QUADRATIC EQUATIONS

EXAM QUESTIONS

Question 1 (**)
By using the quadratic formula, or otherwise, find the exact solutions of the equation

$$
\frac{1}{x}=2 x+3
$$

Question 2 (**)

$$
f(x)=x^{2}-4 x-16, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Hence solve the equation $f(x)=0$, giving the answers as exact surds.
\square $, a=-2, b=-20, x=2 \pm 2 \sqrt{5}$
$\%$

Created by T. Madas

Question 3 (**)

Find the solutions of the equation

Question $4 \quad$ (**)

$$
f(x)=x^{2}-14 x+50
$$

Show that $f(x)$ is positive for all values of x.
proof

Created by T. Madas

Created by T. Madas

Question 5 (**)
Find the coordinates of any points of intersection between the graphs of

$$
y=x^{2}-4 x+2 \quad \text { and } \quad y=-x^{2}-8 x
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Describe geometrically the transformations which map the graph of x^{2} onto the graph of $f(x)$.

Created by T. Madas

Question $7 \quad(* *)$

$$
f(x)=x^{2}-2 x-5, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) State the equation of the line of symmetry of the graph of $f(x)$.
c) Describe geometrically the transformations which map the graph of x^{2} onto the graph of $f(x)$.

Created by T. Madas

Question $8 \quad\left({ }^{* *}+\right.$)

$$
f(x)=x^{2}+4 x+12, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Determine the greatest value of $\frac{1}{f(x)}$.

$$
\square, a=2, b=8, \frac{1}{8}
$$

\square
$f(x)=(x+2)^{2}-2^{2}+12$
(b)

Created by T. Madas

Question $9 \quad\left({ }^{* *}+\right.$)

$$
f(x)=x^{2}-4 x+9, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) State the coordinates of the minimum point of the graph of $f(x)$.
c) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
d) Describe geometrically the transformations which map the graph of x^{2} onto the graph of $f(x)$.

$$
a=-2, b=5,(2,5), \text { translation by }\binom{2}{5}
$$

Created by T. Madas

Question $10 \quad\left({ }^{* *}+\right.$)
The curve C has equation

$$
y=-x^{2}+8 x-7
$$

a) Express $x^{2}-8 x+7$ in the form $(x+a)^{2}+b$, where a and b are constants.
b) Hence write down the coordinates of the maximum point of C.
c) Sketch the graph of C, indicating clearly all the points where C meets the coordinate axes.

Created by T. Madas

Question $11 \quad(* *+$)
The curve C has equation

$$
y=(x-a)^{2}+b
$$

where a, b are positive constants.

By considering the two transformations that map the graph of $y=x^{2}$ onto the graph of C, or otherwise, sketch the graph of C.

The sketch must include the coordinates, in terms of a, b, of

- $\quad .$. all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

Created by T. Madas

Question 12 (**+)
The quadratic equation
where a and b are constants,
is satisfied by $x=-2$ and $x=5$.

Determine the values of a and b.

Created by T. Madas

Question 13 (**+)

$$
f(x)=x^{2}+8 x+20, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) State the coordinates of the minimum point of the graph of $f(x)$.
c) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
d) Describe geometrically the transformations which map the graph of x^{2} onto the graph of $f(x)$.

Created by T. Madas

Question $14 \quad\left({ }^{* *}+\right.$)

$$
f(x)=x^{2}+4 x-12, x \in \mathbb{R} .
$$

a) Solve the equation $f(x)=0$.
b) Hence solve the equation

Question 15 (**+)
Find in exact form where appropriate the solutions of the equation

$$
2\left(3 x^{2}-5\right)-(x+2)(x-3)=0
$$

$$
x=-1, \frac{4}{5}
$$

Question $16 \quad(* *+)$

$$
f(x)=x^{2}+6 x+7, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Hence find the exact coordinates of the points where the graph of $f(x)$ meets the x axis.

$$
\square, a=3, b=-2,(-3 \pm \sqrt{2}, 0)
$$

$$
f(x)=x^{2}-12 x+40, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Hence state the minimum value of $\sqrt{x^{2}-12 x+40}$.
\square

Created by T. Madas

Question 18 (***)

$$
f(x)=x^{2}-6 x+16, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $f(x)=(x+a)^{2}+b$, where a and b are constants.

The graph of $f(x)$ has a minimum point at M and meets the y axis at Y.
b) Sketch the graph of $f(x)$, indicating the coordinates of the points M and Y.

The graph of $f(x)+k$, where k is a constant, touches the x axis.
c) State the value of k.

Question 19

By considering the factorization of the equation $5 y^{2}+7 y-6=0$, solve the equation

$$
5 x+7 \sqrt{x}-6=0
$$

Created by T. Madas

Created by T. Madas

Question 20 (***)

Find the range of values of k for which
is positive for all values of x.

Question 21 (***)

$$
f(x)=x^{2}+6 x+18, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are integers.
b) Hence state the minimum and maximum values of $\frac{1}{f(x)}$.

$$
a=3, b=9,0<\frac{1}{f(x)} \leq \frac{1}{9}
$$

Created by T. Madas

Created by T. Madas

Question 22 (***)

A right angled trapezium $A B C D$ is shown in the figure above.

The trapezium has parallel sides $A B$ and $C D$ of lengths $(2 x+1) \mathrm{cm}$ and $(x+1) \mathrm{cm}$. The height of the trapezium $A D$ is $2 x \mathrm{~cm}$.

