SIMPLE

RECIPROCAL

FUNCTIONS

Created by T. Madas

Created by T. Madas

Question 1 (**+)
The curves C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& C_{1}: y=\frac{1}{x-3}, x \neq 3 \\
& C_{2}: y=\frac{1}{x}-3, x \neq 0
\end{aligned}
$$

Sketch on separate diagrams the graph of C_{1} and the graph of C_{2}.
Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.

Created by T. Madas

Question $2{ }^{(* *+)}$

The figure above shows the graph of the curve with equation

$$
y=-\frac{4}{x}, x \neq 0
$$

a) Sketch the graph of the curve C with equation

$$
y=2-\frac{4}{x}, x \neq 0 .
$$

Indicate clearly the coordinates of any points of intersection between C and the coordinate axes.
b) State the equations of the two asymptotes of C.
\square
$x=0, y=2$

Created by T. Madas

Question 3 (***)
The curves C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& C_{1}: y=-\frac{1}{x}, x \neq 0 \\
& C_{2}: y=\frac{1}{x-2}, x \neq 2
\end{aligned}
$$

a) Sketch on separate diagrams the graph of C_{1} and the graph of C_{2}.

Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.
b) Find the coordinates of the point of intersection between C_{1} and C_{2}.

Created by T. Madas

Question 4 (***)
The curves C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& C_{1}: y=\frac{1}{x}+2, x \neq 0 \\
& C_{2}: y=\frac{1}{x+2}, x \neq-2
\end{aligned}
$$

a) Sketch on separate diagrams the graph of C_{1} and the graph of C_{2}.

Indicate clearly in each graph any asymptotes and the coordinates of any intersections with the coordinate axes.
b) Find the coordinates of the point of intersection between C_{1} and C_{2}.

Created by T. Madas

The figure above shows the graph of the curve C with equation

$$
y=\frac{2}{x}, x \neq 0 .
$$

a) Describe the geometric transformation which maps the graph of C onto the graph with equation
b) Sketch the graph of the curve with equation

$$
y=\frac{2}{x}+2, x \neq 0 .
$$

Indicate clearly the coordinates of any points of intersections between the curve and the coordinate axes. State the equations of the two asymptotes of the curve.

[continues overleaf]

Created by T. Madas
[continued from overleaf]
c) Show that the x coordinates of the points of intersection between the graph of $y=\frac{2}{x-2}$ and the graph of $y=\frac{2}{x}+2$ are the roots of the quadratic equation

$$
x^{2}-2 x-2=0 .
$$

d) Hence find, in exact surd form, the x coordinates of the points of intersection between the graph of $y=\frac{2}{x-2}$ and the graph of $y=\frac{2}{x}+2$.
\square, translation, 2 units to the "right", $x=1 \pm \sqrt{3}$

Created by T. Madas

Question 6 (***)
A curve C has equation

$$
y=\frac{1}{x^{2}}, x \in \mathbb{R}, x \neq 0
$$

a) Sketch the graph of C.
b) Sketch on separate set of axes the graph of \qquad
i. $\quad . \quad y=\frac{1}{x^{2}}+1, x \in \mathbb{R}, x \neq 0$.
ii. $\quad \cdots y=\frac{1}{(x+1)^{2}}, x \in \mathbb{R}, x \neq-1$.

Mark clearly in each sketch the equations of any asymptotes to these curves and the coordinates of any intersections with the coordinate axes.
\square , graph

Created by T. Madas

Question 7 (***)
A curve C has equation
a) Sketch the graph of C.
b) Sketch on separate set of axes the graph of
i. ... $f(x-1)$.
ii. ... $f^{\prime}(x)$.

Mark clearly in each sketch the equations of any asymptotes to these curves and the coordinates of any intersections with the coordinate axes.

Created by T. Madas

Question 8 (***+)

$$
\begin{aligned}
& f(x)=\frac{1}{x}, x \in \mathbb{R}, x \neq 0 \\
& g(x)=\frac{1}{x-1}+1, x \in \mathbb{R}, x \neq 1
\end{aligned}
$$

a) Describe mathematically the two transformations that map the graph of $f(x)$ onto the graph of $g(x)$.
b) Sketch the graph of $g(x)$. The sketch must include ...

