QUADRATIC UADRATIC UADRATIC CLASHIBITS COM I. Y. G.B. MARIASINALIS COM I. Y. G.B. MARIASIN

Question 1 (**)

Kaj

By using the quadratic formula, or otherwise, find the exact solutions of the equation

		h
S BY PA a= a= a= a= a= a= a=	$\frac{-b \pm \sqrt{b^2 + 4 \alpha c}}{2a} = \frac{-b \pm \sqrt{b^2 + 4 \alpha c}}{2a} = \frac{-3 \pm \sqrt{3^2 + 4 x 2 x}}{2x/2}$ $= \frac{-3 \pm \sqrt{3^2 + 6^2}}{4}$ $= -3 \pm \sqrt{3^2 + 6^2}$	<u></u>

 $-3\pm\sqrt{17}$

Question 2 (**)

 $f(x) = x^2 - 4x - 16, \ x \in \mathbb{R}.$

a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.

b) Hence solve the equation f(x) = 0, giving the answers as exact surds.

a = -2, b = -20, $x = 2 \pm 2\sqrt{5}$

20-	asp asp asp asp.
"nars	Created by T. Madas
19	Question 3 (**)
-	Find the solutions of the equation
7	$3x - \frac{5}{x} = 2.$
1.12	$x = -1, \frac{5}{2}$
	$ \begin{array}{c} 3a - \frac{5}{2} = 2 (xa) \\ \Rightarrow 3a^2 - 5 = 2a \qquad $
02	(a-s)(a+1)=0
Top-	ash ash and ar
	Question 4 (**)
· · · ·	$f(x) = x^2 - 14x + 50.$
6	Show that $f(x)$ is positive for all values of x.
11	proof
х Х	$\begin{aligned} & -\frac{1}{2} (2 - 7)^2 - 7^2 trip \\ & +\frac{1}{2} (2 - 7)^2 - 7^2 trip \\ & +\frac{1}{2} (2 - 7)^2 + 1 > 1 \\ & +\frac{1}{2} (2 - 7)^2 + 1 > 1 \end{aligned}$
20.	
"asm	alla asm alla asm
Ľ,	the Mars With Mars Wall
2	Co. US Co. Uls
200	an com an com
× 7.	
~~ /	a carta cart
~ (
m.	n. Man in Man
120	Created by T. Madas
982	The Mar Mar Mar

Question 5 (**)

Find the coordinates of any points of intersection between the graphs of

 $y = x^2 - 4x + 2$ and $y = -x^2 - 8x$.

$(2+1)^2 = 0$	
x = -1	in =(-i)((-i)+5
	. y=1+++2 u =7
	· (-17)

, (-1,7)

Question 6 (**)

 $f(x) = x^2 + 6x + 10, x \in \mathbb{R}.$

- a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.
- b) Describe geometrically the transformations which map the graph of x^2 onto the graph of f(x).

a=3, b=1, translation by

$x_{+}^{2} + 6x_{+} + 10 = (x+3)^{2} - 3^{2} + 10 = (x+3)^{2} - 9 + 10$
$= (\alpha + \beta)^{2} + 1$
$a^2 \mapsto (a+3)^2 \mapsto (a+3)^{2+1}$
("LET", BI 3 UNITS ENDANCED" BY I UNIT)
OR TRANSAFTION BY LIGTOR (-3)

Question 7 (**)

 $f(x) = x^2 - 2x - 5, x \in \mathbb{R}.$

- a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.
- **b**) State the equation of the line of symmetry of the graph of f(x).
- c) Describe geometrically the transformations which map the graph of x^2 onto the graph of f(x).

a = -1, b = -6, x = 1, translation by $\begin{pmatrix} 1 \\ -6 \end{pmatrix}$

Question 8 (**+)

asmaths.com

 $f(x) = x^2 + 4x + 12, \ x \in \mathbb{R}$

ths.col

4.60

6

Madasmall

a=2, b=8, $\frac{1}{8}$

 $= 2^{2} + 4x + 12$ $(x) = (x_{+2})^2 - 2$

I.Y.C.B. Madasmarks.com

ths.com a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.

nadasma,

I. C.B. Madasmarkins.Com

COM

I.Y.C.B.

b) Determine the greatest value of $\frac{1}{f(x)}$

Madasmaths.com

I.C.B. Madasman

Smaths.com

I.G.B.

l.V.G.B.

Question 9 (**+)

 $f(x) = x^2 - 4x + 9, \ x \in \mathbb{R}.$

- a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.
- **b**) State the coordinates of the minimum point of the graph of f(x).
- c) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

d) Describe geometrically the transformations which map the graph of x^2 onto the graph of f(x).

a = -2, b = 5, (2,5), translation by $\begin{pmatrix} 2\\5 \end{pmatrix}$

Question 10 (**+)

The curve C has equation

 $y = -x^2 + 8x - 7$.

- a) Express $x^2 8x + 7$ in the form $(x+a)^2 + b$, where a and b are constants.
- **b**) Hence write down the coordinates of the **maximum** point of C.
- c) Sketch the graph of C, indicating clearly all the points where C meets the coordinate axes.

 $[(x-4)^2-9], \overline{(4,9)}]$

(a) $y = a_{x-1}^{2} - a_{x-1}^{2}$ $y = (a-4)^{2} - 4^{2} + 7$ $y = (a-4)^{2} - 4^{2} + 7$ $y = (a-4)^{2} - 9$	(b) Share <u>uninover</u> or $y = x^2 \cdot b_{177}$, is (q,q) Then the equilibrium of $y = -x^2 \cdot b_{277}$ Multi be (q,q) (q,q)
$ \begin{array}{c} \textbf{(c)} & \bullet -\mathbf{x}^* \Longrightarrow & \frown \\ & \bullet & \mathbf{x}_{PQ} g = -7 \implies (0_{1}-7) \\ & \bullet & \mathbf{y}_{PQ} g = -7 \implies (0_{1}-7) \\ & \bullet & \mathbf{y}_{PQ} g = -\mathbf{x}^* + g_{PQ} - 7 \\ & \bullet & \mathbf{z}^* -$	9 (41) (41) (41) (41)

Question 11 (**+)

The curve C has equation

$$y = \left(x - a\right)^2 + b,$$

where a, b are positive constants.

By considering the two transformations that map the graph of $y = x^2$ onto the graph of *C*, or otherwise, sketch the graph of *C*.

The sketch must include the coordinates, in terms of a, b, of

- ... all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

graph

Question 12 (**+) The quadratic equation

 $x^2 + ax + b = 0,$

15

a = -3, b = -10

£Ŀ,

Mada

where a and b are constants,

is satisfied by x = -2 and x = 5.

Determine the values of a and b.

ţ.C.B.

ŀG.p.

Created by T. Madas

. C.B.

Question 13 (**+)

 $f(x) = x^2 + 8x + 20, x \in \mathbb{R}.$

- a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.
- **b**) State the coordinates of the minimum point of the graph of f(x).
- c) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

d) Describe geometrically the transformations which map the graph of x^2 onto the graph of f(x).

Question 14 (**+)

 $f(x) = x^2 + 4x - 12, x \in \mathbb{R}.$

a) Solve the equation f(x) = 0.

b) Hence solve the equation

 $x^4 + 4x^2 - 12 = 0.$

Question 15 (**+)

I.C.P.

Find in exact form where appropriate the solutions of the equation

 $2(3x^2-5)-(x+2)(x-3)=0.$

 $x = -1, \frac{4}{5}$

Ĉ.B.

12

1

 $x = \pm \sqrt{2}$

 $\begin{array}{c} \partial \mathcal{X}_{\tau}^{+} \times -\ell \neq 0 \\ \partial \mathcal{X}_{\tau}^{-} (0 - \mathcal{X}_{\tau}^{+} + \mathcal{X}_{\tau}^{-} = 0 \\ \partial \mathcal{X}_{\tau}^{-} (0 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (0 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (0 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{+} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{+} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{+} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{X}_{\tau}^{+} \mathcal{X}_{\tau}^{+} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{X}_{\tau}^{+} \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{X}_{\tau}^{+} \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{Y}_{\tau}^{+} \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{Y}_{\tau}^{+} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-}) = 0 \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{-}) \\ \partial \mathcal{X}_{\tau}^{-} (1 - \mathcal{Y}_{\tau}^{-} - \mathcal{Y}_{\tau}^{$

, x = -6, 2

Question 16 (**+)

 $f(x) = x^2 + 6x + 7, x \in \mathbb{R}.$

- a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.
- **b**) Hence find the exact coordinates of the points where the graph of f(x) meets the x axis.

,	a=3, $b=$	$=-2$, $(-3\pm\sqrt{2},0)$	
2	$(\hat{g} f (3) = x^2 + 6x + 7$ $f (3) = (3 + 3)^2 - 9 + 7$ $f (3) = (3 + 3)^2 - 2$ $f (3) = (3 + 3)^2 - 2$ $f = (3 + 3)^2 - 2$ $f = (3 + 3)^2 - 2$ $f = (3 + 3)^2 - 2$	$ \begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ 0 \end{array} \right) = \left(\begin{array}{c} -2 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \end{array} \right) = \left(\begin{array}{c} 0 \\ -2 \end{array} \right) = \left(\begin{array}{c} 0 \end{array} \right) = \left(\begin{array}$	

Question 17 (**+)

$$f(x) = x^2 - 12x + 40, \ x \in \mathbb{R}$$

a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.

b) Hence state the minimum value of $\sqrt{x^2 - 12x + 40}$

a = -6, b = 4, 2

(a)	$f(x) = x^2 - 12x + 40$	(6)	L. L. fai
	-1(7)= (7-6)=36+40 -{(7)= (7-6) ² +4_		(a) + (a)
	14 9=-6		·· N 22-121+40 = 2

Question 18 (***)

 $f(x) = x^2 - 6x + 16, x \in \mathbb{R}.$

a) Express f(x) in the form $f(x) = (x+a)^2 + b$, where a and b are constants.

The graph of f(x) has a minimum point at M and meets the y axis at Y.

b) Sketch the graph of f(x), indicating the coordinates of the points M and Y.

The graph of f(x)+k, where k is a constant, touches the x axis.

c) State the value of k.

