=1}^{n-1} = \frac{8}{1+3_{3n+7} 5 \times 2_{\mu+1}} \frac{8}{1+3_{3n}^{-5} \times 2_{\mu}}$
- $\Rightarrow \Theta_{u_{h}} = \left[1 + 3^{2n+2} \times 5^{n+1} \right] \left[1 + 3^{2n} \times 5^{n+2} \right]$
- $\Rightarrow 80_{4} = 3^{2n} 2 \times 2^{+n} 3^{2n} + 2 \times 2^{k}$ $\Rightarrow 90_{4} = 3^{2n} 3^{2n} 3^{2n} + 2 \times 2^{k} 2 \times 2^{k} \times 2^{k}$
- -> 84. 8x3" 8x5"
- $\Rightarrow U_4 = 3^{29} 5^{19}$
- $\Rightarrow u_1 = 9^* 5^*$

う

I.C.B.

Mada

Created by T. Madas

0

P.C.

Question 19 (*****) It is given that

F.G.B.

C.B.

 $3n^2 - 2n + 4 + (3n - 2) \times 2^{n+1}$,

where u_n is the n^{th} term of a sequence.

Find a simplified expression for u_n .

$u_{r} = \partial \times (3n-2) + 3n^{2} - 2n + 4$

- $P S_{y_{-1}}^{i} = 2 \times [3(y_{-1}) 2] + 3(y_{-1})^2 2(y_{-1}) + 4$ $S_{n-1} = (3n-5) \times 2^{n} + 3n^{2} - 6n + 3 - 2n + 2 + 4$ $= S_{h_{n1}}^{1} = (3n-s)x^{2} + 3\eta^{2} - 8\eta + 9$ HENCE WE OBTAIN = un = Sh - Sh $= \mathcal{U}_{q} = \left[(3n-2) \times 2^{\frac{n+1}{2}} \mathcal{B}_{1}^{2} - 2n+4 \right] - \left[(3n-5) \times 2^{\frac{n}{2}} + \mathcal{B}_{1}^{2} \mathcal{B}_{n} + q \right]$ $\Rightarrow (l_{h} = (3_{h-2})x_{2}^{hH} - (3_{h-3})x_{2}^{h} + 6_{h} - 5$
- $\longrightarrow (U_{q} = 2(3q-2)\chi^{2} (3q-5)\chi^{2} + 6q-5$
- $\implies U_{4} = [2(3_{4}-2) (3_{4}-5)] \times 2^{4} + 6_{4} 5$
- ⇒ <u>Un</u> = (3n+1)x2^k + 64 5

L.C.P.

na

2

Question 20 (*****) It is given that

$$\sum_{r=1}^{n} u_r = 6^{n+1} - 10 \times 2^n + 4,$$

where u_n is the n^{th} term of a sequence.

Show clearly that

Gg

C.P.

 $u_{n+2} = Au_{n+1} + Bu_n,$

where A and B are integers to be found.

$\sum_{l=1}^{n} U_{p} = \mathcal{L} - 10 \times 2^{\frac{N}{2}} + 4$		6
@ TRYING TO FIND the EXPRESSION FOR THE WH THEM FIRST		. 1
$\begin{cases} z_{\mu^{-1}} \in \mathcal{C}_{\mu^{-1}} \cap z_{\lambda} + \beta \\ z_{\mu^{-1}} \cap z_{\lambda} + \beta \\ z_{\mu^{-1}} \cap z_{\mu^{-1}} + \beta \\ z_{\mu^{-1}} + \beta \\ z_{\mu^{-1}} + \beta \\ z_{\mu^{-1}} + \beta \\ z_{\mu^$		1
$\implies (l_{i_{j}} = S_{i_{j}} - S_{i_{j-1}} = [G^{i_{j+1}} - IOK2^{i_{j}} + i_{j}] [G^{i_{j}} - IOK2^{i_{j+1}} + i_{j}]$		
$= C_{n+1} - C_n - (0 \times S_n + 10 \times S_{n-1})$		
$=(6\times6^{H}-6^{H})+10\times2^{H-1}-10\times2^{H}$		5
$= S \times G^{N} + (S \times 2 \times 2^{N-1} - 10 \times 2^{N})$		
$= S \times G^{h_1} + (S \times 2^{h_1} - IO \times 2^{h_1})$		Finip
$=$ $S \times G^{k} - 5 \times 2^{k}$		
$\approx \alpha^{\mu} = 2[c_{\mu} - z_{\mu}]$	đ	
		-9
Now we may furnish the powers of 6 of 2, 13 powers		
$u_{n} = s \left[\epsilon^{n} - 2^{n} \right]$		
$U_{kH} = 5\left[6^{NH} - 2^{NH}\right] = 5\left[6\times6^{k} - 2\times2^{k}\right] = 30\times6^{k} - 10\times2^{k}$		
a will put to b it is		

24

 $u_{n+2} = 8u_{n+1} - 12\overline{u_n}$

Question 21 (*****)

V.C.P.

