POLYNOMIAL TXAM CASE AND COMPANY POLYNN EXAM QUESTIONS ALASIMANISCOM F. Y. C.B. MARIASMANNISCOM F. Y. C.B. MARIASMANNISCOM F. Y. C.B. MARIASMANNISCOM F. Y. C.B. MARIASMA

Question 1 (**) Multiply out and simplify

$$(2x^2 - x - 3)(1 + 2x - x^2),$$

writing the answer in ascending powers of x.

 $-3-7x+3x^2+5x^3-2x^4$

Question 2 (**)

$$f(x) \equiv x^3 - 3x^2 + 6x - 40.$$

7281

a) Show that (x-5) is **not** a factor of f(x).

b) Find a linear factor of f(x).

	$\begin{array}{c} \underbrace{\left\{\begin{array}{l} \underbrace{(2b-2b)}{2bc} + \underbrace{(2b-2b)}{2bc} + \underbrace{(2bc)}{2bc} + \underbrace{(2bc)}{2$
	: (2-5) IS NOT A ACTOR OF for
0)	ALL OF THE SMUL WEITHO AND TEVING WITH THE FAULT AND TO AD

], (x-4)

Question 3 (**)

The polynomial $3x^3 - 2x^2 - 12x + 8$ is denoted by f(x).

a) Use the factor theorem to show that (x+2) is a factor of f(x).

b) Factorize f(x) fully.

f(x) = (3x-2)(x-2)(x+2)

Question 4 (**

The polynomial $x^3 + 4x^2 + 7x + k$, where k is a constant, is denoted by f(x).

a) Given that (x+2) is a factor of f(x), show that k = 6.

b) Express f(x) as a product of a linear factor and a quadratic factor.

 $f(x) = (x+2)(x^2+2x+3)$

(-2) + 7(-2) + 1= (a+2)(a2+2++2)

Question 5 (**)

a) Use the factor theorem to show that (x+3) is a factor of $x^3 + 5x^2 - 2x - 24$.

b) Factorize $x^3 + 5x^2 - 2x - 24$ fully.

$(c^{+}, f_{(3)}) = 3^{2} + 53^{2} - 2z - 24$ $+(-3) = (-3)^{4} + 5(-3)^{2} - 2(-3)$ $\therefore (24+3) _{1} + 44$	-24 = -27+45+6-24=51-51=0 we of fa
$x_{+3} = \frac{x_{+2}^{2} - 2x_{-3}}{x_{+3}^{2} - 2x_{-2}}$ $-\frac{x_{+3}^{2} - 3x_{-2}^{2}}{2x_{-2}^{2} - 3x_{-2}^{2}}$ $-\frac{x_{-2}^{2} - 5x_{-2}}{6x_{-2}^{2} - 5x_{-2}^{2}}$	$\begin{cases} \frac{1}{2} \left\{ \left(y \right) = \left(2x + 3 \right) \left(2x^2 + 2x - 8 \right) \\ \frac{1}{2} \left(y \right) = \left(2x + 3 \right) \left(2x + 4 \right) \left(2x - 2 \right) \end{cases}$

Question 6 (**+)

Y.C.

ŀG.p.

Find the coefficient of x^3 in the expansion of

 $(2x^3-5x^2+2x-1)(3x^3+2x^2-9x+7).$

Madasn

 $...+60x^{3}...$

F.C.P.

 $\begin{array}{c} (3\lambda^3-\lambda^2+2\lambda-1) \begin{pmatrix} 3\lambda^3+2\lambda^2-9\lambda+7 \\ 4\lambda^3 \\ 4\lambda^3 \\ 4\lambda^2 \\ 6\lambda^2 \\ 6\lambda^2 \\ \end{array}$

Question 7 (**+) Multiply out and simplify

$$(1+x)(1+x^2)(1-x+x^2),$$

writing the answer in ascending powers of x.

 $\begin{aligned} (1+2)(1+\chi^2)(1-\chi+\chi^2) &= (1+\chi^2+\chi_2+\chi^2)(1-\chi+\chi^4)\\ &= (1-\chi+\chi^2)(1+\chi+\chi^4+\chi^4)\\ &= (1+\chi+\chi^4+\chi^4)\\ &= (1+\chi+\chi^4+\chi^4)\\ &= (1+\chi+\chi^4+\chi^4)\\ &= \frac{1+\chi+\chi^4+\chi^4-\chi^4}{2+\chi^2+\chi^4+\chi^4} \end{aligned}$

Question 8 (**+)

a) Use the factor theorem to show that (x-5) is a factor of $x^3-19x-30$.

1201

b) Factorize $x^3 - 19x - 30$ into three linear factors.

	3
1	$let - f(0_1) = a^3 - 19_x - 30$
	+(s) = 5 ³ -19×5-30 = 125-95-50 = 0
	in (2-2) whether the company
)	$\frac{x^2+5x+6}{(x^2+6x^2-19x-30)}$ { f(x)= (x-5)(x^2+5x+6)
	$-2^3 + 52^2$ = (2-5)(2+2)(2+3)
	5a ² -19a-30
	-50 ² +252
	6x-30 -6x+30
	0

Question 9 (**+)

 $f(x) \equiv ax^3 - x^2 - 5x + b \,,$

where a and b are constants.

When f(x) is divided by (x-2) the remainder is 36.

When f(x) is divided by (x+2) the remainder is 40.

Find the value of a and the value of b.

-f(x) =	ax ² -2 ² -2x+p	
f(2) = -f(-2) =	$\approx \left\{ \begin{array}{c} \partial \mathcal{E} = \partial + 2x2 - \frac{z}{2} - \frac{z}{2} - \frac{z}{2} \\ \partial \mathcal{E} = \partial + 2x2 - \frac{z}{2} - \frac{z}{2} - \frac{z}{2} \\ \partial \mathcal{E} = \partial \mathcal{E} \\ \partial \mathcal{E} \\ \partial \mathcal{E} = \partial \mathcal{E} \\ \partial$	8a-4-1076=36 -8a-411076=30
	4	20 -8+2b=76 2b=84 b=42
Hinalt	8a - 4t - 10 + 10 = 36 8a - 4t + 42 = 36 8a = 8 9 = 1	7

Question 10 (**+)

A cubic function is defined in terms of the constant k as

 $f(x) \equiv x^3 + x^2 - x + k , x \in \mathbb{R}.$

Given that (x-k) is a factor of f(x) determine the possible values of k.

Question 11 (**+)

 $f(x) \equiv x^3 - 2x^2 + kx + 6,$

where k is a constant.

- a) Given that (x-3) is a factor of f(x), show that k = -5.
- **b**) Factorize f(x) into three linear factors.

c) Find the remainder when f(x) is divided by (x+3).

], (x-1)(x+2)(x-3), R = -24

(a) $f(x) = 2^3 - 22^2 + b + 6$ $\Rightarrow f(x) = 0$	(b) $\frac{\mathcal{J}_{-\mathcal{J}}(\mathcal{J}_{2}^{-2}\mathcal{J}_{2}^{-2})}{\mathcal{J}_{2}^{-2}\mathcal{J}_{2}^{-2}\mathcal{J}_{2}^{-2}\mathcal{J}_{2}^{-2}\mathcal{J}_{2}^{-2}}$
$\Rightarrow 3^{3}-2x^{2}+bx^{3}+6=0$ $\Rightarrow 27-16+3x+6=0$ $\Rightarrow 3x=-15$ $\Rightarrow k=-5$	$\frac{-3^2 - 52 + 6}{-32 + 32}$ -22 + 6 22 - 6
7 6-3	$\begin{array}{c} & & & \\ & &$
	C $f(-3) = (-3-3)(-3+2)(-3-1)$ = $(-6)(-4)$ = -24

Question 12 (**+)

- **a**) Use the factor theorem to show that (x+2) is a factor of $2x^3 + 3x^2 5x 6$.
- **b**) Factorize $2x^3 + 3x^2 5x 6$ into three linear factors.