Question 19 (***)

By considering the factorization of the equation $5y^2 + 7y - 6 = 0$, solve the equation

 $5x + 7\sqrt{x} - 6 = 0$

Sy2+74-6=0	52+712-6=0
(5y -3)(y + 2)=0	$\sqrt{(\sqrt{x})^2 + 7(\sqrt{x}^2) - 6} = 0$
/ -2.	200 ITAUQ> - QUIDAMONO
8=< 3	$\sqrt{x} = \langle \frac{2}{\frac{3}{2}} \rangle$
	$\Delta = \frac{q}{25}$

Question 20 (***)

Find the range of values of k for which

 $x^2 - 4x + a$

is positive for all values of x.

a	>	4
100	-	

1+

29

$y = x^2 - 4x + q$	
$y = (2 - 2)^2 - 2^2 + a$	
y = (2-2) ² -4+a	(2 a-4)
$y = (\alpha - 2)^2 + (\alpha - 4)$	W+ REPOIRS , a-4>

Question 21 (***)

I.C.B.

$$f(x) = x^2 + 6x + 18, x \in \mathbb{R}.$$

a) Express f(x) in the form $(x+a)^2 + b$, where a and b are integers.

nadasm

b) Hence state the minimum and maximum values of $\frac{1}{f(x)}$.

$$a=3$$
, $b=9$, $0 < \frac{1}{f(x)} \le \frac{1}{9}$

A right angled trapezium ABCD is shown in the figure above.

The trapezium has parallel sides AB and CD of lengths (2x+1) cm and (x+1) cm. The height of the trapezium AD is 2x cm.

Given that the area of the trapezium is 16 cm^2 , determine the exact length of BC.

FORM this EQUATION BASED ON THE AREA OF A TRAPEZIUM
$ \Rightarrow \frac{(3+1)+(22+1)}{2k} \times 2k = k $ $ \Rightarrow \frac{(3+2)}{2k} = k $ $ \Rightarrow 3k^2 + 2k - k = 0 $ $ \Rightarrow 3k^2 + 2k - k = 0 $ $ \Rightarrow 3k^2 + 2k - k = 0 $ $ \Rightarrow 3k^2 + 2k - k = 0 $ $ \Rightarrow 3k^2 + 2k - k = 0 $ $ \Rightarrow 2k - 2k = k $
FINALLY BY PRICHARDAS ON THE LIGHT AND LEVENATIVE IS KURAIT
$(2\lambda)^{2} + \lambda^{2} = BC ^{2}$
$ BC ^2 = Sx^2$
(BC1 = +15 x
BC/= JI×2
THE REPORTED LENGTH 11
L.

Question 23 (***) (non calculator)

 $x^2 - 1.6x - 3.36 = 0$

Solve the above equation giving the answers in decimal form.

Question 24 (***)

 $f(x) = 2x^2 + 5x + 3, x \in \mathbb{R}.$

a) Express f(x) as a product of two linear factors.

b) Hence, express 253 as a product of two prime factors.

17₂₀₂,

f(x) = (2x+3)(x+1), $253 = 23 \times 11$

(a) $f(3) = 2\lambda_{T}^{2} + 2\lambda + 3$ f(4) = (2k + 3)(2k + 1) f(5) = (2k + 1)(2k + 1) f(5) = (2k + 1)(2k + 1)(2k + 1)f(5) = (2k + 1)(2k + 1

12

Question 25 (***)

A quadratic curve has equation $y = x^2 + bx + c$, where a and b are constants.

Given that the coordinates of the minimum point of the quadratic is (-2,5) determine the values of *a* and *b*.

If $f(x) = x^2 - 7x + 6$, solve the equation f(x) = f(x+2).

							-	_
+(x) = -(x)	(2+2)							
1								
= 22-2+8=	$(3+2)^2 - 7(x+2) +$	5						
. /	(
- x-x= x	+ 42+4-32-14							
. //	"							
=> 10 = 42								
5	/							
= = ž //	· · · · · · · · · · · · · · · · · · ·							
//								

b=9

1+

a = 4

Question 27 (***+) It is given that for all values of *x*

$$5x^{2} + Ax - 7 \equiv B(x+2)^{2} + C,$$

where A, B and C are constants.

Determine the values of A, B and C.

[A = 20], [B = 5], [C = -27]	
$\begin{array}{rcl} 5a^{*}_{x}+A_{2x}-7 &\equiv & B(x_{x}c)^{*}_{x}+C\\ 5a^{*}_{x}+A_{2x}-7 &\equiv & B(x^{*}_{x}b_{x}+d_{y})_{x}+C\\ 5x^{*}_{x}+A_{2x}-7 &\equiv & Ba^{*}_{x}+d_{2x}+d_$	
• $[34]; S = B$ • $[34]; A = 4B$ • $A = 2D$ • $[24]; -7 = 4B+C$ • $[24]; -7 = 4B+C$ • $C = -27$	

Question 28 (***+)

 $f(x) = 4x^2 + 12kx, x \in \mathbb{R},$

where k is a constant.

a) Show clearly that the equation f(x) = 9 has two distinct real roots for all values of k.

b) Hence find the solutions of the equation f(x) = 9, giving the answers in the form $pk \pm p\sqrt{k^2 + 1}$, where p is a constant to be found.

 $x = \frac{3}{2}k \pm \frac{3}{2}$ -12K = 1 144K2+144 62-4ac= (4K)2-4x4x69 12K ± 121 K2+1 1442 + 144 > 100

WAYS TWO RHAL ROOD

Question 29 (***+)

 $f(x)=11+8x-x^2, x \in \mathbb{R}.$

- a) Express f(x) in the form $f(x) = A (x+B)^2$, where A and B are constants.
- **b**) State the maximum value of f(x).
- c) Solve the equation f(x) = 0, giving the answers in the form $p \pm q\sqrt{3}$, where p and q are constants

<u>A = 27</u>, <u>B = -4</u>, <u>f(x)_{max} = 27</u>, <u>x = -4 \pm 3\sqrt{3}</u>

$ \begin{array}{l} ($
(b) MARINUM VALUE IS 27
$(c) \begin{cases} \varphi(z) = 0 \\ \Rightarrow 27 - (z_1 + q)^2 = 0 \\ \Rightarrow 27 - (z_1 + q)^2 = 0 \end{cases} \qquad \qquad$
$\Rightarrow a+4 = \pm \sqrt{27^{1}}$ $q=3$

12

Question 30 (***+)

 $x - \frac{14}{x} = 6\sqrt{2}, \ x \neq 0.$

Solve the above equation giving the answers in the form $p\sqrt{2}$, where p is a constant.

١.

\mathcal{O} \mathcal{O}		, $x = -\sqrt{2}$ or $x = 7\sqrt{2}$
40 4		In.
	· / /	Sther by Waterings at 2
n.	121	$\Rightarrow 2 - \frac{W_{\chi}}{2} = 66\overline{z}$ $\Rightarrow \hat{x} - W = 66\overline{z} \lambda$
dn	·42	BY THE QUARDATIC FORMULA OR BY COMPLETING THE QUART
20.	- S. M.	$\Rightarrow \lambda_{1} = \frac{6\Omega}{2} \times \frac{1}{2}$
112 °Ch.	1210	$\implies 3 \cdot \frac{612 \pm 4715}{2}$ $\implies 3 \cdot \frac{612 \pm 812}{2} = \sqrt{\frac{612 \pm 812}{2}} = \sqrt{\frac{612 \pm 812}{2}}$
48 4	12 Cha	OP. BY COMPLETING THE SAMADE
Co.	0.0	$\rightarrow \lambda^2 - c G^* \lambda - b -0$ $\Rightarrow (\lambda - 3AT)^2 - (3GT)^3 - 14 = 0$ $\Rightarrow (\lambda - 3AT)^2 - 18 - 14 = 0$
- Ch	°.C. 0	$ = \left(\lambda_{-} - 3\sqrt{2} \right)^{2} = 32 $ $ = \left(\lambda_{-} - 3\sqrt{2} \right)^{2} = \left(\sqrt{42} \right)^{2} = 4\sqrt{2} $ $ = \left(\sqrt{42} \right)^{2} = -\sqrt{42} = -\sqrt{42} $
	Un 1	⇒ 2, t < 72 -52
r. I.r.		
1 'C	~ 1	
(n)	is 'la	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
40	0 GA	58
	1 m 10	1 h
- Dr.	20	m 12
. dn	42	42~ °O
3. 20.	The second second	- 42 · 4
(2x) VA	211	19/22
100 4	112 00	1211
Co.	4.8	2 100
~Om	°Co.	m on
	^o n	V . Op
x. (.)		YY
	n ll	"Yo
$\langle \rho \rangle = \langle 0 \rangle$	60 50	63
40		
· · ·	· h ·	· · · /
n.	120	D. Va
de la companya de la company	Created by T. Madas	Yan Y

6

(***+) Question 31

$$f(x) = 4x^2 + 20x + 25, x \in \mathbb{R}.$$

- I.F.G.B. **a**) Solve the equation f(x) = 0.
 - **b**) Hence, or otherwise, solve the equation $f\left(\frac{1}{2}x+1\right)=0$.

àsillàllis.Col

I.V.C.

naths.com

(***+) Question 32 The quadratic equation

 $2x^2 + x + k = 0,$

²02517

FG.p.

2017

where k is a constant, has solutions $x = \frac{3}{2}$ and $x = x_0$.

Adasmaths.com

Find the value of $x = x_0$.

N.G.B. Madasn

00

I.G.p

20

Ismaths,

Madasmaths.com

The Com

 x_0

11.4

madasma,

K.C.B. 11130/2811

Created by T. Madas

nadasmaths,

2011

·C,

Question 33 (***+)

$$f(x) = 9x^2 + 18x - 7, x \in \mathbb{R}.$$

- **a**) Solve the equation f(x) = 0.
- **b**) Express f(x) in the form

$$f(x) = 9(x+A)^2 + B$$

where A and B are integer constants.

- c) State the minimum value of f(x).
- d) Sketch the graph of f(x), indicating clearly the coordinates of the points where the graph of f(x) meets the coordinate axes.

$$x = -\frac{7}{3}, \frac{1}{3}, [A=1], [B=-16], [f(x)_{\min} = -16]$$

1211201

Question 34 (***+)

 $f(x) = (x-4-\sqrt{3})(x-4+\sqrt{3}), x \in \mathbb{R}.$

a) Express f(x) in the form ...

i. ... $f(x) = x^2 + bx + c$, where b and c are constants.

ii. ... $f(x) = (x+B)^2 + C$, where B and C are constants.

b) Sketch the graph of the curve C with equation y = f(x).

The sketch must include the coordinates of any points where the graph of C meets the coordinate axes, and the coordinates of the minimum point of C.

Question 35 (***+)

A curve C and a straight line L have respective equations

$$y = x^2 - 4x - 5$$
 and $y = 2x - 14$.