Find in exact simplified form an exact expression for the sum of the first n terms of the following series

 $1 + 11 + 111 + 1111 + 11111 + \dots$

 $10^{n+1} - 10 - 9n$

i G.B.

 $S_n = \frac{1}{81}$

Question 22 (*****)

The first three terms of a geometric progression are the respective 7^{th} term, 4^{th} term, and 2^{nd} term of an arithmetic progression.

Determine the common ratio of the geometric progression.

DEFINE SOUL OPERATIONS IN CELESE TO FREM SOUL GRATIANS
d = CONNON DIFFERENCE OF A.P. (1, = a + (2+1))d
A= (ct BERN OF G.P. r= COLINDAN RATIO OF G.P. NHA THUL OF A G.P.
$U_{h} = \alpha \Gamma^{h-1}$
TWICE WE NOW HAVE
A = a + 6J − I
Ar= a+ 3d _ I • some II for d: d= Ar= a
Ar2= a + d - II
SUBSITUTE INTO I & II
$ \begin{array}{l} A = a + 6Ar^{2} - 6a \\ A = a + 3Ar^{2} - 3a \end{array} \end{array} $
$S_{\alpha} = \frac{6Ar^{2}}{2A} = \frac{A}{2Ar^{2}} + \frac{A}{2}$
$\implies \frac{S}{2} = \frac{6t^2 - 1}{3t^2 - t}$
\implies $15r^2 - 5r = 12r^2 - 2$
$\Rightarrow 3r^2 - 5r + 2 = 0$
=>(3r - 2)(r - 1) = 0
$\implies r_{2} \xrightarrow{2}_{3} (r \neq \pm, 0)$
3

0

i G.B.

M2(12

 $r = \frac{2}{3}$

1+

Question 23 (*****)

A factory gets permission to dispose, at the start of every day, 600 kg of waste into a stream of water.

The running stream removes 40% of the any waste present, by the end of the day.

Determine a simplified expression for the amount of waste present in the stream at the end of the n^{th} day.

 $u_n = 900 | 1 -$

 $U_{h} = 360 \times \frac{1(1-0.6^{N})}{1-0.6}$

Question 24 (*****)

Ĉ,

I.C.P.

3 + 33 + 333 + 3333 + 33333 + ...

 $S_n =$

$$\begin{split} & 3+\overline{68}+\overline{333}+\overline{3333}+\overline{333333}+\cdots \\ & & & \\ &$$

 $\left[\frac{1}{3}(10^r - 1)\right]$

····-1)

i C.P.

1+

21/2.5m

madasn.

Express the sum of the first n terms of the above series in sigma notation.

You are not required to sum the series.

24

Question 25 (*****)

A rectangle has perimeter P and area A.

Show that

S.C.

I.C.B.

 $A \leq f(P),$

where f(P) is a simplified expression to be found.

START FORMING EXPRESSION	IS FOR THE PARIMETRIC AND AREA	
$P = 2(\alpha + y)$		í
A = ay	9	
	α	-
23-1992 THE THE STURIES	ICINIC, AR THEY DEREMBLE THE AM THAT	- G
⇒ AM	≥ GM	
$\Rightarrow \frac{x+y}{x}$	· > Vay	
THUS WE THAVE		
P = 2(x+y)	A = ay	
$acty = \frac{p}{2}$	3	
$\frac{\alpha + q}{2} = \frac{p}{4}$	$\sqrt{x+y} = \sqrt{A}$	
2 4		
SOMBINING THESE RHOUL IND	O THE INCLUDING WE OBTIMIN	
$\Rightarrow \frac{P}{4}$	2 JAT	
⇒ <u>†</u> °	$\geq A$	
→ Å	$\leq \frac{1}{16} p^2$	

F.G.B.

mana

 $A \le \frac{1}{16} P^2$

2

Question 26 (*****)

F.G.B.