(x+1)(x+2)(2x-3)

	$let f(a) = 2x^3 + 3x^2 - 5x - 6$)-6 =-16+12+10-6 = 22-22=0
	T =	J=6 ==0+12+10=6 = 22-22=0
)	$\begin{array}{c} \therefore (342) \otimes 4 \\ 342 \\ 342 \\ \hline 22^{3} - 3 \\ -3 \\ -23^{3} - 42^{2} \end{array}$	4_{AUCE} $2\lambda^3 + 3\lambda^2 - 5\lambda - 6 = (x+2)(2\lambda^2 - 2 - 3)$
	$-3^2 - 53 - 6$ $+3^2 + 23$ -33 - 6	= (2+2)(2-3)(2+1)
	31+6	

Question 13 (**+)

I.G.B.

っ

 $f(x) \equiv 2x^3 - 7x^2 - 5x + 4$

m

R = -30, (2x-1)(x+1)(x-4)

13.81

F.C.P.

20

nadasm.

M21/2

- a) Find the remainder when f(x) is divided by (x+2).
- **b**) Use the factor theorem to show that (x-4) is a factor of f(x).

2017

F.G.B.

c) Factorize f(x) completely.

Question 14 (**+)

 $f(x) \equiv x^3 + x^2 + ax + b \,,$

where a and b are constants

When f(x) is divided by (x-2) the remainder is -7

When f(x) is divided by (x+1) the remainder is 32

a) Find the value of a and the value of b.

b) Show that (x-3) is a factor of f(x).

1730/25

(@)	-{a}=2+2++++++++++++++++++++++++++++++++++	
		2a+b=-19 -a+b=32
		12- = 26 7
	17+b=32	a=-17
(6)	$f(G) = 2^3 + 2^2 - 1 - 2x + 5$	
	$f(3) = 3^{+}_{3} 3^{-}_{-} (3 \times 3 + 12) = 3.1 + 12 = 21 + 12 + 12$	0 = β
	* 1 NID+66	o & FACTOR

Question 15 (**+)

 $f(x) \equiv px^3 - 32x^2 - 10x + q,$

where p and q are constants.

When f(x) is divided by (x-2) the remainder is exactly the same as when f(x) is divided by (2x+3).

Show clearly that p = 8.

		proof
h.	 /	1

$f(x) = p x^3 - 32x^2 - 10x$	- + d
$ \begin{cases} 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	$\begin{split} & f_1(z) = \int_{z} (-\frac{x}{2}) \\ & 2^3 x p - 3 \chi(z)^2 - 10(2) + \dot{q} = p(-\frac{x}{2})^3 - 2 (-\frac{x}{2})^4 - 1 (-\frac{x}{2}) + \dot{q} \end{split}$
	$8p - 128 - 20 + q = -\frac{22}{5}p - 72 + 15 + q$ $8p - 148 = -57 - \frac{22}{5}p$
	64p - 1184 = -456 - 27p
	P = 8

Question 16 (***) Solve the equation

 $x^{3} + x^{2} - (x-1)(x-2)(x-3) = 12$

$$\begin{split} & = \sum_{i=1}^{N} \gamma_{i}^{1} \alpha_{i}^{-1} (x_{i-1})(x_{i-2})(\lambda_{i-2}) = 12 \\ & = \sum_{i=1}^{N} \alpha_{i}^{-1} - (\lambda_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1} + \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1} + \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1} + \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1})(\alpha_{i-1}^{-1} - \alpha_{i-1})(\alpha_{i-1} - \alpha_{i-1})(\alpha_{i-1} - \alpha_{i-1})(\alpha_{i-1$$

Smains.co

The Com

Question 17 (***)

20

 $f(x) \equiv 3x^3 - 2x^2 - 12x + 8.$

- a) Find the remainder when f(x) is divided by (x-4).
- **b**) Given that (x-2) is a factor of f(x) solve the equation f(x) = 0. Madasmans.com I.Y.C.B. Madasmans.com

TASIDALISCODE I. Y.C.R. DARIESDARISCODE I.Y.C.R. DARIESDARISCODE I.Y.C.R. DARIESDARISCODE I.Y.C.R. DARIESDA

Question 18 (***) It is given that

$$f(x) \equiv 2x^3 + 3x^2 - 8x + c \,,$$

where c is a non zero constant

It is further given that f(-3) = 0

- **a**) Show that c = 3.
- **b**) Factorize f(x) fully.
- c) Find the remainder when f(x) is divided by (2x+1)

(2x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)($\overline{x+3)}, \ \overline{R=\frac{15}{2}}$
(a) $-f(x) = 2\lambda^{2} + 2\lambda^{2} - 5\lambda + c$	(b) $\frac{1}{2t-2t+1}$
f(-3) = 0	$+(0) = (2t_3)(2t-1)(t-1)$
$\Rightarrow 3\lambda^{2}(3) + 3\lambda^{2}(3)^{2}-3\lambda(-1) + c = 0$	$-\frac{1}{2t+2}(2t+2t+1)$
$\Rightarrow -51 + 2\lambda^{2} + 2\lambda^{2} + c = 0$	$-\frac{1}{2t+2t+2}$
$\Rightarrow -51 + 2\lambda^{2} + 2\lambda^{2} + c = 0$	$\frac{1}{2t+2t+1}$
$\Rightarrow -51 + 2\lambda^{2} + 2\lambda^{2} + c = 0$	$\frac{1}{2t+2t+1}$
$\Rightarrow -51 + 2\lambda^{2} + 2\lambda^{2} + c = 0$	$\frac{1}{2t+2t+1}$

2.5.

Madas,

 $\overbrace{\{\{1\}=2,1^2+3,1^2-8x+3\\ \{\{1\}=2,1^2+3,1^2-8x+3\\ \{\{1\}=2,1^2+3,1^2-8x+3\\ \{1\}=2,1^2+3,1^2-8x+3\\ \{1\}=2,1^2+3,1^2$

Question 19 (***)

 $f(x) \equiv 6x^2 + x + 7, \ x \in \mathbb{R}.$

The remainder when f(x) is divided by (x-a) is the same as that when f(x) is divided by (x+2a), where a is a non zero constant.

Find the value of a.

a =

Question 20 (***) A cubic function is defined in terms of the positive constant *k* as

 $f(x) \equiv x^3 + (k-1)x^2 - k^3, x \in \mathbb{R}.$

It is further given that when f(x) is divided by (x-3) the remainder is 18.

a) Determine the value of k.

b) Find the remainder when f(x) is divided by (2x-5).

(a)	$f(x) = x^3 + (k-1)x^2 - k^3$	Ę	(b)	$-1(3) = 3^3 + (3-1)3^2 - 3^3$
	f(3) = 18	Ş		$\frac{1}{2}(x) = x^{3} + 2x^{2} - 27$ $-\frac{1}{2}(\frac{5}{2}) = (\frac{5}{2})^{3} + 2(\frac{5}{2})^{2} - 27$
	$3^{3} + (k-1) \times 3^{2} - k^{3} = 18$ $3^{7} + 9(k-1) - k^{3} = 18$	3		-7(2) - (2) + 2(2) - 27 = $\frac{125}{2} + \frac{25}{2} - 27$
=	27 + 9K-9 - k3 = 18	5		= %
	$18+9k-k^{2}=18'$ $9k-k^{2}=0$	3		0
	F (3-F)(3+F)=0 F (d-F5)=0	3		
	k= 2 ×	3		
	3 k>0	5		

 $\frac{9}{8}$

Question 21 (***)

A cubic graph is defined as

$$f(x) \equiv x^3 + x^2 - 10x + 8, x \in \mathbb{R}.$$

a) By considering the integer factors of 8, or otherwise, express f(x) as the product of three linear factors.

b) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

f(x) = (x-2)(x-1)(x+4)

- / /2
147 - f(x)= 37 - x2 - 10x + B
locking for factors, trying ±1, ±2, ±4, ±8
f(i) = 1 + 1 - 10 + 10 = 0
: (X-1) 15 + ADORN OF (G)
BY LONG DIVISION OR MMNIPULATIONS
$f(x) = 2^3 + x^4 - 10x + 6 = 2^3(2-1) + 2x(2-1) - 8(2-1)$
$= (2-1)(2^{2}+22-\theta)$
= (2-1)(2-2)(2+4)
COLLECTING ALL INFORMATION
$+\mathfrak{z}^3 \Rightarrow \frown \frown$
Q=0, y=8 → (q8)
$\mathcal{Y} = 0, \tau = \begin{pmatrix} 1 \\ -\frac{1}{4} \end{pmatrix} \xrightarrow{(1,0)} \begin{pmatrix} (1,0) \\ (2,0) \\ (2,0) \end{pmatrix}$
≜ 9
3=(a)
(46)
(10) (10) (20)

Question 22 (***)

 $f(x) \equiv 4x^3 + 9x^2 + 3x + 2$

- a) Use the factor theorem to show that (x+2) is a factor of f(x).
- **b**) Given further that

ŀ.G.p.