- a) Find the coordinates of any points of intersection between C and L.
- **b**) Sketch in the same diagram the graph of C and the graph of L.

The sketch must include of any points of intersection between the graph of C and the coordinate axes, and any points of intersection between the graph of L and the coordinate axes.

Question 36 (***+)

 $f(x) = x^2 + 2kx + c ,$

where k and c are constants.

- **a**) Express f(x) in "completed the square" form.
- **b)** Hence, or otherwise, solve the equation f(x) = 0, giving the answer in terms of k and c.

 $\left(x+k\right)^2-k^2+c\,\Big|\,,$

The equation f(x) = 0 has repeated roots.

c) Express c in terms of k.

 $x = -k \pm \sqrt{c - k^2} , \quad c = k^2$

Question 37 (***+)

 $f(x) = x^2 + Ax + B, x \in \mathbb{R}.$

Given that the graph of f(x) has a minimum at the point $(\frac{1}{2}, -\frac{9}{4})$, determine the values of the constants A and B.

A = -1 , B = -2

 $\begin{array}{c} \left(\begin{array}{c} c_{1} - \frac{1}{2} \right)^{2} - \frac{4}{4} \\ - \frac{1}{4} \left(b \right) = -\frac{2}{3}^{2} - \frac{2}{3} \frac{1}{2} \frac{1}{2} + \frac{1}{4} - \frac{4}{4} \\ - \frac{1}{4} \left(c_{1} \right) = -\frac{2}{3}^{2} - \frac{2}{3} - \frac{2}{4} \\ - \frac{1}{4} \left(c_{1} \right) = -\frac{2}{3} - \frac{2}{3} - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} \right) = -\frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) - \frac{2}{3} \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3} \right) \\ - \frac{1}{3} \left(c_{1} - \frac{2}{3}$

Question 38 (***+)

 $f(x) = x^2 - 2x - 47, x \in \mathbb{R}.$

a) Express f(x) in the form $f(x) = (x+a)^2 + b$, where a and b are constants.

- **b**) Solve the equation f(x) = 0, giving the answers in exact form in terms of $\sqrt{3}$.
- c) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes, and the coordinates of the minimum point of f(x).

$f(x) = (x-1)^2 - 48, \quad x = 1 \pm 4\sqrt{3}$

Question 39 (***+) non calculator

lculator
$$f(x) = 5 + 9x - 2x^2, x \in \mathbb{R}.$$

a) Given that

$$f(x) \equiv (a+bx)(1+cx),$$

I.F.C.B. determine the values of the integer constants a, b and c.

21/15.COM

Y.C.B. Mada

1.1.6.5

b) Evaluate $f\left(\frac{9}{4}\right)$. Ismaths.com

Smaths.com

I.V.G.B

0

the COL

1.4

madasm

hs.com

Ths.com

$5+92-22^{\circ} \equiv q+aca+ba+bca^{\circ}$	
$-2a^2 + 9a + 5 = baa^2 + (ac+b)a + a$	
: a = 5 ac+b= 9 Sc+b= 9 bc=-2	
5c ² +bc=9c	
Sc ² - 2 = 1c Sc ³ - 9c - 2 = 0	
(bc+1)(c-2) C= < 2	
(intrastand) b=-1	
$\frac{4\pi_{AVA}\pi_{W_{L}}}{-\frac{1}{2}(3)} = \frac{5+9x-2x^{2}}{-2x^{2}-9x-5}$	- 3
$\begin{cases} f(y) = (5x+1)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x)(2-x)(2-x) & \text{if } y \\ f(y) = (5x+1)(2-x)(2-x)(2-x)(2-x)(2-x) $	=2
$\oint - \frac{1}{\sqrt{\left(\frac{d}{d}\right)}} = \left(5 \times \frac{d}{d} + 1\right) \left(2 - \frac{d}{d}\right)$	~~~~
$= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2$	
= =	

?ș

2017

Smaths,

Created by T. Madas

COM

Question 40 (***+)

Ĉ.B.

 $f(x) = 3x^2 + 12x + 8, x \in \mathbb{R}$.

- a) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are integers.
- **b**) State the minimum value of f(x).
- c) Solve the equation f(x) = 0, giving the answers as exact simplified surds.

 $(a = 3), b = 2, c = -4, -4, x = -2 \pm \frac{2}{3}\sqrt{3}$

C.B.

200

i G.B.

mada

Question 41 (***+)

A curve C and a line L have respective equation

y = (5-2x)(2x+3) and y = 4x+11.

- a) Find the coordinates of any points of intersection between C and L.
- **b**) Sketch in the same diagram the graphs of C and L.

The sketch must include of any points of intersection between the graph of C and the coordinate axes, and any points of intersection between the graph of L and the coordinate axes.

Question 42 (***+)

 $f(x) \equiv 8 + 2x - x^2, \ x \in \mathbb{R}.$

- **a**) Find the values of the constants A and B so that $f(x) \equiv A (x+B)^2$.
- **b**) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes, and the coordinates of the maximum point of f(x).

c) Hence, solve the inequality

$$8+2x-x^2>0.$$

d) Find the coordinates of the points of intersection between the graph of f(x) and the line with equation 3x + y = 12.

Question 43 (***+)

It is given that for all values of x

3	5.	$x^{2} + Ax + 7 = B(x-2)^{2} + C$	$, x \in \mathbb{R}$.	
1.2	Determine the values of ea	the constants A , B are	nd C.	1.Ko
	2 Ch		A = -20, $B = 5$, $C = -20$	-13
	Inadasm.	Madasmax,	$\begin{array}{c} \underline{ORAJD} \ \underline{ALD} \ \underline{CARRACE} \ CA$	13511311)
			[x*] 43+C=7 455+C=7 C=-3	
4. J. Ad		9. 1. K.C.		172.5
	11s. Co. 40/25/1721			
1120/282	- S Inadasp	Created by T. Mad	as	madasm.

naths.com

ths.co

Question 44 (***+)

F.G.B.

 $f(x) \equiv 2x^2 - 4x + 5, \ x \in \mathbb{R}.$

a) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are integers.

b) State the maximum value of $\frac{6}{f(x)}$

c) Solve the equation f(x) = 13, giving the answers as exact simplified surds.

 $[a=2], [b=-1], [c=3], [2], [x=1\pm\sqrt{5}]$

200

		A COLUMN TWO IS NOT		1
α)	COMPLETING. THE SQUARE			
	$f(x) = 2x^2 - 4\alpha + 5$			
	$f(x) = 2 \left[x^2 - 2x + \frac{5}{2} \right]$			
	$f(x) = 2[(x-1)^2 - 1^2 + \frac{5}{2}]$	-1		
	$f(x) = 2\left[(x-1)^2 + \frac{3}{2}\right]$	1		
	$f(x) = 2(x-1)^2 + 3$	1		
	//			
P)	Co Dowle n	HW fai) 1	LIM 2	
	(-1(2) J _{MAX}	Fai	= 3	
		L'_M	"NG	8 - 2 /
		S MAX U	AWE OF (G)	3-4
c)	OSING PART (a)			
=	(a) = 13			
->	$2(x-1)^2 + 3 = 13$			
->	$2(x-1)^2 = 10$			
-	(x-1) ² = 5			
->	$x - 1 = \langle NS \rangle$	7		
	-145			
=>	2. < 1-15	//		

I.C.B.

Question 45 (***+)

The line straight L and the curve C have respective equations

L: 2y = 7x + 10.

C: y = x(6-x).

- a) Show that L and C do not intersect.
- **b**) Find the coordinates of the maximum point of C
- c) Sketch on the same diagram the graphs of L and C, showing clearly the coordinates of any points where the graphs meet the coordinate axes.

Question 46 (***+)

$$f(x) = 7 + 6x - x^2, x \in \mathbb{R}.$$

- a) Factorize f(x).
- **b**) Express f(x) in the form $A (x+B)^2$, where A and B are constants.
- **c**) State ...
 - i. ... the coordinates of the vertex of the curve.
 - ii. ... the equation of the line of symmetry of the curve.
- d) Sketch the graph of f(x), indicating clearly the coordinates of the points where the graph of f(x) meets the coordinate axes.

e coordinate axes.

$$f(x) = (7-x)(x+1)$$
, $f(x) = 16 - (x-3)^2$

Mana,
Question 47 (***+)

 $f(x) = x^2 + 10x + 27, x \in \mathbb{R}$.

a) Express f(x) in the form $(x+b)^2 + c$, where b and c are constants.

b) Show that the equation f(x) = 0 has no real solutions.

The graph of f(x)-k, where k is a positive constant, touches the x axis.

c) Sketch the graph of f(x)-k, indicating clearly the coordinates of the points where the graph of f(x)-k meets the coordinate axes.

 $f(x) = (x+5)^2$

+2

Question 48 (***+)

$$f(x) = \frac{169}{8} - 2(x + \frac{7}{4})^2, x \in \mathbb{R}$$

a) State the coordinates of the maximum point of f(x).

 $\frac{7}{4}, \frac{169}{8}$

- **b**) Express f(x) in the form $ax^2 + bx + c$, where a, b and c are constants.
- c) Solve the equation f(x) = 0.
- d) Sketch the graph of f(x), indicating clearly the coordinates of the points where the graph of f(x) meets the coordinate axes.

 $f(x) = -2x^2 - 7x + 15$

 $x = \frac{3}{2}$

x = -5 U

Question 49 (***+)

The figure above shows the graph of the curve with equation

$$y = 2x^2 + ax + b ,$$

where a and b are constants.

The curve crosses the x axis at the point A(2,0) and the point B(-1,-9) also lies on the curve.

Determine the values of a and b.

|a=1|, |b=-10|

21/2.57

-a+b

Question 50 (***+)

 $f(x) \equiv x^2 - 4\sqrt{3}x - 15, \ x \in \mathbb{R}.$

a) Express f(x) in the form $f(x) = (x+a)^2 + b$, where a and b are constants.

b) Hence find the exact solutions of the equation f(x) = 0.

$a = -2\sqrt{3}$	$, b = -27$, $x = -\sqrt{3}, 5\sqrt{3}$
	(a) <u>contentions</u> the spinale $\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)^{-1} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}$
and the second	b) Sawing the quation canno part (a)
rz -	$\implies +(x) = 0$
12-	$(2 - 2\sqrt{3})^2 = 27$
	\rightarrow $\alpha - 2\sqrt{5}' = \sqrt{\sqrt{27}'}$
40	⇒ 22.6° = < 3.15°
-4	$\Rightarrow \alpha = < \frac{50}{2}$
	Canada e e parte e construction de la construction de la construction de la construction de la construction de

Question 51 (***+)

The quadratic curve C has equation

 $f(x) = x^2 + bx + c ,$

where b and c are constants.