200

ŀG.p.

A sequence of positive integers is generated by the formula

11_{21/21}

1

 $u_n = 2n^3 - 57n^2 - 120n + 9200, n \in \mathbb{N}.$

Determine the largest value of n, such that $u_n > u_{n+1}$.

n = 19

6

21/2.SM

EB Madasn

Created by T. Madas

C.J.

200

Question 27 (*****)

I.G.B.

I.Y.C.B.

The geometric mean of two positive numbers a and b is denoted by G.

The arithmetic mean of $\frac{1}{a}$ and $\frac{1}{b}$ is denoted by A.

Given further that the ratio $\frac{1}{A}$: G = 4:5, determine the ratio between a and b.

I.V.G.B.

4:1

Created by T. Madas

·C.I.

°OM

Question 28 (*****) A function is defined as

 $[x] \equiv \{$ the greatest integer less or equal to $x \}$.

The function f is defined as

 $f(n) = n \left[\frac{3}{5} + \frac{3n}{100}\right], n \in \mathbb{N}.$

Determine the value of

N.

I.C.B.

f(n).

[¤] ≡ { GREATE	ST INTEGER LEESS OR EQUAL	The af	
• $f(n) = n \left[\frac{3}{3} + \frac{3n}{100}\right], n \in \mathbb{N}$			
WE NEED TO INVERTION WE NEED TO WOORK	N GOOVES	ST 82 THEMS	
$\frac{3}{2} + \frac{3n}{col} \leq 0$	• $\frac{3}{5} + \frac{3n}{100} \leq 2$	$\circ \frac{3}{-5} + \frac{3n}{100} \leq 3$	
$\frac{3n}{3n} \leq \frac{2}{3}$	$\frac{2n}{100} \leq \frac{7}{5}$	$\frac{3y}{100} \leq \frac{12}{5}$	
Bn≤to	3n ≤ 140	3n ≤ 240	
h ≤ {y =13 <u>}</u>	$h \leq \frac{1}{2} = \frac{1}{2}$	n ≤ 80	
∴ THE FIRST IS THOUS' OF [] 40E-412 ZEOD	The "Hell" or [] From 14th to 46th Ale 1	THE TRULS OF [] ROM 4744 TO 7974 MEH 2.	
[ыюютч тне 88	ркв ^а , 18 ⁴⁸ ТНЕШС ОF []	-ARE 3]	
SOULDING OF THE SERIE	2-		
$\sum_{h=1}^{82} f(h) = \sum_{h=1}^{82} h$	$\left[\frac{3}{3}+\frac{3n}{10n}\right]$		
	$\left[\begin{array}{c} 0 \end{array} \right] + \left[\begin{array}{c} \frac{44}{2} (0, x) \\ 1 = 14 \end{array} \right] + \left[\begin{array}{c} \frac{39}{2} (n + 1) \\ 1 = 14 \end{array} \right]$	$\left[\begin{array}{c} 1 \times 2 \end{array} \right] + \left[\begin{array}{c} \frac{92}{\sum} (h_1 \times 3) \end{array} \right]$	
	46-13=33 71-46=	-월 <u>3</u>	
	d=1 d=2	9,12=158 FOR UNIT 3	
	1-4	, croses	

VANG. SH = 12 [a+L] $=\frac{33}{2}\left[14+44\right] = \frac{33}{2} \times 60 = 33 \times 30 = \frac{990}{2}$ $u = \frac{5}{33} \left[\frac{3}{3} + \frac{3}{33} \right] = \frac{5}{33} \times 525 = 33$ = (80+81+82)X3 = 243 ×3 = 729 4158 + 729

, 5877

i G.B.

Question 29 (*****)

Evaluate the following expression

nadasn

Detailed workings must be shown.

Madasmaths.com

alasmaths.com

2

Smarins com tr

I.F.G.B.

Madasmaths.com

I.V.C.B. Madasa

ins.com

 $\frac{9}{4}$

4.60

14

nadasman

Created by T. Madas

l.F.G.p

Question 30 (*****)

R,

I.C.P.