Given that the area of the trapezium is $16 \mathrm{~cm}^{2}$, determine the exact length of $B C$.

Created by T. Madas

Question 23 (***) (non calculator)

$$
x^{2}-1.6 x-3.36=0
$$

Solve the above equation giving the answers in decimal form.

Question 24 (***)

$$
f(x)=2 x^{2}+5 x+3, x \in \mathbb{R}
$$

a) Express $f(x)$ as a product of two linear factors.
b) Hence, express 253 as a product of two prime factors.

Question 25 (***)
A quadratic curve has equation $y=x^{2}+b x+c$, where a and b are constants.

Given that the coordinates of the minimum point of the quadratic is $(-2,5)$ determine the values of a and b.

Created by T. Madas

Question 27 (***+)
It is given that for all values of x

$$
5 x^{2}+A x-7 \equiv B(x+2)^{2}+C,
$$

where A, B and C are constants.

Determine the values of A, B and C.

$$
\square, A=20, B=5, C=-27
$$

Question 28 (***+)

where k is a constant.

$$
f(x)=4 x^{2}+12 k x, x \in \mathbb{R}
$$

a) Show clearly that the equation $f(x)=9$ has two distinct real roots for all values of k.
b) Hence find the solutions of the equation $f(x)=9$, giving the answers in the form $p k \pm p \sqrt{k^{2}+1}$, where p is a constant to be found.

$$
x, x=\frac{3}{2} k \pm \frac{3}{2} \sqrt{k^{2}+1}
$$

Question $29 \quad(* * *+)$

$$
f(x)=11+8 x-x^{2}, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $f(x)=A-(x+B)^{2}$, where A and B are constants.
b) State the maximum value of $f(x)$.
c) Solve the equation $f(x)=0$, giving the answers in the form $p \pm q \sqrt{3}$, where p and q are constants

$$
A=27, \quad B=-4, f(x)_{\max }=27, x=-4 \pm 3 \sqrt{3}
$$

Created by T. Madas

Created by T. Madas

Question 30 (***+)

$$
x-\frac{14}{x}=6 \sqrt{2}, x \neq 0 .
$$

Solve the above equation giving the answers in the form $p \sqrt{2}$, where p is a constant.

Created by T. Madas

Question $31 \quad(* * *+)$

$$
f(x)=4 x^{2}+20 x+25, x \in \mathbb{R}
$$

a) Solve the equation $f(x)=0$.
b) Hence, or otherwise, solve the equation $f\left(\frac{1}{2} x+1\right)=0$.
v, $x=-\frac{5}{2}, x=-7$
a) Sowing by facmorzation a recoanizing- That it is 4 perect square
$\Rightarrow f(G)=0$
$\Rightarrow 4 x^{2}+20 x+25=0$
$\Rightarrow(2 x+5)$
$\rightarrow x=-\frac{5}{2}$
b) $\frac{f\left(\frac{1}{2} x+1\right) \text { veresasurs }}{\text { - Etheie }}$

ar

$\checkmark \mid \xrightarrow{\text { " } f(x+1)^{\prime}}$ \qquad
$\underbrace{\text { "f(tst)}}_{-\frac{1}{-\frac{1}{2}}}$
$\xrightarrow{\left(\frac{1}{2} x\right)^{2}}$ $\xrightarrow{+(x+x)^{\prime}}$
-
io Refviets solotial is $x=-7$

Created by T. Madas

Question 32 (***+)
The quadratic equation

$$
2 x^{2}+x+k=0
$$

where k is a constant, has solutions $x=\frac{3}{2}$ and $x=x_{0}$.

Find the value of $x=x_{0}$.

Created by T. Madas

Question 33 (***+)

$$
f(x)=9 x^{2}+18 x-7, x \in \mathbb{R} .
$$

a) Solve the equation $f(x)=0$.
b) Express $f(x)$ in the form

$$
f(x)=9(x+A)^{2}+B,
$$

where A and B are integer constants.
c) State the minimum value of $f(x)$.
d) Sketch the graph of $f(x)$, indicating clearly the coordinates of the points where the graph of $f(x)$ meets the coordinate axes.

Created by T. Madas

Question 34 (***+)

$$
f(x)=(x-4-\sqrt{3})(x-4+\sqrt{3}), x \in \mathbb{R}
$$

a) Express $f(x)$ in the form
i. ... $f(x)=x^{2}+b x+c$, where b and c are constants.
ii. $\ldots f(x)=(x+B)^{2}+C$, where B and C are constants.
b) Sketch the graph of the curve C with equation $y=f(x)$.

The sketch must include the coordinates of any points where the graph of C meets the coordinate axes, and the coordinates of the minimum point of C.

Created by T. Madas

Question 35 (***+)
A curve C and a straight line L have respective equations

$$
y=x^{2}-4 x-5 \text { and } \quad y=2 x-14
$$

a) Find the coordinates of any points of intersection between C and L.
b) Sketch in the same diagram the graph of C and the graph of L. The sketch must include of any points of intersection between the graph of C and the coordinate axes, and any points of intersection between the graph of L and the coordinate axes.

Created by T. Madas

Question 36 (***+)

$$
f(x)=x^{2}+2 k x+c,
$$

where k and c are constants.
a) Express $f(x)$ in "completed the square" form.
b) Hence, or otherwise, solve the equation $f(x)=0$, giving the answer in terms of k and c.