 $f(x) \equiv (x+2)(ax^2+bx+c),$

find the value of each of the constants a, b and c.

c) Show that the equation f(x) = 0 has only one real root.

a=4, $b=1$, $c=1$
in the second

Ĉ.

madasn.

(9)	4(2) = 42+32+32+2
	(-2)= 4(-2) +9(-2) +3(-2)+2=-32+36-6+2 = 38-38=0
	1- (21+2) 13 4 FARTOR
b)	$x+2 \left[\frac{4x^2+2+1}{(4x^2+9x^2+3x+2)^7} \right]$
	$\frac{-4x^2-9x^2}{x^2+3x+2} = -\frac{4x^2-9x^2}{x^2+3x+2}$
	- <u>2²-21</u> IF 9=4 x+2 b=1
	- <u>2-2</u> C=1
	240JTW02 HAT TO HAD 2 - 425
6	· CHECK THE DISCRIMINANT OF THE QUADRATIC THOM 42+2++1

• that = 1 - 4x+x 1 = -15 <0 ... NO ROOTS.

Question 23 (***)

$$f(x) \equiv x^3 + px^2 + qx + 6$$

- a) Find the value of each of the constants p and q, given that ...
 - ... (x-1) is a factor of f(x)
 - ... when f(x) is divided by (x+1) the remainder is 8.
- **b**) Hence solve the equation f(x) = 0.

p = -2, q = -5, x = 1, -2, 3

Question 24 (***)

 $f(x) \equiv 2x^3 - 7x^2 - 2x + 1$

- a) Use the factor theorem to show that (2x+1) is a factor of f(x).
- **b**) Find the exact solutions of the equation f(x) = 0.

Question 25 (***)

asmaths.com

Smarns.com I.V.C.

I.V.G.B.

2

a) Find the value of each of the constants a, b and c so that

 $6x^{3} - 7x^{2} - x + 2 \equiv (x - 1)(ax^{2} + bx + c).$

b) Hence solve the equation

 $6x^3 - 7x^2 - x + 2 = 0.$ madasmaths.com

Madasmaths,

I.F.C.B.

hs.com

the CO

R

11.5

nadasmal

COM

1720251

Question 26 (***)

A cubic polynomial is defined as

 $p(x) \equiv x^3 - 4x^2 + x + 6, x \in \mathbb{R}.$

a) By considering the factors of 6, or otherwise, express p(x) as the product of three linear factors.

b) Sketch the graph of p(x).

The sketch must include the coordinates of any points where the graph of p(x) meets the coordinate axes.

Question 27 (***)

 $f(x) \equiv x^3 - 9x^2 + 22x - 12.$

a) Show that x = 3 is a solution of the equation of the equation f(x) = 0.

b) Find, in exact surd form, the other two solutions of the equation f(x) = 0.

2.	$x = 3 \pm \sqrt{5}$
4	2. 9
(ھ)	f(3)= 2 ³ −32 ² +22×-12 f(3)= 27-81+66-12 = 93-9.3 =0
6	$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$
	$\begin{array}{c} -\frac{6x^{2}+20x-12}{4x-12} & \frac{61746x}{2} x=3 \\ \hline & \frac{6x^{2}-10x}{4x-12} & \frac{52}{2} \\ -\frac{42x+12}{9} & \frac{2x^{2}-6x+4}{9} = 0 \\ \hline & (2-5)^{2}-914 = 0 \end{array}$
	$(3-3)^2 = 5$ $3-3 = \pm \sqrt{5^2}$ $3 = 3 \pm \sqrt{5^2}$

Question 28 (***)

 $f(x) \equiv x^2 - 4x + 12$

The remainder when f(x) is divided by (x+k) is three times as large as when f(x) is divided by (x-k).

Determine the possible values of k.

F / 8	1 A.			
2	$\boldsymbol{\mathcal{D}}$	Ρ,	k = 6	, 2
	Y	7	12	
		- 10	100	
			1	

$f(x) = 3^{2} - \frac{1}{2} + \frac{12}{12}$ = $k^{2} + \frac{1}{2} + \frac{12}{12}$	Ναω	$k^{2}+14k+12 = 3(k^{2}-14)$ $k^{2}+14k+12 = 3k^{2}-12k$ $0 = 2k^{2}-16k + 24$
· f(k) = k2-4k+12		k2-8k +12=0 (k-6)(k-2)=0
		x=<26.

Question 29 (***)

$$f(x) \equiv 2x^3 + kx^2 - x - 6,$$

where k is a constant

Given that f(3) = 0, ...

- **a**) ... show that k = -5
- **b**) ... factorize f(x) as a product of one linear and one quadratic factor.
- c) ... show further that, apart from x = 3, the equation f(x) = 0 has no other real solutions.

$f(x) = (x-3)(2x^2 + x + 2)$

20,

$ \begin{array}{c} (c) = (c) $	//

Question 30 (***)

The polynomial function f is given below

$$f(x) \equiv (2x-1)(x+4) - 4(x-3)^2, x \in \mathbb{R}$$

a) Simplify f(x) fully.

The polynomial function g is defined, in terms of the constant k, by

de.

$$g(x) \equiv (3x-2)(x+4)(x+k), x \in \mathbb{R}$$

b) Determine the value of k, given that the coefficient of x^2 in the simplified expansion of f(x) is equal to the coefficient of x^2 in the simplified expansion of g(x).

Question 31 (***)

When the polynomial f(x) is divided by (x^2+1) the quotient is (3x-1) and the remainder is (2x-1).

Determine a fully simplified expression for f(x).

 $\begin{aligned} \frac{f(a)}{\alpha^2 + i} &= (3\alpha - i) + \frac{2\alpha - i}{\alpha^2 + i} \\ (\beta - i) &= (3\alpha - i)(\alpha^2 + i) + (\beta - i) \\ f(a) &= 3\alpha^2 + 3\alpha - \alpha^2 - i + 2\alpha - i \\ f(b) &= 3\alpha^2 + 3\alpha - \alpha^2 - i + 2\alpha - i \\ f(b) &= 3\alpha^2 - \alpha^2 + 5\alpha - 2 \end{aligned}$

Question 32 (***)

$f(x) \equiv (x+p)(2x^2+5x-4)-4$

where p is a non zero constant.

a) State the value of the remainder when f(x) is divided by (x+p)

When f(x) is divided by (x-2) the remainder is 10.

- **b**) Determine the value of p.
- c) Factorize f(x) into three linear factors.

[-4], [p=-1], [f(x)=x(x+3)(2x-3)]

(R	f0=(x+p)(22+5-4)-45	(ک	$f(y) = (y-y)(y_{x}^{2} + y_{y} - y_{y})$
	-f(-P)=-4		$f(x) = 2x^3 + 5x^2 - 4x - 2x^2 - 5x + 4$
p)	f(2)=10		$\mathcal{A}(a) = aa^3 + 3a^2 - 9a$
	(2+p)(8+10-4)-4=10		$\neq(\alpha) = x(2\alpha^2 + 3\alpha - 9)$
	(P+2)×14-4=10		-f(2) = 2 (22-3)[2+
	V4(P42) = 14		
	P+2 = 1		
	p=-l		

Question 33 (***)

The polynomial $4x^3 + Ax^2 + Bx + 9$, where A and B are constants, is denoted by f(x).