Given that the graph of C passes through the points A(2,-4) and B(-1,2) determine the values of b and c.

\checkmark			e
	-		-
= at+bx+c			
A(2,-4) ⇒ -4=22+61	a +c ● B (-1	$(2) \implies 2 = (-1)^2 + b(-1) + ($	
-4-4+2 -8=26+0	240	2 = 1 - b + c (1 = -b + c)	
		(82)	
	-2.6 +2c = 2		
	505 3C 2 ~ 6 C = -2	2b+c ≈ - 8 2b=2.2 - 8	
		2b =C	

b = -3, c = -2

Question 52 (***+)

 $\hat{\mathcal{O}}_{i}$

F.C.B.

 $2x^2 - xy - y^2.$

Factorize the above quadratic expression.

You may factorize by inspection, or by using the quadratic formula or by completing the square.

(2x+y)(x-y)

 $+ A^2 - B^2 \equiv (A+B)(A-B)$

i C.B.

 $=\left(\frac{3}{2}\alpha\right)^2 - \left(9 + \frac{1}{2}\alpha\right)^2$

 $= \left[\frac{3}{2}x + \left(y + \frac{1}{2}x\right)\right] \left[\frac{3}{2}x - \left(y + \frac{1}{2}x\right)\right]$ = (2x + y)(x - y)

AS BEFORE

INSPECTION $2a^2 - ag - g^2 = (2a + g)(a - g)$ BY THE QUADRATTIC FORMULA - TREAT IL AS "THE UNRIABLE" a = 2 6 a - y c = -y2 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $a = \frac{g \pm \sqrt{g^2 - (x_2x_1(y_2))^2}}{4}$ $\frac{3 + \sqrt{39^2}}{4} = \sqrt{\frac{3+39}{4}} = 3$ entitle 2=y => 2-y=0 a= ½y 2x=-y => 2x+y=0 * (2 g)(22+g) Az Bitage BY COMPLETING SPUARE TREATING & AS A UARABIC $2a^2 - xy - y^2 = - \left[y^2 + xy - 2x^2\right]$ = - [(y+ 12)2 + 42 - 212] $-\left[\left(\underline{y}+\frac{1}{2}2\right)^2-\frac{q}{4}2^2\right]$ = + x2 - (y+ 2)2

Question 53 (***+)

.Y.G.B

Find the solutions of the equation

C.4.

mada

 $(x^2 - x - 3)^2 - 12(x^2 - x - 3) + 27 = 0.$

x = -3, -2, 3, 4

Question 54 (***+)

I.F.C.B.

Solve the following quadratic equation.

 $(2x+3)^2 - (4-x)^2 = 45.$

 $], x=2, x=-\frac{26}{3}$

1+

EXPAND AND SMIPHEY

- $\implies (2x+3)^2 (4-x)^2 = 45$
- $\implies 4x^2 + 12x + 9 (16 8x + x^2) = 45$ $\implies 4x^3 + 12x + 9 16 + 8x x^2 = 45$
- $\implies 3x^{2} + 20x 7 = 4x$ $\implies 3x^{2} + 20x 52 = 0$

FACTORIZING NOTING THAT 1x52, 2x26, 4×13

 $\Rightarrow (3x + 2i)(x - 2) = 0$ $\Rightarrow x = \underbrace{-\frac{2}{26}}_{-\frac{26}{2}} //$

-3

ALTRENATIVE

- $\implies (2x+3)^2 (4-2)^2 45$ $\implies ((2x+3) + (4-2)](2x+3) - (4-2)] = 45$
- $\Rightarrow (x+7)(3x-1) = 45$ BY INSPECTION x=2 is a solution
- $= \frac{3}{3u^2 + 20u} 7 = 45$
- $\Rightarrow 3a^{2} + 20a 52 = 0$ $\Rightarrow (a - 2)(3a + 26) = 0$
- (From Above) : 3= 2

Question 55 (***+)

The curve C has equation

 $y=9-\left(x-2\right) ^{2}.$

a) Describe geometrically the three transformations that map the graph of $y = x^2$ onto the graph of *C*.

b) Hence, sketch the graph of C.

The sketch must include the coordinates of

- ... all the points where the curve meets the coordinate axes.
- ... the coordinates of the maximum point of the curve.

reflection in the x axis, translation "right" by 2 units,

translation "upwards" by 9 units

Question 56 (***+)

$$f(x) \equiv 5x^2 - 30x + 50, \ x \in \mathbb{R}.$$

a) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants.

b) Hence write down the minimum value of f(x).

The point A has coordinates (5,6).

The variable point B has coordinates (x, 2x+1).

c) Show clearly that

$$AB|^2 = 5x^2 - 30x + 50$$

d) Use part (b) to determine the shortest distance between A and B.

e) Hence write down the coordinates of *B* when the distance between *A* and *B* is shortest.

 $f(x) \equiv 5(x-3)^2 + 5, \ f(x)_{\min} = 5, \ |AB|_{\min} = \sqrt{5}, \ B(3,7)$

a) $f(x) = 5x^2 - 30x + 50 = 5[x^2 - 6x + 10] = 5[(x - 3)^2 - 9 + 10]$ $= 5[(3+3)^{2}+1] = 5(3+3)^{2}+5$ b) f(x), is 5 4(5,6) B(3,20+1) $P[AB] = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$ $\Rightarrow |AB| = \sqrt{(2x+(-\zeta_0)^2 + (x-\zeta)^2)}$ fa) occurs $= 3 |4B| = \sqrt{(2a-5)}$ MIN VALUE OF NED 4450 OCOURS MAKEN 21=3 $\Rightarrow |AB|^2 =$ $(2z-5)^2 + (2z-5)^2$ ∴ B(3,7) $\Rightarrow |4B|^2 = 4t^2 - 20x + 2t + x^2 - 10x + 2t$ $|48|^2 = 5x^2 - 3xx + 5x$

Question 57 (***+)

A quadratic curve meets the coordinate axes at (-2,0), (4,0) and (0,-20).

Determine the equation of the curve in the form $y = ax^2 + bx + c$, where a, b and c are constants.

$\int_{-\infty}^{\infty} (y_{1} - y_{2}) = \int_{-\infty}^{\infty} (y_{2} - y_{2}) = \int_{-\infty}^{\infty} (y_$
$\therefore y = k(a^2 - a - 8)$
$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & $

-5x - 20

Question 58 (***+)

$$f(x) = 4x^2 + 4x - 1, x \in \mathbb{R}.$$

a) Express f(x) in completed the square form.

b) Hence find, as exact surds, the roots of the equation f(x) = 0.

$$f(x) = 4\left(x - \frac{1}{2}\right)^2 - 2$$
, $x = \frac{-1 \pm \sqrt{2}}{2}$

۵)	COULPLETING THE SPURIE	-AVTINONATING MUTTY
	$f(x) = 4x^2 + 4x - 1$	$\begin{cases} -f(i) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \end{cases}$
	$-(a) = 4\left[x^2 + x - \frac{1}{4}\right]$	$\begin{cases} f(x) = (4x^2+4x+1)-2 \end{cases}$
	$f(x) = 4 \left[(x+\frac{1}{2})^{2} - \frac{1}{4} - \frac{1}{4} \right]$	$\begin{cases} f(x) = (2x+1)^2 - 2 \end{cases}$
	$f(\lambda) = 4(x+1)^2 - 1 - 1$	human
	$\frac{1}{2}(\lambda) = \frac{1}{2}(\lambda r \frac{1}{2})^2 - \lambda$	
	//	
Ь)	SOUDING THE PUBLICON ASING	PART (9)
	-{(G)=0	
	$4a^{a}+1a-1=0$	ACTHONATIVE
	$4(a+\frac{1}{2})^2-2=0$	$\begin{cases} +(x)=0 \\ x \in x \\ x$
	$4(x+\frac{1}{2})^2 = 2$	$\begin{cases} (2x+1) - 2 = 0 \\ (2x+1)^2 = -2 \end{cases}$
	$\left(x+\frac{1}{2}\right)^2 = \frac{1}{2}$	227+1 == 22
	$x + \frac{1}{2} = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}$	$\sum_{n=-1\pm\sqrt{2}}$
	$x + \frac{1}{2} = \pm \sqrt{\frac{2}{2}}$	$\left\{ \begin{array}{c} \lambda = -\frac{1}{2} \pm \frac{\sqrt{2}}{2} \right\}$
	2 = - 1 + 12	human
	1	

Question 59 (***+)

F.G.B.

I.C.P.

 $f(x) = x^2 + 2kx - 15k^2$, where k is a constant.

a) Express f(x) in completed the square form.

Ø

b) Hence solve the equation f(x) = 0.

Madasn.

FGB.

200

COM

1.5

Madasma

Madası

Created by T. Madas

I.C.P.

Question 60 (***+)

A runner took part in a 40 km walk .

He walked the first 16 km at an average speed $x \text{ km h}^{-1}$

He walked the rest of the race at an average speed of 2 km h^{-1} less than the average speed of his the first 16 km.

Given that the **total** time for the walk was 6 hours, determine the value of x.

MODEL QUILS. THE REJOLT SPEED = DUTINCE/TIME	
TIME = DUTANCE	
LET T, BE THE THAT FOR THE FIRST PART OF THE JOURNEY OF T, THE	
THAT FOR THE SECOND PART OF THE JOUDNEY, SO THAT T. + T. = 6	
$T_1 = \frac{16}{3}$ of $T_2 = \frac{40-16}{3-2} = \frac{44}{3-2}$	
SOUTHE THE RENOTING QUERTICAL, NOTING THEF 2>2	
$\Rightarrow \frac{6}{2} + \frac{24}{2-2} = 6$	
$\rightarrow \frac{8}{x} + \frac{10}{3x^2} = 3$	
$= \beta(2r-2) + 12\alpha = 3\alpha(2r-2) \times \alpha(2r-2)$	
$\Rightarrow 8x - 16 + 12x = 3x^2 - 6x$	
$= 0 = 3x^2 - 26x + 16$	
$\implies (2a-2)(x-b)=0$	
$\Rightarrow a_z < (x) z$	
=) <u>1=8</u>	

x = 8

Question 61 (***+)

F.G.B.

I.F.G.B.