The equation $f(x)=0$ has repeated roots.

Question 37 (***+)

$$
f(x)=x^{2}+A x+B, x \in \mathbb{R} .
$$

Given that the graph of $f(x)$ has a minimum at the point $\left(\frac{1}{2},-\frac{9}{4}\right)$, determine the values of the constants A and B.

Created by T. Madas

Question 38 (***+)

$$
f(x)=x^{2}-2 x-47, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $f(x)=(x+a)^{2}+b$, where a and b are constants.
b) Solve the equation $f(x)=0$, giving the answers in exact form in terms of $\sqrt{3}$.
c) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes, and the coordinates of the minimum point of $f(x)$.

Created by T. Madas

Question 39 (***+) non calculator

$$
f(x)=5+9 x-2 x^{2}, x \in \mathbb{R} .
$$

a) Given that

$$
f(x) \equiv(a+b x)(1+c x)
$$

determine the values of the integer constants a, b and c.
b) Evaluate $f\left(\frac{9}{4}\right)$.
$a=5, b=-1, c=2, f\left(\frac{9}{4}\right)=\frac{121}{8}$

Created by T. Madas

Question 40
(***+)

$$
f(x)=3 x^{2}+12 x+8, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integers.
b) State the minimum value of $f(x)$.
c) Solve the equation $f(x)=0$, giving the answers as exact simplified surds.

Question 41 (***+)
A curve C and a line L have respective equation

$$
y=(5-2 x)(2 x+3) \quad \text { and } \quad y=4 x+11
$$

a) Find the coordinates of any points of intersection between C and L.
b) Sketch in the same diagram the graphs of C and L.

The sketch must include of any points of intersection between the graph of C and the coordinate axes, and any points of intersection between the graph of L and the coordinate axes.

Question $42 \quad(* * *+)$

$$
f(x) \equiv 8+2 x-x^{2}, x \in \mathbb{R}
$$

a) Find the values of the constants A and B so that $f(x) \equiv A-(x+B)^{2}$.
b) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes, and the coordinates of the maximum point of $f(x)$.
c) Hence, solve the inequality

$$
8+2 x-x^{2}>0
$$

d) Find the coordinates of the points of intersection between the graph of $f(x)$ and the line with equation $3 x+y=12$.

Created by T. Madas

Question 43 (***+)
It is given that for all values of x

$$
5 x^{2}+A x+7=B(x-2)^{2}+C, x \in \mathbb{R}
$$

Determine the values of each of the constants A, B and C.

Question $44 \quad(* * *+)$

$$
f(x) \equiv 2 x^{2}-4 x+5, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integers.
b) State the maximum value of $\frac{6}{f(x)}$.
c) Solve the equation $f(x)=13$, giving the answers as exact simplified surds.

$$
\text { siv , } a=2, b=-1, c=3,2, x=1 \pm \sqrt{5}
$$

Created by T. Madas

Question 45 (***+)

The line straight L and the curve C have respective equations

$$
L: 2 y=7 x+10 .
$$

a) Show that L and C do not intersect.
b) Find the coordinates of the maximum point of C
c) Sketch on the same diagram the graphs of L and C, showing clearly the coordinates of any points where the graphs meet the coordinate axes.

Created by T. Madas

Question $46 \quad(* * *+)$

$$
f(x)=7+6 x-x^{2}, x \in \mathbb{R}
$$

a) Factorize $f(x)$.
b) Express $f(x)$ in the form $A-(x+B)^{2}$, where A and B are constants.
c) State \ldots
i. ... the coordinates of the vertex of the curve.
ii. ... the equation of the line of symmetry of the curve.
d) Sketch the graph of $f(x)$, indicating clearly the coordinates of the points where the graph of $f(x)$ meets the coordinate axes.

$$
f(x)=(7-x)(x+1), f(x)=16-(x-3)^{2}
$$

Created by T. Madas

Question $47 \quad(* * *+)$

$$
f(x)=x^{2}+10 x+27, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $(x+b)^{2}+c$, where b and c are constants.
b) Show that the equation $f(x)=0$ has no real solutions.

The graph of $f(x)-k$, where k is a positive constant, touches the x axis.
c) Sketch the graph of $f(x)-k$, indicating clearly the coordinates of the points where the graph of $f(x)-k$ meets the coordinate axes.

Created by T. Madas

Question $48 \quad(* * *+)$

$$
f(x)=\frac{169}{8}-2\left(x+\frac{7}{4}\right)^{2}, x \in \mathbb{R}
$$

a) State the coordinates of the maximum point of $f(x)$.
b) Express $f(x)$ in the form $a x^{2}+b x+c$, where a, b and c are constants.
c) Solve the equation $f(x)=0$.
d) Sketch the graph of $f(x)$, indicating clearly the coordinates of the points where the graph of $f(x)$ meets the coordinate axes.
, $\left(-\frac{7}{4}, \frac{169}{8}\right), f(x)=-2 x^{2}-7 x+15, x=-5 \cup x=\frac{3}{2}$

Created by T. Madas

The figure above shows the graph of the curve with equation

$$
y=2 x^{2}+a x+b
$$

where a and b are constants.

The curve crosses the x axis at the point $A(2,0)$ and the point $B(-1,-9)$ also lies on the curve.

