# SIMPLE CIPROC VIC Madas SIMIL-RECIPROCAL TONS ASTRAILS CORP. I. X. C.P. MARCASHARIS CORP. I. Y. C.R. Marason,

## Question 1 (\*\*+)

The curves  $C_1$  and  $C_2$  have respective equations

$$C_1: \ y = \frac{1}{x-3}, \ x \neq 3$$
$$C_2: \ y = \frac{1}{x} - 3, \ x \neq 0$$

Sketch on separate diagrams the graph of  $C_1$  and the graph of  $C_2$ .

Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.



graph

6

Question 2 (\*\*+)



The figure above shows the graph of the curve with equation

$$y = -\frac{4}{x}, \ x \neq 0.$$

a) Sketch the graph of the curve C with equation

 $y = 2 - \frac{4}{x}, \ x \neq 0.$ 

Indicate clearly the coordinates of any points of intersection between C and the coordinate axes.

**b**) State the equations of the two asymptotes of C



x = 0, y = 2

1.

## Question 3 (\*\*\*)

The curves  $C_1$  and  $C_2$  have respective equations

$$C_1: y = -\frac{1}{x}, x \neq 0$$
  
 $C_2: y = \frac{1}{x-2}, x \neq 2$ 

- **a**) Sketch on separate diagrams the graph of  $C_1$  and the graph of  $C_2$ .
  - Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.
- **b**) Find the coordinates of the point of intersection between  $C_1$  and  $C_2$ .



C.H.

6

#### Question 4 (\*\*\*)

The curves  $C_1$  and  $C_2$  have respective equations

$$C_1: \ y = \frac{1}{x} + 2, \ x \neq 0$$
$$C_2: \ y = \frac{1}{x+2}, \ x \neq -2$$

**a**) Sketch on separate diagrams the graph of  $C_1$  and the graph of  $C_2$ .

Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.

**b**) Find the coordinates of the point of intersection between  $C_1$  and  $C_2$ .



6

y

0

 $y = \frac{2}{x}$ 

Question 5 (\*\*\*)

The figure above shows the graph of the curve C with equation

$$y = \frac{2}{x}, \ x \neq 0.$$

a) Describe the geometric transformation which maps the graph of C onto the graph with equation

$$v = \frac{2}{x-2}, \ x \neq 0.$$

**b**) Sketch the graph of the curve with equation

$$y = \frac{2}{x} + 2, \ x \neq 0.$$

١

Indicate clearly the coordinates of any points of intersections between the curve and the coordinate axes. State the equations of the two asymptotes of the curve.

[continues overleaf]

## [continued from overleaf]

5.

I.C.B.

21/15.COM

I.G.B.

c) Show that the x coordinates of the points of intersection between the graph of  $y = \frac{2}{x-2}$  and the graph of  $y = \frac{2}{x} + 2$  are the roots of the quadratic equation

# $x^2 - 2x - 2 = 0.$

d) Hence find, in exact surd form, the x coordinates of the points of intersection between the graph of  $y = \frac{2}{x-2}$  and the graph of  $y = \frac{2}{x} + 2$ .

, translation, 2 units to the "right",  $x = 1 \pm \sqrt{3}$ 



aths.com

I.C.B. Madasn

G

The Com

·C.I.

Created by T. Madas

in,

SMaths.com

Question 6 (\*\*\*)

A curve C has equation

$$=\frac{1}{r^2}, x \in \mathbb{R}, x \neq 0.$$

**a**) Sketch the graph of C.

**b**) Sketch on separate set of axes the graph of ....

... 
$$y = \frac{1}{x^2} + 1, x \in \mathbb{R}, x \neq 0.$$

**ii.** ...  $y = \frac{1}{(x+1)^2}, x \in \mathbb{R}, x \neq -1.$ 

Mark clearly in each sketch the equations of any asymptotes to these curves and the coordinates of any intersections with the coordinate axes.



graph

1.+

Question 7 (\*\*\*)

A curve C has equation

 $f(x) = -\frac{1}{x^2}, x \in \mathbb{R}, x \neq 0.$ 

**a**) Sketch the graph of C.

**b**) Sketch on separate set of axes the graph of ....

**i.** ... f(x-1).

ii. ... f'(x).

Mark clearly in each sketch the equations of any asymptotes to these curves and the coordinates of any intersections with the coordinate axes.



