The transmission of the tr CLASINGUIS COM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM

Question 1 (**)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by the recurrence relation

$$u_{n+1} = 3u_n + 2, \quad u_1 = 2.$$

 $u_2 = 8$

Find the value of u_2 , u_3 , u_4 and u_5 .

 $u_3 = 26$, $u_4 = 80$, $u_5 = 242$

Question 2 (**)

A sequence $y_1, y_2, y_3, y_4, \dots$ is given by

$$y_{n+1} = 4y_n - 3$$
, $y_1 = 2$

a) Find the value of y_2 , y_3 , y_4 and y_5 .

It is further given that $y_{10} = 262145$.

b) Calculate the value of y_9 .

Question 3 (**)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by the recurrence relation

$$u_{n+1} = 2u_n - n^2 + 3$$
, $u_1 = 2$.

 $u_2 = 6$, $u_3 = 11$,

Find the value of u_2 , u_3 , u_4 and u_5 .

 $u_4 = 16$, $u_5 = 19$

Question 4 (**)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_{n+1} = (3 - u_n)^2, \quad u_1 = 4$$

a) Find the value of u_2 , u_3 and u_4 .

b) State the value of u_{10} .

$$u_2 = 1$$
, $u_3 = 4$, $u_4 = 1$, $u_{10} = 1$

 $\begin{array}{c} \begin{array}{c} (\mathbf{u}_{u_{1}} = (\mathbf{3} - \mathbf{u}_{u_{1}})^{2} \\ (\mathbf{u}_{1} = \mathbf{u}_{1} \\ (\mathbf{u}_{2} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{u}_{3} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{u}_{3} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{u}_{3} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{u}_{4} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{u}_{4} = (\mathbf{3} - \mathbf{u}_{1})^{2} \\ (\mathbf{3} - \mathbf{u}_{4})^{2} \\ (\mathbf{3} - \mathbf{u}_{5})^{2} \\ (\mathbf{3} - \mathbf{u}_{5})^{2}$

Question 5 (**)

I.C.B.

2017

I.C.P.

A sequence b_1 , b_2 , b_3 , b_4 , ... is given by

 $b_{n+1} = 5b_n - 3$, $b_1 = k$,

K.G.P.

where k is a non zero constant.

- **a**) Find the value of b_4 in terms of k.
- **b**) Given that $b_4 = 7$, determine the value of k.

nanasn.

2017

21/18

I.F.C.B.

 $, b_4 = 125k - 93, k = \frac{4}{5}$

COM

2

adasm

Created by T. Madas

Madasma,

Question 6 (**) A recurrence relation is defined for $n \ge 1$ by

 $a_{n+1} = 3a_n + 4$, $a_1 = k$,

where k is a non zero constant.

a) Find the value of a_4 in terms of k.

It is further given that

I.C.B. ma

I.C.P.

20

b) Determine the value of k.

<u>.</u>	
(a)	$\alpha_{k+1} = 3\alpha_{k+1}$
	$\alpha_n \approx K$
	$O_Q = 3 O_q + U_r = 3 E + U_r$
	$\alpha_3 = 3\alpha_2 + 4 = 3(3k+4) + 4 = 9k+12+4 = 9k+16$
	$Q_{4} = 3Q_{3} + 4 = 3(g_{k+16}) + 4 = 27k + 48 + 4 = 27k + 52$
(6)	$\frac{4}{\sum}q_{T} = 32$
	r_{21} $q_1 + q_2 + q_3 + q_4 = 32$
	k + (3k+4) +(9k+16) +(27k+52)=32
->	4ck + 72 = 32
\rightarrow	40K = -40

21/18

I.F.C.P.

Mada

n

 $a_4 = 27k + 52$, k

I.G.B.

(nn

Madasm,

100

1.4

Created by T. Madas

D

Question 7 (**)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_{n+1} = 3u_n - 9$, $u_1 = k$,

where k is a non zero constant.

a) Find the value of u_3 in terms of k.

It is further given that

I.G.B.

I.C.B.

 $\sum u_r = 38.$

b) Find the value of k.

 $u_3 = 9k - 36$, k = 5

21115

I.F.C.P.

Madası

m

I.C.B.

:0N

nadasm

íc.o.

2

Question 8 (**)

I.G.B.

I.C.P.

COM

A recurrence relation is defined for $n \ge 1$ by

 $t_{n+1} = kt_n - 1$, $t_1 = 2$,

where k is a non zero constant.

- **a**) Find the value of t_3 in terms of k.
- **b**) Given that $t_3 = 14$ find the possible values of k.

20

I.F.G.B.

 $= 2k^2$ k-1 $k = \cdot$

2017

1+

nadasm

COM

Maga

21/18

I.F.C.B.

manasn.

277

Created by T. Madas

D

Question 9 (**)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_{n+1} = ku_n + 5$, $u_1 = 2$,

 $u_r = 7$.

where k is a non zero constant.

a) Find the value of u_3 in terms of k.

It is further given that

F.C.B.

I.C.p

r=1

b) Find the possible values of k.

(a) $\begin{array}{c} \underbrace{ \bigcup_{u_1} = ku_{u_1+1}}_{p_1 - 2} & (b) \\ = \underbrace{ \sum_{p_1} U_{p_1} = 7 \\ = \underbrace{ \bigcup_{u_1} = ku_{u_1} + 1 \\ = \underbrace{ \bigcup_{u_2} ku_{u_1} + 5 = 2k + 5 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 5 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 5 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 5 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 5 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 1 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 5 + k(2k+1) + 1 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2} + 1 \\ = \underbrace{ \bigcup_{u_2} ku_{u_2}$

F.G.B.

ma.

12

 $u_3 = 2k^2 + 5k + 5$,

22

F.G.B.

2017

nadasm

è

Question 10 (**)

A sequence $x_1, x_2, x_3, x_4, \dots$ is given by the recurrence formula

$$x_{n+1} = 5(x_n+1) - 2n^2$$
, $x_1 = \frac{4}{5}$.

 $x_2 = 7$

Calculate the value of x_2 , x_3 , x_4 , and x_5 .

Question 11 (**)

A sequence $t_1, t_2, t_3, t_4, t_5, t_6...$ is given by the recurrence formula

$$t_{n+1} = nt_n - (t_n)^2 + 4$$
, $t_1 = 2$.

Find the value of t_2 , t_3 , t_4 , t_5 and t_6 .

$$t_2 = 2$$
, $t_3 = 4$, $t_4 = 0$, $t_5 = 4$, $t_6 = 8$

$$t_{n+1} = nt_n - t_n^2 + 4$$

 $t_{1} = 1$ $t_{2} = 1xt_{1} - t_{1}^{2} + 4 = 1x2 - 2^{2} + 4 = 2 - 4 + 4 = 2$

 $x_3 = 32$, $x_4 = 147$, $x_5 = 708$

 $5(\alpha_{y}+1)-2\eta^{2}$

- $t_3 = 2x_{12} t_2 + 4 = 2x_{2} 2 + 4 = 4 4 + 4 = 4$ • $t_4 = 3x_{13} - t_3^2 + 4 = 3x_4^2 - 4^2 + 4 = 12 - 16 + 4 = 0$
- $t_s = 4t_q t_q^2 + 4 = 4x0 0^2 + 4 = 0 0 + 4 = 4$ = $t_s = 4t_q - t_q^2 + 4 = 5x4 - 4^2 + 4 = 20 - 16 + 4 = 20$
- to = Sts ts + 4 = SX4 4 + 4 = 20 16 + 4 = 28

Question 12 (**+)

A recurrence relation is defined for $n \ge 1$ by

Y.G.B.

I.Y.C.B.

$$a_{n+1} = 7a_n - n^3 - 3, \quad a_1 = 1.$$

- **a**) Find the value of a_4 .
- **b**) Evaluate the sum

alasmaths.com

Smaths.com

I.F.G.p

I.F.G.B.

Ths.com

ths.com

4.60

6

11202351121

1.0	$\begin{array}{c} \mathbf{a}_{1} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{1}} - \frac{1b^{2}-2}{3} \\ & \underbrace{\mathbf{a}_{1}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1b^{2}-3}{3} = \frac{7}{7a_{1}} - \frac{1}{3} + \frac{3}{3} \\ & \underbrace{\mathbf{a}_{3}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{2}} - \frac{3}{3} - \frac{3}{3} = \frac{7}{7a_{1}} - \frac{1}{3} - \frac{3}{3} \\ & \underbrace{\mathbf{a}_{1}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{2}} - \frac{3}{3} - \frac{3}{3} = \frac{7}{7a_{1}} - \frac{1}{3} - \frac{3}{2} \\ & \underbrace{\mathbf{a}_{1}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{1}} - \frac{3}{2} - \frac{3}{2} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{7}{7a_{1}} - \frac{1}{3} - \frac{3}{2} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{1}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{1}{7a_{1}} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{3}{7} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{7a_{1}}{7a_{1}} - \frac{1}{3} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{7a_{1}}{7a_{1}} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \\ & \underbrace{\mathbf{a}_{2}}_{\mathbf{A}_{2}} = \frac{1}{3} - \frac{1}{$
×.	$ \begin{array}{c} \underbrace{40046. \ 744 \ Fabr S \ 750 \ 760 \ 1}_{\sum_{i=1}^{6} a_{i}, c_{i}} & = a_{i}, i_{i}, a_{i}, a_{i},$
·C.	C'S
0	m. I

nadasmaths.com

I.V.C.B. Madasn

Created by T. Madas

COM

madasmaths.com

Question 13 (**+)

COM

I.C.B.

20

A sequence $u_1, u_2, u_3, u_4, u_5, u_6, \dots$ is given by

 $u_{n+2} = u_{n+1} + 2u_n$, $u_2 = 4$, $u_3 = 8$.

20

?OM

 $u_4 = 16$,

 $u_{5} = 32$

2017

 $|u_6 = 64|$

COM

 $u_1 = 2$

1

6

Madasm.

00

I.V.C.B. Mada

- **a**) Find the value of u_4 , u_5 and u_6 .
- **b**) Determine the value of u_1 .

Question 14 (**+)

A sequence of numbers is given by the recurrence relation

$$u_{n+1} = \frac{1}{1 - u_n}, \quad n \ge 1, \quad u_1 = 2.$$

 $\sum u_r = 6$.

a) Find the value of u_2 , u_3 and u_4 .

I.C.B.

11202

6

- **b**) State the value of u_{12} .
- c) Show clearly that

I.C.B. Mal

I.C.P.

COM

2017

21/18

I.F.C.P.

COM

Mada

hs.com

madasm.

14.0

I.G.B.

Question 15 (**+)

A sequence of numbers is given by the recurrence relation

 $u_{n+1} = ku_n + 4$, $n \ge 1$, $u_1 = 16$,

where k is a non zero constant.

- **a**) If $u_3 = 10$, find the possible values of k.
- **b**) Determine the value of u_4 , given that k > 0.

