POLYNOMIAL
EXAM
QUESTIONS
Question 1 (**)

Multiply out and simplify

\[(2x^2 - x - 3)(1 + 2x - x^2),\]

writing the answer in ascending powers of \(x\).

\[-3 - 7x + 3x^2 + 5x^3 - 2x^4\]

Question 2 (**)

\[f(x) \equiv x^3 - 3x^2 + 6x - 40.\]

a) Show that \((x - 5)\) is not a factor of \(f(x)\).

b) Find a linear factor of \(f(x)\).

\[(x - 4)\]
Question 3 (**)

The polynomial \(3x^3 - 2x^2 - 12x + 8\) is denoted by \(f(x)\).

a) Use the factor theorem to show that \((x+2)\) is a factor of \(f(x)\).

b) Factorize \(f(x)\) fully.

\[f(x) = (3x-2)(x-2)(x+2)\]

Question 4 (**)

The polynomial \(x^3 + 4x^2 + 7x + k\), where \(k\) is a constant, is denoted by \(f(x)\).

a) Given that \((x+2)\) is a factor of \(f(x)\), show that \(k = 6\).

b) Express \(f(x)\) as a product of a linear factor and a quadratic factor.

\[f(x) = (x+2)(x^2+2x+3)\]
Question 5 (**)

a) Use the factor theorem to show that \((x+3)\) is a factor of \(x^3 + 5x^2 - 2x - 24\).

b) Factorize \(x^3 + 5x^2 - 2x - 24\) fully.

\[
(x+3)(x-2)(x+4)
\]

Question 6 (**+)

Find the coefficient of \(x^3\) in the expansion of

\[
(2x^3 - 5x^2 + 2x - 1)(3x^3 + 2x^2 - 9x + 7).
\]

\[
\ldots + 60x^3 \ldots
\]
Question 7 (**+)
Multiply out and simplify
\[(1+x)(1+x^2)(1-x+x^2),\]
writing the answer in ascending powers of \(x\).

\[1+x^2+x^3+x^5\]

Question 8 (**+)

a) Use the factor theorem to show that \((x-5)\) is a factor of \(x^3 - 19x - 30\).

b) Factorize \(x^3 - 19x - 30\) into three linear factors.

\[(x+3)(x+2)(x-5)\]
Question 9 (**+)

\[f(x) = ax^3 - x^2 - 5x + b, \]

where \(a \) and \(b \) are constants.

When \(f(x) \) is divided by \((x - 2) \) the remainder is 36.

When \(f(x) \) is divided by \((x + 2) \) the remainder is 40.

Find the value of \(a \) and the value of \(b \).

\[
\begin{align*}
\text{Answer:} & \quad a = 1, \quad b = 42
\end{align*}
\]

Question 10 (**+)

A cubic function is defined in terms of the constant \(k \) as

\[f(x) = x^3 + x^2 - x + k, \quad x \in \mathbb{R}. \]

Given that \((x - k) \) is a factor of \(f(x) \) determine the possible values of \(k \).

\[
\begin{align*}
\text{Answer:} & \quad k = -1, \quad 0
\end{align*}
\]
Question 11 (**+)**

\[f(x) = x^3 - 2x^2 + kx + 6, \]

where \(k \) is a constant.

a) Given that \((x-3)\) is a factor of \(f(x)\), show that \(k = -5\).

b) Factorize \(f(x)\) into three linear factors.

c) Find the remainder when \(f(x)\) is divided by \((x+3)\).

\[(x-1)(x+2)(x-3), \quad R = -24 \]

Question 12 (**+)**

a) Use the factor theorem to show that \((x+2)\) is a factor of \(2x^3 + 3x^2 - 5x - 6\).

b) Factorize \(2x^3 + 3x^2 - 5x - 6\) into three linear factors.

\[(x+1)(x+2)(2x-3) \]
Question 13 (**+**)

\[f(x) = 2x^3 - 7x^2 - 5x + 4 \]

a) Find the remainder when \(f(x) \) is divided by \((x+2) \).

b) Use the factor theorem to show that \((x-4) \) is a factor of \(f(x) \).

c) Factorize \(f(x) \) completely.

\[R = -30, (2x-1)(x+1)(x-4) \]
Question 14 (**+)

\[f(x) = x^3 + x^2 + ax + b, \]

where \(a \) and \(b \) are constants

When \(f(x) \) is divided by \((x−2)\) the remainder is \(-7\)

When \(f(x) \) is divided by \((x+1)\) the remainder is \(32\)

a) Find the value of \(a \) and the value of \(b \).

b) Show that \((x−3)\) is a factor of \(f(x) \).

\[a = -17, \quad b = 15 \]
Question 15 (**+)

\[f(x) \equiv px^3 - 32x^2 - 10x + q , \]

where \(p \) and \(q \) are constants.