Find, in exact simplified surd form, the roots of the following equation.

$$\sqrt{3}\left(x+\frac{6}{x}\right) = 9, \ x \neq 0$$

C.A

Detailed workings must be shown in this question.

	101
, x	$=\sqrt{3}, x=2\sqrt{3}$
20.	13
$\int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}$	$\begin{array}{c} \bullet \\ \left\{ \frac{1}{4} \right\} = \left\{ $
$\implies a^{2} + 6 = 3\overline{a^{2}a}$ $\implies a^{2} - 3\overline{a^{2}a} + 4 = 0$ By the quadratic formula $a = \frac{-b \pm \sqrt{b^{2} + 4ac^{2}}}{2a}$	$\Rightarrow \left(2, -\frac{3\sqrt{2}}{2}\right)^{2} - \left(\frac{3\sqrt{2}}{2}\right)^{2} + \left(\frac{3\sqrt{2}}{2}\right)^{2} + 6 = 0$
$\Rightarrow \mathfrak{J}_{=} \frac{3\sqrt{2} \pm \sqrt{(3/2)^{L} - U_{N}(N/2)^{L}}}{2 \times 1}$ $\Rightarrow \mathfrak{J}_{=} \frac{3\sqrt{2} \pm \sqrt{4} \times 3 - 24^{2}}{2}$	$\Rightarrow (\underline{\mathbf{x}} - \underline{\mathbf{x}}_{L}^{T})^{\mathbf{h}} - \frac{\mathbf{x}_{L}^{\mathbf{x}}}{\mathbf{x}} + 6 = 0$ $\Rightarrow (\underline{\mathbf{x}} - \underline{\mathbf{x}}_{L}^{T})^{\mathbf{h}} - \frac{\mathbf{x}_{L}^{\mathbf{x}}}{\mathbf{x}} + 6 = 0$ $\Rightarrow (\underline{\mathbf{x}} - \underline{\mathbf{x}}_{L}^{T})^{\mathbf{h}} = \frac{\mathbf{x}_{L}^{\mathbf{x}} - 2\mathbf{x}_{L}^{\mathbf{x}}}{\mathbf{x}}$
$\Rightarrow \alpha = \frac{2}{3\sqrt{2} + \sqrt{3}}$	$\Rightarrow \left(\lambda - \frac{3\sqrt{2}}{2}\right)^{2} = \frac{3}{4}$ $\Rightarrow \lambda - \frac{1}{2}\sqrt{2} = \sqrt{\sqrt{\frac{1}{4}}}$
⇒ 2 ° < 2 ²⁴¹	$\Rightarrow \lambda - \frac{1}{2} \sqrt{1} = \underbrace{ \begin{array}{c} \frac{1}{2} \sqrt{1}}_{z} \\ - \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \\ - \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \\ - \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \\ - \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \\ - \frac{1}{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$

12.81

20

21/18

I.C.P.

12

Question 62 (****)

Solve, without the use of any calculating aid, the quadratic equation

 $5x^2 - 9x - 1 = 0$,

giving the answers correct to one decimal place.

Detailed workings must be shown in this question.

$x \approx -0.1$	U	$x \approx 1$
20		- 1
MATION A - BY COMPLETING THE SPOREE	a tribu Anti-securi da	
$\begin{array}{rcl} & \Longrightarrow & \sum_{k}^{2} - \eta_{k} - 1 = 0 \\ & \Rightarrow & \sum_{k}^{2} - \frac{1}{3}\alpha - \frac{1}{2} = 0 \\ & \Rightarrow & \sum_{k}^{2} - \frac{1}{3}\alpha - \frac{1}{2} = 0 \\ & \Rightarrow & \sum_{k}^{2} - 18\lambda - 0 = 0 \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - 0 \sqrt{2} = 0 \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - 0 \sqrt{2} = 0 \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - 0 \sqrt{2} = 0 \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - 0 \sqrt{2} - \frac{1}{2} \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - \frac{1}{2} \sqrt{2} - \frac{1}{2} \\ & \Rightarrow & \sum_{k}^{2} - 0 \sqrt{2} - \frac{1}{2} \sqrt{2} \sqrt{2} - \frac{1}{2} \sqrt{2} \sqrt{2} - \frac{1}{2} \sqrt{2} \sqrt{2} - \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $		
$\begin{aligned} & \lambda_{h}^{*} - \eta_{h} - i = 0 \\ & \Delta_{h} = \frac{4 q \pm \sqrt{(c_{h})^{2}}}{2 \times \zeta} \\ & Q_{h} = \frac{9 \pm \sqrt{8} (3 + 2 Q)}{10} \\ & 0 \\$	<u>9+10</u> 10	(10 = 1.4

277

K.C.B.

Question 63 (***+)

 $f(x) = 2x^2 - 12x + 5, \ x \in \mathbb{R}$

- a) Express f(x) in the form $f(x) = A(x+B)^2 + C$, where A, B and C are integer constants.
- **b**) State the line of symmetry of f(x).
- c) Solve the equation f(x) = 3, giving the answers in the form $p \pm q\sqrt{2}$, where p and q are constants.

x=3

2

 $f(x) = 2(x-3)^2 - 13$, x=3, $x=3\pm 2\sqrt{2}$

Question 64 (***+)

A quadratic curve has equation

 $f(x) \equiv 12x^2 + 4x - 161, x \in \mathbb{R}$.

Express the above equation as the product of two linear factors.

A detailed method must be shown in this question.

,	$f(x) \equiv (6x+23)(2x-$	-7)
1	CO.	

$ \begin{array}{c} -\left(\left(\mathbf{x} \right) \equiv \ \sqrt{2} \mathbf{x}^2 + \mathbf{q}_{\mathbf{x}} \end{array} \right) \\ \end{array} $	$-161, x \in \mathbb{R}$
CALWUATE THE DISCRIM	Tencou
$\Delta = b^2 - 4ac =$	Ц ² - 4×12х (-161)
=	16 + 7728
	7744
NOW JA = JTTHY	= 88
BY THE QUADRATIC FORMIN TWO REAL SOLUTIONS FIN	<u>ген о=(а)</u> (аптрида ни, ли и их
$\mathcal{J} = \frac{5a}{-p \neq \sqrt{\nabla_{1}}}$	$=\frac{-4\pm88}{2^{\times 12}}=<\frac{-\frac{23}{6}}{\frac{7}{2}}$
THUS WE HAVE	
$\lambda = -\frac{23}{6}$	$\lambda = \frac{1}{2}$
62 = -23	2x = 7
6x+23=0	2x-7=0
: f(x) = (6x+2	3)(22-7)

Question 65 (****) The curve *C* has equation

 $y = x^2 + ax + b$

where a and b are non zero constants.

Given that C has a minimum at (-1,2), determine the value of a and the value of b.

Question 66 (****)

 $f(x) = 3x^2 + 5x - 2, x \in \mathbb{R}.$

- **a**) Solve the equation f(x) = 0.
- b) Sketch the graph of f(x).
 The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.
- c) Find the coordinates of any points where the graph of the curve with equation $y = f(\frac{1}{3}x)$ meets the coordinate axes.

The graph of y = f(x) is translated by 1 unit in the negative x direction onto the graph of the curve with equation $y = ax^2 + bx + c$, where a, b and c are constants.

d) Determine the value of a, b and c.

 $x = -2, x = \frac{1}{3}, |(-2,0), (\frac{1}{3}, 0), (0, -2)|, |(-6,0), (1,0), (0, -2)|$ a = 3, b = 11, c = 6

Question 67 (****)

The figure below shows a pentagon ABCDE whose measurements, in cm, are given in terms of x and y.

a) If the perimeter of the pentagon is 120 cm, show its area $A \text{ cm}^2$ is given by

 $A = 600x - 96x^2.$

b) Determine, without the use of calculus, the maximum value for the area of the pentagon and the corresponding value of x which produces this maximum area.

x = 3.125, $A_{\text{max}} = 937.5$

 $(10xy) + \pm (8x)(6x)$ (--22) + 242 - 1202 + 2422 6000 - 965 6000 22-600 2 尊之 - 625

Question 68 (****)

The figure below shows a clothes design consisting of two identical rectangles attached to either straight side of a circular sector of radius x cm.

The rectangles measure x cm by y cm and the circular sector subtends an angle of one radian at the centre.

The perimeter of the design is 40 cm.

a) Show that the area, $A \text{ cm}^2$, of the design is given by

 $A=20x-x^2.$

b) Determine, without the use of calculus, the maximum value for the area of the design and the corresponding value of *x* which produces this maximum area.

 $A_{\text{max}} = 100$ $x_{\rm max} = 10$

Question 69 (****)

 $f(x) = x^2 - 2x - 8, x \in \mathbb{R}.$

- **a)** Express f(x) in the form $f(x) = (x+a)^2 + b$, where a and b are integers.
- **b**) Sketch the graph of f(x).
- a) By considering a series of three geometrical transformations, sketch the graph of y = -3f(x-2).

Both sketches must include the coordinates of ...

- ... all the points where the curves meets the coordinate axes.
- ... the minimum or maximum points of the curves.

a = -1

b = -9

Question 70 (****)

The figure above shows the graph of the curve with equation

Ω.

 $f(x) = ax^2 + bx + c, \ x \in \mathbb{R}.$

The graph meets the axes at A(2,0), B(6,0) and C(0,3), and has a minimum at P.

- **a**) Determine the value of a, b and c.
- **b**) Find the coordinates of P.

a = c = 3P(4,-1)b = --2

21/2.50

 $f(x) = (x_{-2})(x_{-6})$ $(\alpha) = \alpha^2 - 8\alpha + 12$ 4 NOT AT (0,3) fa) = f(x-2)(x-6) $k(x) = \frac{1}{4}x^2 - 2x + 3$ Y SYMLETE; fa)= \$[22-82+12] 2 (4,?) $f(x) = \frac{1}{4} [(x-4)^2 - 4]$ = 1/(2-2)6 ±(2-4)-1 4= 1-(4-2)(4-0 P(4,-1) $P(t_i-i)$

Question 71 (****)

i C.B.

$$A - (Bx + C)^2 \equiv 140 + 12x - 9x^2, x \in \mathbb{R}.$$

a) Find the value of each of the constants A, B and C in the above identity.

b) Hence or otherwise determine the x intercepts of the curve with equation

 $y = 140 + 12x - 9x^2, x \in \mathbb{R}$.

