LOGARITHMS EXAM

 QUESTIONS
Created by T. Madas

Question 1 (**)

Show clearly that

$$
\log _{a} 36+\frac{1}{2} \log _{a} 256-2 \log _{a} 48=-\log _{a} 4
$$

Question 2 (**)

Simplify

$$
\log _{2} 5+\log _{2} 1.6
$$

proof

Created by T. Madas

Question $4 \quad(* *+$)
Simplify each of the following expressions, giving the final answer as an integer.
a) $\log _{2} 3-\log _{2} 24$.
b) $\log _{a} a^{2}-4 \log _{a}\left(\frac{1}{a}\right), a>0, a \neq 1$.

Full workings, justifying every step, must support each answer.

Question 5 (**+)
Given that $y=\log _{2} x$, write each of the following expressions in terms of y.
a) $\log _{2} x^{2}$
b) $\log _{2}\left(8 x^{2}\right)$
\square $3+2 y$
(a) $\log _{2} x^{2}=2 \log _{2} x=2 y$
(b) $\log _{2}\left(B x^{2}\right)=\log _{2} 8+\log _{2} x^{2}=\log _{2} 2^{3}+2 \log _{2} x$ $=3 \log _{2} 2+2 \log _{2} x=3+2 y$

Created by T. Madas

Question 6 (**+)
Given that $y=4 \times 10^{2 x}$ express x in terms of y, giving an exact simplified answer in terms of logarithms base 10 .

Question 7 - (**+)
An exponential curve has equation

$$
y=a b^{x}, x \in \mathbb{R},
$$

where a and b are non zero constants.

Make x the subject of the above equation, giving the final answer in terms of logarithms base 10 .

Created by T. Madas

Question $8 \quad\left({ }^{* *}+\right.$)

Solve the following logarithmic equation

$$
2 \log _{10} x+\log _{10} 3=\log _{10} 75 .
$$

Question 9 (**+)

Solve the following logarithmic equation

$$
\log _{a} x+\log _{a}(x-3)=\log _{a} 10
$$

Question 10 (***)
An exponential curve C has equation

$$
y=\frac{1}{3^{x}}, x \in \mathbb{R} .
$$

a) Sketch the graph of C.
b) Solve the equation $y=\frac{2}{3}$, giving the answer correct to 3 significant figures.

Question 11 (***)
Given that

$$
p=\log _{a} 4 \quad \text { and } \quad q=\log _{a} 5
$$

express each of the following logarithms in terms of p and q.
a) $\log _{a} 100$
b) $\log _{a} 0.4$

The final answers may not contain any logarithms.

Question 13 (***)
Given that

$$
p=\log _{2} 3 \quad \text { and } \quad q=\log _{2} 5,
$$

express each of the following logarithms in terms of p and q.
a) $\log _{2} 45$
b) $\log _{2} 0.3$

The final answers may not contain any logarithms.

Created by T. Madas

Question 14 (***)

Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.
a) $7^{x}=10$.
b) $\quad \log _{2} y=\frac{9}{\log _{2} y}$.

Question 15 (***)
Solve the following logarithmic equation for x.

$$
\log _{a}\left(x^{2}-10\right)-\log _{a} x=2 \log _{a} 3
$$

$$
x=10, x \neq-1
$$

Created by T. Madas

Question 16 (***)

Solve the following logarithmic equation for x.

Created by T. Madas

Question 18 (***)

Solve the following logarithmic equation for y.

$$
2 \log _{a} y-\log _{a}(5 y-24)=\log _{a} 4 .
$$

Question 19 (***)

It is given that x satisfies the logarithmic equation

$$
\log _{a} x=2\left(\log _{a} k-\log _{a} 2\right),
$$

where $k>0, a>0, a \neq 1$.
a) Find x in terms of k, giving the answer in a form not involving logarithms.

Suppose instead that x satisfies

$$
\log _{x}(5 y+1)=4+\log _{x} 3
$$

where $x>0, x \neq 1$ and $y>0, y \neq 1$.
b) Solve the above equation expressing y in terms of x, giving the answer in a form not involving logarithms.

$$
x=\frac{k^{2}}{4}, y=\frac{3 x^{4}-1}{5}
$$

Question 20 (***)
Solve the following logarithmic equation

$$
\log _{5}(125 x)=4
$$

Question 22 (***)
Every $£ 1$ invested in a saving scheme gains interest at the rate of 5% per annum so that the total value of this $£ 1$ investment after t years is $£ y$.

