RECURRENCE RELATIONS

Created by T. Madas

Question 1 (**)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by the recurrence relation

$$
u_{n+1}=3 u_{n}+2, \quad u_{1}=2
$$

Find the value of u_{2}, u_{3}, u_{4} and u_{5}.

$$
u_{2}=8, u_{3}=26, u_{4}=80, u_{5}=242
$$

Question 2 (**)
A sequence $y_{1}, y_{2}, y_{3}, y_{4}, \ldots$ is given by

$$
y_{n+1}=4 y_{n}-3, \quad y_{1}=2 .
$$

a) Find the value of y_{2}, y_{3}, y_{4} and y_{5}.

It is further given that $y_{10}=262145$.
b) Calculate the value of y_{9}.
$y_{2}=5, y_{3}=17, y_{4}=65, y_{5}=257, y_{9}=65537$

Created by T. Madas

Question 3 (**)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by the recurrence relation

$$
u_{n+1}=2 u_{n}-n^{2}+3, \quad u_{1}=2
$$

Find the value of u_{2}, u_{3}, u_{4} and u_{5}.

$$
u_{2}=6, u_{3}=11, u_{4}=16, u_{5}=19
$$

$4 x=2 u^{2}-h^{2}+3$ $u_{1}=2$ (Goun)
\qquad

Question 4 (**)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=\left(3-u_{n}\right)^{2}, \quad u_{1}=4
$$

a) Find the value of u_{2}, u_{3} and u_{4}.
b) State the value of u_{10}.

Created by T. Madas

Question 5 (**)
A sequence $b_{1}, b_{2}, b_{3}, b_{4}, \ldots$ is given by

$$
b_{n+1}=5 b_{n}-3, \quad b_{1}=k
$$

where k is a non zero constant.
a) Find the value of b_{4} in terms of k.
b) Given that $b_{4}=7$, determine the value of k.

Created by T. Madas

Question 6 (**)
A recurrence relation is defined for $n \geq 1$ by
where k is a non zero constant.
a) Find the value of a_{4} in terms of k.

It is further given that

$$
a_{n+1}=3 a_{n}+4, \quad a_{1}=k
$$

On

$$
\sum_{r=1}^{4} a_{r}=32
$$

b) Determine the value of k.
$a_{4}=27 k+52, k=-1$
(a) $a_{k+1}=3 a_{n}+4$
$a_{1}=k$
$a_{2}=3 a_{1}+4=3 k+4$
$a_{3}=3 a_{2}+4=3(3 k+4)+4=9 k+12+4=9 k+k$
$a_{4}=3 a_{3}+4=3(9 k+16)+4=27 k+48+4=27 k+52$
(b) $\sum_{r=1}^{4} a_{r}=32$
$\Rightarrow a_{1}+a_{2}+a_{3}+a_{4}=32$ $\Rightarrow k+(3 k+4)+(4 k+16)+(2 \pi k+52)=32$ $\Rightarrow 4 k=-40$

Created by T. Madas

Question 7 (**)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=3 u_{n}-9, \quad u_{1}=k
$$

where k is a non zero constant.
a) Find the value of u_{3} in terms of k.

$$
\sum_{r=1}^{4} u_{r}=38
$$

b) Find the value of k.

Created by T. Madas

Question 8 (**)
A recurrence relation is defined for $n \geq 1$ by

$$
t_{n+1}=k t_{n}-1, \quad t_{1}=2
$$

where k is a non zero constant.
a) Find the value of t_{3} in terms of k.
b) Given that $t_{3}=14$ find the possible values of k.

$$
t_{3}=2 k^{2}-k-1, k=-\frac{5}{2}, 3
$$

Created by T. Madas

Question 9 (**)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=k u_{n}+5, \quad u_{1}=2
$$

where k is a non zero constant.
a) Find the value of u_{3} in terms of k. It is further given that

$$
\sum_{r=1}^{3} u_{r}=7
$$

b) Find the possible values of k.