When f(x) is divided by (x-2) the remainder is R.

When f(x) is divided by (x-3) the remainder is 6R.

a) Show clearly that

B - A = 14.

It is further given that (x+3) is factor of f(x).

b) Find the value of A and the value B.

a) Express f(x) as a product of a linear factor and a quadratic factor.

b) Show that the equation f(x) = 0 has only one real root.

 $f(x) = (x+3)(x^2 - x + 19)$ A = 2, |B = 16|

f(3)=GE

- (a) $\frac{12 + 2x^{4} + \frac{x^{2} + x^{2}}{12 + 2x^{4} + \frac{1}{12} + \frac{x^{2}}{12} + \frac{x^{2} + x^{2}}{12 + 2x^{4} + \frac{x^{2} + x^{2}}{12}} + \frac{x^{2} + x^{2}}{12 + 2x^{4} + \frac{x^{2} + x^{2}}{12}}$ $\frac{2^{2} + 2x}{12 + 2x^{4} + \frac{x^{2} + x^{2}}{12}} + \frac{x^{2} + x^{2}}{12 + 2x^{4} + \frac{x^{2} + x^{2}}{12}}$ (b)
- $\int_{0}^{0} \frac{1}{(x+x)^{2}} \int_{0}^{0} \frac{1}{($

Question 34 (***)

The polynomial p(x) is defined as

$$p(x) = 2x^3 - 11x^2 + 20x - 12$$

- a) Use the factor theorem to show that (x-2) is a factor of p(x).
- **b**) Express p(x) as the product of three linear factors.
- c) Find the remainder when p(x) is divided by (x+2).
- d) Determine the value of each of the constants a, b and c so that

$$p(x) = (x+2)(2x^2 + ax + b) + c$$
.

$p(x) = (2x-3)(x-2)^2$, <u>-112</u>, <u>a = -15</u>, <u>b = 50</u>, <u>c = -112</u>

(a) $P(x) = 3x^3 - lb^2 + 20x - l2$ $P(z) = 2xz^3 - lixz^2 + 20x2 - l2$ P(z) = lb - ll + 40 - l2 = 56 - 56 = 10	* (a-2) 15 A Acol
$ \begin{array}{c} b & \frac{2\pi^2 - 72 + 6}{(2\pi^3 - 1)\pi^3 + 2(2\pi - 12)} \\ & \frac{-2\pi^3 + 3\pi^3 + 3\pi^2 + 2\pi^2}{(2\pi^3 - 1)\pi^3 + 2(2\pi - 12)} \\ & \frac{-2\pi^3 + 3\pi^2 - 12\pi^2}{(2\pi^3 - 1)\pi^3 + 2(2\pi - 12)} \\ & -2\pi^3 + 3\pi^2 - 12\pi^2 + 2\pi^2 + 2$	$p(x) = (x-2)(x^2-x+6)$ $p(x) = (x-2)(x-3)(x-2)$
(c) $P(-2) = (-2-2)(-4-3)(-2-2) = (-1)$	+)(-7)(-4) = -112
$\begin{array}{c c} 322 - 15x + 50 \\ \hline & 2422 & 222 - 104 + 520 - 12 \\ \hline & -221 - 201 - 420 + 12 \\ \hline & -221 - 420 \\ \hline & -521 - 420 \\ \hline & -521 - 420 \\ \hline & -520 - 100 \\ \hline & -500 - 100 \\ \hline \end{array}$	$\begin{array}{l} \text{RRUMHUE}\\ \text{RRUMHUE}\\ \text{RRUME}\\ RRU$

Question 35 (***)

 $f(x) \equiv x^4 + 2x^3 + x^2 - 4, x \in \mathbb{R}.$

- a) Use the factor theorem to show that (x+2) is a factor of f(x).
- **b**) Express f(x) as the product of a linear factor and a cubic factor.
- c) Find another linear factor of f(x).
- d) Express f(x) as the product of two linear factors and a quadratic factor.
- e) Show that the equation f(x) = 0 has exactly two solutions.

$f(x) \equiv (x+2)(x^3+x-2), \ (x-1), \ f(x) \equiv (x+2)(x-1)(x^2+x+2)$

and the second se	
a)	$\frac{1}{2}(x) = 2^{4} + 2x^{3} + 2^{2} - 4$
	$\begin{array}{c} \left(\left\{ -2\right\} = \left\{ -2\right\}^{d} + 2\sqrt{-2} \\ = 16 - 16 + 6 - 4 \\ \end{array} \right) \xrightarrow{d} \left\{ -2 \\ -2 \\ \end{array} \right) \xrightarrow{d} \left\{ -2 \\ -2 \\ \end{array} \right\} \xrightarrow{d} \left\{ -2 \\ -2 \\ \end{array} \right\} \xrightarrow{d} \left\{ -2 \\ -2 \\ \end{array} \right\} \xrightarrow{d} \left\{ -2 \\ -2 \\ -2 \\ \end{array} \right\} \xrightarrow{d} \left\{ -2 \\ -2 \\ -2 \\ -2 \\ \end{array} \right\} \xrightarrow{d} \left\{ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $
b)	WITH TO MANIPULATION
	$-(x) = x^4 + 2x^3 + 3z^2 - x = 3z^3(x+2) + (x-2)(x+2)$
	$(m) \in T + 55 + T - t = T(m5) + (T-5)(35)$
	$=(x+2)(x^3+2-2)$
0	BY INSPECTIVE THE CUBIC 2021 = 2+2-2
Ξ,	g(1) =0
	g(1)=0 . (2-1) 5 HOTHER FACTOR
d)	CROIT-AUSI/MAN 30 CAROLINE GAOL
	$2^{2}+2-2 = 2^{2}(2-1)+2(2-1)$
	= (3-0)(3+2+2)
	- tal= (2-1)(2+2+2+2)
e)	$\frac{1}{2}(x) = 0$
	$(3-1)(x+2)(x^2+2x+2) = 0$ (17) (x+2)
	07 J.=-2
	02 ×2+2+2=0
	$(2^{-1})^{-1} = (1^{-1})^{-1$
	S-35 B LEC 494 REDITIVOZ YSAD
1.1	

Question	36	(***-
Zuconon		· · ·

Solve the equation

 $(x+1)(x+4)(2x-1) = 33x-12-(x-2)^3$.

C)

=> (24)(22+72-4)	$= \frac{33x_{-}+12_{-}-(x_{-}2)^{3}}{33x_{-}+12_{-}-(x_{-}2)(2^{2}-4x_{+}4x_{+})}$ $= \frac{33x_{-}+12_{-}-(x_{-}2)(2^{2}-4x_{+}+4x_{+})}{-2x^{2}+8x_{-}-8}$	
$\Rightarrow 2a^3 + 4a^2 + 3a - 44$ $\Rightarrow 3a^3 + 3a^2 - 18a$	$= \frac{332 - 12 - (3^{3} - 6x^{2} + 12x - 8)}{332 - 12 - 2^{3} + 6x^{2} - 12x + 8}$ = $-3^{3} + 6x^{2} + 21x - 4^{4}$ = $-3^{3} + 6x^{2} + 21x - 4^{4}$	-
$ \Rightarrow \Im(\mathfrak{x}^2 + \mathfrak{x} - 6) \Rightarrow \Im\mathfrak{x}(\mathfrak{x} - \mathfrak{z})(\mathfrak{z} + \mathfrak{z}) $		* 2=<=2 -3

Question 37 (***+)

 $f(x) = x^4 + x^3 - 3x^2 - 4x - 4.$

- a) Use the factor theorem to find two linear factors of f(x).
- **b**) Hence show that the equation f(x) = 0 has exactly two real roots.

202.81

Question 38 (***+)

P.C.