 $A = 144, B = \pm 3, C = \pm 2$, $(\frac{10}{3}, 0)$, ($(\frac{14}{3}, 0)$

Ĉ.B.

a) $\mathcal{A} = (Bx+C)^2 \equiv 140 + 12x - 9x^2$ $\mathcal{A} = -Ba^2 - 2BCx - C^2 \equiv 140 + 12x - 9x^2$
• $B^{2} = q$ • $2BC = 12$ • $A - C^{2} = 140$ $B = \sqrt{3}$ ($C = 12$ · $A - (42)^{2} = 140$ $C = \sqrt{2}$ · $A = 144$
4=144, B=3, C=2 A≈144, B=3, C=2
$\beta = \frac{1}{2} (p + 1) z + $
$\Rightarrow O \approx (lll - (3x+2)^2)$ $\Rightarrow (3x+2)^2 = lll + 2$
$\Rightarrow 3x+2 = <_{-12}^{12}$
$\Rightarrow 3x = <_{-i4}^{10}$
$\Rightarrow x = \underbrace{-\frac{1}{2}}_{10} \qquad \therefore \underbrace{(\frac{1}{2},0)}_{10} \circ \underbrace{(\frac{1}{10},0)}_{10}$

nadasn.

20

Ś

nadasm.

N.C.B. Madası

Question 72 (****)

The curve C has equation

$$f(x)=(x-a)(x+b), x\in\mathbb{R},$$

where a and b are constants such that a > b > 0.

Sketch, in separate sets of axes, the graph of ...

a) ... y = f(x).

b) ... y = -f(x+a).

Each of the graphs must show clearly ...

• ... the coordinates of any points where the curve meets the coordinates axes.

... the equation of the line of symmetry of the curve.

graph

Question 73 (****)

In case of an emergency, the typical stopping distance of a car, y metres, when travelling at a speed x miles per hour is given by

$$y = ax^2 + bx + c ,$$

where a, b and c are constants.

A typical car takes

- 12 metres to stop if travelling at 20 miles per hour.
- 23 metres to stop if travelling at 30 miles per hour.
- 36 metres to stop if travelling at 40 miles per hour.
- a) Determine the value of a, b and c.
- **b)** Find the speed of car that has a total stopping distance of 183 metres. (you may find the fact $11 \times 17 = 187$ useful in this part.)

c = -4, |x=110 $\frac{1}{100}$ a =

Q = Q + b + c
$ \begin{array}{c} (20,12) \Longrightarrow 12 = 400a + 2cb + C \\ (30,23) \Longrightarrow 23 = 9002i + 30a + C \\ (40,36) \Longrightarrow 36 = 1600a + 40b + C \end{array} \right\} \Longrightarrow \boxed{ \begin{array}{c} C = 12 - 400a - 2cb_{a} \end{array} } $
Thús: 23 = 900a +30b + 12-400a -20b Z = 11 = 500a +10b 36 = 1600a +20b +12-400a -20b Z = 24=1200a +20b
$\frac{1}{100} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$
So 24= 1200a + 2(11-500a) 24= 1200a + 22-1000a
$\lambda = 2000$ $\alpha = \frac{1}{100}$
dos
b = c $c = -4b = \frac{3}{5}$
(b) New y= 1-32 + 3 - 11

J-1002 + 22-4	
$183 = \frac{1}{100}a^2 + \frac{3}{5}a - 4$	
$18300 = x^2 + 60x - 400$	
$0 = \alpha^2 + 60\alpha - 18700$	
0 = (x - 110)(x + 170)	
7 = 110	
-100 : 110	1.1-1

Question 74 (****+) The curve *C* has equation

$$y = 4x^2 + 24x + A,$$

where A is a non zero constant.

a) Express y in the form $p(x+q)^2 + r$, where p, q and r are constants.

The straight line L has equation

$$y = Bx + 10,$$

where B is a non zero constant.

b) Given that C and L meet at the points with x = -1 and $x = -\frac{21}{4}$, determine the value of A and the value of B.

,	$y = 4(x+3)^2 - 36 + A$,	A = 31, B = -1

۹)	COMPATING THE-SPUMPE
	$\begin{array}{c} \underbrace{ y_{2} = y_{2}^{+} + 2y_{2} + A} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} + \frac{A}{2} \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + \frac{A}{2} \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{1} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} \end{bmatrix} - 2y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} + y_{2} + y_{2} + y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} + y_{2} + y_{2} + y_{2} + A \end{bmatrix} \\ \underbrace{ y_{2} = \left\{ \begin{bmatrix} y_{1} + y_{2} +$
6)	SOWING SIMULTANHOUSLY
Ĵ	$\begin{array}{ccc} y_{2} = dx^{2} + 2dx + 4 & f \\ y_{2} = bx + 10 & \Rightarrow & dx^{2} + 2dx + 4 = bx + 10 \\ y_{3} = bx + 10 & \Rightarrow & dx^{2} + (2i - 8)x + (\lambda - 10) = 0 \end{array}$
	IF 2=-1 IF 2=-21
	4 - (24 - 8) + (1 - 10) = 0 $4(-24)^2 + (24 - 8)(-24) + (1 - 10) = 0$
	4-24+8+4-10=0 41-126+328+4-10=0
	4+B=30 411 511 1018 141 10 10
	441 - 302 + 213 + 104 = 0 44 + 218 = 103
	$44 \pm 24 (30-4) = 103$
	44 + 630 - 214 = 103
	527 = 17A
	t= 31
	4 B=-1

Question 75 (****+)

The sum of £840 is to be shared equally amongst n qualifying individuals.

21/2

It was later found that 6 of those n individuals did not actually qualify so the share of the rest increased by £45.

n = 14

Ĉ,

M2(12)

6 09 Mi QUATON 4: "Haef 18670e" = <u>Bro</u> "h starr-arite" = <u>Bro</u> "h

(h + 8)(h - 14)

Find the value of n.

Ĉ.p

Question 76 (****+)

V.G.B. 1130351

Com

I.C.P.

2

 $f(x) = ax^2 + bx + c,$

where a, b and c are non zero constants.

Given that f(-1) = f(5) = 30 and that the minimum value of f(x) is -6, solve the equation f(x) = 3.

nadasn.

madasm.

lasmaths.com

I.C.p

nn

è

Masm.

Madası

ths.com

Question 77 (****+)

A cyclist travelling at **constant** speed V km/h covers a distance of 125 km.

nadasm.

If he was to decrease his speed by 5 km/h it would have taken him an extra $1\frac{1}{4}$ hours to cover the same distance.

Find the value of V.

F.G.B. Mad

20

I.C.B.

nariasn

2017

21/18

K.G.B. Madash

V = 25

21/2.Sm

Created by T. Madas

F.G.B.

The figure above shows the parabolic arch under a railway bridge.

The width of the arch at its lowest level is 8 metres and the highest point of the arch is 6 metres from the ground.

Determine, showing a clear algebraic method whether a lorry with a wide load of width 6 metres and height 2 metres can pass through this parabolic arch.

, it does with a clearance of height of 0.625 metres

Question 79 (****+)

$$f(x) \equiv x^2 - 10x + 50, \ x \in \mathbb{R}.$$

a) Express f(x) in the form $(x+a)^2 + b$, where a and b are constants.

b) Hence write down the minimum value of f(x).

The point A has coordinates (20, -3).

The variable point B lies on the straight line with equation

y = 3x - 13.

c) Show clearly that

 $|AB|^2 = 10x^2 - 100x + 500.$

- d) Use parts (a) and (b) to determine the shortest distance between A and B.
- e) Hence write down the coordinates of *B* when the distance between *A* and *B* is shortest.

 $f(x) \equiv (x-5)^2 + 25 , \quad f(x)_{\min} = 25 , \quad |AB|_{\min} = 5\sqrt{10} , \quad B(5,2)$

- a) $f(x) = x^2 10x + 30 = (x 5)^2 25 + 50 = (x 5)^2 + 25$
- b) fa) MIN 15 25
- c) $A(20_{1}-3) = B(a_{1}3a_{1}-13)$
- $\implies \frac{1}{4}\beta = \sqrt{(3x-\beta+3)^2+(x-2\sigma)^2}$ $\implies |A\beta| = \sqrt{(3x-\beta)^2+(x-2\sigma)^2}$
- $= |AB|^2 = (32-10)^2 + (3-20)^2$
- $\implies |48|^2 = 9x^2 0x + 100 + x^2 40x + 400$ $\implies |48|^2 = 10x^2 100x + 5000$
- $(f(B)_{s}) = P(S = P(S = S)$
- $[P_{i}B_{i}]_{MIN} = \sqrt{10 \times 25^{2}} = 5\sqrt{10}^{2}$

Question 80 (****+)

A quadratic equation has two real roots differing by k, where k is a positive constant.

Determine, in terms of k, an exact simplified expression for the discriminant of this quadratic.

You may assume that the coefficient of the quadratic term of the equation is one.

Question 81 (****+)

A quadratic curve has equation

f(x) = (x-1)(x-a),

where a is a constant.

Show, without a calculus method, that the coordinates of the minimum point of the curve are

Question 82 (****+)

The point P has coordinates (0,2).

The point Q, with x > 0, lies on the curve with equation $y = x^2$.

Use a **non calculus** algebraic method to find ...

- **a**) ... the shortest distance between P and Q
- **b**) ... the coordinates of Q.

Question 83 (****+)

The figure above shows the cross section of a tunnel modelled by the parabolic arc with equation

$$y = 4 - \frac{1}{4} (x - 4)^2, \ 0 \le x \le 8.$$

A wide lorry load whose cross section is modelled as a rectangle of height 2.5 metres can just pass through this tunnel.

Given that 1 unit on the graph represents 1 metre, determine the width of the lorry load, giving the answer in exact surd form.

Question 84 (****+)

Find the solutions of the quadratic equation

$$2\sqrt{3}\left(x^2+1\right)=7x.$$

213.sm

Give the answers in the form $k\sqrt{3}$, where k is a constant.

$x = \frac{2}{3}\sqrt{3}, x = \frac{1}{2}\sqrt{3}$	3
20. 4	1
$ \begin{array}{c} 24\overline{3}\begin{pmatrix} z_{1}^{*}+i \end{pmatrix} = 7z_{1} \\ z4\overline{3}\begin{pmatrix} z_{1}^{*}+i \rangle \overline{3} = (z_{1}) \\ z4\overline{3}\begin{pmatrix} z_{1}^{*}+i \rangle \overline{3} = (z_{1}) \\ z4\overline{3}\begin{pmatrix} z_{1}^{*}-i \rangle + 4\overline{3} = 0 \\ z^{*}-\frac{7}{247}z^{*}+i = 0 \\ (z-\frac{7}{447})^{2}-\frac{44}{48}+i = 0 \\ (z-\frac{7}{447})^{2}-\frac{44}{48}+i = 0 \\ (z-\frac{7}{447})^{2}-\frac{4}{48}= 0 \\ (z-\frac{7}{447})^{2}=\frac{1}{48} \\ z-\frac{7}{12c} = z\frac{1}{48} \\ z+\frac{1}{467} \\ z+\frac{1}{46$	

Question 85 (****+)

$$f(x) \equiv 3x^2 - 5x + \frac{25}{12}, \ x \in \mathbb{R}$$

Factorize fully f(x).