$$
u_{3}=2 k^{2}+5 k+5, k=-1,-\frac{5}{2}
$$

Question 10 (**)
A sequence $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ is given by the recurrence formula

$$
x_{n+1}=5\left(x_{n}+1\right)-2 n^{2}, \quad x_{1}=\frac{4}{5} .
$$

Calculate the value of x_{2}, x_{3}, x_{4}, and x_{5}.

$$
x_{2}=7, x_{3}=32, x_{4}=147, x_{5}=708
$$

Question 11 (**)
A sequence $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6} \ldots$ is given by the recurrence formula

$$
t_{n+1}=n t_{n}-\left(t_{n}\right)^{2}+4, \quad t_{1}=2
$$

Find the value of $t_{2}, t_{3}, t_{4}, t_{5}$ and t_{6}.

$$
t_{2}=2, t_{3}=4, t_{4}=0, t_{5}=4, t_{6}=8
$$

Question 12 (**+)
A recurrence relation is defined for $n \geq 1$ by

$$
a_{n+1}=7 a_{n}-n^{3}-3, \quad a_{1}=1
$$

a) Find the value of a_{4}.
b) Evaluate the sum

Question 13 (**+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, \ldots$ is given by

$$
u_{n+2}=u_{n+1}+2 u_{n}, \quad u_{2}=4, \quad u_{3}=8
$$

a) Find the value of u_{4}, u_{5} and u_{6}.
b) Determine the value of u_{1}.

$$
u_{4}=16, u_{5}=32, u_{6}=64, u_{1}=2
$$

Question 14 (**+)
A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=\frac{1}{1-u_{n}}, n \geq 1, \quad u_{1}=2
$$

a) Find the value of u_{2}, u_{3} and u_{4}.
b) State the value of u_{12}.

$$
\sum_{r=1}^{12} u_{r}=6
$$

c) Show clearly that

Created by T. Madas

Question 15 (**+)

A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=k u_{n}+4, \quad n \geq 1, \quad u_{1}=16,
$$

where k is a non zero constant.
a) If $u_{3}=10$, find the possible values of k.
b) Determine the value of u_{4}, given that $k>0$.

Question 16 (**+)

A sequence $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, \ldots$ is given by

$$
t_{n+1}=2 t_{n}+1, \quad t_{5}=103
$$

Find the value of t_{1}.

Created by T. Madas

Question 17 (**+)

A sequence $y_{1}, y_{2}, y_{3}, y_{4}, \ldots$ is given by the recurrence formula

$$
y_{n+1}=2 y_{n}-4 n+4, \quad y_{5}=52 .
$$

a) Make y_{n} the subject of the above recurrence formula.
b) Hence determine the value of y_{4}, y_{3}, y_{2} and y_{1}.

$$
y_{n}=\frac{y_{n+1}+4 n-4}{2}, y_{4}=32, y_{3}=20, y_{2}=12, y_{1}=6
$$

Question 18 (***)

A sequence is defined for $n \geq 1$ by the recurrence relation

$$
u_{n+1}=2 u_{n}+1, \quad u_{1}=3
$$

a) Find the first five terms of the sequence.
b) By considering the first few powers of 2 , write down an expression for the $n^{\text {th }}$ term of the sequence.

$$
3,7,15,31,63, \ldots, u_{n}=2^{n+1}-1
$$

Question 19 (***)
A sequence of numbers is given by the recurrence relation

$$
a_{n+1}=5-\frac{18}{4+a_{n}}, n \geq 1, a_{2}=0
$$

a) Find the value of a_{3}, a_{4} and a_{5}.
b) Determine the value of a_{1}.
c) Calculate the value of

Created by T. Madas

Question 20 (***)
A sequence $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ is given by

$$
x_{n+1}=\frac{k-5 x_{n}}{x_{n}}, \quad x_{1}=1, \quad k>5
$$

where k is a non zero constant.
a) Determine the value of x_{3} in terms of k, giving the final answer as a single simplified fraction.

It is further given that $x_{3}>6$.
b) Find the range of the values of k.