Determine the values of a and b. $a=1, b=-10$

Created by T. Madas

Question 50 (***+)

$$
f(x) \equiv x^{2}-4 \sqrt{3} x-15, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $f(x)=(x+a)^{2}+b$, where a and b are constants.
b) Hence find the exact solutions of the equation $f(x)=0$.

$$
\square, a=-2 \sqrt{3}, b=-27, x=-\sqrt{3}, 5 \sqrt{3}
$$

a) coupatios ate spumes
$\begin{aligned} f(x)=x^{2}-4 \sqrt{3}-15 & =(x-2 \sqrt{3})^{2}-(2 \sqrt{3})^{2}-15 \\ & -(x 2 \sqrt{3})^{2}-(4 \times 3) 15\end{aligned}$ $(x-25)^{2}-(4 \times 2)-15$
$(x-2 \sqrt{3})^{2}-27$

$\Rightarrow f(x)=0$
$\Rightarrow f(x)=0$
$\Rightarrow(x-2 \sqrt{3})^{2}-2 x=0$
$\rightarrow \quad(x-2 \sqrt{3})^{2}=27$
$\Rightarrow \quad x-2 \sqrt{3}=<1$
$\Rightarrow x-2 \sqrt{3}=<3 \sqrt{3}$
$\Rightarrow x-2 \sqrt{3}=5$

$-\sqrt{5}$
$-\sqrt{3}$

Question 51
The quadratic curve C has equation

$$
f(x)=x^{2}+b x+c,
$$

where b and c are constants.

Given that the graph of C passes through the points $A(2,-4)$ and $B(-1,2)$ determine the values of b and c.

Question 52 (***+)

$$
2 x^{2}-x y-y^{2}
$$

Factorize the above quadratic expression.

You may factorize by inspection, or by using the quadratic formula or by completing the square.
\square $(2 x+y)(x-y)$

BY INSPCCTION
\square
$=\left(\frac{3}{2} x\right)^{2}-\left(9+\frac{1}{2} x\right)^{2}$
$=\left[\frac{3}{2} x+\left(y+\frac{1}{2}\right)\right]\left[\left[\frac{3}{2} x-\left(y+\frac{1}{2} x\right)\right]\right.$
$=(2 x+y)(x-y)$
BY THe quADRATIC RORMLA - Treat x as "The UARRABLE" \qquad

Question 53 (***+)
Find the solutions of the equation

Solve the following quadratic equation.

$$
(2 x+3)^{2}-(4-x)^{2}=45
$$

\square $x=2, \quad x=-\frac{26}{3}$

Question 55 (***+)
The curve C has equation

$$
y=9-(x-2)^{2}
$$

a) Describe geometrically the three transformations that map the graph of $y=x^{2}$ onto the graph of C.
b) Hence, sketch the graph of C.

The sketch must include the coordinates of

- ... all the points where the curve meets the coordinate axes.
- the coordinates of the maximum point of the curve.

Created by T. Madas

Question 56 (***+)

$$
f(x) \equiv 5 x^{2}-30 x+50, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are constants.
b) Hence write down the minimum value of $f(x)$.

The point A has coordinates $(5,6)$.

The variable point B has coordinates $(x, 2 x+1)$.
c) Show clearly that

$$
|A B|^{2}=5 x^{2}-30 x+50 .
$$

d) Use part (b) to determine the shortest distance between A and B.
e) Hence write down the coordinates of B when the distance between A and B is shortest.

Created by T. Madas

Created by T. Madas

Question $57 \quad(* * *+)$

A quadratic curve meets the coordinate axes at $(-2,0),(4,0)$ and $(0,-20)$.

Determine the equation of the curve in the form $y=a x^{2}+b x+c$, where a, b and c are constants.

Question 58 (***+)

$y=\frac{5}{2} x^{2}-5 x-20$

$$
f(x)=4 x^{2}+4 x-1, x \in \mathbb{R} .
$$

a) Express $f(x)$ in completed the square form.
b) Hence find, as exact surds, the roots of the equation $f(x)=0$.

Created by T. Madas

Question 59 (***+)
$f(x)=x^{2}+2 k x-15 k^{2}$, where k is a constant.
a) Express $f(x)$ in completed the square form.
b) Hence solve the equation $f(x)=0$.
\square $, f(x)=(x-k)^{2}-16 k^{2}, x=-5 k, 3 k$

Question 60 (***+)
A runner took part in a 40 km walk .
He walked the first 16 km at an average speed $x \mathrm{~km} \mathrm{~h}^{-1}$.

He walked the rest of the race at an average speed of $2 \mathrm{~km} \mathrm{~h}^{-1}$ less than the average speed of his the first 16 km .

Given that the total time for the walk was 6 hours, determine the value of x.
\square , $x=8$

Created by T. Madas

Question $61 \quad\left({ }^{* * *}+\right.$)
Find, in exact simplified surd form, the roots of the following equation.

$$
\sqrt{3}\left(x+\frac{6}{x}\right)=9, x \neq 0
$$

Detailed workings must be shown in this question.
\square $x=\sqrt{3}, x=2 \sqrt{3}$

$\Rightarrow a^{2}+6=3 z^{2} x$	
$\rightarrow 2^{2}-383+6=0$	
-2.	
ace $\frac{30}{20.6}$	$\rightarrow\left(-2-\frac{10}{2}\right)^{2} \cdot \frac{2}{7}$
	$\begin{aligned} & -2 \pi \\ & \hline 8 \\ & \hline \end{aligned}$

Created by T. Madas

Created by T. Madas

Question 62 (****)
Solve, without the use of any calculating aid, the quadratic equation

$$
5 x^{2}-9 x-1=0
$$

giving the answers correct to one decimal place.