1+

Question 8 (\*\*\*+)

$$f(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

$$g(x) = \frac{1}{x-1} + 1, \ x \in \mathbb{R}, \ x \neq 1$$

- a) Describe mathematically the two transformations that map the graph of f(x) onto the graph of g(x).
- **b**) Sketch the graph of g(x).
  - The sketch must include ...
    - ... the coordinates of any points where g(x) meet the coordinate axes.
    - ... the equations of any asymptotes of g(x).
- c) Solve the equation

g(x) = x - 1,

giving the answers in the form  $a+b\sqrt{5}$ , where a and b are constants.

translation "right" by 1 unit, followed by translation "upwards" by 1 unit

| a   |        | $> \frac{1}{2c-1}$              | $\rightarrow \frac{1}{\alpha-1} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | NAT TO | n) by nie<br>nie "Ribir"        | TOLAULARISA) BY ON(-<br>Chilt, "UNUARDA"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.6 | DANS   | ATTON BY TH                     | te aueroz. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |        |                                 | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |
|     |        | a                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -   |        | $R_{1}=x-1$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |        | = 2 - 2                         | $\Rightarrow 2 = \frac{3 \pm \sqrt{5}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.1 |        | (2-2)(x-<br>2 <sup>2</sup> -32+ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 $\pm$ 

x =

## **Question 9** (\*\*\*+)

A curve has equation y = f(x) given by

$$f(x) = 2 + \frac{1}{2x - 1}, \ x \neq \frac{1}{2}.$$

a) Express f(x) as a single simplified fraction.

Consider the following sequence of transformations  $T_1$ ,  $T_2$  and  $T_3$ .

$$\frac{1}{x} \xrightarrow{T_1} \frac{1}{x-1} \xrightarrow{T_2} \frac{1}{2x-1} \xrightarrow{T_3} 2 + \frac{1}{2x-1}$$

- **b**) Describe geometrically the transformations  $T_1$ ,  $T_2$  and  $T_3$ .
- c) Hence sketch the graph of f(x).
  - Indicate clearly any asymptotes and the coordinates of any intersections with the coordinate axes.
- d) Find the coordinates of the point of intersection of f(x) and the line y = 3.

],  $T_1$  = translation, "right", 1 unit],  $T_2$  = horizontal stretch by scale factor  $\frac{1}{2}$ 

 $T_3 = \text{translation, "upwards", 2 units}, (1,3)$ 



#### Question 10 (\*\*\*+)

Consider the following sequence of transformations  $T_1$ ,  $T_2$  and  $T_3$ .

$$\frac{1}{x} \xrightarrow{T_1} -\frac{1}{x} \xrightarrow{T_2} -\frac{1}{x+1} \xrightarrow{T_3} 2 \xrightarrow{T_1} 2$$

- **a**) Describe geometrically the transformations  $T_1$ ,  $T_2$  and  $T_3$ .
- **b**) Hence sketch the graph of

$$y = 2 - \frac{1}{x+1}, x \neq -1.$$

Indicate clearly any asymptotes and the coordinates of any intersections with the coordinate axes.

c) Solve the equation







) Finally shows in the Represent Entertial  $2 - \frac{1}{441} = \frac{1}{24}$   $2a - \frac{2}{241} = 1$  2a(2a1) - 2a - 2a+1  $2a^{2} - 2a - 2a+1$   $2a^{2} - 2a - 2a+1$ 

6

## Question 11 (\*\*\*+)

Consider a sequence of geometric transformations  $T_1$ ,  $T_2$  and  $T_3$  which map the graph of the curve with equation  $y_1 = \frac{1}{x}$  onto the graph of  $y_2$ .

- $T_1$  : reflection in the x axis.
- $T_2$ : translation in the negative x direction by 2 units.
- $T_3$ : translation in the positive y direction by 2 units.
- **a**) Show that the equation of  $y_2$  is given by

$$y_2 = \frac{2x+3}{x+2}, \ x \neq -2$$

**b**) Sketch the graph of  $y_2$ .

Indicate clearly any asymptotes and coordinates of intersections with the axes.

c) Solve the equation

 $\frac{2x+3}{x+2} = 2 + \frac{1}{2}$ 



Question 12 (\*\*\*+)

The curve  $C_1$  has equation

 $y = -\frac{2}{x}, x \in \mathbb{R}, x \neq 0.$ 

**a**) Sketch the graph of  $C_1$ .

The curve  $C_2$  has equation

 $=x^3-3x, x \in \mathbb{R}.$ 

**b**) Sketch the graph of  $C_2$ .

The sketch must include the coordinates, in exact surd form where appropriate, of all the points where the curve meets the coordinate axes.

c) Find the x coordinates of the points of intersection between  $C_1$  and  $C_2$ .