This is modelled by the equation

$$
y=1.05^{t}, t \geq 0
$$

Find after how many years the investment will double.

$$
\begin{aligned}
& \text { (a) } \log _{x} 16=\log _{x} 9+2 \text {. } \\
& \text { Question } 23 \quad(* * *) \\
& \text { Solve each of the following } \log ^{2} \log _{y} 27=3+\log _{y} 8 . \\
& \text { (} 2=14.2
\end{aligned}
$$

Created by T. Madas

Question 24 (***)
Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.
a) $2 \times 3^{x}=900$.
b) $\log _{2}(7 y-1)=3+\log _{2}(y-1)$.
\square $, x \approx 5.56, y=7$

$$
1+2 \log _{n} 3+\log _{n} 4
$$

giving the final answer as a single logarithm.

Question 26 (***+)
Solve each of the following exponential equations, giving the final answers correct to 3 significant figures.
a) $5^{2 x-1}=4^{300}$.

Question 28 (***+)
Solve the following exponential equation

$$
\frac{1}{6}=\left(\frac{1}{2}\right)^{x}
$$

giving the answer as single logarithm of base 2.

$$
x=\log _{2} 6=1+\log _{2} 3
$$

Question 29 (***+)
Solve the following simultaneous logarithmic equations
\rightarrow, $x=4, y=\frac{1}{2}$

Created by T. Madas

Created by T. Madas

Question 30 (***+)

Solve the following logarithmic equation

$$
2 \log _{3} t=1+\log _{3} 7 t
$$

Question 32 (***+)
Solve the following logarithmic equation

$$
\log _{5}(4-w)-2 \log _{5} w=1
$$

$$
w, w=\frac{4}{5}, w \neq-1
$$

Question 33 (***+)
Simplify fully the following logarithmic expression, showing clearly all the workings.

Created by T. Madas

Question 34 (***+)

Solve the following logarithmic equation

$$
\log _{2} y+\log _{2}(3 y+4)=2 \log _{2}(3 y-4)
$$

Question 35 (***+)

Solve the following logarithmic equation

Question 36 (***+)
Solve the following logarithmic equation

$$
\log _{4} x=\log _{3} 9
$$

Question 37 (***+)
Solve each of the following equations.
a) $2 \times 3^{\frac{1}{2} x+2}=23.43$.
b) $\log _{5}(y+2)+\log _{5}(4 y-3)=2 \log _{5}(2 y+1)$.

$$
x \approx 0.480, y=7
$$

Created by T. Madas

Question 38 (***+)

The population P of a certain town in time t years is modelled by the equation

$$
P=A \times 10^{k t}, t \geq 0 \text {, }
$$

where A and k are non zero constants.

Find the value of A and the value of k, correct to 2 significant figures.

Question 39 (***+)
Solve the following logarithmic equation

$$
2 \log _{3} x-\log _{3}(x-2)=2
$$

Created by T. Madas

Question $40 \quad(* * *+$)

Solve the following logarithmic equation

$$
\log _{2} 4^{2 x}=\log _{3} 27^{x-1}
$$

Question 41 (***+)
Given that $a \neq 0, b \neq 0, y \neq 0$ and

$$
2+\log _{a} b+3 \log _{a} y=2 \log _{a}\left(a^{2} y\right)
$$

$x=-3$

Question $42 \quad(* * *+)$

$$
2 \log \left(\frac{x}{y}\right)-1=\log \left(10 x^{2} y\right), x \neq 0, y \neq 0 .
$$

Find the exact value of y.

Question $44 \quad(* * *+)$

$$
y=3 \times 2^{x}
$$

a) Describe the geometric transformation which maps the graph of the curve with equation $y=2^{x}$, onto the graph of the curve with equation $y=3 \times 2^{x}$.
b) Sketch the graph of $y=3 \times 2^{x}$.

The curve with equation $y=2^{-x}$ intersects the curve with equation $y=3 \times 2^{x}$ at the point P.
c) Determine, correct to 3 decimal places, the x coordinate of P.

Question 45 (***+)
It is given that $p=\log _{6} 25$ and $q=\log _{6} 2$.

Express in terms of p and q each of the following expressions
a) $\log _{6} 200$
b) $\log _{6} 3.2$
c) $\log _{6} 75$

Question 46 (****)

$$
y=3^{x-1}, x \in \mathbb{R}
$$

a) Sketch the graph of $y=3^{x-1}$ showing the coordinates of all intercepts with the coordinate axes.
b) Find to 3 significant figures the x coordinate of the point where the curve $y=3^{x-1}$ intersects with the straight line with equation $y=10$.
c) Determine to 3 significant figures the x coordinate of the point where the curve $y=3^{x-1}$ intersects with the curve $y=2^{x}$.

Question 47 (****)
Solve the following logarithmic equation

$$
16 \log _{2} x+4 \log _{4} x+2 \log _{16} x=37, \quad x>0
$$

\square

Created by T. Madas

Question 48 (****)
In 1970 the average weekly pay of footballers in a certain club was $£ 100$.