The curve C has equation

 $y = x^4 - 6x^3 + 4x^2 + 24x - 32.$

- a) Express y as the product of four linear factors.
- b) Hence the graph of C, showing clearly the coordinates of any points where the graph of C meets the coordinate axes.

a) $y = x^4 - 6x^3 + 4x^2 + 24x - 32 \leftarrow$

・土| +こ 土4 ftt

 $y = (x+2)(x-4)(x-2)^{2}$

 $\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

745 20106+ fb) by 2-4 22-4 (2-62+8 2-4 (2+-62++12+29x-32)

Question 39 (***+)

The polynomials f(x) and g(x) are defined in terms of the constants a and b

$$f(x) = a(x^3+1) - bx(x+1)$$

$$g(x) = bx^3 - 5x^2 - 2a(x-1)$$
.

- a) Given that (x-2) is a factor of **both** f(x) and g(x), determine the value of a and the value of b.
- **b**) Factorize both f(x) and g(x), and hence show that f(x) and g(x), have another linear common factor.

a=2, b=3, f(x)=(x-2)(x+1)(2x-1), g(x)=(x-2)(x+1)(3x-2)


```
Question 40 (***+)
```

A polynomial p(x) is defined, in terms of a constant a, by

$$p(x) = x^3 - 16x^2 + 72x + a \, .$$

When p(x) is divided by (x-3) the remainder is 11.

- a) Determine the value of *a*.
- **b**) Express p(x) as a product of a linear and one quadratic factor.
- c) Hence find, in exact surd form where appropriate, the three solutions of the equation p(x)=0.

a = -88,

 $(x-2)(x^2-14x+44)$, $x=2, 7\pm\sqrt{5}$

```
Question 41 (***+)
```

A polynomial p(x) is defined, in terms of a constant k, by

$$p(x) = x^3 + kx^2 - x + 12.$$

When p(x) is divided by (x-1) the remainder is r.

When p(x) is divided by (x-4) the remainder is 8r

- a) Determine in any order ...
 - i. ... the value of k.
 - **ii.** ... the value of r.
- **b**) Show clearly that ...
 - **i.** ... (x+4) is a factor of p(x).

ii. ... the equation p(x) = 0 has only one real root.

1	58
(a) $p(a) = a^3 + ba^4 - a + 12$	
$\begin{array}{c} \mathcal{P}(l) = \Gamma \\ \mathcal{P}(k) = 8\Gamma \end{array} \xrightarrow{l + l} \begin{array}{c} l + l k - l + l 2 = \Gamma \\ \mathcal{C} k + l \mathcal{C} k - l + l 2 = 8l \end{array}$	$ \int \Rightarrow \left \begin{array}{c} k + 12 = \Gamma \\ 16 k + 72 = 8 \Gamma \end{array} \right \Rightarrow $
$k+l2=r$ $3 \Rightarrow k+l2=ak+2$ 3 = k k=3	e q r=15
(a) $p(x) = 3^3 + 3^2 - x + 12$ $p(-4) = (-4)^3 + 3(-4)^2 - (-4) + 12 =$	-64+48+4+12 = 0
the criscil cone	: (344) & A PACTOR -
(I) LONG- DIVIDE	
$x_{+4} = \frac{x^2 - x_{-} + 3}{x^3 + 3x^2 - x_{+} + 12}$ - $x^3 - 43x^2$	
$-\chi^2 - \chi + 12$	$ \stackrel{_{\mathrm{de}}}{\to} \mathcal{P}(\mathcal{A}) = (\mathcal{A} + 4)(\mathcal{A}^2 - \mathcal{X} + 3) $
22+42 3x+12	Naw P(x)=0
-312	emple a=-it
	$O[2, 2^2 - 2, +3 = 0]$
	BUT 12-40KC
	$= (-1)^{2} - 4 \times 1 \times 3$
	= 1-12
	= -11 <0

, k=3, r=15

21/20

(***+) **Question 42**

Find the three solutions of the cubic equation

Question 43 (***+)

 $f(x) \equiv 2x^3 - 9x^2 - 11x + 30.$

- a) Show, by using the factor theorem, that (x-5) is a factor of f(x) and hence factorize f(x) into product of three linear factors.
- **b**) Sketch the graph of f(x).

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

c) Find the x coordinates of the points where the line with equation y = 7x + 30 meets the graph of f(x).

 $f(x) \equiv (x-5)(2x-3)(x+2)$

a) $\frac{1}{\sqrt{2}} = \frac{2y^2 - 2y^2 - 1}{2x^2 - 1} \frac{1}{x^2 - $
INDERD (X-S) 13 + FACED
9 by LONG DIVISION/MANIPULATION
$\begin{aligned} & \int_{C^{\infty}} $
$ \begin{array}{c} \mathbf{b} \\ \mathbf{b} \\ \mathbf{c}_{ab} \\ \mathbf{c}_{ab$
c) -Sommer simulatored
$\begin{array}{c} \underbrace{(J_{1}=7,L+30)}_{U_{1}=U_{1}=U_{1}} \underbrace{(J_{1}=J_{1})}_{U_{1}=U_{1}=U_{1}} \underbrace{(J_{1}=J_{1})}_{U_{1}=U_{1}} \underbrace{(J_{1}=J_{1})}_{U_$

 $x = -\frac{3}{2} \bigcup x = 0 \bigcup x = 6$

Question 44 (***+)

A cubic graph is defined by

$$f(x) \equiv x^3 - 3x^2 - 4x + 12, x \in \mathbb{R}$$

- a) Show, by using the factor theorem, that (x-3) is a factor of f(x) and hence factorize f(x) into product of three linear factors.
- b) Sketch the graph of f(x).
 The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

Another cubic graph is defined as

$$g(x) \equiv (x-2)(x-4)^2, x \in \mathbb{R}$$

The two graphs meet at the points P and Q.

c) Determine the x coordinates of P and the x coordinates of Q.

(x) = (x-2)(x+2)(x-3)

 $x = 2, \frac{22}{7}$

The figure above shows the graph of a cubic polynomial f(x) given by

 $f(x) = -x^3 + 5x^2 + 17x - 21, x \in \mathbb{R}.$

The graph meets the coordinate axes at four distinct points, labelled A, B, C and D.

Given that the coordinates of the point A are (-3,0), determine the coordinates of the points B, C and D.

B(1,0), C(7,0), D(0,-21)

$\implies f(x) = -x^3 + 5x^2 + 17x - 21$
$\Longrightarrow x_{2} - f(x) = y_{1}^{2} - x_{2} - x_{2} + x_{1}$
BY CONFIDUATION OR MANIPULATIONS
$\rightarrow -(\alpha) = 3^{2}(x+3) - 8x(x+3) + 7(x+3)$
$\rightarrow -f(x) = (x+3)Cx^2-6x+7$
$\implies -f(x) = (x+x)(x-1)(x-1)(x-1)$
= - (x+3)(1-x)(x-7)
1 1 1
$A(-3,0)$ $B(j_10) \subset (7,0)$
AND WHAN 2=0 (q=-21) H D(0,-21)
· ((1-) P()-) ((7-) P(- +)

The CO

i li li

6

Madasmal

00

The Com

], R = -6, (x-2)(5x-3)(2x+1)

I.C.P.

2017

Question 46 (***+)

anasm

I.G.B.

0m 1.1

2

ISM2ths.

 $f(x) \equiv 10x^3 - 21x^2 - x \, .$

a) Find the remainder when f(x) is divided by (x-2).

b) Hence express $10x^3 - 21x^2 - x + 6$ as a product of three linear factors.

2017

ŀ.G.B.

I.Y.G.B.

Created by T. Madas

Madasmath

6

Question 47 (***+)

$$f(x) \equiv x^3 - 3x^2 - 6x + 8, x \in \mathbb{R}.$$

a) Show that (x-1) is a factor of f(x)

 $y_1 = x^4 + x^3 - 4x^2 - 10$

 y_2

b) Hence factorize f(x) into three linear factors.

c) Sketch the graph of f(x). The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

and

 $x^3 + 2x^2 + 12x - 26$.