Detailed workings must be shown in this question.
,$x \approx-0.1 \cup x \approx 1.9$

Created by T. Madas

Question 63 (***+)

$$
f(x)=2 x^{2}-12 x+5, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $f(x)=A(x+B)^{2}+C$, where A, B and C are integer constants.
b) State the line of symmetry of $f(x)$.
c) Solve the equation $f(x)=3$, giving the answers in the form $p \pm q \sqrt{2}$, where p and q are constants.

Created by T. Madas

Question 64 (***+)

A quadratic curve has equation

$$
f(x) \equiv 12 x^{2}+4 x-161, x \in \mathbb{R}
$$

Express the above equation as the product of two linear factors.

A detailed method must be shown in this question.

Question 65 (****)
The curve C has equation

$$
y=x^{2}+a x+b
$$

where a and b are non zero constants.

Given that C has a minimum at $(-1,2)$, determine the value of a and the value of b.

$$
\square, a=2, b=3
$$

[^0]$y=(x+1)^{2}+2$
$y=x^{2}+2 x+1+2$
$y=x^{2}+2+3$

Created by T. Madas

Created by T. Madas

Question 66 (****)

$$
f(x)=3 x^{2}+5 x-2, x \in \mathbb{R} .
$$

a) Solve the equation $f(x)=0$.
b) Sketch the graph of $f(x)$. The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
c) Find the coordinates of any points where the graph of the curve with equation $y=f\left(\frac{1}{3} x\right)$ meets the coordinate axes.

The graph of $y=f(x)$ is translated by 1 unit in the negative x direction onto the graph of the curve with equation $y=a x^{2}+b x+c$, where a, b and c are constants.
d) Determine the value of a, b and c.

Created by T. Madas

Question 67 (****)

The figure below shows a pentagon $A B C D E$ whose measurements, in cm , are given in terms of x and y.

Created by T. Madas

Question 68 (****)
The figure below shows a clothes design consisting of two identical rectangles attached to either straight side of a circular sector of radius $x \mathrm{~cm}$.

The rectangles measure $x \mathrm{~cm}$ by $y \mathrm{~cm}$ and the circular sector subtends an angle of one radian at the centre.

The perimeter of the design is 40 cm .
a) Show that the area, $A \mathrm{~cm}^{2}$, of the design is given by

$$
A=20 x-x^{2}
$$

b) Determine, without the use of calculus, the maximum value for the area of the design and the corresponding value of x which produces this maximum area.

Created by T. Madas

Question 69 (****)

$$
f(x)=x^{2}-2 x-8, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $f(x)=(x+a)^{2}+b$, where a and b are integers.
b) Sketch the graph of $f(x)$.
a) By considering a series of three geometrical transformations, sketch the graph of $y=-3 f(x-2)$.

Both sketches must include the coordinates of ...

- ... all the points where the curves meets the coordinate axes.
- ... the minimum or maximum points of the curves.

$$
a=-1, b=-9
$$

\square

Created by T. Madas

Created by T. Madas

Question 70
(****)

$$
\text { 2- } f(x)=a x^{2}+b x
$$

The figure above shows the graph of the curve with equation

$$
f(x)=a x^{2}+b x+c, x \in \mathbb{R} .
$$

The graph meets the axes at $A(2,0), B(6,0)$ and $C(0,3)$, and has a minimum at P.
a) Determine the value of a, b and c.
b) Find the coordinates of P.

$$
a=\frac{1}{4}, \quad b=-2, c=3, \quad P(4,-1)
$$

Created by T. Madas

Question 71 (****)

$$
A-(B x+C)^{2} \equiv 140+12 x-9 x^{2}, x \in \mathbb{R}
$$

a) Find the value of each of the constants A, B and C in the above identity.
b) Hence or otherwise determine the x intercepts of the curve with equation
$y=140+12 x-9 x^{2}, x \in \mathbb{R}$.

$$
A=144, B= \pm 3, C= \pm 2,\left(\frac{10}{3}, 0\right),\left(-\frac{14}{3}, 0\right)
$$

Created by T. Madas

Question 72
The curve C has equation

$$
f(x)=(x-a)(x+b), x \in \mathbb{R},
$$

where a and b are constants such that $a>b>0$.

Sketch, in separate sets of axes, the graph of \qquad
a) $\ldots y=f(x)$.
b) $\ldots y=-f(x+a)$.

Each of the graphs must show clearly

- ... the coordinates of any points where the curve meets the coordinates axes.
- ... the equation of the line of symmetry of the curve.

Created by T. Madas

Question 73 (****)
In case of an emergency, the typical stopping distance of a car, y metres, when travelling at a speed x miles per hour is given by

$$
y=a x^{2}+b x+c
$$

where a, b and c are constants.

A typical car takes

- 12 metres to stop if travelling at 20 miles per hour.
- 23 metres to stop if travelling at 30 miles per hour.
- 36 metres to stop if travelling at 40 miles per hour.
a) Determine the value of a, b and c.
b) Find the speed of car that has a total stopping distance of 183 metres.
(you may find the fact $11 \times 17=187$ useful in this part.)

$$
a=\frac{1}{100}, b=\frac{3}{5}, \quad c=-4, \quad x=110
$$

Question 74 (****+)
The curve C has equation

$$
y=4 x^{2}+24 x+A
$$

where A is a non zero constant.
a) Express y in the form $p(x+q)^{2}+r$, where p, q and r are constants.