The average weekly pay, $£ P$, is modelled by the equation

$$
P=A \times b^{t},
$$

where t is the number of years since 1970 , and A and b are positive constants.

In 1991 the average weekly pay of footballers in the same club had risen to $£ 740$.
a) Find the value of A and show that $b=1.10$, correct to three significant figures.
b) Determine the year when the average weekly pay of footballers in this club will first exceed $£ 10000$.

Created by T. Madas

Question 49 (****)
Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.
a) $6^{3 x+2}=30$.
b) $\log _{4}(12 y+5)-\log _{4}(1-y)=2$.
c) $8^{2 t}-8^{t}-6=0$.
$x \approx-0.0339, y=\frac{11}{28} \approx 0.393$, $t \approx 0.528$

Created by T. Madas

Question 50

Solve the following simultaneous equations, giving your answers as exact fractions

Question 52 (****)
Solve the following logarithmic equation

$$
\log _{10}(x+4)+\log _{10}(x+16)=1+2 \log _{10} x
$$

Question 54 (****)
Solve each of the following equations.
a) $6 \times\left(\frac{1}{2}\right)^{\frac{x-4}{3}}=1.89$.
b) $\log _{2}(8 y-1)-2 \log _{2}(y+1)=3-\log _{2}(y+4)$.
\square $\square, x \approx 9.00, y=\frac{4}{5}$

Question 55 (****)
Simplify

giving the final answer as an integer.

$$
\log _{\frac{1}{2}} 8+\log _{2} \frac{1}{8}
$$

Created by T. Madas

Question 56 (****)
Given that $a=\log _{b} 16$, express $\log _{b}(8 b)$ in terms of a.

Question 58 (****)
It is given that

$$
p=\log _{6} 25 \quad \text { and } \quad q=\log _{6} 2 .
$$

Simplify each of the following logarithms, giving the final answers in terms of p, q and positive integers, where appropriate.
i. $\quad \log _{6}(200)$.
ii. $\quad \log _{6}(3.2)$.
iii. $\log _{6}(75)$.

Question 59 (****)
Solve the following exponential equation, giving the answer correct to 3 s.f.

$$
2^{2 x}-2^{x}-6=0
$$

Two curves C_{1} and C_{2} are defined for all values of x and have respective equations

$$
y_{1}=8^{x} \quad \text { and } \quad y_{2}=2 \times 3^{x} .
$$

Show that the x coordinate of the point of intersection of the two curves is given by

$$
\frac{1}{3-\log _{2} 3} .
$$

Created by T. Madas

Question 61 (****)
Solve the following logarithmic equation

$$
\log _{2} x=\log _{4} 2
$$

Question 62 ($* * * * *)$
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=3\left(2^{-x}\right)-1, \quad x \in \mathbb{R}, \quad x \geq 0 \\
& g(x)=\log _{2} x, \quad x \in \mathbb{R}, \quad x \geq 1 .
\end{aligned}
$$

a) Sketch the graph of f.

- Mark clearly the exact coordinates of any points where the curve meets the coordinate axes. Give the answers, where appropriate, in exact form in terms of logarithms base 2 .
- Mark and label the equation of the asymptote to the curve.
b) State the range of f.
c) Find $f(g(x))$ in its simplest form.
$(0,2),(10$ $f(g(x))=\frac{6}{x}-1$
\square $,(0,2),\left(\log _{2} 3,0\right), y=-1$ \square $-1<f(x) \leq 2$

Created by T. Madas

Question 63 (****)

Solve the following logarithmic equation
$\log _{3} x=\log _{9} 27$.

$x=3 \sqrt{3}$

Question 64 (****)
The points $(2,10)$ and $(6,100)$ lie on the curve with equation

$$
y=a x^{n}
$$

where a and n are non zero constants.

Find, to three decimal places, the value of a and the value of n.

Created by T. Madas

Question 65 (****)
Solve the following exponential equation, giving the answer correct to 3 s.f.

$$
4^{y}-3\left(2^{y}\right)-10=0
$$

Question 66 (****)
Solve the following logarithmic equation

Created by T. Madas

Question 67 (****)
Show that $x=4$ and $y=8$ is the only solution pair of the following logarithmic simultaneous equations

$$
\log _{2}(3 x+4)=1+\log _{2} y
$$

$$
2 \log _{2} y=3 \log _{2} x
$$

proof

Question 68 (****)
A population P of an endangered species of animals was introduced to a park.

The population obeys the equation

$$
P=\frac{125 k a^{t}}{k+2 a^{t}}, t \geq 0
$$

where k and a are positive constants, and t is the time in years since the species was introduced to the park.