The figure below shows the graphs of the curves with equations

 y_1

The two graphs meet at the points P, Q and R.

d) Determine the coordinates of P, Q and R.

f(x) = (x-1)(x+2)(x-4), P(-2,-18), Q(1,-12), R(4,246)

 $\begin{array}{c} d \end{bmatrix} \underbrace{\text{Smith} \text{Smith} \text{Smith}}_{2} \\ \underbrace{y_{2} \leq x_{1}^{2} + x_{1}^{2} + 10}_{2} - 3\zeta \\ y_{2} \leq x_{1}^{2} + x_{2}^{2} + 10 - 3\zeta \\ y_{3} \leq x_{1}^{2} + x_{2}^{2} + 10 - 3\zeta \\ \xrightarrow{y_{2}} 2 + x_{1}^{2} - 2x_{1} + 6z \\ \xrightarrow{y_{2}} 2 + 2z_{1}^{2} - 2z_{1} + 6z \\ \xrightarrow{y_{2}} 2 + 2z_{1}^{2} - 2z_{1} + 6z \\ \xrightarrow{y_{2}} 2 + 2z_{1}^{2} - 2z_{1} + 6z \\ \xrightarrow{y_{2}} 2 + 2z_{1}^{2} - 2z_{1} + 6z \\ \xrightarrow{y_{2}} 2 + 2z_{1}^{2} - 2z_{1}^{2} + 2z_$

Question 48 (***+)

Find the quotient of the division of

 $2x^6 - 3x^5 - 2x^4 + 2x^2 - 88x + 168$ by $x^2 - 4x + 4$.

Z²−42 +4	$\begin{array}{r} 23^{\frac{1}{2}} + \frac{23}{3} + \frac{13}{3} + $	2 TUNDUS 2 24+53+101+52+456
5 - E - L	0	

Question 49 (***+)

 $x^{3} + \left(2 - \frac{1}{5}k\right)x^{2} - (2k+1)x + 20 = 0.$

a) Determine the value of the real constant k, if the above equation is to have x = 1 as one of its roots.

b) Solve the equation for the value of k, found in part (**a**).

à	
)	susanait a=1 to Get k
	$= 1^{2} + (2 - \frac{1}{2}t)x_{1}^{2} - (2k+1)x_{1} + 20 = 0$
	$\Rightarrow 1 + 2 - \frac{1}{2}k - 2k - 1 + 20 = 0$ $\Rightarrow 22 = \frac{11}{5}k$
)	PUT K=10 Who THE ADMITION
	$ = \chi^3 + (2 - \frac{1}{5}E)\chi^2 - (2EH)\chi + 20 = 0 $ $ = \chi^2 - 2I\chi + 20 = 0 $
	<u>42 a=1 U + 20107000, 77460 (a-1) MUTT 86 + 199302</u> BY 10000 DE MANNIOULATTON)
	$-9 3^3 - 32 + 30 = 0$
	$\Rightarrow \widehat{x}_{(2i-1)}^{2} + \widehat{x}_{(2i-1)} - \widehat{x}_{(2i-1)} = 0$ $\Rightarrow (a-1)(j^{2}+x-20) = 0$
	$\implies (\mathcal{X}^{-1})(\mathcal{I}+\mathcal{I})(\mathcal{X}^{-1}+\mathcal{I})=0$
	-) 2= - <u>+</u>

, k = 10, x = -5, 4, 1

Question 50 (***+)

A cubic curve C has equation

 $y = 6x^3 + Ax^2 - 6x + B$, $x \in \mathbb{R}$,

where A and B are constants.

The graph of C meets the x axis at (5,0).

When the equation of C is divided by (x-1) the remainder is -24.

a) Determine the value of A and the value of B.

- **b**) Factorize fully the equation of C.
- c) Sketch the graph of C.

The sketch must show clearly the coordinates of any points where the graph of C meets the coordinate axes.

A = -29,

B=5, y=(x-5)(3x-1)(2x+1)

Question 51 (***+)

The following information is given for a polynomial f(x).

- When f(x) is divided by (x-2) the remainder is 5.
- When f(x) is divided by (x+2) the remainder is -11.
- When f(x) is divided by (x+2)(x+2) the remainder is ax+b, and the quotient is g(x), where a and b are constants, so that

f(x) = (x-2)(x+2)g(x) + ax + b

a) Determine the value of a and the value of b.

It is further given that

$$f(x) = 3x^4 + px + q,$$

where p and q are constants.

b) Find the value of p and the value of q.

a) from the "threb" it no on the information swind			
	$f(x) \equiv (x-2)(x+2)g(x) -$	+ ax+b	
	NOW (2) = 5 AND	+(C-2) = -11	
	5= 0 + 2a+b	-1 =0-2a+b	
	2a+b = s	-2a+b=-11	
	24.731Y -DUNTDATEBUZ & DUNDGA		
	b=-3 & a=4	//	
)	f(x) = 32"+ p2 + 0		
	+(2) = 5	2)=-11	
		2)4-2p+d=-11	
		+ = - 59	
	\searrow		
	TODING		
	20 = - 102		
	d = -21		
	& 2p + q = -43		
	2p - 51 = 43 2p = 8		
	p = 4		

Question 52 (***+)

A cubic curve and a quartic curve, are both defined for all real numbers, and have respective equations

 $y = x^3 - 3x^2$ and $y = x(x-2)^3$.

- a) Sketch both curves in the same set of axes, indicating the coordinates of any points where each curve meets the coordinate axes.
- **b**) State the number of solutions of the equation
- c) Indicate by shading in the set of axes of part (a) the region satisfied by the following inequality.

 $x^3 - 3x^2 = x(x-2)^3, x \in \mathbb{R}$.

 $x^3 - 3x^2 \le y \le x(x-2)^3 \quad \cap \quad -1 < x < 4$.

, 2 solutions

Question 53 (****)

$$f(x) \equiv x^3 + 3x^2 - 24x + 20, x \in \mathbb{R}$$
.

- a) Show that (x-1) is a factor of f(x)
- **b**) Hence factorize f(x) as the product of a linear and a quadratic factor.
- c) Find, in exact form where appropriate, the solutions of the equation f(x) = 0.

The line with equation y = -8 touches the graph of f(x) at the point Q(2, -8) and crosses the graph of f(x) at the point P, as shown in the figure below.

d) Determine the coordinates of P.

$$f(x) = (x-1)(x^2+4x-20), \quad x=1, -2\pm 2\sqrt{6}, \quad P(-7, -8)$$

Question 54 (****)

A polynomial p(x) is defined, in terms of a constant a, by

$$p(x) = x^4 + 2x^3 + 9x + a$$

When p(x) is divided by $x^2 - x + 2$ the quotient is $x^2 + bx + 1$ and the remainder is cx+5, where b and c are constants.

a = 7, b = 3, c = 4

23+92+0=

Find the value of a, b and c.

Question 55 (****)

The quadratic function f is given, in terms of three non zero constants a, b and c, by

 $f(x) \equiv ax^2 + bx + c, \ x \in \mathbb{R}.$

When f(x) is divided by (x-1) the remainder is 1.

When f(x) is divided by (x-2) the remainder is 2.

When f(x) is divided by (x+2) the remainder is 70.

Determine the value of each of the constants a, b and c.

EUMINATE C= 1-9-6 WTO THE OHRE TWO 4a + 2h + (i - a - b) = 24a - 2b + (i - a - b) = 70

a = 6, b = -17, c = 12

Question 56 (****)

 $f(x) \equiv x^3 - 3x + 2, \ x \in \mathbb{R}.$

- a) Express f(x) as the product of three linear factors.
- **b**) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

c) Solve the equation

.C.

 $f(x) = (x-1)^2.$

C.H.

Question 57 (****)

A quintic polynomial is defined, in terms of the constants a and b, by

 $f(x) = x^{5} + ax^{4} + bx^{3} - x^{2} + 4x - 3.$

When f(x) is divided by (x-2) the remainder is -7.