When \(f(x) \) is divided by \((x-2)\) the remainder is exactly the same as when \(f(x) \) is divided by \((2x+3)\).

Show clearly that \(p = 8 \).

\[
\text{proof}
\]

Question 16 (***)

Solve the equation

\[x^3 + x^2 - (x-1)(x-2)(x-3) = 12. \]

\[x = \frac{-3}{7}, 2 \]
Question 17 (***)

\[f(x) = 3x^3 - 2x^2 - 12x + 8. \]

a) Find the remainder when \(f(x) \) is divided by \((x - 4) \).

b) Given that \((x - 2) \) is a factor of \(f(x) \) solve the equation \(f(x) = 0 \).

\[R = 120, \quad x = -2, \frac{5}{3}, 2 \]
Question 18 (***)

It is given that

\[f(x) = 2x^3 + 3x^2 - 8x + c, \]

where \(c \) is a non-zero constant.

It is further given that \(f(-3) = 0 \)

a) Show that \(c = 3 \).

b) Factorize \(f(x) \) fully.

c) Find the remainder when \(f(x) \) is divided by \(2x + 1 \)

\[\frac{(2x-1)(x-1)(x+3)}{2}, \quad R = \frac{15}{2} \]
Question 19 (***)

\[f(x) \equiv 6x^2 + x + 7, \quad x \in \mathbb{R}. \]

The remainder when \(f(x) \) is divided by \((x-a)\) is the same as that when \(f(x) \) is divided by \((x+2a)\), where \(a \) is a non zero constant.

Find the value of \(a \).

\[\boxed{a = \frac{1}{6}} \]

Question 20 (***)

A cubic function is defined in terms of the positive constant \(k \) as

\[f(x) \equiv x^3 + (k-1)x^2 - k^3, \quad x \in \mathbb{R}. \]

It is further given that when \(f(x) \) is divided by \((x-3)\) the remainder is 18.

a) Determine the value of \(k \).

b) Find the remainder when \(f(x) \) is divided by \((2x-5)\).

\[k = 3, \quad \frac{9}{8} \]
Question 21 (***)

A cubic graph is defined as

$$f(x) = x^3 + x^2 - 10x + 8, \ x \in \mathbb{R}.$$

a) By considering the integer factors of 8, or otherwise, express $$f(x)$$ as the product of three linear factors.

b) Sketch the graph of $$f(x)$$. The sketch must include the coordinates of any points where the graph of $$f(x)$$ meets the coordinate axes.

$$f(x) = (x-2)(x-1)(x+4)$$
a) Use the factor theorem to show that \((x+2)\) is a factor of \(f(x)\).

b) Given further that

\[f(x) = (x+2)(ax^2 + bx + c),\]

find the value of each of the constants \(a\), \(b\) and \(c\).

c) Show that the equation \(f(x) = 0\) has only one real root.

\[a = 4, \quad b = 1, \quad c = 1\]
Question 23 (***)

\[f(x) = x^3 + px^2 + qx + 6 \]

a) Find the value of each of the constants \(p \) and \(q \), given that …

\((x-1) \) is a factor of \(f(x) \)

\(\) when \(f(x) \) is divided by \((x+1) \) the remainder is 8.

b) Hence solve the equation \(f(x) = 0 \).

\[p = -2, \quad q = -5, \quad x = 1, -2, 3 \]

Question 24 (***)

\[f(x) = 2x^3 - 7x^2 - 2x + 1 \]

a) Use the factor theorem to show that \((2x+1) \) is a factor of \(f(x) \).

b) Find the exact solutions of the equation \(f(x) = 0 \).

\[x = -\frac{1}{2}, 2 \pm \sqrt{3} \]
Question 25 (***)

a) Find the value of each of the constants a, b and c so that

$$6x^3 - 7x^2 - x + 2 = (x-1)(ax^2 + bx + c).$$

b) Hence solve the equation

$$6x^3 - 7x^2 - x + 2 = 0.$$
Question 26 (***)

A cubic polynomial is defined as

\[p(x) = x^3 - 4x^2 + x + 6, \quad x \in \mathbb{R}. \]

a) By considering the factors of 6, or otherwise, express \(p(x) \) as the product of three linear factors.

b) Sketch the graph of \(p(x) \).