ā)	un 2 kun + 4	NOW U3 =10
	$u_1 = 16$ $u_2 = ku_1 + 4 = kxk_1 + 4 = 16k_1 + 4$	62°+42+4=10 162°+42-6=0 84°+22-3=0
	$u_3 = Eu_2 + q = E(6k+4) + q = 16k^2 qk + 4$	(2K-1)(4K+3)=0 K= 1/2
6)	1820, Until 204+4 U3= 10	-34
	$\delta_{*} U_{4} = \frac{1}{2}U_{3} + 4 = \frac{1}{2}x_{10} + 4 = 5 + 4 = 6$	9

Question 16 (**+)

A sequence $t_1, t_2, t_3, t_4, t_5, \dots$ is given by

 $t_{n+1} = 2t_n + 1, \quad t_5 = 103.$

Find the value of t_1 .

	1911	
$t_{n+1} = 2t_0 + 1$ $t_{s} = 10$	33	
$ \begin{bmatrix} t_{\eta_H} - I = 2t_\eta \\ \hline t_\eta = \frac{t_{\eta_I} - I}{2} \end{bmatrix} . $	$f^{4} = \frac{2}{100} = \frac{5}{100} = \frac{5}{100} = 21$ $f^{2} = 103$	ł
	$t_{3} = \frac{t_{1}-1}{2} = \frac{51-1}{2} = \frac{50}{2} = 25$ $t_{2} = \frac{t_{1}-1}{2} = \frac{2t-1}{2} = \frac{2t}{2} = 12$ $t_{1} = \frac{t_{1}-1}{2} = \frac{12-1}{2} = \frac{11}{2}$	
	$f^{1} = \overline{\frac{1}{12\pi^{2}}} = \frac{5}{2\pi^{2}} = \frac{5}{2\pi^{2}}$	

 $t_1 = \frac{11}{2}$

Question 17 (**+)

A sequence $y_1, y_2, y_3, y_4, \dots$ is given by the recurrence formula

$$y_{n+1} = 2y_n - 4n + 4$$
, $y_5 = 52$.

a) Make y_n the subject of the above recurrence formula.

b) Hence determine the value of y_4 , y_3 , y_2 and y_1 .

Question 18 (***)

A sequence is defined for $n \ge 1$ by the recurrence relation

$$u_{n+1} = 2u_n + 1$$
, $u_1 = 3$

- a) Find the first five terms of the sequence.
- b) By considering the first few powers of 2, write down an expression for the n^{th} term of the sequence.

3, 7, 15, 31, 63,...,
$$u_n = 2^{n+1} - 1$$

Question 19 (***)

A sequence of numbers is given by the recurrence relation

$$a_{n+1} = 5 - \frac{18}{4 + a_n}, \ n \ge 1, \ a_2 = 0$$

- **a**) Find the value of a_3 , a_4 and a_5 .
- **b**) Determine the value of a_1 .
- c) Calculate the value of

I.C.B. Ma

I.F.G.B.

COM

$$u_3 = \frac{1}{2}, u_3 = 1, u_5 = \frac{7}{5}, u_1 = -\frac{2}{5}, \sum_{r=1}^{5} u_r = 2.5$$

(a.4+1 = 5-

K.G.B. 11121/2

COM

madasm.

115

ŀ.G.B.

nadasma

Created by T. Madas

0

Question 20 (***)

A sequence $x_1, x_2, x_3, x_4, \dots$ is given by

 $x_{n+1} = \frac{k - 5x_n}{x_n}, \quad x_1 = 1, \quad k > 5,$

where k is a non zero constant.

a) Determine the value of x_3 in terms of k, giving the final answer as a single simplified fraction.

It is further given that $x_3 > 6$.

b) Find the range of the values of k.

,	$x_3 = \frac{25 - 4k}{k - 5}, 5 < k < \frac{11}{2}$
	-0
	$\begin{array}{c} \overline{\mathcal{X}}_{i_{1}} \sim \frac{k-SX_{i}}{2x_{i}} \\ \cdot \overline{\mathcal{X}}_{i} = 1 \\ \cdot \overline{\mathcal{X}}_{i} \sim \frac{k-SX_{i}}{2x_{i}} = \frac{k-SX_{i}}{1} \\ \cdot \overline{\mathcal{X}}_{i} \sim \frac{k-SX_{i}}{2x_{i}} = \frac{k-S(k-2)}{k-C} \\ \cdot \overline{\mathcal{X}}_{i} \sim \frac{k-SX_{i}}{2x_{i}} = \frac{k-S(k-2)}{k-C} \\ \end{array}$
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	∴ 5 < k < <u>"</u>

1+

Question 21 (***)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by the recurrence relation

$$u_{n+1} = 2u_n + (-1)^n (n^2 + 2), \quad u_1 = 10$$

 $u_2 = 17$

Find the value of u_2 , u_3 , u_4 and u_5 .

Question 22 (***+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is defined by the recursive relation

$$u_{n+1} = 2u_n + 3$$
, $u_1 = k$,

where k is a non zero constant.

- **a**) Given that $u_6 = 189$, find the value of u_5 .
- **b**) Determine the value of k.

	5 = 93, $k = 3$
$[u_{u_{H_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$U_6 = 2U_5 + 3$ (b) $189 = 2U_5 + 3$ $186 = 2U_5$ $U_5 = 93 > 2$	$\begin{split} & U_{u_{k_1}} - 3 = -2U_{u_k} \\ & U_{u_l} = \frac{1}{2}(U_{u_{k_l}} - 3) \\ & U_{k_l} = \frac{1}{2}(U_{k_l} - 3) = -\frac{1}{2}(Q_{k_l} - 3) = 0.5 \end{split}$

 $u_3 = 40$, $u_4 = 69$, $u_5 = 156$

 $U_1 = 10 \quad (Giving)$ $U_2 = 2U_1 + (-1)^3 (t^2+2) = 0$ $U_1 = 2U_1 + (-1)^3 (2^2+2) = 0$

 $2(u_{i_1} + (-1)^{i_1}(n^2+2))$, $u_1 = 10$

(-1) (4+2) = 2869 LUB

 $\begin{array}{c} \frac{1}{2} \left(U_{w_1} - 3 \right) \\ \frac{1}{2} \left(U_{w_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = Q_{2} \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 2 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(Q_{2-S} \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = 3 \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) = \frac{1}{2} \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1} - 3 \right) \left(U_{q_1} - 3 \right) \\ \frac{1}{2} \left(U_{q_1$

Question 23 (***+)

A sequence $a_1, a_2, a_3, a_4, \dots$ is given by

 $a_{n+1} = p + qa_n,$

where p and q are non zero constants.

It is given that $a_1 = 250$, $a_2 = 220$ and $a_3 = 196$.

a) Determine the value of p and the value of q.

b) Show clearly that the sequence converges to 100.

4) <u>JASTITUTUS ATO THE REVERSE REATED</u> $\Rightarrow Q_{uni} = P + qq_{ui}$ $\Rightarrow d_{u} = P + qq_{u}$ $\Rightarrow d_{u} = 2 add = 2ad$ $\Rightarrow P + 220a \frac{1}{2} = 220$ $P + 220a \frac{1}{2} = 220$	
$ \begin{array}{c} \Rightarrow a_{k} = p + q \cdot q_{k} \\ \Rightarrow a_{j} - p + q \cdot q_{k} \\ \hline \qquad \vdots b_{0} = p + q \cdot q_{k} \\ \hline \qquad \vdots b_{0} = p + q \cdot q_{k} \\ \hline \qquad \vdots b_{0} = p + q \cdot q_{k} \\ \hline \qquad \vdots b_{0} = p + q \cdot q_{k} \\ \hline \qquad \vdots b_{0} = p + q \cdot q_{k} \\ \hline \qquad p + 220q = 220 \\ p + 220q = 1\%6 \\ \hline \qquad \Rightarrow p + 210\pi \frac{q}{4} = 220 \\ p + 220q = 1\%6 \\ \hline \qquad \Rightarrow p + 210\pi \frac{q}{4} = 220 \\ p + 220 = 220 \\ \hline \qquad p + 220\pi \frac{q}{4} = 220 \\ p + 220 = 220 \\ \hline \qquad p = 20 \\ \hline \qquad \qquad$	a) SUBSTITUTING NOTO THE RECORDENCE RELATION
$\Rightarrow a_{3} - p + qa_{2} \qquad : 196 = p + q \times 220$ $\Rightarrow COUNT AUTHORSONY$ $p + 230q = 220$ $p + 220q = 1956$ $\Rightarrow p + 220aq = 1956$ $\Rightarrow p + 220aq = 220$ $p = 220$ $p = 220$ $p = 20$ $\Rightarrow 0 = 41$ $\Rightarrow 0 = 100$	$\rightarrow 0_{4H} = P + q a_{4}$
Save sumptions of the second	$\implies q^5 = b + d \sigma 1 \qquad \because Sso = b + d \times S20$
$\begin{array}{c} p + 25q = 220\\ p + 220q = 195\\ \end{array}) \longrightarrow 30q = 24\\ q = \frac{4}{3}\\ \longrightarrow p + 220q = 195\\ p + 220q = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p + 220q = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p + 220q = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p = 20\\ \end{array}$ $\begin{array}{c} p + 220q = 20\\ p = 20\\ \end{array}$	= $0_3 - p + q_{42}$: $196 = p + q \times 220$
$\begin{array}{c} q = \frac{1}{3} \\ \rightarrow P + 20x \frac{1}{4} = 220 \\ P + 20x \frac{1}{4} = 220 \\ P + 220 = 2320 \\ P = 220 \end{array}$	SOUND IN UTITY BOULY
$\begin{array}{c} q = \frac{1}{3} \\ \rightarrow P + 20x \frac{1}{4} = 220 \\ P + 20x \frac{1}{4} = 220 \\ P + 220 = 2320 \\ P = 220 \end{array}$	p + 230q = 220 = 30 $q = 24$
$ \begin{array}{c} \longrightarrow \begin{array}{c} P+2 \cos \frac{4}{3} = 2 \infty \\ P+2 \cos \frac{4}{3} = 2 \infty \\ P+2 \infty \end{array} \\ \hline \end{array} \\ \begin{array}{c} \downarrow \\ P \end{array} \\ \hline \end{array} \\ \begin{array}{c} \downarrow \\ \Phi \end{array} \\ \begin{array}{c} \downarrow \\ \Psi \rightarrow \infty \end{array} \\ \begin{array}{c} \Box \\ \Theta \\$	p + 220q = 196 / d= 4
P + 220 = 320 $P = 20$	
b) Let the exposition (Linit is a line in the exposition (Linit is a line in the exposition of the ex	
$\begin{array}{cccc} t_{1} & t_{1} \rightarrow \infty & \Omega_{t} \approx \alpha_{u_{k_{1}}} \longrightarrow L \\ \Rightarrow & \Omega_{u_{k_{1}}} = 2n + \frac{H}{3} \alpha_{u} \\ \Rightarrow & L = 2n + \frac{H}{3} L \\ \Rightarrow & 5L = 100 + HL \\ \Rightarrow & L = 100 \end{array}$	P < 20
$\begin{array}{cccc} t_{1} & t_{1} \rightarrow \infty & \Omega_{t} \approx \alpha_{u_{k_{1}}} \longrightarrow L \\ \Rightarrow & \Omega_{u_{k_{1}}} = 2n + \frac{H}{3} \alpha_{u} \\ \Rightarrow & L = 2n + \frac{H}{3} L \\ \Rightarrow & 5L = 100 + HL \\ \Rightarrow & L = 100 \end{array}$	IFT THE PROVING UNIT BE
$ \begin{array}{c} \Rightarrow & a_{44} = 20 + \frac{4}{3} a_{4} \\ \Rightarrow & L = 20 + \frac{4}{3} L \\ \Rightarrow & 5L = 100 + 4L \\ \Rightarrow & L = 100 \end{array} $	
$ \begin{array}{c} \longrightarrow \qquad L = 20 + \frac{4}{3}L \\ \longrightarrow \qquad 5L = 100 + 4L \\ \hline \end{array} $	$f_{h} \to \infty$ $a_{h} \propto a_{h+1} \longrightarrow L$
$ \begin{array}{c} \longrightarrow \qquad L = 20 + \frac{4}{3}L \\ \longrightarrow \qquad 5L = 100 + 4L \\ \hline \end{array} $	$\Rightarrow Q_{n_{41}} = 2o + \# o_{4}$
-) <u>L= 100</u>	
INDEFED IT CONVERTE TO 100	P) L= 100
	INDEFD IT CONNECTED TO 100

p = 20

Question 24 (***+)

A sequence $x_1, x_2, x_3, x_4, \dots$ is given by

 $x_{n+1} = \frac{a+2x_n}{x_n}, \quad x_1 = 2,$

where a is a non zero constant.

a) Find a simplified expression for x_3 in terms of a.