The sum to infinity S of the convergent geometric series is given by

 $S = 1 + x + x^{2} + x^{3} + x^{4} + \dots, |x| < 1,$

By integrating the above equation between suitable limits, or otherwise, find

You may assume that integration and summation commute.

|x| < 112/<1 $\Rightarrow \int_{k=1}^{\infty} \sum_{k=1}^{\infty} \alpha^{k+1} dx = \int_{0}^{1} \frac{1}{1-x} dx$ $\implies \sum_{k=1}^{\infty} \left[\int_{0}^{\frac{1}{2}} x^{k-1} dx \right] = \left[-k \left| \left| -x \right| \right| \right]_{0}^{\frac{1}{2}}$ $\Rightarrow \sum_{h=1}^{\infty} \left[\frac{d^{h}}{h} \right]_{0}^{\frac{1}{2}} = \left[\left[h \left[1 - \chi \right] \right]_{\frac{1}{2}}^{0} \right]_{0}$ $= \sum_{n=1}^{\infty} \left(\frac{1}{n} \left(\frac{1}{n} \right)^n - 0 \right) = \int dt - \ln \frac{1}{2}$ $\sum_{i=1}^{\infty} \left[\frac{1}{N_{X2}^{N}} \right] = -\ln \frac{1}{2}$ $\sum_{r=1}^{\infty} \left[\frac{1}{2^{r} \Gamma} \right] =$

RNATIVE SOUTION USING STANDARD EXPANSIONS DREING THE EXPINISION OF M(1-21) $|n(1-x)| = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^4}{4}$ $= -\left[\frac{1}{2} + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^4 + \frac{1}{4}\left(\frac{1}{2}\right)^4 + \cdots\right]$ $\left[\frac{1}{2} + \frac{1}{29^{4}} + \frac{1}{3\cdot 2^{8}} + \frac{1}{4\cdot 2^{4}} + \cdots\right]$ S(tr]

i.C.P.

 $\ln 2$

è

Evaluate the following expression

ths.co

4.6.5

1.4

11202SI121

The Com

 $\boxed{, \frac{8}{3}}$

= 2 2 1/2"

 $= 2 \left[1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \dots \right] - 2 \left[\frac{1}{2} + \frac{1}{6} + \frac{1}{52} + \frac{1}{128} + \dots \right]$

nadasmaths.com

I.V.C.B. Madasn

Question 32 (*****)

alasmaths.com

Evaluate the following expression

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[\frac{1}{2^{m+n}} \right]$$

Detailed workings must be shown.

nadasn

ISM3///SCOM / K.C.B

I.F.G.B

	WORK AS FOLLOWS
2	$\sum_{h=0}^{\infty} \sum_{m=0}^{h} \left[\frac{1}{2^{h}m} \right] = \sum_{h=0}^{\infty} \left[\sum_{h=0}^{h} \left[\frac{1}{2^{m}} \times \frac{1}{2^{n}} \right] \right]$
S'A	$= \sum_{h=0}^{\infty} \left[\frac{1}{2^{n}} \sum_{h=0}^{n} \left(\frac{1}{2^{n}} \right) \right]$
100	$= \sum_{h=0}^{\frac{1}{2}} \left[\frac{1}{2^{h}} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \dots + \frac{1}{2^{n}} \right) \right]$
911	neo ⊂ G.P Wint a=1 T=± n+1 tuni
200	$\varphi_{n} = \frac{a(\underline{i} - r^{n})}{1 - r}$ $\varphi_{nn} = \frac{a(\underline{i} - r^{n})}{1 - r}$
	THUS WE SIMPLIFY TO
~01	$= \sum_{h=0}^{\infty} \left[\frac{1}{2^{h}} \times \frac{1(1-\frac{h}{2})^{h+1}}{1-\frac{h}{2}} \right]$
	$= \sum_{h=0}^{2n} \left[\frac{1}{2^{n}} \times 2 \times \left(1 - \left(\frac{1}{2} \right)^{2n} \right) \right]$
	$= \partial \sum_{k=0}^{\infty} \left[\frac{1}{2^k} \left(l - \frac{1}{2^{n_k}} \right) \right]$
1	$= \Im \sum_{i=1}^{N+q} \left[\frac{1}{2^{n}} - \frac{1}{2^{n}} \right]$
SO.	6.10
58	- S.C.
	n 50
	tata ang ang ang ang ang ang ang ang ang an

Created by T. Madas

COM

Madasmaths.com

Question 33 (*****)

It is given that L is the sum to infinity of the following convergent series

1+

M2112