Question 21 (***)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by the recurrence relation

$$
u_{n+1}=2 u_{n}+(-1)^{n}\left(n^{2}+2\right), \quad u_{1}=10
$$

Find the value of u_{2}, u_{3}, u_{4} and u_{5}.

$$
u_{2}=17, u_{3}=40, u_{4}=69, u_{5}=156
$$

Question 22 (***+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is defined by the recursive relation

$$
u_{n+1}=2 u_{n}+3, \quad u_{1}=k,
$$

where k is a non zero constant.
a) Given that $u_{6}=189$, find the value of u_{5}.
b) Determine the value of k.

$$
u_{5}=93, k=3
$$

Created by T. Madas

Question 23 (***+)
A sequence $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ is given by

$$
a_{n+1}=p+q a_{n}
$$

where p and q are non zero constants.

It is given that $a_{1}=250, a_{2}=220$ and $a_{3}=196$.
a) Determine the value of p and the value of q.
b) Show clearly that the sequence converges to 100 .
\square
, $p=20, q=\frac{4}{5}$

Created by T. Madas

Created by T. Madas

Question 24 (***+)
A sequence $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ is given by

$$
x_{n+1}=\frac{a+2 x_{n}}{x_{n}}, \quad x_{1}=2
$$

where a is a non zero constant.
a) Find a simplified expression for x_{3} in terms of a. It is given that $x_{3}=12$.
b) Determine the value of a.

Created by T. Madas

Question 25 (***+)
A recurrence relation is defined for $n \geq 1$ by

$$
u_{n+1}=a+\frac{1}{2} u_{n}, \quad u_{1}=520
$$

where a is a non zero constant.
a) Given that $u_{4}=72$, find the value of a.
b) Given further that $u_{10}=9$, find the value of u_{9}.

Created by T. Madas

Question 26 (***+)
A sequence of positive numbers is given by the recurrence relation for $n \geq 1$ by

$$
u_{n+1}=k u_{n}+4, \quad u_{1}=16
$$

where k is a non zero constant.
a) Given that $u_{3}=10$, find the value of k.
b) Given further that the sequence converges to a limit L, use an algebraic method to determine the value of L.

Created by T. Madas

Question 27 (***+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by
where k is a non zero constant.
a) Given that $u_{4}=21$ find the value of u_{3}.
b) Determine the value of k.

Question 28 (***+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+2}=k u_{n+1}+5 u_{n}, \quad u_{1}=2, \quad u_{2}=-2,
$$

where k is a non zero constant.
a) Find the value of u_{4} in terms of k.
b) Given that $u_{4}=2$, find the possible values of k.

$$
u_{4}=-2 k^{2}+10 k-10, k=2,3
$$

Question 29 (***+)
A sequence is defined for $n \geq 1$ by the recurrence relation

$$
u_{n+1}=2 u_{n}+4 n-n^{2}+(-1)^{n+1} 2^{n-1}, \quad u_{1}=2 .
$$

Find the first five terms of the sequence.

Created by T. Madas

Question 30 (${ }^{* * *+)}$
A sequence $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ is given by the recurrence formula

$$
a_{n+1}=\frac{a_{n}}{1+a_{n}}, a_{1}=1
$$

a) Determine the value of a_{2}, a_{3}, a_{4} and a_{5}.
b) State an expression for the $n^{\text {th }}$ term of the sequence and verify that it satisfies the above recurrence formula.

Created by T. Madas

Question 31 (***+)

A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is defined by the recursive relation

$$
u_{n+2}=3 u_{n+1}-2 u_{n}, \quad u_{1}=k,
$$

where k is a non zero constant.

Given that $u_{6}=33$ and $u_{7}=65$, determine the value of k.

Question 32 (***+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=4 u_{n}+k u_{n-1},
$$

where k is a non zero constant.

It is further given that $u_{2}=4, u_{3}=12$ and $u_{5}=178$.

Determine the value of k.

Question 33 (***+)
A recurrence relation is defined for $n \geq 1$ by

$$
t_{n+1}=a t_{n}+b, \quad t_{1}=2
$$

where a and b are non zero constants.