It is given that $x_3 = 12$.

F.G.B.

I.C.B.

b) Determine the value of *a*.

(9)	$\Im_{uu_i} = \frac{\alpha + 2in}{\Im_{u_i}}$
	$ \begin{array}{l} \mathfrak{A}_{1} = 2 \\ \mathfrak{A}_{2} = - \frac{\mathfrak{a}_{+} \mathfrak{Z}_{3}}{\mathfrak{A}_{1}} = - \frac{\mathfrak{a}_{+} \mathfrak{a}_{+}}{\mathfrak{a}_{+} \mathfrak{Z} \left(\frac{\mathfrak{a}_{+} \mathfrak{b}_{+}}{\mathfrak{a}_{+}} \right)} \\ \mathfrak{O}_{5} = - \frac{\mathfrak{a}_{+} \mathfrak{Z}_{5}}{\mathfrak{a}_{+} \mathfrak{a}_{+}} = - \frac{\mathfrak{a}_{+} \mathfrak{Z} \left(\frac{\mathfrak{a}_{+} \mathfrak{b}_{+}}{\mathfrak{a}_{+}} \right)}{\mathfrak{a}_{+} \mathfrak{a}_{+}} = - \frac{\mathfrak{a}_{+} \mathfrak{a}_{+} \mathfrak{a}_{+}}{\mathfrak{a}_{+} \mathfrak{a}_{+}} \\ \end{array} $
(6)	$\begin{array}{l} \Im_{3} = 12 \\ \frac{4a+\theta}{a+4} = 12 \end{array}$
	44 + 8 = 7a + 48 -40 = 8a $\alpha = -5$
	· · · /

I.C.B.

na

4a + 8

 $x_3 =$

27

I.G.B.

nn

11.21/2.SI

a = -5

14

Question 25 (***+)

20

A recurrence relation is defined for $n \ge 1$ by

 $u_{n+1} = a + \frac{1}{2}u_n$, $u_1 = 520$,

where a is a non zero constant.

a) Given that $u_4 = 72$, find the value of *a*.

I.C.B.

I.C.

Smaths.com

I.F.G.B.

b) Given further that $u_{10} = 9$, find the value of u_9 .

I.C.B.

The Com

4.6.0

1

nadasm.

dia	(a) $\{U_{n+1} = \alpha + \frac{1}{2}U_n\}$
7/6	• U1 = 520
- Sec	• $U_2 = \alpha + \frac{1}{2}U_1 = \alpha + \frac{1}{2} \times 520 = \alpha + 260$
	• $U_3 = \alpha + \frac{1}{2}U_2 = \alpha + \frac{1}{2}(\alpha + 26\sigma) = \frac{3}{2}\alpha + \frac{1}{30}$
· · · · · · ·	$U_{q} = \alpha + \frac{1}{2}U_{3} = \alpha + \frac{1}{2}\left(\frac{3}{2}\alpha + Bc\right) = \alpha + \frac{3}{4}\alpha + 65 = \frac{7}{4}\alpha + 65$
	$\frac{1}{7a} = 7$ $\frac{1}{7a} = 28$ $\frac{1}{7a} = 4$
G (1997)	(b) $u_{n+1} = 4 + \frac{1}{2}u_n$
	$\Rightarrow u_{10} = 4 + \frac{1}{2}u_g$
	$= q = 4 + \frac{1}{2} u_g$
	== 5 = ±ug
	⇒ u ₂ = 10
/ k	
1 K	
- ~ <i>a I</i> - Y .	
S.L	
	· · · · · · · · · · · · · · · · · · ·
	- <u>)</u>
ð	
	<i>477</i>

nadasmaths.com

Created by T. Madas

COM

madasmaths.com

Question 26 (***+)

A sequence of positive numbers is given by the recurrence relation for $n \ge 1$ by

$$u_{n+1} = ku_n + 4$$
, $u_1 = 16$,

where k is a non zero constant.

- **a**) Given that $u_3 = 10$, find the value of k.
- b) Given further that the sequence converges to a limit L, use an algebraic method to determine the value of L.

L = 8k = $ku_1+4 = k_x|_{6+4} = |_{6k+4}$ $ku_2+4 = k_1|_{6k+4})+4 = |_{6k+4}$

Question 27 (***+)

.Y.C.B. 1113038111

00

I.F.G.B.

20

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_{n+1} = \frac{u_n + 1}{2}, \quad u_1 = k$$

where k is a non zero constant.

a) Given that $u_4 = 21$ find the value of u_3 .

2

2017

b) Determine the value of k.

<u> </u>		1
-	12.	
2010	~ Q ₂ ,	2
$u_3 = 41$,	k = 161	0.
	6	. Y

I.C.B.

:0M

1+

nadasm.

COM

Madasn

IS.C.	$(\mathbf{g}) \begin{array}{l} (\mathbf{g}) \mathbf{g}_{4} = \frac{\mathbf{g}_{4}+1}{2} \\ \Rightarrow \mathbf{g}_{1} = \frac{\mathbf{g}_{4}+1}{2} \\ \Rightarrow \mathbf{g}_{1} = \frac{\mathbf{g}_{4}+1}{2} \\ \Rightarrow \mathbf{g}_{2} = \mathbf{g}_{4}+1 \\ \Rightarrow \mathbf{g}_{3} = \mathbf{g}_{4}+1 \\ \end{array}$	(b) $u_{1} = k_{1}$ (Gives) $u_{2} = \frac{u_{1}+1}{2} = \frac{k_{1}}{2}$ $u_{3} = \frac{u_{2}+1}{2} = \frac{k_{2}}{2} = \frac{(k_{1})+2}{2}$ MATRY TEC/BREAL BY 2 $\therefore u_{3} = \frac{k_{2}}{2}$ $\frac{k_{1}}{4}$ $(k_{1} = \frac{k+3}{4})$ $(k_{2} = k+3)$ $k = k_{1} $
Ko.	6	K.C.S
S.	D.	

Madasmaths,

I.F.G.B.

2017

Created by T. Madas

madasmarns,

Question 28 (***+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_{n+2} = ku_{n+1} + 5u_n$, $u_1 = 2$, $u_2 = -2$,

where k is a non zero constant.

- **a**) Find the value of u_4 in terms of k.
- **b**) Given that $u_4 = 2$, find the possible values of k.

(a) $\begin{array}{c} (\mathbf{u}) & (\mathbf{u}_{u_{1}} = \mathbf{k}(\mathbf{u}_{u_{1}} + \mathbf{S}\mathbf{u}_{u_{2}}) \\ & \mathbf{u}_{1} = 2 \\ & \mathbf{u}_{1} = 2 \\ & \mathbf{u}_{2} = \mathbf{k}(\mathbf{u}_{2} + \mathbf{S}\mathbf{u}_{1}) \\ & \mathbf{u}_{2} = \mathbf{k}(\mathbf{u}_{2} + \mathbf{S}\mathbf{u}_{1}) \\ & \mathbf{u}_{4} = \mathbf{k}(\mathbf{u}_{3} + \mathbf{S}\mathbf{u}_{4}) \\ & \mathbf{u}_{4} = \mathbf{k}(\mathbf{u}_{3} + \mathbf{S}\mathbf{u}_{4}) \\ & \mathbf{u}_{5} = \mathbf{k}(\mathbf{u}_{5} + \mathbf{u}) \\ & \mathbf{u}_{5} = \mathbf{u} \\ &$

Question 29 (***+)

A sequence is defined for $n \ge 1$ by the recurrence relation

$$u_{n+1} = 2u_n + 4n - n^2 + (-1)^{n+1} 2^{n-1}, \quad u_1 =$$

Find the first five terms of the sequence.

2, 8, 18, 43, 78, ...

$u_{ny} = 2u_n + 4n - h^2 + (-1)^{ny} \times 2^{n-1}$

 $\begin{array}{l} |*Z_{-}|^{2} - 2U_{0}^{2} + 4W_{0}^{2} - \left[\frac{3}{2} + \left(-\frac{3}{2}\right)X_{-}^{2} + 2Z_{0}^{2} + 4W_{-}^{2} + |X| + 2F_{0}^{2} + 2F_{0}^{2} + 2Z_{0}^{2} + 4W_{0}^{2} - 2Z_{0}^{2} + 4W_{0}^{2} - 2Z_{0}^{2} + 6W_{0}^{2} - 2Z_{0}^{2} + 6W_{0}^{2} - 2W_{0}^{2} + 2W_{0}$

Question 30 (***+)

A sequence $a_1, a_2, a_3, a_4, \dots$ is given by the recurrence formula

$$a_{n+1} = \frac{a_n}{1+a_n}, \ a_1 = 1$$

- **a**) Determine the value of a_2 , a_3 , a_4 and a_5 .
- **b**) State an expression for the n^{th} term of the sequence and verify that it satisfies the above recurrence formula.

Question 31 (***+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is defined by the recursive relation

$$u_{n+2} = 3u_{n+1} - 2u_n, \quad u_1 = k,$$

where k is a non zero constant.

Given that $u_6 = 33$ and $u_7 = 65$, determine the value of k.