The sketch must include the coordinates of any points where the graph of \(p(x) \) meets the coordinate axes.

\[p(x) = (x-3)(x-2)(x+1) \]
Question 27 (***)

\(f(x) \equiv x^3 - 9x^2 + 22x - 12. \)

a) Show that \(x = 3 \) is a solution of the equation of the equation \(f(x) = 0. \)

b) Find, in exact surd form, the other two solutions of the equation \(f(x) = 0. \)

\[x = 3 \pm \sqrt{5} \]

Question 28 (***)

\(f(x) \equiv x^2 - 4x + 12. \)

The remainder when \(f(x) \) is divided by \((x+k) \) is three times as large as when \(f(x) \) is divided by \((x-k) \).

Determine the possible values of \(k \).

\[k = 6, 2 \]
Question 29 (***)

\[f(x) \equiv 2x^3 + kx^2 - x - 6, \]

where \(k \) is a constant

Given that \(f(3) = 0 \), …

a) … show that \(k = -5 \)

b) … factorize \(f(x) \) as a product of one linear and one quadratic factor.

c) … show further that, apart from \(x = 3 \), the equation \(f(x) = 0 \) has no other real solutions.

\[f(x) = (x - 3)(2x^2 + x + 2) \]
Question 30 (***)

The polynomial function \(f \) is given below

\[f(x) \equiv (2x-1)(x+4)-4(x-3)^2, \quad x \in \mathbb{R}. \]

a) Simplify \(f(x) \) fully.

The polynomial function \(g \) is defined, in terms of the constant \(k \), by

\[g(x) \equiv (3x-2)(x+4)(x+k), \quad x \in \mathbb{R}. \]

b) Determine the value of \(k \), given that the coefficient of \(x^2 \) in the simplified expansion of \(f(x) \) is equal to the coefficient of \(x^2 \) in the simplified expansion of \(g(x) \).

\[f(x) \equiv -2x^2 + 31x - 40, \quad k = -4 \]
Question 31 (***)

When the polynomial $f(x)$ is divided by $x^2 + 1$ the quotient is $(3x - 1)$ and the remainder is $(2x - 1)$.

Determine a fully simplified expression for $f(x)$.

\[f(x) = 3x^3 - x^2 + 5x - 2 \]

Question 32 (***)

\[f(x) \equiv (x + p)(2x^2 + 5x - 4) - 4, \]

where p is a non zero constant.

a) State the value of the remainder when $f(x)$ is divided by $(x + p)$.

When $f(x)$ is divided by $(x - 2)$ the remainder is 10.

b) Determine the value of p.

c) Factorize $f(x)$ into three linear factors.

\[\square, \square, \quad p = -1; \quad f(x) = x(x + 3)(2x - 3) \]
Question 33 (***)

The polynomial \(4x^3 + Ax^2 + Bx + 9\), where \(A\) and \(B\) are constants, is denoted by \(f(x)\).

When \(f(x)\) is divided by \((x - 2)\) the remainder is \(R\).

When \(f(x)\) is divided by \((x - 3)\) the remainder is \(6R\).

\(a)\) Show clearly that

\[B - A = 14.\]

It is further given that \((x + 3)\) is factor of \(f(x)\).

\(b)\) Find the value of \(A\) and the value \(B\).

\(a)\) Express \(f(x)\) as a product of a linear factor and a quadratic factor.

\(b)\) Show that the equation \(f(x) = 0\) has only one real root.

\[A = 2, \quad B = 16, \quad f(x) = (x + 3)(x^2 - x + 19)\]
Question 34 (***)

The polynomial \(p(x) \) is defined as

\[
p(x) = 2x^3 - 11x^2 + 20x - 12.
\]

a) Use the factor theorem to show that \((x-2)\) is a factor of \(p(x) \).

b) Express \(p(x) \) as the product of three linear factors.

c) Find the remainder when \(p(x) \) is divided by \((x+2)\).