Given further that

$$
t_{2}=3 \quad \text { and } \quad \sum_{r=1}^{3} t_{r}=12
$$

find the possible value of a and the possible value of b.

Created by T. Madas

Question 34 (***+)
A sequence of numbers, $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$, is defined by

$$
u_{n}=\frac{1}{1-u_{n-1}}, \quad u_{1}=2
$$

Determine the value of

Question 35 (****)
A recurrence relation is defined for $n \geq 1$ by

$$
u_{n+1}=k+(-1)^{n} u_{n}, \quad u_{1}=4
$$

where k is a non zero constant.
a) Show clearly that $u_{5}=4$.
b) State, in terms of k, the value of u_{26}.
c) Given further that

$$
\sum_{r=1}^{4} u_{r}=6
$$

find the value of k.
d) Evaluate the sum

$$
\sum_{r=1}^{26} u_{r}
$$

\square $, u_{26}=k-4, k=3, S_{26}=39$
 Coses)

Created by T. Madas

Question 36 (****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots$ is given by

$$
u_{n+2}=u_{n+1}+6 u_{n}, \quad u_{1}=1, \quad u_{2}=13 .
$$

a) Find the value of u_{3}, the value of u_{4} and the value of u_{5}.
b) Find a simplified expression for the $n^{\text {th }}$ term of the above sequence by considering the first few terms of the sequence shown below

$$
3-2,9+4,27-8,81+16,243-32, \ldots
$$

4

$$
\square, u_{3}=19, u_{4}=97, u_{5}=211, u_{n}=3^{n}+(-2)^{n}
$$

\square

Created by T. Madas

Question 37 (****)
A sequence $t_{1}, t_{2}, t_{3}, t_{4}, \ldots$ is given by

$$
t_{n+1}=a+b t_{n},
$$

where a and b are non zero constants.

It is given that $t_{3}=320, t_{4}=240$ and $t_{5}=200$.
a) Determine the value of a and the value of b.
b) Find the value of t_{6}.
c) Show clearly that $t_{1}=800$.

The sequence converges to a limit L.
d) Determine the value of L.
$a=80, \quad b=\frac{1}{2}, \quad t_{6}=180, \quad L=160$

Created by T. Madas

Created by T. Madas

Question 38 (****)
A recurrence relation is defined for $n \geq 1$ by

$$
a_{n+1}=\left(a_{n}\right)^{2}-4, \quad a_{1}=k
$$

where k is a non zero constant.
a) Find the value of a_{3} in terms of k.

It is given that $a_{2}+a_{3}=26$.
b) Find the possible values of k.

Question 39 (${ }^{* * * *) ~}$
A sequence $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6} \ldots$ is given by

$$
y_{n+2}=y_{n+1}+2 y_{n}, \quad y_{1}=1, \quad y_{2}=5 .
$$

a) Find the value of y_{3}, y_{4}, y_{5} and y_{6}.
b) Find a simplified expression for the $n^{\text {th }}$ term of the sequence, by considering the first few powers of 2 .
\square , $y_{3}=7, y_{4}=17$, \square
\square $y_{n}=2^{n}+(-1)^{n}$

Created by T. Madas

Question 40 (****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=k-\frac{12}{u_{n}}, \quad u_{1}=1
$$

where k is a non zero constant.

$$
4 u_{2}=u_{3}+1
$$

a) Show that one of the possible values of k is 15 and find the other.
b) If $k=15$ find the exact value of u_{4}.

Created by T. Madas

Question 41 (****)

A sequence of numbers is defined by the recurrence relation for $n \geq 1$

$$
u_{n+1}=k u_{n}+6, \quad u_{1}=4,
$$

where k is a non zero constant.
a) Find, in terms of k, the value of u_{2} and the value of u_{3}
b) Given that $u_{3}=10$ find the possible values of k.