/
1 2n - on
) U _{NH2} = 3U _{NN} - 2U _N
2Ung = 3Um - Umz
$\left\{ \begin{array}{c} U_{m} = \frac{3}{2}U_{m} - \frac{1}{2}U_{mn} \\ \left\{ \begin{array}{c} U_{m} = 33 & \text{if } U_{m} = 65 \end{array} \right\} \end{array} \right\}$
Emma. human
$U_5 = \frac{3}{2}U_6 - \frac{1}{2}U_7 = \frac{3}{2}x_{33} - \frac{1}{2}x_{45} = \frac{99}{2} - \frac{45}{2} = 17$
$U_4 = \frac{3}{2}U_5 - \frac{1}{2}U_6 = \frac{3}{2}xI_1 - \frac{1}{2}x_{33} = \frac{51}{2} - \frac{33}{2} = 9$
$n^3 = \frac{3}{3}n^4 - \frac{7}{2}n^2 = \frac{3}{3}x_d - \frac{7}{7}x_d = \frac{3}{5} - \frac{3}{15} = 2$
$U_2 = \frac{3}{2}U_3 - \frac{1}{2}U_4 = \frac{3}{2}xS - \frac{1}{2}x^4 = \frac{15}{2} - \frac{9}{2} = 3$
$u_1 = \frac{3}{2}u_2 - \frac{1}{2}u_3 = \frac{3}{2}x_3 - \frac{1}{2}x_5 = \frac{4}{2} - \frac{5}{2} = 2$

k=2

Question 32 (***+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_{n+1} = 4u_n + ku_{n-1},$

where k is a non zero constant.

It is further given that $u_2 = 4$, $u_3 = 12$ and $u_5 = 178$.

Determine the value of k.

1	4	Ų,
$u_{n+1} = 4u_n + ku_{n-1}$	{u2=4 U2=12 U2=178}	
$\begin{array}{c} u_s = 4u_4 + ku_3 \\ u_4 = 4u_3 + ku_2 \end{array} \Big\} \Longrightarrow$	$\begin{array}{l} \label{eq:constraint} \end{tabular} \$	$\begin{array}{l} 4u_4+12k=17\\ u_4=4k+4k\end{array}$
$ \Rightarrow 4(4k+46)+12k = 178 \Rightarrow 16k+192+12k = 178 \Rightarrow 28k = -14 \Rightarrow k = -\frac{1}{2} $		

Question 33 (***+)

A recurrence relation is defined for $n \ge 1$ by

 $t_{n+1} = at_n + b$, $t_1 = 2$,

where a and b are non zero constants.

Given further that

F.G.B.

I.C.B.

$$t_2 = 3$$
 and $\sum_{r=1}^{3} t_r = 12$,

.G.p

200

find the possible value of a and the possible value of b.

21.115

F.G.B.

COM

Mana,

a = 4, b = -5

F.G.B.

nn,

Madas,

Question 34 (***+)

A sequence of numbers, u_1 , u_2 , u_3 , u_4 , ..., is defined by

$$u_{n} = \frac{1}{1 - u_{n-1}}, \quad u_{1} = 2.$$

$$\sum_{n=1}^{20} u_{n}.$$

Determine the value of

alasmaths.com

I.V.C.B. Madasm

Smarns.com t.r.c.s

I.F.G.B.

$$\sum_{n=1}^{20} u_n$$

ATTREN

ths.com

I.V.C.B. Madasn

.Y.G.B.

Ths.com

Ths.co.

4.60

6

THET	GENERATING	JUNCE.	LINSAT	, LOOKING FOR A

1					
U2 =	1-0.	= 1	-	-1	

N.C.B. Madasmaths.Com

Created by T. Madas

COM

Question 35 (****)

A recurrence relation is defined for $n \ge 1$ by

$$u_{n+1} = k + (-1)^n u_n, \quad u_1 = 4,$$

r = 6

r=1

where k is a non zero constant.

- **a**) Show clearly that $u_5 = 4$.
- **b**) State, in terms of k, the value of u_{26} .
- c) Given further that
 - find the value of k.
- **d**) Evaluate the sum

i C.B.

 $S_{26} = 39$, $|u_{26}| = k - 4$ k=3,

nadasn.

è.

(L) 4 + (3-4)

Question 36 (****)

A sequence $u_1, u_2, u_3, u_4, u_5, \dots$ is given by

$$u_{n+2} = u_{n+1} + 6u_n, \quad u_1 = 1, \quad u_2 = 13.$$

- **a**) Find the value of u_3 , the value of u_4 and the value of u_5 .
- **b**) Find a simplified expression for the n^{th} term of the above sequence by considering the first few terms of the sequence shown below

$$[u_3 = 19], [u_4 = 97], [u_5 = 211], [u_n = 3^n + (-2)^n]$$

2= UNH +6UN 3

29

Question 37 (****)

A sequence $t_1, t_2, t_3, t_4, \dots$ is given by

 $t_{n+1} = a + bt_n,$

where a and b are non zero constants.

It is given that $t_3 = 320$, $t_4 = 240$ and $t_5 = 200$.

- **a**) Determine the value of a and the value of b.
- **b**) Find the value of t_6 .
- c) Show clearly that $t_1 = 800$.

The sequence converges to a limit L.

d) Determine the value of L.

a=80,	$b=\frac{1}{2}$,	$t_6 = 180$,	L = 160
		. []>		

(a) (t _{ny} =a+bt _n)	
ty= a+bty 2 240= a+320b 2 serent 10- and	
$t_{s=a+bt_{y}} \xrightarrow{-10} 200 = a + 240b$	
-//	
$\implies 2\alpha_0 = \alpha + 24_0 \times \frac{1}{2}$	
200 = 0. + 120	
a = 80	
IN St. Build I	
(b) $t_{n_1} = 80 + \frac{1}{2}t_n$ (d) $t_n \rightarrow t_n \rightarrow t_n \rightarrow t_n$	
+ In	
: t _e = 180	
() +- milt (L=160	
(c) t = 80+2ty	
2tum= 160+tu	
ty= 2try-160	
$t_2 = 2t_3 - 160 = 2 \times 302 - 160 = 480$	
ty = 2tz-160 = 2×480-160 = 800 +8	
ILQUIR60	

Question 38 (****)

A recurrence relation is defined for $n \ge 1$ by

 $a_{n+1} = (a_n)^2 - 4, \quad a_1 = k,$

where k is a non zero constant.

a) Find the value of a_3 in terms of k.

It is given that $a_2 + a_3 = 26$.

F.G.B. Madas

CO17

I.C.B.

b) Find the possible values of k.

)	0	
na.	1720	1
35	5	SID
$\Box, \ a_3 = k^4 - 8k$	$k^{2} + 12$, $k = \pm 3$	

ŀ.G.B.

????

G

		THE A REAL
	(c) $\begin{array}{c} \overbrace{\mathcal{O}_{k+1} = (\alpha_k)^2 - \mu}^{(\alpha_k)^2 - \mu} \\ \bullet \alpha_{l_1} = k \\ \bullet \alpha_{k} = (\alpha_k)^1 - \mu = k^2 - \mu \\ \bullet \alpha_{k} = (\alpha_k)^2 - \mu = (k^2 - \mu_1^2 - \mu) \end{array}$	-= K ⁴ -8K ² +10_4 = K ⁴ -8K ² +12_
	$ \begin{array}{l} (b) & a_{2}+a_{3}=2c \\ \Rightarrow (k^{2}+u)+(k^{2}+8k^{2}+12)=2c \\ \Rightarrow k^{4}-(k^{2}-18)=c \\ \Rightarrow (k^{2}-1)(k^{2}+2)=c \end{array} $	5 9
ŀ.C.	>	C.B.
	m	1

21115

I.F.C.P.

COM

Mada

2011

Created by T. Madas

12/12

0

Question 39 (****)

A sequence y_1 , y_2 , y_3 , y_4 , y_5 , y_6 ... is given by

 $y_{n+2} = y_{n+1} + 2y_n$, $y_1 = 1$, $y_2 = 5$.

- **a**) Find the value of y_3 , y_4 , y_5 and y_6 .
- b) Find a simplified expression for the n^{th} term of the sequence, by considering the first few powers of 2.

11

Question 40 (****)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_{n+1} = k - \frac{12}{u_n}, \quad u_1 = 1$$

where k is a non zero constant.

It is further given that

Ĉ,

C.B.

$$4u_2 = u_3 + 1$$
.

a) Show that one of the possible values of k is 15 and find the other.

b) If k = 15 find the exact value of u_4 .

 $u_{n+1} = k - \frac{l2}{u_n}$

 $k = \frac{40}{3}$

.C.B.

nadasn.

 $\frac{153}{11}$

 $u_4 =$

i G.B.

Mada

Question 41 (****)

A sequence of numbers is defined by the recurrence relation for $n \ge 1$

$$u_{n+1} = ku_n + 6$$
, $u_1 = 4$,

where k is a non zero constant.

- a) Find, in terms of k, the value of u_2 and the value of u_3
- **b**) Given that $u_3 = 10$ find the possible values of k.

The sequence tends to a limit L.

- c) Find the value of u_4 .
- **d**) Determine the value of L.

W				. C. M. A.
41.0	$u_3 = 4k^2 + 6k + 6$		11	T 10
$ u_2 = 4k + 6 $,	$ u_3 = 4k^- + 6k + 6$	$, K = -2, \pm ,$	$ u_{\Lambda} = I $,	L = 2
2 .	5		– – – – – – – – – – – – – – – – – – –	
				1.10

6	444= ku4+6	(b) 43=10
	$C_{ij} = U_{ij}$	-> 4k2+6k+6=10
	42= KU1+6= 4K+6	⇒ 4K2+6K-4=0
		⇒ ak²+3k-2=0
	$U_3 = ku_2 + 6 = k(4k+6) + 6$	= (8 k -)(k + 2) = 0
	= 4276K+6	
		72- <- 1
		7/
G)	It seprence connectes k=1	(d) to n-poo, Un-pUn-
	(-1 < K < 1 to DOWNEDE)	
	1. Unit = 1- Unit +6	· L= ZL+6
		2L= L+12
	$u_4 = \frac{1}{2}u_3 + 6 = \frac{1}{2} \times 10 + 6 =$	1 L= 12

Question 42 (****)

A recurrence relation is defined for $n \ge 1$ by

 $U_{n+1} = aU_n + b$, $U_1 = k$,

where a, b and k are non zero constants.

It is given that $U_2 = 5$, $U_3 = 13$ and $U_4 = 45$.

- **a**) Find the value of a and the value of b.
- **b**) Determine the value of k.

I.C.B.

CO17

a = 4, $b =$	$=-1$, $U_1 = k = 3$
	di
	· (b.

2017

E.

6

3	(a) $\begin{bmatrix} U_{u_1} = \alpha U_1 + b \\ \cdot U_3 = \alpha U_2 + b \\ \cdot U_4 = \alpha U_4 + b \end{bmatrix}$ $\exists_3 = 5a + b \\ \exists_3 = 5a + b \\ \Rightarrow 3.869 \text{ Arr } Ba = 32 \\ a = 4 \\ a = 4$	
1	(b) [U _u = 40,-7]	
	$U_{b} = 4 U_{c} - 7$ $S = 4 U_{c} - 7$ $I_{c} = 4 U_{c}$ $U_{c} = 3$ H = 3	
12	vi = 3 / 4 t=3	
·C)	, `Gp	
- 0		1

200

ne,

mana,

I.F.G.B.

Created by T. Madas

 \mathcal{D}

Question 43 (****)

A sequence of numbers is given by the recurrence relation

$$t_{n+1} = At_n + B, \quad n \ge 1,$$

where A and B are non zero constants.

It is given that $t_4 = 205$ and $t_5 = 189$, and the sequence converges to 125.

a) By forming and solving two equations show that $A = \frac{4}{5}$ and B = 25.

b) Find the value of t_1 .