d) Determine the value of each of the constants \(a \), \(b \) and \(c \) so that

\[
p(x) = (x+2)(2x^2 + ax + b) + c.
\]

\[
p(x) = (2x-3)(x-2)^2, \quad \text{remainder} = -112, \quad a = -15, \ b = 50, \ c = -112
\]
Question 35 (***)
Solve the equation

\[(x+1)(x+4)(2x-1) = 33x - 12 - (x-2)^3\].

\[x = -3, 0, 2\]

Question 36 (***)

\[f(x) = x^4 + x^3 - 3x^2 - 4x - 4\].

a) Use the factor theorem to find two linear factors of \(f(x)\).

b) Hence show that the equation \(f(x) = 0\) has exactly two real roots.

\[\{(x-2), (x+2)\}, \ x = \pm 2\]
Question 37 (***)

The curve \(C \) has equation

\[y = x^4 - 6x^3 + 4x^2 + 24x - 32. \]

(a) Express \(y \) as the product of four linear factors.

(b) Hence the graph of \(C \), showing clearly the coordinates of any points where the graph of \(C \) meets the coordinate axes.

\[y = (x+2)(x-4)(x-2)^2 \]
Question 38 (***)

The polynomials \(f(x) \) and \(g(x) \) are defined in terms of the constants \(a \) and \(b \)

\[
f(x) = a(x^3 + 1) - bx(x + 1)
\]

\[
g(x) = bx^3 - 5x^2 - 2a(x - 1).
\]

a) Given that \((x - 2) \) is a factor of both \(f(x) \) and \(g(x) \), determine the values of \(a \) and \(b \).

b) Factorize both \(f(x) \) and \(g(x) \), and hence show that \(f(x) \) and \(g(x) \), have another linear common factor:

\[
\begin{align*}
a &= 2, \quad b = 3, \\
f(x) &= (x - 2)(x + 1)(2x - 1), \\
g(x) &= (x - 2)(x + 1)(3x - 2)
\end{align*}
\]
Question 39 (***)

A polynomial \(p(x) \) is defined, in terms of a constant \(a \), by

\[
p(x) = x^3 - 16x^2 + 72x + a.
\]

When \(p(x) \) is divided by \(x - 3 \) the remainder is 11.

a) Determine the value of \(a \).

b) Express \(p(x) \) as a product of a linear and one quadratic factor.

c) Hence find, in exact surd form where appropriate, the three solutions of the equation \(p(x) = 0 \).

\[
a = -88, \quad (x - 2)(x^2 - 14x + 44), \quad x = 2, 7 \pm \sqrt{5}
\]
A polynomial \(p(x) \) is defined, in terms of a constant \(k \), by

\[
p(x) = x^3 + kx^2 - x + 12.
\]

When \(p(x) \) is divided by \(x - 1 \) the remainder is \(r \).

When \(p(x) \) is divided by \(x - 4 \) the remainder is \(8r \).

a) Determine in any order …

i. … the value of \(k \).

ii. … the value of \(r \).

b) Show clearly that …

i. … \((x + 4) \) is a factor of \(p(x) \).

ii. … the equation \(p(x) = 0 \) has only one real root.

\[
\begin{align*}
k &= 3, \\
r &= 15
\end{align*}
\]
Question 41 (***(+)*)
Find the three solutions of the cubic equation

\[2x^3 - x^2 = 7x - 6. \]

\[x = -2, 1, \frac{3}{2} \]

Question 42 (***(+)*)

Find the value of each of the constants \(A \), \(B \) and \(C \).

\[A = 1, \quad B = -1, \quad C = 2 \]
Question 43 (***)

A cubic graph is defined by

\[f(x) = x^3 - 3x^2 - 4x + 12, \quad x \in \mathbb{R}. \]

a) Show that \((x - 3)\) is a factor of \(f(x)\).

b) Hence factorize \(f(x)\) as the product of three linear factors.

c) Sketch the graph of \(f(x)\).

The sketch must include the coordinates of any points where the graph of \(f(x)\) meets the coordinate axes.

Another cubic graph is defined as

\[g(x) \equiv (x-2)(x-4)^2, \quad x \in \mathbb{R}. \]

The two graphs meet at the points \(P\) and \(Q\).

d) Determine the \(x\) coordinates of \(P\) and \(Q\).

\[f(x) = (x-2)(x+2)(x-3), \quad x = 2, \frac{22}{7} \]
The figure above shows the graph of a cubic polynomial $f(x)$ given by

$$f(x) = -x^3 + 5x^2 + 17x - 21, \ x \in \mathbb{R}.$$

The graph meets the coordinate axes at four distinct points, labelled A, B, C and D.