The sequence tends to a limit L.
c) Find the value of u_{4}.
d) Determine the value of L.

$$
u_{2}=4 k+6, u_{3}=4 k^{2}+6 k+6, k=-2, \frac{1}{2}, \quad u_{4}=11, \quad L=12
$$

Question 42 (****)
A recurrence relation is defined for $n \geq 1$ by

$$
U_{n+1}=a U_{n}+b, \quad U_{1}=k
$$

where a, b and k are non zero constants.

It is given that $U_{2}=5, U_{3}=13$ and $U_{4}=45$.
a) Find the value of a and the value of b.
b) Determine the value of k.

$$
a=4, b=-7, \quad U_{1}=k=3
$$

Question 43 (****)
A sequence of numbers is given by the recurrence relation

$$
t_{n+1}=A t_{n}+B, \quad n \geq 1,
$$

where A and B are non zero constants.

It is given that $t_{4}=205$ and $t_{5}=189$, and the sequence converges to 125 .
a) By forming and solving two equations show that $A=\frac{4}{5}$ and $B=25$.
b) Find the value of t_{1}.

Created by T. Madas

Created by T. Madas

Question 44 (****)
A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=p u_{n}+q, \quad n \geq 1,
$$

where p and q are non zero constants.

It is given that $u_{3}=285$ and $u_{4}=321$, and the sequence converges to 375 .
a) Find the value of p and the value of q
b) Determine the value of u_{1}.

$$
p=\frac{3}{5}, q=150, u_{1}=125
$$

Created by T. Madas

Question 45 (****)

$$
P_{n+1}=A+B P_{n}, t>1 .
$$

The relationship above gives the amount of money Adrian pays into a pension scheme each year P_{n}, where n is the pension contribution in the $n^{\text {th }}$ year.

Adrian's annual contributions in the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ years were $£ 1625, £ 2425$ and $£ 3065$, respectively.
a) Find the value of A and the value of B.
b) Determine Adrian's annual contributions in the first year.

Adrian's annual contributions cannot exceed a certain amount L.
c) Find the value of L.

$$
A=1125, B=0.8, P_{1}=625, L=5625
$$

Created by T. Madas

Created by T. Madas

Question 46 (****)
In a clinical trial the concentration C, of a certain blood agent, is measured at one hour intervals since a trial drug was first administered to a patient.

The following readings were obtained

$$
C_{3}=88, C_{4}=76 \text { and } C_{5}=70,
$$

where C_{t} denotes the reading t hours after the drug was first administered.

It is thought that C satisfies the relationship

$$
C_{t+1}=a+b C_{t}, t \geq 0
$$

a) Find the value of a and the value of b.
b) Determine the initial concentration of the blood agent, when the drug was first administered.

The value of C converges to a limit L.
c) Find the value of L.

Created by T. Madas

Question 47 (****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
\left(u_{n+1}\right)\left(u_{n}\right)^{2}=\frac{n^{4}}{n+2}, \quad u_{1}=\frac{1}{2}
$$

Calculate the value of u_{2}, u_{3}, u_{4} and u_{5}, and hence write an expression for the $n^{\text {th }}$ term of the sequence.

Created by T. Madas

Question 48 (****)
A sequence $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ is given by the recurrence formula

$$
x_{n+1}=\frac{x_{n}}{2 n x_{n}+x_{n}+1}, x_{1}=1
$$

a) Determine the value of x_{2}, x_{3}, x_{4} and x_{5}.
b) State an expression for the $n^{\text {th }}$ term of the sequence and verify that it satisfies the above recurrence formula.

$$
x_{2}=\frac{1}{4}, x_{3}=\frac{1}{9}, x_{4}=\frac{1}{16}, x_{5}=\frac{1}{25}, x_{n}=\frac{1}{n^{2}}
$$

Created by T. Madas

Question 49 (****)
A recurrence relation obeys the relationship

$$
x_{n+1}=\sqrt{x_{n}+12}, x_{1}=k
$$

where k is a non zero constant.

This recurrence relation converges to a limit L, for a suitable range of values of k.
a) Find the value of L.
b) Determine the range of values of k, so L exists.