The straight line L has equation

$$
y=B x+10
$$

where B is a non zero constant.
b) Given that C and L meet at the points with $x=-1$ and $x=-\frac{21}{4}$, determine the value of A and the value of B.
\square , $y=4(x+3)^{2}-36+A$, $A=31, B=-1$

Created by T. Madas

Question $75 \quad(* * * *+) ?$
The sum of $£ 840$ is to be shared equally amongst n qualifying individuals.

It was later found that 6 of those n individuals did not actually qualify so the share of the rest increased by $£ 45$.

Find the value of n.

Created by T. Madas

Question 76 (****+)

$$
f(x)=a x^{2}+b x+c,
$$

where a, b and c are non zero constants.

Given that $f(-1)=f(5)=30$ and that the minimum value of $f(x)$ is -6 , solve the equation $f(x)=3$.

Created by T. Madas

Question 77 (****+)
A cyclist travelling at constant speed $V \mathrm{~km} / \mathrm{h}$ covers a distance of 125 km .

If he was to decrease his speed by $5 \mathrm{~km} / \mathrm{h}$ it would have taken him an extra $1 \frac{1}{4}$ hours to cover the same distance.

Find the value of V.

Created by T. Madas

Question 78 (****+)

The figure above shows the parabolic arch under a railway bridge.

The width of the arch at its lowest level is 8 metres and the highest point of the arch is 6 metres from the ground.

Created by T. Madas

Created by T. Madas

Question 79
(****+)

$$
f(x) \equiv x^{2}-10 x+50, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.
b) Hence write down the minimum value of $f(x)$.

The point A has coordinates $(20,-3)$.

The variable point B lies on the straight line with equation

$$
y=3 x-13 .
$$

c) Show clearly that

$$
|A B|^{2}=10 x^{2}-100 x+500
$$

d) Use parts (a) and (b) to determine the shortest distance between A and B.
e) Hence write down the coordinates of B when the distance between A and B is shortest.
\square
$f(x) \equiv(x-5)^{2}+25, f(x)_{\min }=25$, \square
$|A B|_{\text {min }}=5 \sqrt{10}, B(5,2)$

Created by T. Madas

Created by T. Madas

Question 80 (****+)
A quadratic equation has two real roots differing by k, where k is a positive constant.

Determine, in terms of k, an exact simplified expression for the discriminant of this quadratic.

You may assume that the coefficient of the quadratic term of the equation is one.

Created by T. Madas

Created by T. Madas

Question 81 (****+)
A quadratic curve has equation

$$
f(x)=(x-1)(x-a),
$$

where a is a constant.

Show, without a calculus method, that the coordinates of the minimum point of the curve are

Created by T. Madas

Question 82 (****+)
The point P has coordinates $(0,2)$.

The point Q, with $x>0$, lies on the curve with equation $y=x^{2}$.

Use a non calculus algebraic method to find
a) ... the shortest distance between P and Q
b) ... the coordinates of Q.

Created by T. Madas

Question $83 \quad(* * * *+)$

The figure above shows the cross section of a tunnel modelled by the parabolic arc with equation

$$
y=4-\frac{1}{4}(x-4)^{2}, 0 \leq x \leq 8 .
$$

A wide lorry load whose cross section is modelled as a rectangle of height 2.5 metres can just pass through this tunnel.

Given that 1 unit on the graph represents 1 metre, determine the width of the lorry load, giving the answer in exact surd form.

Question 84 (${ }^{* * * *+) ~}$
Find the solutions of the quadratic equation

$$
2 \sqrt{3}\left(x^{2}+1\right)=7 x
$$

Give the answers in the form $k \sqrt{3}$, where k is a constant.

$$
\square, x=\frac{2}{3} \sqrt{3}, x=\frac{1}{2} \sqrt{3}
$$

\square

Question 85 (****+)

$$
f(x) \equiv 3 x^{2}-5 x+\frac{25}{12}, \quad x \in \mathbb{R}
$$

Factorize fully $f(x)$.
\square

$$
f(x)=\frac{1}{12}(6 x-5)^{2} \quad \text { or } \quad f(x)=\left(\sqrt{3} x-\frac{5}{6} \sqrt{3}\right)^{2}
$$

Created by T. Madas

Question 86 (****+)
A quadratic curve has equation

$$
f(x) \equiv 2 x^{2}+(4 k+3) x+(2 k-1)(k+2), x \in \mathbb{R}
$$

where k is a constant.
a) Evaluate the discriminant of $f(x)$.
b) Express $f(x)$ as the product of two linear factors.

Created by T. Madas

Question 87 (******)
A quadratic curve has equation

$$
f(x) \equiv 9 x^{2}+3(1-8 a) x+4 a(4 a-1), x \in \mathbb{R}
$$

where a is a constant.
a) Express $f(x)$ as the product of two linear factors.
b) Solve the equation $f(x)=2$, giving the answers in terms of a.

$$
f(x) \equiv(3 x-4 a)(3 x-4 a+1), \quad x=\frac{1}{3}(4 a+1) \cup x=\frac{2}{3}(2 a-1)
$$

Created by T. Madas

Created by T. Madas

Question 88

$$
f(x) \equiv \frac{1}{6} x^{2}+3 x+12, x \in \mathbb{R}
$$

Determine the four possible ways of expressing $f(x)$ as product of two linear factors.