Given that the coordinates of the point A are $(3,0)$, determine the coordinates of the points B, C and D.

$B(1,0), \ C(7,0), \ D(0,-21)$
Question 45 (***)

\[f(x) = 10x^3 - 21x^2 - x. \]

a) Find the remainder when \(f(x) \) is divided by \((x - 2) \).

b) Hence express \(10x^3 - 21x^2 - x + 6 \) as a product of three linear factors.
Question 46 (***(+)***

\[f(x) = x^3 - 3x^2 - 6x + 8, \ x \in \mathbb{R}. \]

a) Show that \((x-1)\) is a factor of \(f(x)\).

b) Hence factorize \(f(x)\) into three linear factors.

c) Sketch the graph of \(f(x)\).

The sketch must include the coordinates of any points where the graph of \(f(x)\)
meets the coordinate axes.

The figure below shows the graphs of the curves with equations

\[y_1 = x^4 + x^3 - 4x^2 - 10 \quad \text{and} \quad y_2 = x^4 - x^3 + 2x^2 + 12x - 26. \]

The two graphs meet at the points \(P, Q\) and \(R\).

d) Determine the coordinates of \(P, Q\) and \(R\).

\(f(x) = (x-1)(x+2)(x-4), \quad P(-2, -18), \quad Q(1, -12), \quad R(4, 246)\)
Question 47 (***)

Find the quotient of the division of

\[2x^6 - 3x^5 - 2x^4 + 2x^2 - 88x + 168 \]

by \[x^2 - 4x + 4 \].

\[2x^4 + 5x^3 + 10x^2 + 20x + 42 \]

Question 48 (***)

\[x^3 + \left(2 - \frac{1}{2}k\right)x^2 - (2k+1)x + 20 = 0 \].

a) Determine the value of the real constant \(k\), if the above equation is to have \(x=1\) as one of its roots.

b) Solve the equation for the value of \(k\), found in part (a).

\[k = 10, \quad x = -5, 4, 1 \]
Question 49 (***+)

A cubic curve \(C \) has equation

\[
y = 6x^3 + Ax^2 - 6x + B, \quad x \in \mathbb{R},
\]

where \(A \) and \(B \) are constants.

The graph of \(C \) meets the \(x \) axis at \((5,0)\).

When the equation of \(C \) is divided by \((x-1)\) the remainder is \(-24\).

a) Determine the value of \(A \) and the value of \(B \).

b) Factorize fully the equation of \(C \).

c) Sketch the graph of \(C \).

The sketch must show clearly the coordinates of any points where the graph of \(C \) meets the coordinate axes.

\[
A = -29, \quad B = 5, \quad y = (x-5)(3x-1)(2x+1)
\]
Question 50 (***+)

The following information is given for a polynomial $f(x)$.

- When $f(x)$ is divided by $(x - 2)$ the remainder is 5.
- When $f(x)$ is divided by $(x + 2)$ the remainder is -11.
- When $f(x)$ is divided by $(x^2 + 2x + 1)$ the remainder is $ax + b$, and the quotient is $g(x)$, where a and b are constants, so that

$$f(x) = (x - 2)(x + 2)g(x) + ax + b$$

a) Determine the value of a and the value of b.

It is further given that

$$f(x) = 3x^4 + px + q,$$

where p and q are constants.

b) Find the value of p and the value of q.

$$a = -4, \quad b = 3, \quad p = 4, \quad q = -51$$
Question 51 \quad (***)

\[f(x) \equiv x^4 + 2x^3 + x^2 - 4, \quad x \in \mathbb{R}. \]

a) Use the factor theorem to show that \((x + 2)\) is a factor of \(f(x)\).

b) Express \(f(x)\) as the product of a linear factor and a cubic factor.

c) Find another linear factor of \(f(x)\).

d) Express \(f(x)\) as the product of two linear factors and a quadratic factor.

e) Show that the equation \(f(x) = 0\) has exactly two solutions.

\[f(x) \equiv (x + 2)(x^3 + x - 2), \quad (x - 1), \quad f(x) \equiv (x + 2)(x - 1)(x^2 + x + 2) \]
Question 52 (***)