Created by T. Madas

Question 50 (****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=\frac{1}{1-u_{n}}, \quad u_{1}=k
$$

where k is a non zero constant.
a) Show clearly that $u_{4}=k$.
b) Given that $u_{2} \times u_{3}=-\frac{1}{2}$, determine the value of k.
c) State the value of u_{110}.

Created by T. Madas

Question 51 (****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots$ satisfies

$$
u_{n+1}=A u_{n}+B \text {, }
$$

where A and B are non zero constants.

The second and third term of this sequence are 464 and 428 , respectively.

Given further that the sequence converges to 320 , find the value of the fourth term of this sequence.

Created by T. Madas

Question 52 (****+)
A sequence of numbers is given by the recurrence relation

$$
u_{n+1}=\frac{A u_{n}+2}{4+B u_{n}}, n \geq 1, \quad u_{1}=\frac{1}{2}
$$

where A and B are non zero constants.
a) If $u_{2}=-2$ and $u_{3}=-\frac{1}{3}$, find the value of A and the value of B.

$$
\sum_{r=1}^{37} u_{r}=-16
$$

Created by T. Madas

Question 53 (****+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=\frac{u_{n}}{a}+\frac{a}{u_{n}}, \quad u_{1}=2
$$

where a is a non zero constant.
a) Find the value of u_{3} in terms of a.

It is further given that

$$
u_{1}+u_{2}=4.5
$$

b) Find the possible values of u_{3}.

$$
u_{3}=\frac{4+a^{2}}{2 a^{2}}+\frac{2 a^{2}}{4+a^{2}}, \quad u_{3}=\frac{29}{10}, \frac{89}{40}
$$

Question 54 ($* * * *+$)
A sequence $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, \ldots$ is given by

$$
t_{n+1}=a t_{n}+3 n+2, \quad t \in \mathbb{N}, \quad t_{1}=-2
$$

where a is a non zero constant.
\square $, a=5, a=-\frac{7}{2}, 1452$
b) Evaluate $\sum_{r=8}^{31}\left(t_{r+1}-a t_{r}\right)$.

b) We Procesi ts nonows (THe valwe of k is lereivar)
$\sum_{r=8}^{31}\left[t_{r+1}-a t_{r}\right]=\sum_{r=8}^{3 i}\left[\left(a t_{r}+3 r+2\right)-a t_{r}\right]$ $=\sum_{t=8}^{31}(3 r+2)$

$\Rightarrow S_{4}=\frac{n}{2}[a+L]$
$\Rightarrow S_{24}=\frac{24}{2}[26+95]$
$\Longrightarrow \$_{24}=12 \times 121$
$\Rightarrow S_{24}=\begin{array}{r}1210 \\ 242\end{array}$
$\Rightarrow f_{24}=1452$

Created by T. Madas

Question 55 (****+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n}=2 n^{2}-7 n-5
$$

Find an expression for u_{n+1} as a recurrence relation of the form

$$
u_{n+1}=A u_{n}+B n+C, u_{1}=D
$$

where A, B, C and D are constants to be found.

$$
u_{n+1}=u_{n}+4 n-5, \quad u_{1}=-10
$$

Question 56 (****+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n}=2^{n}+4 n
$$

Find an expression for u_{n+1} as a recurrence relation of the form

$$
u_{n+1}=A u_{n}+B n+C, u_{1}=D
$$

where A, B, C and D are constants to be found.

Question 57 (****+)
A recurrence relation is defined for $n \geq 1$ by

$$
t_{n+1}=a t_{n}+b
$$

where a and b are non zero constants.

It is given that $t_{2}=176, t_{3}=248$ and $t_{4}=284$.
a) Find the value of a and the value of b.
b) Determine the value of t_{1}.

The sequence converges to a limit l.
c) Find the value of l.