- (... the coordinates of any points where $g(x)$ meet the coordinate axes.
- ... the equations of any asymptotes of $g(x)$.
c) Solve the equation

$$
g(x)=x-1
$$

giving the answers in the form $a+b \sqrt{5}$, where a and b are constants. translation "right" by 1 unit, followed by translation "upwards" by 1 unit,
\square $x=\frac{3}{2} \pm \frac{1}{2} \sqrt{5}$

Created by T. Madas

Created by T. Madas

Question 9 (***+)
A curve has equation $y=f(x)$ given by

$$
f(x)=2+\frac{1}{2 x-1}, x \neq \frac{1}{2} .
$$

a) Express $f(x)$ as a single simplified fraction.

Consider the following sequence of transformations T_{1}, T_{2} and T_{3}.

$$
\frac{1}{x} \xrightarrow{T_{1}} \frac{1}{x-1} \xrightarrow{T_{2}} \frac{1}{2 x-1} \xrightarrow{T_{3}} 2+\frac{1}{2 x-1} .
$$

b) Describe geometrically the transformations T_{1}, T_{2} and T_{3}.
c) Hence sketch the graph of $f(x)$.

Indicate clearly any asymptotes and the coordinates of any intersections with the coordinate axes.
d) Find the coordinates of the point of intersection of $f(x)$ and the line $y=3$.
 , $T_{1}=$ translation, "right", 1 unit,$T_{2}=$ horizontal stretch by scale factor $\frac{1}{2}$,

$$
T_{3}=\text { translation, "upwards", } 2 \text { units },(1,3)
$$

Question $10 \quad\left({ }^{* * *}+\right.$)
Consider the following sequence of transformations T_{1}, T_{2} and T_{3}.

$$
\frac{1}{x} \xrightarrow{T_{1}}-\frac{1}{x} \xrightarrow{T_{2}}-\frac{1}{x+1} \xrightarrow{T_{3}} 2-\frac{1}{x+1}
$$

a) Describe geometrically the transformations T_{1}, T_{2} and T_{3}.
b) Hence sketch the graph of

$$
y=2-\frac{1}{x+1}, x \neq-1
$$

Indicate clearly any asymptotes and the coordinates of any intersections with the coordinate axes.
c) Solve the equation

$$
2-\frac{1}{x+1}=\frac{1}{x}
$$

, $T_{1}=$ reflection in the x-axis,$T_{2}=$ translation, "left", 1 unit ,
$T_{3}=$ translation, "upwards", 2 units,$x= \pm \frac{\sqrt{2}}{2}$

Created by T. Madas

Created by T. Madas

Question 11 (***+)
Consider a sequence of geometric transformations T_{1}, T_{2} and T_{3} which map the graph of the curve with equation $y_{1}=\frac{1}{x}$ onto the graph of y_{2}.
T_{1} : reflection in the x axis.
T_{2} : translation in the negative x direction by 2 units.
T_{3} : translation in the positive y direction by 2 units.
a) Show that the equation of y_{2} is given by

$$
y_{2}=\frac{2 x+3}{x+2}, x \neq-2 .
$$

b) Sketch the graph of y_{2}.

Indicate clearly any asymptotes and coordinates of intersections with the axes.
c) Solve the equation

$$
\frac{2 x+3}{x+2}=2+\frac{2}{x-1}
$$

Created by T. Madas

Created by T. Madas

Question 12 ($^{* * *}+$)
The curve C_{1} has equation
a) Sketch the graph of C_{1}.

$$
y=-\frac{2}{x}, x \in \mathbb{R}, x \neq 0 .
$$

The curve C_{2} has equation

$$
y=x^{3}-3 x, x \in \mathbb{R} .
$$

b) Sketch the graph of C_{2}.

The sketch must include the coordinates, in exact surd form where appropriate, of all the points where the curve meets the coordinate axes.
c) Find the x coordinates of the points of intersection between C_{1} and C_{2}.
\square
\square

$$
x= \pm 1, \pm \sqrt{2}
$$

Created by T. Madas

Question 13 (***+)

$$
\begin{aligned}
& f(x)=\frac{1}{x}, x \in \mathbb{R}, x \neq 0 \\
& g(x)=2-\frac{1}{x}, x \in \mathbb{R}, x \neq 0 .
\end{aligned}
$$

a) Describe mathematically the two transformations that map the graph of $f(x)$ onto the graph of $g(x)$.

$$
h(x)=\frac{6}{x+2}, x \in \mathbb{R}, x \neq-2 .
$$

b) Sketch in the same diagram the graphs of $g(x)$ and $h(x)$. The sketch must include the coordinates of ...