A cubic curve and a quartic curve, are both defined for all real numbers, and have respective equations

\[y = x^3 - 3x^2 \quad \text{and} \quad y = x(x - 2)^3. \]

a) Sketch both curves in the same set of axes, indicating the coordinates of any points where each curve meets the coordinate axes.

b) State the number of solutions of the equation

\[x^3 - 3x^2 = x(x - 2)^3, \quad x \in \mathbb{R}. \]

c) Indicate by shading in the set of axes of part (a) the region satisfied by the following inequality.

\[x^3 - 3x^2 \leq y \leq x(x - 2)^3 \cap -1 < x < 4. \]
Question 53 (****)

\[f(x) = x^3 + 3x^2 - 24x + 20, \ x \in \mathbb{R}. \]

a) Show that \((x-1)\) is a factor of \(f(x)\).

b) Hence factorize \(f(x)\) as the product of a linear and a quadratic factor.

c) Find, in exact form where appropriate, the solutions of the equation \(f(x) = 0\).

The line with equation \(y = -8\) touches the graph of \(f(x)\) at the point \(Q(2, -8)\) and crosses the graph of \(f(x)\) at the point \(P\), as shown in the figure below.

![Graph of f(x) and line y = -8](image)

d) Determine the coordinates of \(P\).

\[f(x) = (x-1)(x^2 + 4x - 20), \quad \begin{align*} x &= 1, \quad -2 \pm 2\sqrt{6}, \quad P(-7, -8) \]
Question 54 (****)
A polynomial \(p(x) \) is defined, in terms of a constant \(a \), by

\[
p(x) = x^4 + 2x^3 + 9x + a.
\]

When \(p(x) \) is divided by \(x^2 - x + 2 \) the quotient is \(x^2 + bx + 1 \) and the remainder is \(cx + 5 \), where \(b \) and \(c \) are constants.

Find the value of \(a \), \(b \) and \(c \).

\[
\begin{align*}
\text{ANS:} & \quad a = 7, \quad b = 3, \quad c = 4
\end{align*}
\]
The quadratic function f is given, in terms of three non zero constants a, b and c, by

$$f(x) = ax^2 + bx + c, \ x \in \mathbb{R}.$$

When $f(x)$ is divided by $(x-1)$ the remainder is 1.

When $f(x)$ is divided by $(x-2)$ the remainder is 2.

When $f(x)$ is divided by $(x+2)$ the remainder is 70.

Determine the value of each of the constants a, b and c.

\[a = 6, \ b = -17, \ c = 12\]
Question 56 (****)

\[f(x) \equiv x^3 - 3x + 2, \ x \in \mathbb{R}. \]

a) Express \(f(x) \) as the product of three linear factors.

b) Sketch the graph of \(f(x) \).
 The sketch must include the coordinates of any points where the graph of \(f(x) \) meets the coordinate axes.

c) Solve the equation

\[f(x) = (x-1)^2. \]

\[f(x) = (x+2)(x-1)^2, \quad x = \pm 1 \]
Question 57 (****)

A quintic polynomial is defined, in terms of the constants \(a\) and \(b\), by

\[f(x) = x^5 + ax^4 + bx^3 - x^2 + 4x - 3. \]

When \(f(x) \) is divided by \((x-2)\) the remainder is \(-7\).

When \(f(x) \) is divided by \((x+1)\) the remainder is \(-16\).

a) Determine in any order the values of \(a\) and \(b\).

b) Find the remainder when \(f(x) \) is divided by \((x-2)(x+1)\).

\[\square, \quad a = -4, \quad b = 3, \quad 3x - 13 \]
A polynomial $f(x)$ is defined in terms of the constants a, b and c as

$$f(x) = 2x^3 + ax^2 + bx + c, \quad x \in \mathbb{R}.$$

It is further given that

$$f(2) = f(-1) = 0 \quad \text{and} \quad f(1) = -14.$$

a) Find the values of a, b and c.

b) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.

\[a = 3, \quad b = -9, \quad c = -10\]
Question 59 (***)

A polynomial \(p(x) \) is given by

\[
p(x) = 4x^3 - 2x^2 + x + 5.
\]

a) Find the remainder and the quotient when \(p(x) \) is divided by \(x^2 + 2x - 5 \).