 $t_1 = 281.25$

Question 44 (****)

A sequence of numbers is given by the recurrence relation

$$u_{n+1} = pu_n + q, \quad n \ge 1,$$

where p and q are non zero constants.

It is given that $u_3 = 285$ and $u_4 = 321$, and the sequence converges to 375.

- **a**) Find the value of p and the value of q
- **b**) Determine the value of u_1 .

	7	
(b)	$\begin{array}{c} \boxed{ \begin{array}{c} \left(U_{444} = \frac{3}{5} U_{4} + d \right) \\ \left(U_{3} = \frac{3}{5} U_{2} + 150 \\ 285 = \frac{3}{5} U_{2} + 150 \\ 135 = \frac{5}{5} U_{2} \\ U_{2} = 225 \end{array} }$	$\begin{array}{c} \mathcal{Q}(1+jU_{n}^{E}) \approx_{\mathbf{x}}U\\ \mathcal{Q}(1+jU_{n}^{E}) \approx_{\mathbf{x}}2S\\ \mathcal{Q}(1+jU_{n}^{E}) \approx_{x$

2

 $p = \frac{3}{5}$, q = 150, $u_1 = 125$

Question 45 (****)

 $P_{n+1} = A + BP_n, t > 1.$

The relationship above gives the amount of money Adrian pays into a pension scheme each year P_n , where *n* is the pension contribution in the n^{th} year.

Adrian's annual contributions in the 2^{nd} , 3^{rd} and 4^{th} years were £1625, £2425 and £3065, respectively.

- **a**) Find the value of A and the value of B.
- b) Determine Adrian's annual contributions in the first year.

Adrian's annual contributions cannot exceed a certain amount L.

c) Find the value of L

		and the second se	
(9)	$ \begin{array}{c} \left[\begin{array}{c} P_{n_{k_{k_{k_{k_{k_{k_{k_{k_{k_{k_{k_{k_{k_$	3062= ¥ + 2432B S ⇒ 2810KT 8008= 2422= ¥ + 1622B S ⇒ 2810KT 8008=	- 640 ±
	\Rightarrow	$2425 = 4 + 625 \times \frac{6}{5}$ 2425 = 4 + 1800 24 = 1125	/
	$ \begin{array}{c} P_{HH} = 1125 + \frac{U}{5}P_{H} \\ \Rightarrow P_{2} = 1125 + \frac{d}{5}P_{L} \end{array} \end{array} $	$ \begin{array}{c} (c) & \downarrow \downarrow \downarrow \rightarrow \infty & P_{u} \rightarrow P_{u_{1}} \rightarrow L \\ \Rightarrow L = 112S + \frac{g}{E}L \end{array} $	
	⇒ 1625 = 1125 + & P1 ⇒ 500 = & P1 ⇒ P1 = 625	$\Rightarrow \frac{1}{5}L = 1125$ $\Rightarrow L = 5625$	
	$\Rightarrow P_1 = 625$ $\# \pm 625$		

A = 1125, B = 0.8, $P_1 = 625$, L = 5625

Question 46 (****)

In a clinical trial the concentration C, of a certain blood agent, is measured at one hour intervals since a trial drug was first administered to a patient.

The following readings were obtained

 $C_3 = 88$, $C_4 = 76$ and $C_5 = 70$,

where C_t denotes the reading t hours after the drug was first administered.

It is thought that C satisfies the relationship

$$C_{t+1} = a + bC_t, \ t \ge 0$$

- a) Find the value of a and the value of b.
- **b**) Determine the **initial** concentration of the blood agent, when the drug was first administered.

a = 32

 $b = \frac{1}{2}$

The value of C converges to a limit L.

c) Find the value of L.

 $C_0 = 25\overline{6}$

L = 64

Question 47 (****)

F.G.B. Madası

2017

Į.C.B.

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$(u_{n+1})(u_n)^2 = \frac{n^4}{n+2}, \quad u_1 = \frac{1}{2}$$

Calculate the value of u_2 , u_3 , u_4 and u_5 , and hence write an expression for the n^{th} term of the sequence.

nadasm

Com

$$\frac{1}{2}, \frac{4}{3}, \frac{9}{4}, \frac{16}{5}, \frac{25}{6}, \dots, u_n = \frac{n^2}{n+1}$$

3

1+

Madasm.

Com

Madash

F.G.B.

COM

$$\left(\bigcup_{u \in I} \bigcup_{u \in I}^{2} \frac{h^{4}}{h + 2}\right) \quad \text{or.} \quad \left(\bigcup_{u \in I}^{2} \frac{h^{4}}{h + 2} \times \frac{1}{(\bigcup_{u})^{2}}\right)$$

- $\frac{1}{6} \times \frac{25}{16 \times 16} = \frac{25}{6}$

Madasmaths,

2017

FGP.

Created by T. Madas

11.303SM21

b

Question 48 (****)

A sequence $x_1, x_2, x_3, x_4, \dots$ is given by the recurrence formula

$$x_{n+1} = \frac{x_n}{2nx_n + x_n + 1}, \ x_1 = 1$$

- **a**) Determine the value of x_2 , x_3 , x_4 and x_5 .
- **b**) State an expression for the n^{th} term of the sequence and verify that it satisfies the above recurrence formula.

 $x_2 = \frac{1}{4}$ $x_5 = \frac{1}{25}$ $x_3 = \frac{1}{9}$ $x_n =$ $\overline{n^2}$ 16

 $= \frac{3n3t_{q}}{3n3t_{q} + 3t_{q} + 1}$ $\frac{3t_{q}}{3n3t_{q} + 3t_{q} + 1} = \frac{1}{2x(x_{1} + 1) + 1} = \frac{1}{4}$

 $\frac{h^2}{\partial n(\frac{1}{W^2}) + \frac{1}{W^2} + 1} =$

(b) $\mathfrak{X}_n = \frac{1}{n^2}$ +known $\frac{\mathfrak{A}_n}{\mathfrak{A}_n \mathfrak{X}_n + \mathfrak{A}_n + 1} =$

$$\begin{split} \lambda_{3} &= \frac{2\lambda_{3}}{242\pi A_{3}^{2} + \frac{3}{2} + 1} = \frac{\frac{1}{2}}{4\pi A_{3}^{2} + \frac{1}{4} + 1} = \frac{\frac{1}{4}}{1 + \frac{1}{4} + 1} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{1}{4} = \frac{1}{4} \\ &= \frac{2\lambda_{3}}{24\pi A_{3}^{2} + \frac{1}{4} + 1} = \frac{\frac{1}{2}}{24\pi A_{3}^{2} + \frac{1}{4} + 1} = \frac{\frac{1}{2}}{\frac{1}{4} + \frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4}} = \frac{1}{4} \\ &= \frac{2\lambda_{3}}{24\pi A_{3}^{2} + \frac{1}{4} + 1} = \frac{2\lambda_{3}}{24\pi A_{3}^{2} + \frac{1}{4} + \frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4}} = \frac{1}{\frac{1}{4}} \\ &= \frac{1}{4} \\ &= \frac{1}{24\pi A_{3}^{2} + \frac{1}{4} + \frac{1}{4}} = \frac{1}{24\pi A_{3}^{2} + \frac{1}{4} + \frac{1}{4}} = \frac{1}{\frac{1}{4} + \frac{1}{4}} = \frac{1}{4} \\ &= \frac{1}{4}$$

2+1

Question 49 (****)

A recurrence relation obeys the relationship

 $x_{n+1} = \sqrt{x_n + 12}$, $x_1 = k$,

where k is a non zero constant.

This recurrence relation converges to a limit L, for a suitable range of values of k.

a) Find the value of L.

I.C.B.

b) Determine the **range** of values of k, so L exists.

L=4, $k \ge -12$

nadasm

12

21115

ŀ.C.p.

200

COM

(ه)	$\mathcal{I}_{n+1} = \sqrt{\mathcal{I}_{n} + 12^{1}}$ (b)	L OUCY EXISTS IF 2(+12>0
	•As n→∞ an→ an →L	$\therefore \ \Im_{1} \geqslant -i2$
	= L = N L+12	k >-12
	$\Rightarrow L^2 = L + 12$ $\Rightarrow L^2 - L - 12 = 0$	
	⇒(L-4)(L+3)=0	
	~	

Question 50 (****)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_{n+1} = \frac{1}{1 - u_n}, \quad u_1 = k$$

where k is a non zero constant.

- **a**) Show clearly that $u_4 = k$.
- **b**) Given that $u_2 \times u_3 = -\frac{1}{2}$, determine the value of k.
- c) State the value of u_{110} .

F.G.B.

$(\mathbf{M}) \left\{ \begin{array}{c} U_{\mathbf{N}_{\mathbf{H}_{\mathbf{I}}}} = \frac{1}{1 - U_{\mathbf{N}_{\mathbf{I}}}} \end{array} \right\}$	
• $u_1 = k$ • $u_2 = \frac{1}{1 - u_1} = \frac{1}{1 - x_2}$ • $u_3 = \frac{1}{1 - u_1} = \frac{1}{1 - x_2}$	(1-46 _ 36-1
• $U_{ij} = \frac{l}{1-u_2} = \frac{l}{1-\frac{l}{1-\frac{l}{k}}} = \frac{l}{\frac{l}{1-\frac{l}{k}}}$	
(b) $u_2 \times u_3 = -\frac{1}{2}$ (c) $\Rightarrow \frac{1}{1-k} \times \frac{k-1}{k} = -\frac{1}{2}$	$k = \frac{1}{1-k} = \frac{k-1}{k}$ $u_1 = u_2 = u_3$
$\Rightarrow \frac{k-1}{k(l-k)} = -\frac{1}{2} (\chi-1)$ $\Rightarrow \frac{k-1}{k(k-1)} = \frac{1}{2} (k\neq 1)$	u ₄ u ₅ u ₆
⇒ t = t ⇒ k=2	u _{to2} u _{to5} u _{i88} U _{to9} u _{tto} u _{tt1}
	$\therefore U_{100} = \frac{1}{1-k} = \frac{1}{1-2} = -1$

F.C.B.

ち

k=2, $u_{110} =$

I.C.P.

Ś

è

Madas,

Question 51 (****)

C.P.

A sequence u_1 , u_2 , u_3 , u_4 , u_5 ... satisfies

 $u_{n+1} = Au_n + B,$

where A and B are non zero constants.

The second and third term of this sequence are 464 and 428, respectively.

Given further that the sequence converges to 320, find the value of the fourth term of this sequence.

C.4.

Mada

3×428+8

Created b	y T. N	Aadas
------------------	--------	-------

Question 52 (****+)

A sequence of numbers is given by the recurrence relation

$$u_{n+1} = \frac{Au_n + 2}{4 + Bu_n}, \quad n \ge 1, \quad u_1 = \frac{1}{2},$$

 $\sum u_r = -16.$

where A and B are non zero constants.

a) If $u_2 = -2$ and $u_3 = -\frac{1}{3}$, find the value of A and the value of B.

b) Show clearly that

F.G.B.

I.C.P.