 $x = \pm 1, \pm \sqrt{2}$ 

Question 13 (\*\*\*+)

$$f(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

$$g(x) = 2 - \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

a) Describe mathematically the two transformations that map the graph of f(x) onto the graph of g(x).

$$h(x) = \frac{6}{x+2}, x \in \mathbb{R}, x \neq -2.$$

- **b**) Sketch in the same diagram the graphs of g(x) and h(x).
  - The sketch must include the coordinates of ...
    - ... all the points where the curves meet the coordinate axes.
    - ... the equations of any asymptotes of the curves.
- c) Solve the equation g(x) = h(x).

, reflection in the x axis, followed by translation "upwards" by 1 unit

| <u>(a)</u> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s)         | $ \begin{pmatrix} \mathbf{e}_{\mathbf{a}} \\ \mathbf{e}_{\mathbf{a}} \\ \mathbf{e}_{\mathbf{a}} \\ \mathbf{e}_{\mathbf{a}} \end{pmatrix} = \begin{pmatrix} \mathbf{e}_{\mathbf{a}} \\ \mathbf{e}_{\mathbf$ |
|            | $\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| )          | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array}\right) = 2 - \frac{1}{\lambda} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | $\Rightarrow 2^{2}+p_{2-2-2}=6,$<br>$\Rightarrow 2^{2}-2-2=0,$<br>$\Rightarrow (p_{1}+1)(p_{2-2})=0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\Rightarrow (\underline{z}_{1} + 1)(\underline{z}_{1} - \underline{z}_{1}) = 2 - \frac{1}{2} = 2 - \frac{1}{2} = 2 + \frac{1}{2}$ $\Rightarrow (\underline{z}_{1}, \underline{z}_{1}) = (\underline{z}_{1}, \underline{z}_{1}) = 2 + \frac{1}{2} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Question 14 (\*\*\*+)

 $=\frac{2}{x}, x \in \mathbb{R}, x \neq 0.$ 

a) Describe mathematically the transformation that maps the graph of  $y = \frac{1}{x}$  onto

the graph of  $y = \frac{2}{3}$ 

**b**) Sketch the graph of  $y = \frac{2}{x}$ 

Write down the equations of the asymptotes of the curve.

The straight line with equation y = k - 2x, where k is a constant, is a tangent to the curve with equation  $y = \frac{2}{x}$ .

c) Determine the possible values of k.

, stretch, vertically, by scale factor of 2,  $k = \pm 4$ 



1.

Question 15 (\*\*\*+)

$$f(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

$$g(x) = \frac{1}{x+2} + 2, x \in \mathbb{R}, x \neq -2$$

- a) Describe mathematically the two transformations that map the graph of f(x) onto the graph of g(x).
- **b**) Sketch the graph of g(x).

The sketch must include the ...

- ... coordinates of all the points where the curve meet the coordinate axes.
- ... equations of any asymptotes of the curve.
- c) Find the coordinates of the points of intersection of g(x) and the line with equation

## 3y + x = 8.

, translation "left" by 2 units, followed by translation "upwards" by 2 units

| ٩       | THE TEANSFILMATIONS ARE SAFERED IN THE "CHAIN" BELOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | $\begin{split} & \left( (j) = \underbrace{1}_{X}  \longmapsto  \underbrace{1}_{(X,X)}  \longmapsto  \underbrace{1}_{X,X,Y} + 2  = g(x) \\ & \text{Branchen}_{(X,X)}  \text{Branchen}_{(X,X)}  \text{Long} \\ & \text{D for all carls}  & \text{Homosons} \\ & \text{D for all carls}  & \text{Homosons} \\ &  \text{Longeneric} \\ &  \text{Longeneric}  \text{D for the section}  \binom{-2}{2} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6)<br>- | $\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|         | $\begin{array}{c} \underbrace{\operatorname{coup}  \operatorname{coup}  \operatorname{coup}$ |  |

| <u></u>                       |                                                             |      | <u> </u> |
|-------------------------------|-------------------------------------------------------------|------|----------|
| ⇒ 2 <sup>2</sup> =1<br>⇒ J= < |                                                             |      |          |
| 9 =<br>y =                    | $\frac{1}{1+2} + 2 = \frac{1}{3}$ $\frac{1}{-(+2)} + 2 = 1$ |      |          |
| •*- (                         | (1,3) a (-                                                  | 1,3) |          |
|                               |                                                             |      |          |
|                               |                                                             |      |          |
|                               |                                                             |      |          |
|                               |                                                             |      |          |

Question 16 (\*\*\*+)

$$f(x) = \frac{4x - 13}{x - 3}, x \in \mathbb{R}, x \neq 3$$

a) Show that the equation of f(x) can be written as

$$f(x) = 4 - \frac{1}{x - 3}, x \in \mathbb{R}, x \neq 3$$

- **b**) Sketch the graph of f(x).
  - The sketch must include ....
    - ... the coordinates of the points where f(x) meets the coordinate axes.
    - ... the equations of any asymptotes of the curve.
- c) Solve the equation

giving the answers in the form  $a + b\sqrt{7}$ , where a and b are constants.