The $n^{\text {th }}$ term of the sequence is given by

$$
t_{n}=p+q\left(\frac{1}{2}\right)^{n}, \text { where } p \text { and } q \text { are constants. }
$$

d) Find the value of p and the value of q.

$$
a=\frac{1}{2}, b=160, t_{1}=32, l=320, p=320, q=-576
$$

Question 58 (****+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n}=3^{n}+(-2)^{n}
$$

Find an expression for u_{n+2}, as a recurrence relation of the form,

$$
u_{n+2}=A u_{n+1}+B u_{n}, u_{1}=C, u_{2}=D
$$

where A, B, C and D are constants to be found.

Created by T. Madas

Question 59 (****+)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ is given by

$$
u_{n+1}=f\left(n, u_{n}\right)
$$

The first few terms of the sequence are

$$
2,-1,5,-4,8,-7, \ldots
$$

Find an expression for u_{n+1}, in the form $u_{n+1}=f\left(n, u_{n}\right)$.
\square
, $u_{n+1}=u_{n}+(-1)^{n}(3 n)$

Created by T. Madas

Question $60 \quad(* * * *+$)
The $n^{\text {th }}$ term of the sequence is given by

$$
u_{n}=\frac{n+2}{2 n+1}, n \in \mathbb{N}, n \geq 1 .
$$

Show that the same sequence can be generated by the recurrence relation

$$
u_{n+1}=\frac{A u_{n}-1}{B u_{n}+1}, u_{1}=1, n \in \mathbb{N}, n \geq 1
$$

where A and B are integers to be found.

Question 61 (****+)
A sequence is defined for $n \geq 1$ by the recurrence relation

$$
u_{n+1}=\frac{5 u_{n}}{1+8 u_{n}}, \quad u_{1}=\frac{1}{5}
$$

Determine an expression for u_{n}, given that it is of the form

$$
u_{n}=\frac{a^{n-1}}{c+k a^{n-1}}
$$

where a, c and k are constants to be found.

\square

$$
u_{n}=\frac{5^{n-1}}{3+2\left(5^{n-1}\right)}
$$

Created by T. Madas

Question 62 (*****)
A sequence $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots$ is given by the recurrence formula

$$
u_{n+2}=\frac{3 u_{n}+u_{n+1}}{2}, \quad u_{1}=1, u_{2}=1
$$

It is further given that in this sequence the ratio of consecutive terms converges to a limit L.

Determine the value of L.

Created by T. Madas

Question 63 (*****)
A factory gets permission to dispose, at the start of every day, 600 kg of waste into a stream of water.

The running stream removes 40% of the any waste present, by the end of the day.

Determine a simplified expression for the amount of waste present in the stream at the end of the $n^{\text {th }}$ day.

Created by T. Madas

Question 64 (*****)
The Fibonacci sequence is given by the recurrence formula

$$
u_{n+2}=u_{n+1}+u_{n}, \quad u_{1}=1, u_{2}=1
$$

It is further given that in this sequence the ratio of consecutive terms converges to a limit ϕ, known as the Golden Ratio.

Show, by using the above recurrence formula, that $\phi=\frac{1}{2}(1+\sqrt{5})$.
\square , proof

Created by T. Madas

Question 65 (*****)
The $n^{\text {th }}$ term of a sequence is given by

$$
u_{n}=1+\left(\frac{1}{3}\right)^{n}, \quad \text { where } n \geq 1
$$

a) By expressing u_{n+1} in terms of u_{n}, or otherwise, define the terms of the sequence as a recurrence relation.

A recurrence relation is defined for $n \geq 1$ by

$$
U_{n+1}=2 U_{n}-5, U_{1}=6
$$

b) By finding the $n^{\text {th }}$ term of the sequence, or otherwise, show that

$$
u_{31}=1,073,741,829
$$

$\square, u_{n+1}=\frac{2+u_{n}}{3}, u_{1}=\frac{4}{3}, U_{n}=2^{n-1}+5$

Created by T. Madas

Question 66 (*****)
A sequence is defined by the recurrence relation

$$
u_{n}=\frac{2 n}{2 n+1} u_{n-1}, n \in \mathbb{N} \quad u_{0}=1
$$

Show, by direct manipulation, that

$$
u_{n}=\frac{4^{n} \times(n!)^{2}}{(2 n+1)!}
$$

[you may not use proof by induction]