When f(x) is divided by (x+1) the remainder is -16.

a) Determine in any order the values of a and b.

b) Find the remainder when f(x) is divided by (x-2)(x+1).

q	FRENING 2 SQUATE	INS BY THE REMAINSHE THEOREM
	+(1) = -7 ⇒	$2^{\frac{4}{7}}$ + $9x_2^{\frac{4}{7}} + 9x_2^{\frac{3}{7}} - 2^{\frac{8}{7}} + 4x_2 - 3 = -7$ $3^{\frac{3}{7}} + 16a + 8b_{\frac{7}{7}} + 8 - x_{\frac{7}{7}} - x_{\frac{7}{7}} - x_{\frac{7}{7}}$ $16a + 8b_{\frac{9}{7}} = -40$ $2a_{\frac{1}{7}} + b_{\frac{9}{7}} = -5$
	$\frac{1}{2}(-1)=-\frac{1}{2}(1-1)$	$ \begin{array}{l} (-1)^{2} + a_{2}(-1)^{4} + b_{2}(-1)^{2} - (-1)^{2} + 4(-1) - 3 = -46 \\ -1 + a_{-} + b_{-} - 1 - a_{-} - a_{-} - 46 \\ a_{-} b_{-} = -7 \end{array} $
	HODING THE EQUIPTION	s
	λ = −D 4 = −4	a-b=-7 -a-b=-7 b=3
ЬJ		eger Tijus Mar 14 -15 Four-5
	+(x) = (x+i)(x-i)	2)g(x) + Az +B

a = -4, b = 3, 3x - 13

4 Section (2+1)(2-2) IS A DEMORATIC

(a) = -A + B = -16 (a) = -A + B = -16 (a) = -B = -16 (a) = -16 (a)

Demander is 32-13

KQ,

```
Question 58 (****)
```

A polynomial f(x) is defined in terms of the constants a, b and c as

$$f(x) = 2x^3 + ax^2 + bx + c, \quad x \in \mathbb{R}$$

It is further given that

$$f(2) = f(-1) = 0$$
 and $f(1) = -14$

- **a**) Find the values of a, b and c.
- **b**) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

a = 3, l	$b = -9, \ c = -10$
12	-0
a) BY THE FACTOR THEOREM/REMANDER	- THEOREM
$f(2) = 0 \implies 2x_2^3 + ax_2^2 + bx$ $\implies 16 + 4a + 2b + C = 10$	2+C≥0 ≥0_
$ \begin{array}{c} +(-1)=0 \implies 2(-1)^2+a(-1)^2+b \\ \implies -2+a-b+C \end{array} $	
$f(1) = 4 \implies 2x^{13} \pm ax^{13} \pm b + b$ $\implies a \pm a \pm b \pm c$	
SUBTRACT THE LAST TWO GOUATTONS	THE SPUTTIONS NOW SECONT
$\begin{array}{l} 4 + 2b = -44\\ 2b = -18\\ b = -9\end{array}$	$\begin{array}{c} 4a+c=2, \\ a+c=-7 \\ \alpha+c=-7 \\ \alpha+c=-7 \\ c=-10 \end{array}$
$\begin{array}{c} \therefore \ \underline{a} = \underline{a} \ b - \underline{a} \ c \\ b \ \hline \underline{b} \ \underline{b} $	

Question 59 (****)

A polynomial p(x) is given by

 $p(x) = 4x^3 - 2x^2 + x + 5.$

a) Find the remainder and the quotient when p(x) is divided by $x^2 + 2x - 5$.

A different polynomial q(x) is defined as

 $q(x) = 4x^3 - 2x^2 + ax + b$.

b) Find the value of the constants a and b so that when q(x) is divided by $x^2 + 2x - 5$ there is no remainder.

All Allers	1000
a) By LONG DUTSION	
$\frac{1}{2x^{2}x^{2}} \frac{(x-z)}{(x-z)^{2}} \frac{(x-z)}{(x-z)^{2}}$	
-101 + 213 + 5	,
+102+202-50 \$ RHUMMORE 412-45	/
4h-45 < REMANDER	
b) the instruction if there is no remainded	
$\varphi(k) \equiv 4\lambda^{3} - 2\lambda^{2} + 4\lambda + b \equiv (\lambda^{3} + 2\lambda - S)(4\lambda + C)$	
• \$(0) = b = -5c]	
 (d) = 2+a+b = -2(4+C) → ADDIND-THE (AGT 2 QUATIC 	26
• d(-1) = -6-a+b = -6(-4+c) → -++2b = -2(c+4)-6(c-4)	
= -+ + 2b = -2c-b - 6c + 10	
= -4 + 2b = -8c + 16	
-2 + b = -4c + 8	
$\rightarrow -2 + (-5) = -4c + 8$	
-10 = C	
that we wan there	
· b=-2c= -2(-10) = 20 . 24a+b=-8-2c	
2+a+50=-8-2(-10)	
Δ + 52. ∞ 12.	
a = -40	
t an da in 1	
: a=-40 g b= 50	

R = 41x - 45, Q = 4x - 10, a = -40, b = 50

Question 60 (****)

 $f(x) = 2x^2 + 9x - 5$

- a) Given that when f(x) is divided by (2x-k) the remainder is 13, find the possible values of k.
- **b**) Given further that when f(x) is divided by (x-2k) the remainder is 121, find the value of k.

k = -12, 3, k = 3

Question 61 (****)

A cubic function is defined in terms of the constants a, b and c as

$$f(x) = x^3 + ax^2 + bx + c, \ x \in \mathbb{R}$$

a) Given that (x-1) is a factor of f(x) show that

a+b+c=-1.

It is further given that when f(x) is divided by (x-2) the remainder is -4 and when f(x) is divided by (x-3) the remainder is -12.

- **b**) Find the values of a, b and c.
- c) Hence express f(x) as the product of three linear factors.
- **d**) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

a) APPLY THE FACTOR THEOREM		C) BY LONG DIVISION OR MANIPULATION
$-(0) = 0 \qquad \implies 1^3 + a \times 1^3 + b \times 1 + C = 0$ $= 0 \qquad $		$-(G) = \chi^3 - \Re^2 + \Im_{n-1} \mathcal{L}$
⇒ a+	b+C=-1	$f(x) = -x^{2}(x-1) - 7x(x-1) + 6(x-1) $ $f(x) = (3-1)(2^{2} - 7x + 6) $
b) APRYING THE REMANDER	HEREMI TWICE	f(x) = (2-1)(2-1)(2-6)
• (G)=-+	• f(s)=-12	$-(G_{1}) - G_{-1}^{2}O_{-c}$
\rightarrow 2 ² +ax2 ² +ba+c=-+ \rightarrow 8+4a+2b+c=-+	$=3^{3}+ex_{2}^{2}+bx_{3}^{2}+c=-12$	
- 44+26+C=-12	$\Rightarrow 27 + 9a + 3b + C = -12$ $\Rightarrow -9a + 3b + C = -36$	
4051NG PMOT (a) == C= -		(b) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	$-12 \implies 9a+3b+(-b-a-1)=-3p$ $\implies 8a+2b=-36$	
-> b = -11 - 3a		● 3=0 y= ~6 .: (0,-6)
> 6	ABINYE L	= g=0 == <1 259400 → (1,0) 70,61/2 (G0) acoss
	(-11-34)=~19 -8	13
	-II - 3q -II + 24	(in)
	13	(0-4)
	-b-a_(
	-13+8-1	
C=	-6/	the second state of the second s

a = -8, b = 13, c = -6, $(x-1)^2(x-6)$

 $(1 = (2 - 1)(x^4 - 7a + 6))$ (1 = (2 - 1)(2 - 1)(2 - 6)

Question 62 (****)

ŀ.G.p.

 $f(x) \equiv x^3 + (a+2)x^2 - 2x + b$,

where a and b are non zero constants.