 $f(x) = \frac{3}{x},$ 

 $\frac{4(x-3)-1}{x-3} = \frac{4(x-5)}{3-3}$ 

|               | E CRIGNAL EXPRESSION FOR<br>SPUATION | <i>+\alphi</i> ) | 10 70ME | 74,FF |
|---------------|--------------------------------------|------------------|---------|-------|
| -             | da = 13 - 3                          |                  |         |       |
|               | $\frac{dx-13}{2} = \frac{3}{2}$      |                  |         |       |
|               | $4x^2 - 13x = 3x - 9$                |                  |         |       |
|               | $4x^2 - 16x + 9 = 0$                 |                  |         |       |
| Ť             | $\Im^2 - \Im \Im + \frac{q}{4} = 0$  |                  |         |       |
| COMPLETING    | THE SERVICE                          |                  |         |       |
|               | $(2-2)^2 - 4 + \frac{q}{4} = 0$      |                  |         |       |
| \$            | $(x-2)^2 = 4 - \frac{q}{4}$          |                  |         |       |
| -             | $(2-2)^2 = \frac{7}{4}$              |                  |         |       |
| -2            | $\Im - 2 = \pm \frac{\sqrt{7}}{2}$   |                  |         |       |
| $\rightarrow$ | 2= 2+2/7                             |                  |         |       |
|               | - //                                 |                  |         |       |
|               |                                      |                  |         |       |
|               |                                      |                  |         |       |
|               |                                      |                  |         |       |

Question 17 (\*\*\*+)

 $f(x) = a - \frac{1}{b - x}, x \in \mathbb{R}, x \neq b,$ 

where a and b are positive constants such that ab > 1.

Sketch the graph of f(x).

The sketch must include, in terms of a and b, ...

- ... the coordinates of the points where f(x) meets the coordinate axes.
- ... the equations of any asymptotes of the curve.



Ċ.Ŗ

mana.

G

graph

Question 18 (\*\*\*\*)

The curve  $C_1$  has equation

 $y = \frac{a}{x}, \ x \neq 0,$ 

where a is a positive constant.

**a**) Describe geometrically the transformation that maps the graph of  $C_1$  onto the

graph of  $C_2$  whose equation is  $y = \frac{a}{x} + 1$ .

**b**) Sketch the graph of  $C_2$ .

The sketch must include the coordinates of ...

- ... all the points where the curves meet the coordinate axes.
- ... the equations of any asymptotes of the curves.

The line with equation y = x intersects  $C_2$  at the point A(-2, -2) and B.

- c) Determine ...
  - i. ... the value of a.
  - ii. ... the coordinates of B.

translation "upwards" by 1 unit , a = 6 , B(3,3)



Question 19 (\*\*\*\*)

The curve C has equation

$$y = \frac{2x+3}{x-2}, x \in \mathbb{R}, x \neq 2.$$

a) Show clearly that

$$\frac{2x+3}{x-2} \equiv 2 + \frac{7}{x-2}.$$

- **b**) Find the coordinates of the points where C meets the coordinate axes.
- c) Sketch the graph of C showing clearly the equations of any asymptotes.
- d) Determine the coordinates of the points of intersection of C and the straight line with equation

y = 7x - 12.

 $\frac{3}{2}$  $(\frac{3}{2}, 0)$ , (1,-5), (3,9)(0,



Question 20 (\*\*\*\*)

$$f(x) = \frac{1}{x-2}, x \in \mathbb{R}, x \neq 2$$

$$g(x)=1+\frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

- a) Describe mathematically the transformation that maps the graph of  $y = \frac{1}{x}$  onto the graph of ...
  - **i.** ... f(x).
  - ii. ... g(x).

**b**) Sketch in the same diagram the graphs of f(x) and g(x).

The sketch must include ....