	J
(a) $\{u_{11} = \frac{-4u_{1}+2}{4+Bu_{1}}\}$ $u_{1} = \frac{1}{2} u_{2} = -2 u_{3} = -\frac{1}{2}$	
$ \begin{array}{c} \mathbf{u}_{22} = \frac{A_{14}}{4+B_{14}} \\ -2 = \frac{A_{14}}{2+A} \\ -2 = \frac{A_{14}}{2+A} \\ -2 = \frac{A_{14}}{4+B_{14}} \\ -2 = \frac{A_{14}}{2+B} \\ -2 = \frac{A_{14}}{2+B$	
(b) $\begin{aligned} u_{u_{k+1}} &= \frac{Gu_{k+2}}{A - 13M_{k}} \\ U_{k} &= \frac{Gu_{k+2}}{4 - 13M_{k}} = \frac{G(\frac{1}{k})_{k+2}}{A - 13G(\frac{1}{k})} = 0 \\ U_{S} &= \frac{Gu_{k+2}}{A - 13M_{k}} = \frac{2}{A} = \frac{1}{k} = U_{1} \end{aligned}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

A = 6, B = -13

F.G.B.

1+

Question 53 (****+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_{n+1} = \frac{u_n}{a} + \frac{a}{u_n}, \quad u_1 = 2,$

where a is a non zero constant.

a) Find the value of u_3 in terms of a.

It is further given that

F.G.B.

i C.B.

 $u_1 + u_2 = 4.5$.

b) Find the possible values of u_3 .

 $4 + a^2$ $2a^2$ 29 89 u_3 $u_3 =$ $, \overline{40}$ 10 4+a

F.G.B.

20

Madas,

Ś

1+

(a) $u_{u_{u_{1}}} = \frac{u_{u_{1}}}{u_{u_{1}}} + \frac{a}{u_{u_{1}}}$	
	$\frac{1}{2} \frac{\frac{d}{d}}{\frac{d}{d}} = \frac{\frac{d+d^2}{24}}{\frac{d+d^2}{24}} = \frac{\frac{d+d^2}{24}}{\frac{d}{1}} + \frac{\frac{d}{d}}{\frac{d+d^2}{24}} + \frac{\frac{d}{d}}{\frac{d}{1}}$
$(b) = 2 + \frac{44^3}{24} = 24.5$ $\Rightarrow 2 + \frac{44^3}{24} = 4.5$ $\Rightarrow \frac{44^3}{24} = 2.5$ $\Rightarrow 44^3 = 5.6$ $\Rightarrow 44^3 = 5.6$ $\Rightarrow 44^3 = -2.5$ $\Rightarrow 44^3 = -2.6$	$ \begin{array}{c} \bullet \ \ \ \ \ \ \ \ \ \ \ \ \$
~4	

I.C.B.

 $\hat{\mathcal{D}}$

Question 54 (****+)

A sequence $t_1, t_2, t_3, t_4, t_5, \dots$ is given by

$$t_{n+1} = a t_n + 3n + 2, \quad t \in \mathbb{N}, \ t_1 = -2,$$

2017

1452

I.C.B.

a = 5, a =

6

11+

where a is a non zero constant.

a) Given that $\sum_{r=1}^{\infty} (r^3 + t_r) = 12$, determine the possible values of *a*.

b) Evaluate $\sum_{r=8}^{31} (t_{r+1} - at_r).$

I.C.B.

I.V.G.B

Created by T. Madas

I.F.C.P.

Question 55 (****+)

ŀ.G.p.

I.C.B.

20

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_n = 2n^2 - 7n - 5.$

Find an expression for u_{n+1} as a recurrence relation of the form

200

 $u_{n+1} = Au_n + Bn + C$, $u_1 = D$,

I.G.B.

27

where A, B, C and D are constants to be found.

m

1+

$$\begin{split} & \sum_{n=1}^{\infty} (-\eta_{n} - \eta_{n} - \eta_$$

I.C.B.

maqa

Question 56 (****+)

F.G.B.

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

 $u_n = 2^n + 4n \, .$

Find an expression for u_{n+1} as a recurrence relation of the form

 $u_{n+1} = Au_n + Bn + C, \ u_1 = D,$

where A, B, C and D are constants to be found.

	10
$\mathcal{L}_{u} = 2 + 4\eta_{3}$	
$ \begin{array}{c} (U_{N}=2^{N}+4N)\\ (U_{N+1}=2^{N+1}+4(n+1)\end{array} \end{array} \longrightarrow \begin{array}{c} (U_{N}=0)\\ (U_{N+1}=0)\end{array} $	2 ^x + 4n 2 ^x z+4n + 4} ⇒
$\begin{array}{c} (U_{11}-U_{11}=3^{n})\\ (U_{11}-U_{11}-U_{12}=2\times2^{n})\end{array} \end{array} =$	$2u_{41} - 8n = 2x 2^{47}$ $u_{441} - 4n - 4 = 2x 2^{47}$
$u_{h_{HI}} - u_{H} - u_{H} = 2u_{h_{H}} - 8n$ $u_{H_{HI}} = 2u_{h_{H}} - u_{H} + 4$	

23

I.C.B.

ng

 $u_{n+1} = 2u_n - 4n + 4, \quad u_1 = 6$

nn

11+

Question 57 (****+)

A recurrence relation is defined for $n \ge 1$ by

 $t_{n+1} = at_n + b ,$

where *a* and *b* are non zero constants.

It is given that $t_2 = 176$, $t_3 = 248$ and $t_4 = 284$.

- **a**) Find the value of a and the value of b.
- **b**) Determine the value of t_1 .

The sequence converges to a limit l.

c) Find the value of *l*.

The n^{th} term of the sequence is given by

 $t_n = p + q\left(\frac{1}{2}\right)^n$, where p and q are constants.

d) Find the value of p and the value of q.

 $a = \frac{1}{2}$, b = 160, $t_1 = 32$, l = 320, p = 320, q = -576

1+

Question 58 (****+)

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_n = 3^n + \left(-2\right)^n$$

Find an expression for u_{n+2} , as a recurrence relation of the form,

$$u_{n+2} = Au_{n+1} + Bu_n, \ u_1 = C, \ u_2 = D$$

where A, B, C and D are constants to be found.

$u_{n+2} = Au_{n+1} + Bu_n, \ u_1 = C, \ u_n = C$	$_2 = D$
7	h On
<i>D</i> are constants to be found.	Os. AN
1201	AN. 420
	$u_2 = u_{n+1} + 6u_n, u_1 = 1, u_2 = 13$
$[\underline{u_{n+1}}], \underline{u_{n+2}}$	$2 u_{n+1} + ou_n, u_1 + u_2 + v_1$
~0~	
a dri	FIGTY USING THE HA THOU
111 400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	V_{0} $U_{0} = 3^{+} + (-2)^{+}$
10.0 10	$\begin{array}{c} \mathbf{U}_{q} = \mathbf{X}^{n} + (-2)^{n} \\ 0 \mathbf{U}_{q} = \mathbf{X}^{n} + (-2)^{n} = 3 \times \mathbf{S}^{n} - 5 \times \mathbf{Z}^{n} \\ 0 \mathbf{U}_{q} = \mathbf{X}^{n} + (-2)^{n} = 0 \times \mathbf{S}^{n} + 5 \times \mathbf{Z}^{n} \\ 0 \mathbf{U}_{q} = \mathbf{X}^{n} + 5 \times \mathbf{S}^{n} + 5 \times \mathbf{Z}^{n} \end{array}$
Co.	THUS WE HAVE
00	
	touting [31] of [2]
	4 = 34 + 8 { = 9 4 = -24 + 8 = 5 SURTRATING = 6 + 1 4 = -24 + 8 = 6
n. Ch	$: \overline{D^{\mu n 2}} = \overline{D^{\mu n 2}} + \frac{1}{2} \overline$
in In	
<i>`0</i>	
The Sh	
	· · · /h
20	m Var
-42	42.2 40.
	400 × 20
	9.0.
20. 911	
111 ° M	A day
·	0 ⁻ <i>l</i> h.
"COL	Co.
~m	V On

C.B.

Question 59 (****+)

F.G.B.

A sequence $u_1, u_2, u_3, u_4, \dots$ is given by

$$u_{n+1} = f(n, u_n).$$

The first few terms of the sequence are

2, -1, 5, -4, 8, -7,...

Find an expression for u_{n+1} , in the form $u_{n+1} = f(n, u_n)$.

121	
START BY DIFFRENDING	
· FORMULA MULT BY A RECURRENCE	
· THERE WHET BE IN THEM (-1)" AS THE TRANS AUTHORATE	
• THEE WIT BE & WITHER OF 3 THEM	
TRY THE REGURDENCE	
$\mathcal{A}_{\mathbf{i}_{\mathbf{i}_{1}}} = \mathcal{A}_{\mathbf{i}_{1}} + (-i)^{\mathbf{i}_{1}}(\mathbf{S}_{\mathbf{i}_{1}})$	
u ₁ = 2	
U2 = 41 + (-1)(3×1) = 2-3 = -1	
$U_{3} = U_{1} + (-1)^{2}(3\times 2) = -1 + 6 = 5$	
$U_{4} = U_{2} + (-i)^{2}(3\times3) = 2 - 3 = -4$	
$U_{5} = U_{5} + (-1)^{2}(3\times 4) = -4 + 12 = 8$	
$u_{c} = u_{s} + (-1)^{s} (-3 \times s) = 8 - (s - 7)$	
<i>€TC</i>	
	· · · ·
$\int_{\mathcal{D}_{\mathcal{D}}}^{\mathcal{D}} \frac{\mathcal{U}_{\eta_{11}}}{\mathcal{U}_{\eta_{11}}} = \mathcal{U}_{\eta_{1}} + (-1)^{\frac{1}{2}} (3\eta)$	•

0

F.G.B.

11+

 $u_{n+1} = u_n + (-1)^n (3n)$

(****+) Question 60

I.V.G.B.

The n^{th} term of the sequence is given by

$$u_n = \frac{n+2}{2n+1}, \ n \in \mathbb{N}, \ n \ge 1$$

Show that the same sequence can be generated by the recurrence relation

$$u_{n+1} = \frac{Au_n - 1}{Bu_n + 1}, \ u_1 = 1, \ n \in \mathbb{N}, \ n \ge 1$$

where A and B are integers to be found.

, [A=5,	B=4
$E(l_{n} = \frac{n+2}{2n+1} \implies \frac{n+2}{2n+1}$	$U_{l_{HH}} = \frac{(n+1)+2}{2(n+1)+1}$	$=\frac{W+3}{2n+3}$
REARDANCE FOR IN		

m

20

ŀ.C.p.