F.C.B.

$$f(x) = \frac{1}{12}(6x-5)^2 \quad \text{or} \quad f(x) = \left(\sqrt{3}x - \frac{5}{6}\sqrt{3}\right)^2$$

V / /
$f(x) = 3x^2 - 5x + \frac{25}{12}$
Proceed to bucus
$\implies f(x) = \frac{1}{12} \left(36x^2 - 60x + 25 \right)^2$
THIS SHOULD BE RECOGNISIBLE AT A PREPERT SQUARE
$= -\int (\lambda) = \frac{1}{12} (\delta x - S)^2$
IF WE HAVE TO "MOUR" THE TZ MOD THE BRACKET, THAN WE ALTE
$\frac{1}{12} = \left(\frac{1}{\sqrt{12^2}}\right)^2 = \left(\frac{1}{2\sqrt{3}}\right)^2 = \left(\frac{\sqrt{3^2}}{2\sqrt{12^2}\sqrt{3}}\right)^2 = \left(\frac{\sqrt{3^2}}{6}\right)^2$
Howe we those
$\implies f(x) = \left(\frac{\sqrt{3}}{6}\right)^2 \left(6x - 5\right)^2$
$\Rightarrow f(x) = \left[\frac{\sqrt{3}}{6}(6x-5)\right]^2$
$\Rightarrow \frac{1}{(0)} = \left(\sqrt{3}x - \frac{5}{6}\sqrt{3}\right)^2$

Question 86 (****+)

A quadratic curve has equation

 $f(x) \equiv 2x^{2} + (4k+3)x + (2k-1)(k+2), x \in \mathbb{R},$

where k is a constant.

- **a**) Evaluate the discriminant of f(x).
- **b**) Express f(x) as the product of two linear factors.

 $f(x) \equiv (2x+2k-1)(x+k+2)$

	SORMINANT OF THE QUADRATIC
A = 62- 4ac	= (4+3)-4×2×(2+-1)(+2)
	= 16k2+244+9 - 8(222+3K-2)
	= 16k2+29k+9 - 16k2-24k +16
	= 25 /
	1
THE EQUATION .	(a) = 0 , HAS TWO DISTINCT SOUTH
WOTICH CAN BE	FOUND BY THE QUADRATIC FORMULA
$\chi = \frac{-b \pm \sqrt{\Delta}}{2a}$	$\frac{1}{2} = \frac{-(4k+3)\pm\sqrt{25}}{2\times^2} = \frac{-4k-3\pm5}{-4}$
Thus we thave T	23truiarzeog aw
$\mathcal{L} = -\frac{4k+2}{4}$	• $3 = \frac{4}{-4k-8}$
$\lambda = -2k+1$	Q = −k-2
2x = -2k+1	32+6+2 = 0

·G.B.

è

Question 87 (*****)

A quadratic curve has equation

 $f(x) \equiv 9x^2 + 3(1 - 8a)x + 4a(4a - 1), \ x \in \mathbb{R},$

where a is a constant.

a) Express f(x) as the product of two linear factors.

b) Solve the equation f(x) = 2, giving the answers in terms of *a*.

$[f(x) \equiv (3x-4a)(3x-4a+1)], \quad x = \frac{1}{3}(4a+1) \cup x = \frac{2}{3}(2a-1)$

$f(x) = f(x^2 + 3x(1 - 8a) + 4a(4a - 1))$	
ATTIMPTING FACTOPIZATION BY INSPECTION (GROUPING)	
922 + 32x - 24ax + 16a2 - 4a.	
$= q_{3}^{2} - 24q_{3} + 16q^{2} + 3a - 4a$	
PERFECT_SPOALE	
$= (3x - 4a)^2 + (3x - 4a)$	
$= (3x - 4\alpha) \left[3x - 4\alpha + 1 \right]$	
= (3x - 4a)(3x - 4a + 1)	
ALTHENATUR BY THE PUMDRATTIC PORTUGA - TREAT THE	
FUNCTION AS THE EQUATION $f(\alpha) = 0$	
$\Delta = b^{2} - 4ac = [3(1 - 8a)]^{2} - 4 \times 9 \times 4a(4a - 1)$	
= $9(1-8a)^2 - 9 \times 16a(4a-1)$	
= 9 ((1-84) ² - 16a(4a-1)]	
= 9 [1-169 + 64ta - 54a2 + 16a]	
= 9	

USING THE QUADRATIC FORMUL	y
$\alpha = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-3}{2}$	$\frac{(1-8a) \pm 3}{2\times 9} = \frac{-3+244 \pm 3}{18}$
$\mathfrak{X}_{\mp} < \frac{\frac{24\cdot a}{8}}{\frac{16}{8}} = \frac{4\cdot a}{3}a$	
- Have us the	a = <u>-14 4a</u> .
3≈= 4a 3)1-4a = 0	302= -1+ 4a 32-4a+1=0
COMBINING WE OBTAIN	
-{(2) = (32-4a)(32-	4a+1) As sincer
b) $(x_1) = 2$ $\Rightarrow (x_2 - 4\alpha)(x_2 - 4\alpha + 1) = 2$	$ \stackrel{^{2}+(3a-4a)}{\Rightarrow} t_{z} < \stackrel{^{1}}{\underset{-2}{\overset{1}}} $
⇒ t(t+1) =2	= 32-44 = < 1
$= \frac{t^2 + t - 2}{(t - 1)(t + 2)} = 0$	$\Rightarrow 3x < \frac{1+4q}{-2+4q}$
	$\Rightarrow \lambda_{2} < \frac{1}{2} $
Question 88 (*****)

ŀ.G.B.

I.C.P.

 $f(x) \equiv \frac{1}{6}x^2 + 3x + 12, x \in \mathbb{R}.$

Determine the four possible ways of expressing f(x) as product of two linear factors.

 $f(x) = \left(\frac{1}{6}x + 2\right)(x+6) = \left(\frac{1}{6}x + 1\right)(x+12) = \left(\frac{1}{2}x + 6\right)\left(\frac{1}{3}x + 2\right) = \left(\frac{1}{2}x + 3\right)\left(\frac{1}{3}x + 4\right)$

Y.C.A

ŀ.C.B.

Question 89 (*****) A curve has equation

I.C.B.

 $y = 2x^2 + 5x + c,$

where c is a non zero constant.

Given that the roots of the equation differ by 3, determine the value of c.

LET THE SMAULE BOXT OF THE QUADDATIC BE &	87 (at 040 (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
	- mathingon at allow
• THE SULL OF THE 2005 α + (x+3) = $-\frac{b}{a}$ = $-\frac{5}{2}$	$\bullet \frac{-2}{2} = -(3x+3)$
1.E 2.a +3 = -5	$\implies 2\alpha + 3 = -\frac{5}{2}$
$2_{01} = -\frac{11}{2}$	
or = - <u>11</u> -4	
IHE PRODUCT OF THE ROOTS: $\propto (\alpha+3) = \frac{C}{2} = \frac{C}{2}$	
1.E. C= 2x(x+3)	
C= 2(-4)(-4+3)	
$C = -\frac{11}{2} \times \frac{1}{4}$	
$C = -\frac{11}{8}$	
ACT-WATTLE - WITHOF WING DIRECTLY REPUTED ON THE SUM	en an Arran ai ghaile
AND PRODUCT OF ROOTS OF A QUADRATIC	para ang sa
► HE ZIGG OUT THE TO SUBARE AT THE	
$THW 23^2 + Sx + C = 0$	
$\implies \alpha^2 + \frac{5\alpha}{2} + \frac{c}{2} = 0$	
$\Rightarrow (2 - \alpha)(2 - (\alpha + 3)) = 0$	
2^2 (with the state of the state	

- $\implies \mathfrak{J}^2 (\alpha_1 \mathfrak{z}) \times \alpha_1 \times + \kappa (\alpha_1 \mathfrak{z}) = \mathfrak{c}$ $\implies \mathfrak{J}^2 (\mathfrak{z}_1 \mathfrak{z}) \times + \alpha (\alpha_1 \mathfrak{z}) = \mathfrak{c}$
- _

$\begin{array}{c} \Longrightarrow 2x+2z = -\frac{5}{2} \qquad \Rightarrow C = 2x(x+z) \\ \Rightarrow 4x+6 = -5 \qquad \Rightarrow C = 2x(x+z) \\ \Rightarrow 6x = -11 \qquad \Rightarrow Cx = -\frac{11}{2}x = \frac{1}{4} \\ \Rightarrow x = -\frac{11}{4} \qquad \Rightarrow x = -\frac{11}{4} \\ \end{array}$

i G.B.

12.01

Question 90 (*****)

F.C.B. III,

ŀ.C.B.

The function f is defined as

 $f(A,B) \equiv A^4 + 4B^4, \ A \in \mathbb{R}, \ B \in \mathbb{R}.$

- a) By completing the square, or otherwise, factorize f into 2 quadratic factors.
- **b**) Hence factorize $x^4 + 64$.

Ĝ.Ŗ

200

Ins.com

6

21/2.51

F.G.B. 11202

Question 91 (*****)

A function has equation

 $f(x) = x^{2} + 6x + 20 + k(x^{2} - 3x - 12), x \in \mathbb{R},$

where k is a non zero constant.