- ... the coordinates of any the points where the curves meet the coordinate axes.
- ... the equations of any asymptotes of the curves.
- c) Find as exact surds the coordinates of the points of intersection of the graphs of f(x) and g(x).

translation "right" by 2 units, translation "upwards" by 1 unit

155 hon = 1  $f(x) = h(x-x) = \frac{1}{2x}$ g(x) = h(x)+1 = ++OUS FROM PART (4) JAINO- THE  $f(x) = y = \frac{1}{x-2}$  $\frac{1}{3-2} = \frac{1}{3} + 1$ 

1/2 (1+13) 1 = 2(1-5)  $\therefore \quad \left[1 + i\widehat{s}_1, \frac{1}{2}(1 + i\widehat{s})\right] \quad \varphi \quad \left[1 - i\widehat{s}_1, \frac{1}{2}(1 - i\widehat{s})\right]$ 

 $1\pm\sqrt{3}, \frac{1\pm\sqrt{3}}{2}$ 

2

**Question 21** (\*\*\*\*)

$$f(x) = \frac{x-2}{x-3}, x \in \mathbb{R}, x \neq 3.$$

a) Express f(x) in the form

$$f(x) = a + \frac{1}{x+b},$$

where a and b are integers.

**b**) By considering a series of transformations which map the graph of  $\frac{1}{x}$  onto the graph of f(x), sketch the graph of f(x).

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.



11+

## Question 22 (\*\*\*\*)

The curves  $C_1$  and  $C_2$  have respective equations

$$C_1: y = \frac{1}{x-1}, x \neq 1$$
$$C_2: y = 1 - \frac{3}{x+2}, x \neq 1$$

-3

**a**) Sketch on the same diagram the graphs of  $C_1$  and  $C_2$ .

Indicate clearly any asymptotes and coordinates of any intersections with the coordinate axes.

**b)** By finding the intersections between  $C_1$  and  $C_2$ , and considering the graphs sketched in part (a), solve the inequality



 $-3 < x \le -1 \quad \cup \quad 1 < x \le 3$ 





## **Question 23** (\*\*\*\*)

 $f(x) = \frac{3x+3}{x-2}, x \in \mathbb{R}, x \neq 2.$ 

**a**) Sketch the graph of f(x).

The sketch must include the coordinates of ...

- ... all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.
- **b**) Solve the equation f(x) = 2.
- c) Hence solve the inequality  $f(x) \ge 2$ .



G

## Question 24 (\*\*\*\*+)

A curve has equation y = f(x) given by

$$f(x) = \frac{3x-1}{x+2}, x \in \mathbb{R}, x \neq 2.$$

**a**) Sketch the graph of f(x).

The sketch must include the coordinates of ...

- ... all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.

A different curve has equation y = g(x) given by

 $g(x) = \frac{1}{x} + k$ ,  $x \in \mathbb{R}$ ,  $x \neq 0$ , where k is a constant.

The graph of f(x) meets the graph of g(x) at the points A and B.

- **b**) Given that A lies on the x axis determine ...
  - i. ... the value of k.
  - ii. ... the coordinates of B.

| ٩ | But it the fourtable for format                                   |  |
|---|-------------------------------------------------------------------|--|
|   |                                                                   |  |
|   | $\underbrace{\underbrace{Wore}_{i} u_{i} u_{j} d_{i} f_{i}}_{i} $ |  |
|   |                                                                   |  |
|   |                                                                   |  |

| () I) SINCE THE TWO GRAPHS WHET AN THE 2 4×13,                     | THEY | шлт  |
|--------------------------------------------------------------------|------|------|
| utto on A (tro).                                                   |      |      |
| -> 0= ++k                                                          |      |      |
| ⇒ 0= 3+k                                                           |      |      |
| $\Rightarrow$ $t = -3$                                             |      |      |
|                                                                    |      |      |
| (II) SOUNDS SAMUTINHOUSY WIH K=-3                                  |      |      |
| $\implies \frac{1}{\alpha} - 3 = \frac{3\alpha - 1}{\alpha + 2}$   |      |      |
| $\implies (2+2) - 22(2+2) = 22(2n-1)$                              |      |      |
| $\implies x+2-3x^2-6x=3x^2-x$                                      |      |      |
| $\Rightarrow 0 = 6x^2 + 4x - 2$<br>$\Rightarrow 0 = 3x^2 + 2x - 1$ |      |      |
| $\Rightarrow \circ = (\exists t-1)(t+1)$                           |      |      |
| $\Rightarrow a = < -1 \neq 3$                                      |      |      |
| <u>_</u> i 4 4                                                     |      |      |
| $q = q(-1)_{2} - \frac{1}{-1} - 3 = -4$                            | (_1. | a) / |

|k = -3|,

B(-1, -4)