Madash

27

1+

Created	by T.	Madas
---------	-------	-------

Question 61 (****+)

A sequence is defined for $n \ge 1$ by the recurrence relation

$$u_{n+1} = \frac{5u_n}{1+8u_n}, \quad u_1 = \frac{1}{5}.$$

Determine an expression for u_n , given that it is of the form

$$u_n = \frac{a^{n-1}}{c + ka^{n-1}},$$

where a, c and k are constants to be found.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
D START BY GENARATI	ING THEM FRM THE REGUL	261(E RELATION
U ₄₄ = <u>SI</u> 844		$\frac{2}{50} = \frac{1}{2+8} = \frac{1}{1+\frac{9}{2}}$
	$\eta^2 = \frac{8x_{ik+1}^2}{2x_{ik}^2} =$	$\frac{25}{40+0} = \frac{25}{53}$
♦ 1000 FRM SOUT PUT Un = 0 ka ⁿ	TIONS DEING THE FIELT -	S TROM
• $a^i = \frac{2}{i}$	P 10	• $\eta^3 = \frac{32}{52}$
	$\frac{\alpha}{k_{\alpha+c}} = \frac{s}{13}$	$\frac{\alpha^{2}}{ka^{2}+c} = \frac{25}{53}$
K+C=2	$ka+c = \frac{Ba}{5}$	$ka_{1}^{2} + c = \frac{53}{25}a_{1}^{2}$
C= 5-K	$ka + \underline{s - k} = \frac{12}{s}a$	$kq^2 + \underline{S-k} = \frac{\underline{S3}}{25}q^2$
	$k(a-i) = \frac{2}{3}a + 5$	$k(a_{-1}^2) = \frac{53}{25}a^2 - 5$
DIOIDING THE TWO 4	iquations, noting kto,	a p l
$\Longrightarrow \frac{k(q^2-l)}{k(q-l)} = \frac{\frac{\Omega}{\omega}q^2}{\frac{l^2}{3}q}$	2-5	
k(a-1)(a+1)	5392-125	

and indent				
te (a=1)	-	6.5a	-	125

$\implies 65a^2 - 125a + 65a - 125 = 53a^2 - 125$	
$\implies 12a^2 - 60a = 0$	
=> 12a(a-s)=0	
st <u>a≈s</u> a≠o	
$= k(a-1) = \frac{13}{5}a - 5$	
= K=2 4 C=3	
$\therefore u_{h_{1}} = \frac{z^{h-1}}{2(z^{h-1})+3}$	
1.1 August	

 $\implies (a_{11})(e_{2a-152}) = 23a_5-152$

 5^{n-1}

 $3+2(5^{n-1})$

Question 62 (*****)

A sequence $u_1, u_2, u_3, u_4, u_5 \dots$ is given by the recurrence formula

$$u_{n+2} = \frac{3u_n + u_{n+1}}{2}, \quad u_1 = 1, \ u_2 = 1$$

It is further given that in this sequence the ratio of consecutive terms converges to a limit L.

Determine the value of L.

 u_{n+1} $=L=\frac{3}{2}$ lim u_n $n \rightarrow \infty$

6

Question 63 (*****)

A factory gets permission to dispose, at the start of every day, 600 kg of waste into a stream of water.

The running stream removes 40% of the any waste present, by the end of the day.

Determine a simplified expression for the amount of waste present in the stream at the end of the n^{th} day.

 $u_n = 900 | 1 -$

 $U_{h} = 360 \times \frac{1(1-0.6^{N})}{1-0.6}$

Question 64 (*****)

The Fibonacci sequence is given by the recurrence formula

$$u_{n+2} = u_{n+1} + u_n$$
, $u_1 = 1$, $u_2 = 1$.

It is further given that in this sequence **the ratio of consecutive terms** converges to a limit ϕ , known as the *Golden Ratio*.

Show, by using the above recurrence formula, that $\phi = \frac{1}{2}(1+\sqrt{5})$.

-Placeer As foucus	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
NOW WE AND THAT AS 1-> 00	
$\frac{U_{\mathbf{r}_{k+1}}}{U_{\mathbf{r}}} = \frac{1}{2} \qquad \longrightarrow \qquad \frac{U_{\mathbf{s}_{k+1}}}{U_{\mathbf{s}_{k+1}}} \longrightarrow \qquad \varphi \mathbf{A} \mathbf{h} \to \infty$ $\frac{U_{\mathbf{s}}}{U_{\mathbf{s}_{k+1}}} \longrightarrow \qquad \frac{1}{2} \mathbf{A} \mathbf{h} \to \infty$	
there we control	
$ \Rightarrow \phi = 1 + \frac{1}{4} $ $ \Rightarrow \phi^{2} = \phi + 1 $ $ \Rightarrow \phi^{2} = \phi + 1 $ $ \Rightarrow \phi^{2} = \phi - 1 = 0 $ $ \Rightarrow (\phi - \frac{1}{2})^{2} - \frac{x}{4} = 0 $ $ \Rightarrow (\phi - \frac{1}{2})^{2} + \frac{x}{4} $ $ \Rightarrow \phi - \frac{1}{2} = \frac{x}{4} $ $ \Rightarrow \phi - \frac{1}{2} = \frac{x}{4} $ $ \Rightarrow \phi = \frac{1}{2} $	

proof

Question 65 (*****)

The n^{th} term of a sequence is given by

$$u_n = 1 + \left(\frac{1}{3}\right)^n$$
, where $n \ge 1$.

a) By expressing u_{n+1} in terms of u_n , or otherwise, define the terms of the sequence as a recurrence relation.

A recurrence relation is defined for $n \ge 1$ by

$$U_{n+1} = 2U_n - 5$$
, $U_1 = 6$.

b) By finding the n^{th} term of the sequence, or otherwise, show that

$$u_{31} = 1,073,741,829$$

$$u_{n+1} = \frac{2+u_n}{3}, u_1 = \frac{4}{3}, U_n = 2^{n-1} + 5$$

(લ)	$ \begin{split} & (\eta^{\theta} = (+ \left(\overrightarrow{t} \right)_{\theta = 1} \in (+ \left(\overrightarrow{t} \right)_{\theta} \left(\overrightarrow{t} \right) = (+ \left(\overrightarrow{t} \right) = (+ \left(\overrightarrow{t} \right) \left(\overrightarrow{t} \right) = (+ \left(\overrightarrow{t} \right) = $
	$\mathcal{L}_{\mathcal{U}_{H_{H}}} = \frac{1}{3} \left(2 + \mathcal{U}_{H} \right) e_{I} = \frac{\mathcal{U}_{I}}{3}$
(b)	Unit = 2Un - 5 this & Doubquil' former
	TRY Un = Ax 2" + B , A, B CONTRACTS
	· NOW U, =6 of U2=7 FROM RECURRING
	$\begin{array}{c} 6 = A \times 2^{1} + B \\ 7 = A \times 2^{2} + B \end{array} \xrightarrow{2A+B} = \begin{array}{c} 2A+B = C \\ 4A+B = 7 \end{array} \xrightarrow{2} \Rightarrow$
	$\Delta A = 1$ $A = \frac{1}{2}$ a $B = 5$
	$U_{\eta} = \frac{1}{2} \times \lambda^{\eta} + S$ $U_{\eta} = \lambda^{\eta + 1} + S$
	$\therefore U_{3_1} = S^{30} + 5 = I_1 \circ T_{3_1} T_{4_1} S^{2_0}$

Question 66 (*****)

A sequence is defined by the recurrence relation

$$u_n = \frac{2n}{2n+1}u_{n-1}, n \in \mathbb{N}$$
 $u_0 = 1$

Show, by direct manipulation, that

$$u_n = \frac{4^n \times (n!)^2}{(2n+1)!} \,.$$

[you may not use proof by induction]

ŀG.B.

ŀ.G.p.

nn

0

F.C.B.

ma.

12

K.G.B.

Question 67 (*****)

I.V.G.B. Ma

I.C.B.

A sequence of numbers, u_1 , u_2 , u_3 , u_4 , ..., is defined by

$$u_{n+1} = 3u_n - 1, \quad u_1 = 2$$

 $\sum_{r=1}^{n} u_r$

ths.com

 $S_n = \frac{1}{4} \left[3^{n+1} + 2n - 3 \right]$

2+3+3+3+3+...+3"

 $S_{i} = \frac{\alpha(r-i)}{r-i}$

 $U_{4} = \frac{3^{4} + 1}{2}$

 $\sum_{l=1}^{N} \frac{3^{l}+1}{2} = \sum_{l=1}^{N} \left[\frac{1}{2} + \frac{1}{2} \times 3^{l} \right]$

+ $\frac{1}{2} \left[3 + 3^2 + 3^3 + 3^4 + \cdots \right] \leftarrow G.P.$

 $\frac{1}{2} \left[\frac{\Im(\Im^n - i)}{\Im - i} \right] \quad \leftarrow \quad \overset{\circ}{\underset{n=1}{\overset{\circ}{\longrightarrow}}} = \frac{a(n!-i)}{n-1}$

21/18

I.F.G.B.

20HT

2 3r

∑ ur

1Ŝ1

277

3(3-1)

 $+\frac{1}{2}\sum_{i=1}^{n} 3^{i}$

02

1.4

Determine, in terms of n, a simplified expression for

Created by T. Madas

I.C.

Question 68 (*****) It is given that

$$\sum_{r=1}^{n} u_r = 6^{n+1} - 10 \times 2^n + 4,$$

where u_n is the n^{th} term of a sequence.

Show clearly that

12

C.B.

 $u_{n+2} = Au_{n+1} + Bu_n,$

where A and B are integers to be found.

$\sum_{B_{k,i}}^{n} U_{\mu} = - \frac{w_{ij}}{6} - \frac{10 \times 2^{\frac{N}{2}} + 4}{10 \times 2}$	ľ	2 IA 🌚 U,
• TRYING TO FIND AN EXPRESSION FOR THE WH THEM FIRST		. U.
$\begin{cases} \Rightarrow_{n}^{4} = 6^{\frac{n}{4}} - 10 \times 2^{\frac{n}{4}} + 4 \\ \Rightarrow_{n}^{4} = 6^{\frac{n}{4}} - 10 \times 2^{\frac{n}{4}} + 4 \end{cases}$		U ₄
() = 6 - 10×2 +4 1		
$\implies \bigcup_{q} = \beta_{q} - \beta_{q-1} = \left[\zeta_{q}^{q+1} - \log s_{q}^{q+1} \right] - \left[\zeta_{q}^{q} - \log s_{q}^{q+1} + \eta \right]$		
$= C_{p+1} - C_{n} - 10 \times S_{n} + 10 \times S_{p-1}$		
$= (\widetilde{G} \times \widetilde{G}^{H} - \widetilde{G}^{H}) + (O \times 2^{H-1} - (O \times 2^{H})$		
$= S \times 6^{4} + (S \times 2 \times 2^{4} - 10 \times 2^{8})$		111
$= S \times G^{s_1} + (S \times 2^{s_1} - I_{D \times 2^{s_1}})$		FINIALC
= 5×6" - 5×2"		
$\approx \alpha^{\mu} = 2 \left[C_{\mu} - 5_{\mu} \right]$		
		-9 24
NOW WE MAY GUINATE THE POWERS OF 6 of 2, 18 POWOWS		
$\alpha'' = \mathbb{Z}\left[\mathbb{C}_{d} - \mathcal{J}_{d}\right]$		્ર ગ
$\mathcal{U}_{kH} = S\left[\mathcal{G}^{NH} - 2^{NH} \right] = S\left[\mathcal{G} \times \mathcal{G}^{k} - 2 \times 2^{h} \right] = 30 \times \mathcal{G}^{h} - 10 \times 2^{h}$		(
() - mucht worth and worth and		

C.4.

 $|u_{n+2}| = 8u_{n+1} - 12u_n$

asmart

LY.G.B.

madasmaths.com

(*****) Question 69

The function f satisfies the following three relationships

ths.com

I.G.B.