A different polynomial \(q(x) \) is defined as

\[
q(x) = 4x^3 - 2x^2 + ax + b.
\]

b) Find the value of the constants \(a \) and \(b \) so that when \(q(x) \) is divided by \(x^2 + 2x - 5 \) there is no remainder.

\[
R = 41x - 45, \quad Q = 4x - 10, \quad a = -40, \quad b = 50
\]
Question 60 (***)

\[f(x) = 2x^2 + 9x - 5 \]

a) Given that when \(f(x) \) is divided by \((2x - k) \) the remainder is 13, find the possible values of \(k \).

b) Given further that when \(f(x) \) is divided by \((x - 2k) \) the remainder is 121, find the value of \(k \).

\[\boxed{k = -12, 3, \quad k = 3} \]
Question 61 (****)
A cubic function is defined in terms of the constants a, b and c as

$$f(x) = x^3 + ax^2 + bx + c, \quad x \in \mathbb{R}.$$

a) Given that $(x-1)$ is a factor of $f(x)$ show that

$$a + b + c = -1.$$

It is further given that when $f(x)$ is divided by $(x-2)$ the remainder is -4 and when $f(x)$ is divided by $(x-3)$ the remainder is -12.

b) Find the values of a, b and c.

c) Hence express $f(x)$ as the product of three linear factors.

d) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.

$$a = -8, \quad b = 13, \quad c = -6, \quad (x-1)^2(x-6)$$
Question 62 (****)

\[f(x) = x^3 + (a + 2)x^2 - 2x + b, \]

where \(a \) and \(b \) are non zero constants.

It is given that \((x - 2)\) and \((x + a)\) are factors of \(f(x) \), \(a > 0 \).

a) By forming two equations show that \(a = 3 \) and find the value of \(b \).

b) Solve the equation \(f(x) = 0 \).

\[b = -24, \quad x = -4, -3, 2 \]
Given that when \(f(x) \) is divided by \((x−k)\) the remainder is \(-4\), find the possible values of \(k\).

\[k = 1, 4 \]
Question 64 (****+)

The quadratic functions \(f \) and \(g \) are defined by

\[
f(x) \equiv 4x^2 + a, \ x \in \mathbb{R}
\]

\[
g(x) \equiv x^2 + bx + a, \ x \in \mathbb{R},
\]

where \(a, b \) and \(c \) are non-zero constants, such that \(a = -2c \) and \(b = -3c \).

It is further given that \(x + c \) is a common factor of \(f \) and \(g \).

Determine the value of \(a, b \) and \(c \), and hence factorize \(f \) and \(g \), showing clearly the common factor in these factorizations.

\[
a = -1, \quad b = -\frac{3}{2}, \quad c = \frac{1}{2}, \quad f(x) \equiv 4\left(x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right), \quad g(x) \equiv \left(x + \frac{1}{2}\right)(x - 2)
\]
Question 65 (****+)

A cubic curve has the following equation.

\[f(x) = x^3 - 6x^2 + 12x + B, \quad x \in \mathbb{R}, \]

where \(B \) is a non zero constant.

a) If \(f(x) \) can be written in the form \((x-A)^3 - 4 \), where \(A \) is also a non zero constant, find the value of \(A \) and the value of \(B \).

A quadratic curve has the following equation.

\[g(x) = x^2 - 4x + 5, \quad x \in \mathbb{R}. \]

b) Sketch the graph of \(f(x) \) and the graph of \(g(x) \) in the same set of axes.

The sketch must include the coordinates of any points where each of the graphs meets the coordinate axes, the coordinates of the point of inflexion of \(f(x) \) and the coordinates of the minimum point of \(g(x) \).

c) Hence, state with full justification the number of real roots of the equation

\[x^3 - 7x^2 + 16x + B = 5. \]

\[A = 2, \quad B = -12, \quad \text{one real root} \]
Question 66 (****+)

\[f(x) = 2x^3 - 9x^2 + px + q \]

a) Find the values of the constants \(p \) and \(q \), given that \((x-2)\) and \((2x+1)\) are factors of \(f(x) \).

b) Hence solve the equation

\[2\sqrt{y} + \frac{7}{\sqrt{y}} = 9 - \frac{6}{y}. \]

\[\text{Answer}, \quad p = 7, \quad q = 6, \quad y = 4 \quad \cup \quad x = 9 \]
Question 67 (*****)

\[ax^3 + ax^2 + ax + b = 0, \]

where \(a \) and \(b \) are non zero real constants.

Given that \(x = -b \) is a root of the above cubic equation, determine the range of the possible values of \(a \).