Question 67 (*****)
A sequence of numbers, $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$, is defined by

$$
u_{n+1}=3 u_{n}-1, \quad u_{1}=2
$$

Determine, in terms of n, a simplified expression for

$$
\sum_{r=1}^{n} u_{r}
$$

FHOS THE nth Trom CON BE GOUND $u_{m m}=2+\sum_{i=1}^{n} 3^{r}=2+\underbrace{3+3^{2}+3^{2}+\ldots+s^{n}}$ SUMUING OP

Created by T. Madas

Question 68 (*****)
It is given that

$$
\sum_{r=1}^{n} u_{r}=6^{n+1}-10 \times 2^{n}+4
$$

where u_{n} is the $n^{\text {th }}$ term of a sequence.

Show clearly that

$$
u_{n+2}=A u_{n+1}+B u_{n}
$$

where A and B are integers to be found.
\square , $u_{n+2}=8 u_{n+1}-12 u_{n}$
\square
\square

$$
\Rightarrow 24 u_{n}=120 p-3(40 Q)
$$

$\Rightarrow 24 u_{n}=u_{n+2}-2 u_{n+1}-3\left(u_{n+2}-6 u_{n+1}\right)$
$\Rightarrow 24 u_{n}=u_{n+2}-2 u_{n+1}-3 u_{n+2}+18 u_{n+1}$
$\Rightarrow 2 u_{n+2}=16 u_{n+1}-24 u_{n}$ $\Rightarrow u_{4+2}=8 u_{4+1}-12 u_{4}$

Created by T. Madas

Question 69 (*****)
The function f satisfies the following three relationships
i. $\quad f(3 n-2) \equiv f(3 n)-2, n \in \mathbb{N}$.
ii. $\quad f(3 n) \equiv f(n), n \in \mathbb{N}$.
iii. $\quad f(1)=25$.

Determine the value of $f(25)$.

Created by T. Madas

Question 70
(*****)
A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{n}{2 n+1} u_{n}, n \in \mathbb{N} \quad u_{1}=2
$$

Show, by direct manipulation, that

$$
u_{n}=\frac{2^{n} \times[(n-1)!]^{2}}{(2 n-1)!} .
$$

[You may not use proof by induction in this question]

Question 71 ($\left.{ }^{*} * * * * *\right)$
Consider the following sequence.

$$
\frac{1}{7}, \frac{1}{2}, \frac{7}{9}, 1, \frac{13}{11}, \frac{4}{3}, \frac{19}{13}, \frac{11}{7}, \ldots, x \in \mathbb{R}, x<2
$$

a) Determine the $n^{\text {th }}$ of this sequence and hence find a recurrence relation formula for this sequence.
b) Find a different, to that given in part (a), recurrence relation formula for the same sequence.
c) Determine a third recurrence relation formula for this sequence.

The recurrence relations in this question must be in the form $F\left(u_{n+1}, u_{n}, n\right)$

$\square, u_{n+1}=u_{n}+\frac{20}{(n+6)(n+7)}$,

$$
u_{n+1}=\frac{3 n^{2}+19 n+6}{3 n^{2}+19 n-14} u_{n},
$$

$$
u_{n+1}=\left(\frac{1}{u_{n}}\right) \frac{3 n^{2}-3 n-2}{n^{2}+13 n+42}
$$

Question 72 (******)
The $n^{\text {th }}$ term of a series is given recursively by

$$
A_{n}=\frac{a(2 n+1)}{2 n+4} A_{n-1}, n \in \mathbb{N}, n \geq 1
$$

where a is a positive constant.

Given further that $A_{0}=1$, show that
proof

Question 73 (*****)
A sequence is defined as

$$
u_{r+1}=u_{r}+\frac{2 r}{r^{4}+r^{2}+1}, \quad u_{1}=0, \quad r \in \mathbb{N}
$$

Determine the exact value of u_{61}.