1.6.

$$f(3n-2) \equiv f(3n)-2, n \in \mathbb{N}.$$
$$f(3n) \equiv f(n), n \in \mathbb{N}.$$
$$f(1) = 25.$$

ii.
$$f(3n) \equiv f(n), n \in \mathbb{N}$$
.

iii.
$$f(1) = 25$$
.

naths.com

SM2/IS.COM

I.V.G.p

0

Determine the value of f(25).

K.G.B.

The Com

1.60

6

11202S112

nadasmana Inalins Com

K.C.B. Madasn

Created by T. Madas

COM

Question 70 (*****)

ŀ.G.B.

I.C.P.

A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{n}{2n+1}u_n, \ n \in \mathbb{N} \quad u_1 = 2.$$

Show, by direct manipulation, that

$$u_n = \frac{2^n \times [(n-1)!]^2}{(2n-1)!}$$

[You may not use proof by induction in this question]

20

ma

ng

I.C.p

2017

Ś

2

$$\begin{split} U_{kq_1} &= \frac{\eta}{2n_1+1} U_{k_1} \quad u_1 = 2, \\ U_{kq_1} &= \frac{\eta}{2n_1+1} \frac{1}{n_1} u_{k_1} \quad u_1 = 2, \\ U_{kq_1} &= \frac{\eta}{2n_1+1} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_2} \frac{1}{n_1} \frac{1}{n_2} \frac{1}{$$

I.G.B.

- $\Sigma \times \frac{N^{1}}{\mathbb{E} \times 2 \times 7 \times ... \times (2 nc)(1 nc)} = \frac{N^{1}}{N^{1}}$
- $= \frac{11.(2h+2)(2n)(2n-2)...\times 6_X4\times 2_{-}}{(2h+2)(2n+1)(n)(2n-1)(2n-2)...\times 6_X5\times 4_X5\times 2_{-}}\times$ $h^{1} \sim 2^{h+1}$
- $h_{HI} = \frac{h_{HX}^2 2 \left(h_{H}^2 \left(h_{HX} \right) h_{HX}^2 \times h_{HX}^2 \right)}{(2h+2)!} \times 2$ $= \frac{h_{HX}^2 2 \left(h_{HX} \right) h_{HX}^2 + h_{H$
- $U_{n_{N}} = \frac{h_{1}^{2} \times 2^{N_{N}} \times (n+1)!}{(2n+1)(2n+1)!} = \frac{h_{1}^{2} \times 2^{-1} \times (n+1) \times n!}{2(n+1)(2n+1)!}$
- $\frac{1}{(2n+1)^2} = \frac{1}{(2n+1)^2} \times \frac{1}{(2n+1)^2} \times \frac{1}{(2n+1)^2}$
- $L_{n+1} = \frac{(2n+1)!}{(2n+1)!}$ $L_{n+1} = \frac{2^{n}(n-1)!}{2^{n}}$

27

Question 71 (*****)

Consider the following sequence.

 $\frac{1}{7}, \, \frac{1}{2}, \, \frac{7}{9}, \, 1, \, \frac{13}{11}, \, \frac{4}{3}, \, \frac{19}{13}, \, \frac{11}{7}, \, \dots, \, \, x \in \mathbb{R} \,, \ \, x < 2 \,.$

- a) Determine the n^{th} of this sequence and hence find a recurrence relation formula for this sequence.
- **b**) Find a **different**, to that given in part (**a**), recurrence relation formula for the same sequence.

c) Determine a **third** recurrence relation formula for this sequence.

The recurrence relations in this question must be in the form $F(u_{n+1}, u_n, n)$

 $u_{n+1} = u_n + \frac{20}{(n+6)(n+7)}, \quad u_{n+1} = \frac{3n^2 + 19n + 6}{3n^2 + 19n - 14}u_n$ $3n^2 - 3n - 2$ $u_{n+1} =$ $n^2 + 13n + 42$

A) THE HARDRET THINK IS TO SEE THE PATTREN - EARY ONCE YED SPOT	C) ANOTHER OLARCE COULD BE BY DIRECT NUCTIPULATION
· · · · · · · · · · · · · · · · · · ·	$(l_{n+1}, U_n = \frac{3n+1}{n+7} \times \frac{3n-2}{n+6} = \frac{3n^2-3n-2}{n^2+13n+42}$
$l \in U_{n_{q}} = \frac{3n-2}{n+2}$ $(I_{n_{q}} = \frac{3n+1}{n+7}$	$\therefore \underbrace{U_{n+1}}_{k} = \frac{1}{U_{k}} \left(\frac{2\omega^{2} - 2v_{1} - 2}{k^{2} + 13n + \frac{4}{2}} \right) \underbrace{U_{1}}_{2} = \frac{1}{7}$
THES ONE POSSIBLE EXPERSION IS	
$U_{n+1} - U_{n} = \frac{3n+1}{n+7} - \frac{3n-2}{n+6} = \frac{(3n+1)(n+6) - (3n-2)(n+7)}{(n+7)(n+6)}$	
$= \frac{3k_{1}^{2}+12k_{1}+14+\ell_{2}-3k_{1}^{2}-3k_{1}+2k_{1}+4}{(h_{1}k_{2})(k_{1}+2)} = \frac{25}{(h_{1}+\xi)(k_{1}+2)}$	
$\therefore \ \bigcup_{i \neq i} = (u_i + \frac{2\omega}{(in+i)(in+1)}) = \frac{1}{2}$	
b) -ANDRHER PORTRIAL COULD BE BY DIVISION	
$\frac{u_{u_{kl}}}{u_{k_{l}}} = u_{u_{kl}} \times \frac{l}{u_{k_{l}}} = \frac{\Im_{l} + 1}{h + 7} \times \frac{\eta + \mathcal{L}}{\Im_{k_{l}-2}} = \frac{\Im_{l}^{2} + 1\Im_{l} + \mathcal{L}}{\Im_{l}^{2} + 1\Im_{l} + 1\Im_{l}}$	
$\frac{cr^{h}}{\overline{U}^{HH}} = \frac{SM_{\mu} + (\delta)N - 16}{\overline{S}M_{\mu}^{2} + (\delta)N + 16}$	

Question 72 (*****)

20

Smaths,

I.G.B.

I.C.p

The n^{th} term of a series is given recursively by

$$A_n = \frac{a(2n+1)}{2n+4} A_{n-1}, n \in \mathbb{N}, n \ge 1,$$

where a is a positive constant.

17303ST

00

Given further that $A_0 = 1$, show that

$$A_n = \left(\frac{a}{4}\right)^n \left(\frac{2n+2}{n}\right) \frac{1}{n+1}$$

nn

Madasm.

00

Y.C.

proof

hs.com

Y.C.B. Madasn

The Com

20

4.6.5

15

$A_{ij} = \frac{\alpha(2n+i)}{2n+i} A_{ij-1} = \frac{\alpha(2n+i)}{2(ij+2)} A_{ij-1}$

- GENERATE -A PAITION ROW THE DECURDENCE RELATION
- $A_{i_1} = \begin{pmatrix} (\underline{\omega}) \\ \underline{\omega} \\ \eta + \underline{\omega} \end{pmatrix} \times \begin{pmatrix} \underline{\omega} \\ \underline{\omega} \\ \eta + \underline{\omega} \end{pmatrix} + A_{n-2}$ • $A_{i_1} = \begin{pmatrix} \underline{\alpha} \\ \underline{\omega} \\ \underline{\omega} \end{pmatrix} \times \begin{pmatrix} \underline{\alpha} \\ \underline{\omega} \\ \eta + \underline{\omega} \end{pmatrix} \times \begin{pmatrix} \underline{\alpha} \\ \underline{\omega} \\ \underline{\omega} \end{pmatrix} \times \begin{pmatrix} \underline{\alpha} \\ \underline{\omega} \\ \underline{\omega} \end{pmatrix} + A_{n-2}$

I.G.B.

- $\bullet \stackrel{A}{\mathcal{H}}_{\eta} = \begin{pmatrix} \underline{\alpha} \\ \underline{\alpha} \\$
- ♦ NOW $f_{c_0} = 1$, so we may compare the expression As A $\implies A_{i_0} = \begin{pmatrix} a_i^{h_0} \\ c_i^{h_0} \end{pmatrix} \frac{(2n+1)(2n-1)(2n-2)_{X-1-X}X \times 3}{(n+2)(n+1)n(n-1)_{X-1-X}A \times 3}$
- $= A_{k} = \begin{pmatrix} a \\ 2 \end{pmatrix}^{n} \begin{pmatrix} a \\ (n+2)(n+1) & (n-1)_{X--X} \\ (n+2)(n+1)(2n-1)(2n-2)($
- $\begin{array}{c} \lambda_{21} & \left[\left(2n \left(2n 4 \right) \dots \times \left(2n + 4 \right) \right) + \left(2n 4 \right) \dots \times \left(2n + 4 \right) \right] \\ & \longrightarrow A_{\mu} = \left(\frac{3}{2} \right)^{\mu} \frac{1}{\left[\gamma^{\mu} + \left(A_{\mu} 2 \right) \dots \times \left(2n + 4 \right) \right]} + \left(2n + 4 \right) + \left(2n$
- $\Rightarrow A_{\mu} = \left(\frac{\alpha_{\mu}}{2} + \frac{(2n+i)!}{2^{n} + n! + k} + \frac{(2n+i)!}{2^{n}$
- $\Longrightarrow A_{i_1} = \frac{\alpha^{i_1}}{2^{i_1}2^{i_1}} \times \frac{2(2n+i)!}{n!(n+2)!}$
- $\Rightarrow \mathcal{A}_{h} = \left(\frac{a}{4}\right)^{h} \times \frac{\mathbb{Z}(2n+2)(a}{(2n+2)(n+1)}$
- $\Longrightarrow A_{l_1} = \left(\frac{a_1}{4} \right)^{l_1} \times \frac{Z(2n+2)}{Z(n+1)n!}$

2017

- $\Longrightarrow A_{ij} = \left(\frac{\alpha}{4}\right)^{ij} \times \frac{(2\eta_{12})!}{\eta!(\eta_{12})!} \times \frac{(\alpha)^{ij}}{\eta!(\eta_{12})!} \times \frac{(\alpha)^{ij}}{\eta!(\eta_{12})!} \times \frac{(\alpha)^{ij}}{\eta!(\eta_{12})!}$
- $\Rightarrow A_{h} = \begin{pmatrix} a \\ 4 \end{pmatrix}^{r} \begin{pmatrix} 2h+2 \\ h \end{pmatrix} \frac{1}{h+1}$

Question 73 (*****)

asmaths.com

2

I.V.C.B. Madasm

Smaths.com

I.Y.G.B.

A sequence is defined as

$$u_{r+1} = u_r + \frac{2r}{r^4 + r^2 + 1}, \quad u_1 = 0, \quad r \in \mathbb{N}.$$

lue of u_{61} .

nadası,

Determine the exact value of u_{61} .

nadasmaths.com

I.G.B.

I.F.C.B.

Madasmaths.com

haths.com

3660

¥.6.0

1+

11202ST120

Created by T. Madas

F.C.B.

COM