- ... all the points where the curves meet the coordinate axes.
- ... the equations of any asymptotes of the curves.
c) Solve the equation $g(x)=h(x)$.
\square , reflection in the x axis, followed by translation "upwards" by 1 unit,

$$
x=-\frac{1}{2}, 2
$$

(c) $y=2-\frac{1}{x}$? \qquad
\qquad
\qquad $\Rightarrow 2 x^{2}-3 x-2=0$ $\Rightarrow(x+1)(x-2)=0$

Created by T. Madas

Created by T. Madas

Question 14 (***+)

$$
y=\frac{2}{x}, x \in \mathbb{R}, x \neq 0
$$

a) Describe mathematically the transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{2}{x}$.
b) Sketch the graph of $y=\frac{2}{x}$.

Write down the equations of the asymptotes of the curve.

The straight line with equation $y=k-2 x$, where k is a constant, is a tangent to the curve with equation $y=\frac{2}{x}$.
c) Determine the possible values of k. , stretch, vertically, by scale factor of $2, k= \pm 4$

Created by T. Madas

Question 15 (***+)

$$
\begin{aligned}
& f(x)=\frac{1}{x}, x \in \mathbb{R}, x \neq 0 . \\
& g(x)=\frac{1}{x+2}+2, x \in \mathbb{R}, x \neq-2 .
\end{aligned}
$$

a) Describe mathematically the two transformations that map the graph of $f(x)$ onto the graph of $g(x)$.
b) Sketch the graph of $g(x)$. The sketch must include the

- (... coordinates of all the points where the curve meet the coordinate axes.
- ... equations of any asymptotes of the curve.
c) Find the coordinates of the points of intersection of $g(x)$ and the line with equation

$$
3 y+x=8 \text {. }
$$

, translation "left" by 2 units, followed by translation "upwards" by 2 units,

$$
\left(1, \frac{7}{3}\right),(-1,3)
$$

$\left.\begin{array}{l}y=\frac{1}{x+2}+2 \\ 3 y+x=8\end{array}\right\} \Rightarrow 3\left(\frac{1}{x+2}+2\right)+x=8$
$\Rightarrow \frac{3}{x+2}+x-2=0$
$\Rightarrow 3+a(x+2)-2(x+2)=0 \quad \begin{aligned} & \text { muriay Thatary } \\ & \text { By }\end{aligned}$
$\Rightarrow 3+x^{2}+2 x-2 x-4=0$

Created by T. Madas

Created by T. Madas

Question 16 (***+)

$$
f(x)=\frac{4 x-13}{x-3}, x \in \mathbb{R}, x \neq 3
$$

a) Show that the equation of $f(x)$ can be written as

$$
f(x)=4-\frac{1}{x-3}, x \in \mathbb{R}, x \neq 3
$$

b) Sketch the graph of $f(x)$.

The sketch must include ...

- $\quad \ldots$ the coordinates of the points where $f(x)$ meets the coordinate axes.
- ... the equations of any asymptotes of the curve.
c) Solve the equation

$$
f(x)=\frac{3}{x}
$$

giving the answers in the form $a+b \sqrt{7}$, where a and b are constants.

Created by T. Madas

Question 17 (***+)

$$
f(x)=a-\frac{1}{b-x}, x \in \mathbb{R}, x \neq b
$$

where a and b are positive constants such that $a b>1$.

Sketch the graph of $f(x)$.
The sketch must include, in terms of a and b, \ldots

- ... the coordinates of the points where $f(x)$ meets the coordinate axes.
- ... the equations of any asymptotes of the curve.
\square , graph
 ,

Created by T. Madas

Created by T. Madas

Question 18 (****)
The curve C_{1} has equation
where a is a positive constant.
a) Describe geometrically the transformation that maps the graph of C_{1} onto the graph of C_{2} whose equation is $y=\frac{a}{x}+1$.
b) Sketch the graph of C_{2}.

The sketch must include the coordinates of ...

- ... all the points where the curves meet the coordinate axes.
- ... the equations of any asymptotes of the curves.