Question 89 ($\left.{ }^{*} * * * * *\right)$
A curve has equation

$$
y=2 x^{2}+5 x+c
$$

where c is a non zero constant.

Given that the roots of the equation differ by 3 , determine the value of c.

$$
c=-\frac{11}{8}
$$

Created by T. Madas

Question 90 (*****)
The function f is defined as

$$
f(A, B) \equiv A^{4}+4 B^{4}, \quad A \in \mathbb{R}, \quad B \in \mathbb{R}
$$

a) By completing the square, or otherwise, factorize f into 2 quadratic factors.
b) Hence factorize $x^{4}+64$.

Created by T. Madas

Question 91 (*****)
A function has equation

$$
f(x)=x^{2}+6 x+20+k\left(x^{2}-3 x-12\right), x \in \mathbb{R}
$$

where k is a non zero constant.
a) State the value of k if $f(x)$ represents a straight line.
b) Find the value of k if the equation $f(x)=0$ two equal in magnitude roots, but of opposite signs.
c) Determine the value of k and the value of p, given that $f(x)$ has a maximum at $(2, p)$.

$$
\square, k=-1, k=2, k=2 \text { and } p=176
$$

Question 92 ($* * * * * *)$
Solve the following quadratic equation

$$
(\sqrt{3}-1) x^{2}-2 \sqrt{3} x=3+3 \sqrt{3}
$$

Give one of the roots in the form $p+q \sqrt{3}$ and the other root in the form $r \sqrt{3}$, where p, q and r are integers.

Created by T. Madas

Question 93 (*****)
The quadratic curve C, has equation

$$
y=4 x-2 x^{2}-\frac{1}{2} k x^{2}
$$

where k is a non zero constant.

Express y in the form

$$
\frac{8}{f(k)}-\frac{1}{2} f(k)\left[x-\frac{4}{f(k)}\right]^{2}
$$

where $f(k)$ is a function to be found.

Created by T. Madas

Question 94 (*****)

$$
\begin{aligned}
& f(x)=b-(x-a)^{2}, x \in \mathbb{R} \\
& g(x)=a+(x-b)^{2}, x \in \mathbb{R}
\end{aligned}
$$

The graph of $f(x)$ has a maximum at P and the graph of $g(x)$ has a minimum at Q, where P and Q are distinct points.
a) Given that $f(x)$ passes through Q, show that $g(x)$ passes through P.
b) Given further that $f(x)$ touches the x axis sketch both graphs in the same set of axes.

Created by T. Madas

Question 95 (*****)
Heron's formula for the area of a triangle asserts that

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b and c are the lengths of the 3 sides of the triangle and $s=\frac{1}{2}(a+b+c)$.

A given triangle has a perimeter of 36 cm and one of its sides is 14 cm .

Show with full justification that the largest area of this triangle is $42 \sqrt{2} \mathrm{~cm}^{2}$.

Created by T. Madas

Question 96 (*****)

A mobile phone wholesaler buys a certain brand of phone for $£ 35$ a unit and sells it to shops for $£ 100$ a unit. In a typical week the wholesaler expects to sell 500 of these phones.

However research showed that on a typical week for every $£ 1$ reduced of the selling price of this phone an extra 20 sales can be achieved.

Let $£ P$ be the weekly profit of this brand phones and $£ x$ the reduction in the selling price from $£ 100$.
a) Show clearly that

$$
P=-20\left(x^{2}-40 x-1625\right)
$$

b) Hence, or otherwise, determine the selling price for this phone if the weekly profit is to be maximized, and find this maximum weekly profit.

Question 97 (*****)
The quadratic curve C with equation

$$
y=x^{2}-6 x+c
$$

passes through the points with coordinates $(a, b),(b, a)$ and $(-a, 27)$, where a, b and c are constants.

Find an equation for C, given that ...
i. $\ldots a=b$.
ii. $\ldots a \neq b$.

Te, $y=x^{2}-6 x+\frac{1728}{169}, y=x^{2}-6 x+11$

Created by T. Madas

Question 98
(******)
A curve C, has equation

$$
(x-1) y^{2}-2 x y+x=0, x \geq 0 .
$$

By completing the square in the above equation, express y in terms of x.

Question 99 (*****)
Solve the following quadratic in x, giving the answers in terms of k.