It is given that (x-2) and (x+a) are factors of f(x), a > 0.

a) By forming two equations show that a = 3 and find the value of b.

b) Solve the equation f(x) = 0.

nn,

		and a	100		
(a) fa= 1	$d + x = \frac{1}{2} f(z+z) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$				
· f(2)=0			f(-a) = 0		
8+4(a	+2)-4+6=0		$(=\alpha)^3_+(\alpha_{F2})$)(-a) - 2(-a))+b=0
	+8 - 4 + b = 0		-0++ (a+2	$2)q^2 + 2a + b$	≅ 0
44	+6 = -12		-95+9×+	292 + 24 + b	= D
	6			a+b=0	
	b = -12-44			+	
			, t	=-292-24	
	- 12	-4a =	-292 -29		
	20	$\lambda^2 = 2\alpha =$	-12 = O		
	0	2-0-	6=0		
	(c	1-37(a	+2)=0		
		a=	3 0/0/	i ba-la	- Uno
			~ //	: b=-12. b=-2.	+ /
(b) there	f(a)= x3+ 522-22				//
Gri Ander	101= 0+52=-22	- 24			
	HOWLE 23+52-22	-2+=0	0		
	But (a 2)	4 G.	+3) => (>	(2+3)=	2+ x-6
	x+ Sa-22 -2	4=0	M.F. PACCOV	3	
	(22+2-6)(2+1	()=0			
-4 WWOCE	$\mathfrak{l}: \leq^2 -3$				
	-4				
	. //				

C.H.

う

Question 63 (****)

2

1.1

I.C.B.

2025m2

COM

K.C.B. Madasm

COM

E.p.

 $f(x) = x^3 - 9x^2 + 24x - 20$

Given that when f(x) is divided by (x-k) the remainder is -4, find the possible values of k.

Inadası

^COM

I.C.B.

$f(x) = x^{3} - 3x^{2} + 24x - 20$ $f(k) = -4$ $k^{3} - 3x^{2} + 24k - 20 = -4$	$\begin{array}{c} \frac{k^{2}-2k+16}{(k^{3}-2k^{2}+3k-46)}\\ -\frac{-k^{3}+k^{2}}{-6k^{2}+3k-k}\end{array}$
$k^{-}-k^{+}+24k-20=-4$ $k^{3}-9k^{2}+24k-6=0$ b bolents. For Filosoph $g(k)=k^{2}-9k^{2}+24k-16$	$\frac{\frac{8k^2 - 8k}{ 6k - 16 }}{\frac{- 6k + 16 }{2}}$
9(1)=1-9+24-16=0	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$(k-1)(k-4)^{2}=0$ k=<4

i.C.p.

I.F.C.P.

11202SN2

?011

Inadasmal

COM

11_{202s1}

, k = 1, 4

Created by T. Madas

madasmath

2017

Question 64 (****+)

The quadratic functions f and g are defined by

$$f(x) \equiv 4x^2 + a, \ x \in \mathbb{R}$$

 $g(x) \equiv x^2 + bx + a, \ x \in \mathbb{R},$

where a, b and c are non zero constants, such that a = -2c and b = -3c.

It is further given that (x+c) is a common factor f and g.

Determine the value of a, b and c, and hence factorize f and g, showing clearly the common factor in these factorizations.

off on 26002234XY JHF FTUOD	WS OF C
$f(x) = 4x^{2} + a = 4x^{2}$ $g(x) = x^{2} + bx + a = x^{2}$	
45 (zerc) is 4 couldar After	02, f(-c)=g(-c)=0
$4(-c)^{2} - 2c = 0$ $4c^{2} - 2c = 0$ $4c^{2} - 2c = 0$ $9c(2x - 1) = 0$ $C = < \frac{0}{2}$	$\begin{aligned} (-c)^{2} - 2c(-c)^{-}, &z = 0 \\ c^{2} + 3c^{2} - 2c - 0 \\ 4c^{2} - 2c = 0 \\ 2c(2c - 1) = 0 \\ c = < c^{0} \\ \frac{1}{2} \end{aligned}$
$\frac{1f c=0 TH(A) a=b=0}{SINCE f(A)=4x^2 f(A)=2}$ $\therefore c=\frac{1}{2} \implies a \qquad \implies b$	= -(
$\frac{f_{12}y_{12}y_{2}}{f(x)} = \frac{4x^2 - 1}{(x) - 1}$ $\frac{f(x)}{f(x)} = \frac{(x) - 1}{(x) - 1}(2x + 1)$ $\frac{f(x)}{f(x)} = \frac{4(x - \frac{1}{2})(x + \frac{1}{2})}{(x + \frac{1}{2})}$	$\frac{\partial}{\partial x}(\omega) = \alpha^2 - \frac{1}{2}\omega + 1$ $\frac{\partial}{\partial x}(\omega) = (\alpha + \frac{1}{2})(\alpha - 2)$

(****+)**Question 65**

A cubic curve has the following equation.

$$f(x) \equiv x^3 - 6x^2 + 12x + B, \quad x \in \mathbb{R}$$

where B is a non zero constant.

a) If f(x) can be written in the form $(x-A)^3 - 4$, where A is also a non zero constant, find the value of A and the value of B.

A quadratic curve has the following equation.

$$g(x) \equiv x^2 - 4x + 5, \quad x \in \mathbb{R}$$

b) Sketch the graph of f(x) and the graph of g(x) in the same set of axes.

The sketch must include the coordinates of any points where each of the graphs meets the coordinate axes, the coordinates of the point of inflexion of f(x) and the coordinates of the minimum point of g(x).

A = 2, B = -12, one real root

-702 + 163 + 12 - 5 $= x^3 - 7x^2 + 16x - 12 =$

SUFFICIENTLY LARGE OF

. ONLY ONE ROOT

THAT HOTED HAT LAD'T 20103944 IN HOUGHTLA THE TWO GRAPPING JO NOT NUCET THE W

WILL EVENDAUS "OURCTAKE THE QUARATIC FOR

c) Hence, state with full justification the number of real roots of the equation

 $x^3 - 7x^2 + 16x + B = 5.$

START BY EXPANDING & CONPARING $f(x) = (x - A)^3 - 4 = x^3 - 6x^2 + 12x + B$ => 23-62+12x -12 = 22-42+5 $\Rightarrow (a-4)(a-4)^2 - 4 = a^3 - 6a^2 + 12a + B$ $\Rightarrow f(x) = g(x)$ $(\alpha - A)(\alpha^2 - 2A\alpha + A^2) - 4 \equiv \alpha^2 - 6\alpha^2 + 12\alpha + B$ $a^3 - 2Aa^2 + A^2a$ $- Aa^2 + 2A^2a - \sqrt{3} - 4$ $\equiv a^3 - 6a^2 + 12a + 8$ $x^3 - 3Ax^2 + 2A^3x - (A^3+4) \equiv x^3 - 6x^2 + 12x + B$ LOOKING AT THE GERFLAINTS OF X2 (2 Daes NOT QUITE IN $(a_1^2) 2A^2 = 12$ $A^3 = 4$ $[x^{2}] -34 = -6$ A = 2 $[x^2] - A^3 - 4 = B$ $(a) = \lambda(x) = x^2 - 4\lambda + 5$ • $f(x) = (x-2)^3 - 4$ = (-2) -4 = -1

Question 66 (****+)

ISMaths.com

I.V.G.B.

11₂₀₂

I.C.A

21/15.COM

I.C.p

 $f(x) = 2x^3 - 9x^2 + px + q$

- a) Find the values of the constants p and q, given that (x-2) and (2x+1) are factors of f(x).
- **b**) Hence solve the equation

 $2\sqrt{y} + \frac{7}{\sqrt{y}} = 9 - \frac{6}{y}.$ $p = 7, \quad p = 6, \quad y = 4 \quad \cup \quad x = 9$ $(a) \quad 2x_2 \quad u_x + max \quad e \quad f(x) \quad zx + u \quad u \quad A \quad Partix \quad e \quad f(x) \quad zx + u \quad y = 4 \quad \cup \quad x = 9$ $(b) \quad 0 \quad x_2^2 x x_1^2 + px + q = 0 \quad x_1^2 + \frac{1}{2} + \frac$

(nn

6

ths.com

17202

I.F.G.B.

Question 67 (*****)

I.G.B.

. G.B. $ax^3 + ax^2 + ax + b = 0,$

Is.com

 $0 < a \leq$

202.sm

202

F(-6) =0

200

E.B.

ab2

2

where a and b are non zero real constants.

Given that x = -b is a root of the above cubic equation, determine the range of the possible values of a.

nadasn.

nn