The line with equation $y=x$ intersects C_{2} at the point $A(-2,-2)$ and B.
c) Determine ...
i. ... the value of a.
ii. ... the coordinates of B.
\square, translation "upwards" by 1 unit $, a=6, B(3,3)$

Question 19 (****)
The curve C has equation

$$
y=\frac{2 x+3}{x-2}, x \in \mathbb{R}, x \neq 2
$$

a) Show clearly that

$$
\frac{2 x+3}{x-2} \equiv 2+\frac{7}{x-2}
$$

b) Find the coordinates of the points where C meets the coordinate axes.
c) Sketch the graph of C showing clearly the equations of any asymptotes.
d) Determine the coordinates of the points of intersection of C and the straight line with equation

$$
y=7 x-12 .
$$

\square $,\left(0,-\frac{3}{2}\right),\left(-\frac{3}{2}, 0\right),(1,-5),(3,9)$

b) Solwherte quation GL $a=0$ \& $y=0$ $\begin{array}{rlr}y=\frac{0+3}{0-2}=-\frac{3}{2} & 0=\frac{2 x+3}{2} . \\ \therefore\left(0, \frac{3}{2}\right) & 2 x+3=0 \\ x & =-\frac{3}{2}\end{array}$

c) Worgna writ transremattons
$\frac{7}{x} \longmapsto \frac{7}{a x-2)} \longmapsto\left(\frac{7}{x-2}\right)+\frac{1}{a}$

\square

Created by T. Madas

Question 20 (****)

$$
\begin{aligned}
& f(x)=\frac{1}{x-2}, x \in \mathbb{R}, x \neq 2 . \\
& g(x)=1+\frac{1}{x}, x \in \mathbb{R}, x \neq 0 .
\end{aligned}
$$

a) Describe mathematically the transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of ...
i. $\ldots f(x)$.
ii. $\ldots g(x)$.
b) Sketch in the same diagram the graphs of $f(x)$ and $g(x)$.

The sketch must include ...

- ... the coordinates of any the points where the curves meet the coordinate axes.
- ... the equations of any asymptotes of the curves.
c) Find as exact surds the coordinates of the points of intersection of the graphs of $f(x)$ and $g(x)$.
\qquad , translation "right" by 2 units, translation "upwards" by 1 unit,

Created by T. Madas

Question 21 (****)

$$
f(x)=\frac{x-2}{x-3}, x \in \mathbb{R}, x \neq 3 .
$$

a) Express $f(x)$ in the form

$$
f(x)=a+\frac{1}{x+b}
$$

where a and b are integers.
b) By considering a series of transformations which map the graph of $\frac{1}{x}$ onto the graph of $f(x)$, sketch the graph of $f(x)$.

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.

Question 22 (****)
The curves C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& C_{1}: y=\frac{1}{x-1}, x \neq 1 \\
& C_{2}: y=1-\frac{3}{x+3}, x \neq-3
\end{aligned}
$$

a) Sketch on the same diagram the graphs of C_{1} and C_{2}.

Indicate clearly any asymptotes and coordinates of any intersections with the coordinate axes.
b) By finding the intersections between C_{1} and C_{2}, and considering the graphs sketched in part (a), solve the inequality

$$
\frac{1}{x-1}+\frac{3}{x+3} \geq 1 .
$$

$$
-3<x \leq-1 \cup 1<x \leq 3
$$

Created by T. Madas

Question 23 ($* * * *)$

$$
f(x)=\frac{3 x+3}{x-2}, x \in \mathbb{R}, x \neq 2
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of \ldots

- ... all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.
b) Solve the equation $f(x)=2$.
c) Hence solve the inequality $f(x) \geq 2$.
\square $, x=-7, x \leq-7 \cup x>2$

Created by T. Madas

Question 24 (****+)
A curve has equation $y=f(x)$ given by

$$
f(x)=\frac{3 x-1}{x+2}, x \in \mathbb{R}, x \neq 2 .
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of

- ... all the points where the curve meets the coordinate axes.
- ... the equations of the two asymptotes of the curve.

A different curve has equation $y=g(x)$ given by

$$
g(x)=\frac{1}{x}+k, x \in \mathbb{R}, x \neq 0, \text { where } k \text { is a constant. }
$$

The graph of $f(x)$ meets the graph of $g(x)$ at the points A and B.
b) Given that A lies on the x axis determine ...
i. ... the value of k.
ii. ... the coordinates of B.