$$
(k+1) x^{2}-\left(k^{2}+k+1\right) x+k=0, k \neq 1
$$

\square $, x=-k, x=-\frac{1}{k+1}$

$(k+1) x^{2}+\left(k^{2}+k+1\right) x+k=0$
BY THE quADDATIC EADUULA - FOEM THE DECRMINAN FREST $\begin{aligned} & \Rightarrow b^{2}-4 a c=\left(k^{2}+k+1\right)^{2}-4(k+1) k \\ & \Rightarrow b^{2}-4 a c=\left(k^{2}+k+1\right)^{2}-4 k(k+1) \end{aligned}$
$\begin{aligned} & (A+B+C)^{2} \equiv A^{2}+B^{2}+c^{2}+2 A B+2 B C+2 C A \\ \Rightarrow & b^{2}-4 a c=k^{4}+k^{2}+1+2 k^{3}+2 k+2 c^{2}-4 k^{2}-4 k \\ \Rightarrow & b^{2}-4 a c=k^{2}+2 c^{3}-k^{2}-2 k+1 \end{aligned}$
(2) wook for factorzzatlons is A peefect spunif $\begin{aligned} & f g\left(k^{2}-k+1\right)^{2},\left(k^{2}+k-1\right)^{2},\left(k^{2}-k-1\right)^{2} \\ & \left(k^{2}-k+1\right)^{2}=k^{4}+k^{2}+1-2 k^{3}-2 k+2 k^{2} \\ & \left(k^{2}+k-1\right)^{2}=k^{4}+k^{2}+1+2 k^{3}-2 k-2 k^{2}=k^{2}+2 k^{3}-k^{2}-2 k+1 \\ \Rightarrow & b^{2}-4 a c=k^{2}+2 k^{3}-k^{2}-2 k+1=\left(k^{2}+k-1\right)^{2} \end{aligned}$
$\Rightarrow x=\frac{-\left(k^{2}+k+1\right) \pm \sqrt{\left(k^{2}+k-1\right)^{2}}}{2(k+1)}$
$\begin{aligned} & \rightarrow x=<\begin{array}{l} \frac{-k^{2}-k-1+k^{2}+k-1}{2(k+1)}=\frac{-2}{2(k+1)}=-\frac{1}{k+1} \\ \frac{-k^{2}-k-1-k^{2}-k+1}{2(k+1)}=\frac{-2 k^{2}-2 k}{2(k+1)}=\frac{-2 k(k+1)}{2(k+1)}=-k \\ \Rightarrow x=<-k+1 \end{array} . \end{aligned}$

Altwonftive By insietron $\begin{aligned} & (k+1) x^{2}+\left(k^{2}+k+1\right) x+k=0 \\ \Rightarrow & x^{2}+k^{2}+k+1\end{aligned}$ $\Rightarrow x^{2}+\frac{k(k+1)+1}{k+1} x+\frac{k}{k+1}=0$ $\Rightarrow x^{2}+\left(k+\frac{1}{k+1}\right) x+k \times \frac{1}{k+1}=0$ $\Rightarrow(x+k)\left(x+\frac{1}{k+1}\right)=0$ $\Rightarrow x=<_{-\frac{1}{k+1}}^{-k}$

Created by T. Madas

Question 100 (*****)
The quadratic equation

$$
a x^{2}+b x+c=0, x \in \mathbb{R}
$$

where a, b and c are constants, $a \neq 0$, has real roots which differ by 1 .

Determine a simplified relationship between a, b and c.

Question 101 (******)
Solve the following quadratic in x, giving the answers in terms of k.

$$
k^{2} x^{2}-\left(k^{3}+k+1\right) x+k^{2}+k=0, k \neq 0
$$

, $x=k$

$$
=k, x=\frac{k+1}{k^{2}}
$$

$\begin{aligned} \Rightarrow & \left.b^{2}-4 a c=\left[-\left(k^{3}+k+1\right)\right]^{2}-4 k^{2} \times\left(k^{2}+k\right)\right] \\ \Rightarrow & b^{2}-4 a c=\left(k^{3}+k+1\right)^{2}-4 k\left(k^{2}+k\right) \\ & \quad(A+B+c)^{2} \equiv-A^{2}+B^{2}+c^{2}+2 A B+2 B C+2 C A \\ \Rightarrow & b^{2}-4 a c=k^{6}+k^{2}+1+2 k^{4}+2 k+2 k^{3}-4 k^{4}-4 k^{3} \\ \Rightarrow & b^{2}-4 a c=k^{6}-2 x^{4}-2 k^{3}+k^{2}+2 k+1 \end{aligned}$ must if A PERFET SpunRe $\operatorname{tg}\left(k^{3}-k+1\right)^{2},\left(k^{3}-k-1\right)^{2},\left(k^{3}+k-1\right)^{2} \epsilon \pi$ © 3 insertan $\left(k^{3}-k-1\right)^{2}=k^{6}+k^{2}+1-24^{4}+2 x,-2 k^{3}$ - Tides The qumbentice formult yituds $x=\frac{k^{3}+k+1 \pm \sqrt{\left(k^{3}-k-1\right)^{2}}}{2 k^{2}}$ $x=\left\{\begin{array}{l} \frac{\left(k^{3}+k+1\right)+\left(k^{3}-k-1\right)}{2 k^{2}}=\frac{2 x^{3}}{2 x^{2}}=k \\ \frac{\left(k^{3}+k+1\right)-\left(k^{3}-k-1\right)}{2 k^{2}}=\frac{2 k+2}{2 k^{2}}=\frac{k+1}{k^{2}} \end{array}\right.$ (1) it $x=$

ALTENATIVE BY WSEGCITN
$k^{2} x^{2}-\left(k^{3}+k+1\right) x+k^{2}+k=0$
$\Longrightarrow k^{2} x^{2}-\left(k^{3}+k+1\right) x+k(k+1)=0$
© BY INSPerman THE "ERAckers" shpule wok -As Euows $\left(k^{2} x-\ldots\right)(x, \ldots)$

SWTH THE BLANKK" SPACES $(k \times \ldots)\left(k_{x} \ldots\right)$ Efuno By $\pm k \not \underbrace{k+(k+1)}$

- Bot smace and-of the bateces must thit "K" As A conitinn?

- Thes $\left(k^{2} x \quad \ldots\right)(x-k)$
k chanirl go thet (common fataser teso)
$[k-(k+1)](x-k)=0$
$\left(k_{2}^{2}-k-1\right)(x-k)=0$
\square

[^0]: + wint mat B