- a) State the value of k if f(x) represents a straight line.
- b) Find the value of k if the equation f(x) = 0 two equal in magnitude roots, but of opposite signs.
- c) Determine the value of k and the value of p, given that f(x) has a maximum at (2, p).

k = -1

|k=2|, |k=2|

and p = 176

<u>()</u>	97
$\{f_{(2)} = x^{2} + f_{0,x+20} + k(x^{2} - 3x - 12), x \in \mathbb{R} \}$	HINCE
(P) BY INSTRUCT & / // OR THAT THAT THE TRUNC IN 32 (NOLL)	
b) $f(x) = (k+1)x^2 + (k-3k)x + (2k-12k)$	two
FOR TWO REAL PLOTS EQUAL IN MARWITUDE BUT OPPOSITE SIGN, THE COEFFICING OF a MUST BE ZERD.	
6 - 3k = 0 6 = 3k k = 2	¢
c) IF for the A MAXIMUM AT (21P)	
$\implies p - A(x-2)^2 \equiv (k+1)x^2 + (6-2k)x + (20-12k)$	
WHERE A>0	
$ \begin{array}{rcl} & \longrightarrow & P - Ax^2 + 4Ax - 4A \equiv (k+1)x^2 + (k-3k) + (20 - 12k) \\ & \longrightarrow & -Ax^2 + 4Ax + (p-4A) \equiv (k+1)x^2 + (k-3k) + (20 - 12k) \end{array} $	
$\begin{array}{c} -A_{2} \ k+1 \\ \bullet 4_{4} = 6 - 3k \\ \bullet p - 4k = 20 - 12k \end{array} \xrightarrow{\longrightarrow} \begin{array}{c} A_{2} = -k-1 \\ \to -4k = 20 - 12k \\ \to -10 = k \\ \bullet k = -10 \\ \bullet k = -10 \end{array}$	

Question 92 (*****)

I.C.B.

Solve the following quadratic equation

$$\sqrt{3} - 1 \Big) x^2 - 2\sqrt{3}x = 3 + 3\sqrt{3} \; .$$

Give one of the roots in the form $p+q\sqrt{3}$ and the other root in the form $r\sqrt{3}$, where p, q and r are integers.

C.B.

nadasm.

$x = -\sqrt{x}$	$\sqrt{3}, x = 3 + 2\sqrt{3}$
12.	9
$\mathscr{D}(\sqrt{3}^{2}-1)_{2}^{2}-2\sqrt{3}_{2}^{2}=3+3\sqrt{3}$	$ \Rightarrow $
$\Rightarrow \lambda^{2} - \frac{2\sqrt{1}}{\sqrt{1-1}} \chi = \frac{3+3\sqrt{1}}{\sqrt{1-1}}$ $\Rightarrow \chi^{2} - \frac{2\sqrt{1}(\sqrt{1+1})}{\sqrt{1-1}} \chi = \frac{(3+3\sqrt{1})(\sqrt{1+1})}{\sqrt{1-1}}$	$ \begin{array}{c} - 5 \chi = \frac{34\sqrt{5}^{1} \pm \sqrt{3}(\pm \sqrt{6}\sqrt{5}^{11})}{2} \\ - 5 \chi = \frac{34\sqrt{5}^{1} \pm 3\sqrt{4} + 2\sqrt{5}^{11}}{2} \end{array} $
$= 3 x^{2} - \frac{6+26}{2} x = \frac{367+3+9+367}{2}$	$\begin{cases} \Rightarrow \mathcal{L} = \frac{3+\sqrt{s^2}\pm 3\sqrt{3^2s+1+2x(y\sqrt{s^2})}}{2} \\ \Rightarrow \mathcal{L} = \frac{3+\sqrt{s^2}\pm 3\sqrt{3^2s+1+2x(y\sqrt{s^2})}}{2} \end{cases}$
$\implies \mathcal{X}_{5} - (34A_{2})\mathcal{I} = (\ell + 3A_{2}) = 0$ $\implies \mathcal{I} - (34A_{2})\mathcal{I} = \frac{7}{15^{2}+6R_{2}}$	$\begin{cases} \rightarrow \chi = \frac{3+\sqrt{3}\pm\chi(1+\sqrt{3})}{2} \\ \Rightarrow \chi = \frac{3+\sqrt{3}\pm\chi(1+\sqrt{3})}{2} \end{cases}$
BY THE PUPPLATIC FORMULA $ \mathcal{R} = \frac{3+\sqrt{3}\pm\sqrt{(3+\sqrt{3})^2+4_{N,N}(6+3\sqrt{3})^2}}{2\times 1} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 3+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{3}+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{3}+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{3}+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \underline{3}+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \underline{3}+\underline{G}+3+\underline{3}G\\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $
	$2 \rightarrow 3 = < \frac{3+2\sqrt{3}}{-\sqrt{3}}$

113.87

i.C.B.

Madasn.

200

115

Question 93 (*****) The quadratic curve *C*, has equation

$$y = 4x - 2x^2 - \frac{1}{2}kx^2,$$

where k is a non zero constant.

Express y in the form

F.G.B.

I.G.B.

$$\frac{8}{f(k)} - \frac{1}{2}f(k)\left[x - \frac{4}{f(k)}\right]^2,$$

where f(k) is a function to be found.

Madasm

I.C.B.

F.C.B.

17202

ち

Question 94 (*****)

 $f(x) = b - (x - a)^2, x \in \mathbb{R}$ $g(x) = a + (x - b)^2, x \in \mathbb{R}.$

The graph of f(x) has a maximum at P and the graph of g(x) has a minimum at Q, where P and Q are distinct points.

- a) Given that f(x) passes through Q, show that g(x) passes through P.
- **b**) Given further that f(x) touches the x axis sketch both graphs in the same set of axes.

proof/graph

Question 95 (*****)

Heron's formula for the area of a triangle asserts that

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where a, b and c are the lengths of the 3 sides of the triangle and $s = \frac{1}{2}(a+b+c)$.

A given triangle has a perimeter of 36 cm and one of its sides is 14 cm.

Show with full justification that the largest area of this triangle is $42\sqrt{2}$ cm².

$\begin{bmatrix} y \\ y \\ z \\$
$ \begin{array}{l} \text{lifted} \\ & d_{1} = \int \left(\frac{\Theta(d-d_{1})(\Theta \cup Q(\Theta_{1}))}{\Phi(d-d_{1})(\Theta \cup Q(\Theta_{1}))} \right) \\ & d_{1} = \int \left(\frac{\Theta(d-d_{1})(\Theta \cup Q(\Theta_{1}))}{\Phi(d-d_{1})} \right) \\ & d_{2} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{\Theta(d-d_{1})}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})} \right) \\ & d_{1} = \int \frac{1}{\Phi(d-d_{1})} \left(\frac{1}{\Phi(d-d_{1})$

proof

Question 96 (*****)

A mobile phone wholesaler buys a certain brand of phone for £35 a unit and sells it to shops for £100 a unit. In a typical week the wholesaler expects to sell 500 of these phones.

However research showed that on a typical week for every $\pounds 1$ reduced of the selling price of this phone an extra 20 sales can be achieved.

Let $\pounds P$ be the weekly profit of this brand phones and $\pounds x$ the reduction in the selling price from $\pounds 100$.

a) Show clearly that

 $P = -20\left(x^2 - 40x - 1625\right).$

b) Hence, or otherwise, determine the **selling** price for this phone if the weekly profit is to be maximized, and find this maximum weekly profit.

£80, maximum profit £40500

4	Let THE \$P\$-F(T Be P $P = 5\infty \times (100 - 35)$ $P = 520 \times (99 - 35)$ $P = 590 \times (98 - 35)$ $P = 590 \times (98 - 35)$ so IN (General-	(b)	by contracting the spaces $P = -20 \left[(x - 20)^2 - 400 - 16.25 \right]$ $P = -20 \left[(x - 20)^2 - 20.25 \right]$ $P = 40500 - 20(x - 20)^2$
	P = (500 + 203)[(300-3)-35] $P = (500 + 203)(65-3)$ $P = 30(3+25)(65-3)$		* MAX P 15 40500 HND OCLUBS MR4NU 21=20
	$\hat{T} = -20(x_{1+25})(x_{-65})$ $\hat{T} = -20(x_{-60}^2 - 40x_{-1625})$ 45		** WAX PRAFIT OF ±405100 WHEN SECUND AT ±80 GRA-

Question 97 (*****) The quadratic curve *C* with equation

 $y = x^2 - 6x + c,$

passes through the points with coordinates (a,b), (b,a) and (-a,27), where a, b and c are constants.

Find an equation for C, given that ...

i. ... a = b. **ii.** ... $a \neq b$.

R,

I.C.B.

 $y = x^2 - 6x + \frac{1728}{169}$

 $y = x^2 - 6x + 11$

F.G.B.

1720/251

(****) Question 98

2

A curve C, has equation

nadasma

2017

I.C.p

 $(x-1)y^2 - 2xy + x = 0, x \ge 0.$

By completing the square in the above equation, express y in terms of x.

Madasma,

ŀ.G.p.

2017

nadasmana nama

00

Com

 \sqrt{x}

nadasmaths.com

L.C.B. Madasn

the com

è

1/2.50

Question 99 (****)

I.V.G.P.

is maths

I.C.B.

I.C.B.

0

Solve the following quadratic in x, giving the answers in terms of k.

 $(k+1)x^2 - (k^2 + k + 1)x + k = 0, \ k \neq 1.$

1+

Question 100 (*****)

The quadratic equation

F.C.B.

 $ax^2 + bx + c = 0, \ x \in \mathbb{R},$

where a, b and c are constants, $a \neq 0$, has real roots which differ by 1.

Determine a simplified relationship between a, b and c.

 $\left(\frac{b+a}{a}\right)^2 - \frac{2(b+a)}{a} = \frac{4c}{a}$ a2 + b2 + c = 0 SOUTIONS . MIFFER BY 1 $\Rightarrow \frac{(b+a)^2}{a^2} - \frac{2(b+a)}{a} = \frac{4c}{a}$ THE TWO SOUTHAN'S BE $x_2 \in x_1$, $x_2 > x_1$ $(b+a)^2 = 2a(b+a)$ $\alpha_1 = 1$ $b + \sqrt{b^2 - 4ac} = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = 1$ => b2 + 2ab + a2 - 2ab - 2a2 = 4ac $\Rightarrow b^2 - a^2 = 4ac$ 2 Nb2-4ac =1 $b b^2 - 4ac = a^2$ $b^2 - 4ac = a$ 43 86586 $4 \propto \frac{a}{a} \left(-\frac{b}{a} - 1\right)^{2} = \left(-\frac{b}{a} + 1\right)^{2}$ $\int \longrightarrow \left(\frac{b}{a}+i\right)^2 + 2\left(-\frac{b}{a}-i\right) = \frac{4c}{a}$

 $b^2 - 4ac = a^2$

mana

Question 101 (*****)

I.F.G.B.

ISM2/hs.

201

Solve the following quadratic in x, giving the answers in terms of k.

 $k^{2}x^{2} - (k^{3} + k + 1)x + k^{2} + k = 0, \ k \neq 0.$

11-5-