Initially 100 individual animals were introduced to the park, and this population doubled after 5 years.
a) Show that $k=8$.
b) Find the value of a, correct to 4 significant figures.
c) Determine the value of t when the $P=400$.
d) Explain why this population cannot exceed 500 .
\square
$, a \approx 1.217, t \approx 14.13$

a) $\operatorname{cxinka} t=0, P=100$ in THE Hexpt, forunct
$\rightarrow 100-\frac{125 k \times a^{\circ}}{k+2 \times a^{\circ}}$
$\Rightarrow 100=\frac{125 k}{k+2}$
$\Rightarrow 100(k+2)=125 k$
$\Rightarrow 100 k+200=125 \mathrm{k}$
$\Rightarrow 200=25 k$
$\Rightarrow k=\theta$
$\Rightarrow P=\frac{125 \times 8 \times a^{t}}{8+2 \times a^{t}}$
$\Rightarrow 200=\frac{125 \times 8 \times a^{5}}{8+2 \times a^{5}}$
$\Rightarrow 200=\frac{1000 a^{3}}{8+25}$
$\left.\Rightarrow 200=\frac{1000 a^{5}}{8+2 a^{5}}+\frac{59^{5}}{85}\right) \div 200$
$\frac{59^{5}}{8+2 a^{5}}$
$\Rightarrow 8+2 a^{5}=5 a^{5}$ $\Rightarrow B=3 a^{5}$
$\Rightarrow a^{3}=\frac{8}{3}$
$\Rightarrow a=\sqrt[3]{g_{3}}=121622664$

Created by T. Madas

Question 69 (****)

Solve the following logarithmic equation

$$
\log _{3} x-\log _{9} 2 x=2 .
$$

Question 70 (****)

Solve the following logarithmic equation

$$
\log _{4} x-\log _{16}(x-4)=1
$$

Question 71 (****)
Solve the following simultaneous equations

$$
\begin{aligned}
& \log _{2} x+2 \log _{4} y=4 \\
& x+y=10
\end{aligned}
$$

\square $x=2, y=8 \quad$ or $\quad x=8, y=2$

Question 72 (****)
Given that a is positive constant greater than 1 , solve the following logarithmic equation

$$
\log _{a} x=\log _{a^{2}}(x+20)
$$

\square
\square

Created by T. Madas

Question 73 (****)
Two curves C_{1} and C_{2} are defined for all values of x and have respective equations

$$
y_{1}=7^{x} \quad \text { and } \quad y_{2}=2 \times 5^{x} .
$$

Show that the x coordinate of the point of intersection of the two curves is given by
\square , proof $\frac{1}{\log _{2} 7-\log _{2} 5}$.

Truac comemer sece
$\Rightarrow x \log ^{2} 7-\log ^{2}+\log ^{2}$
$\begin{aligned} & \Rightarrow \log _{2} 7=1+x \log _{4} 7 \\ & \Rightarrow x \log _{2} 7-2 \log _{2} 5=1 \end{aligned}$

Question 74 (****)
Solve the following exponential equation, giving the answer correct to 3 s.f.

$$
3^{t+1}=6+3^{2 t-1}
$$

\square
\square
$t=1$ or $t \approx 1.63$

Question 75 (****)
Solve the following simultaneous logarithmic equations

$$
\begin{aligned}
& \log _{y} x=5 \\
& \log _{2} x=2+\log _{2} y
\end{aligned}
$$

$\square, x=4 \sqrt{2}, \quad y=\sqrt{2}$

Question 76 (****)
Solve the following logarithmic equation

$$
\log _{4} x+\log _{x} 16=3, x>0, x \neq 1
$$

$$
x=4,16
$$

Question 77 (****)
Find, to the nearest integer, the solution of the following exponential equation

$$
\frac{1}{2} \times 4^{2 x}=500^{500}
$$

Question 78 (****)
Solve the following simultaneous logarithmic equations.

$$
\begin{aligned}
& 3 \log _{8}(x y)=4 \log _{2} x \\
& \log _{2} y=1+\log _{2} x
\end{aligned}
$$

\square $, x=\sqrt{2}, y=\sqrt{8}$

Created by T. Madas

Question 79 (****)

$$
y=\log _{2} x
$$

The figure above shows the graphs of the curves with equations

$$
y=\log _{2} x, \quad \text { and } y=\log _{2}(x-4) .
$$

The points A and B are the respective x intercepts of the two graphs.
a) Describe the geometric transformation which maps the graph of $y=\log _{2} x$ onto the graph of $y=\log _{2}(x-4)$.
b) State the distance $A B$.

The straight line with equation $x=k$, where k is a positive constant, meets the graph of $y=\log _{2} x$ at the point P and the graph of $y=\log _{2}(x-4)$ at the point Q.
c) Given that the distance $P Q$ is 2 units determine the value of k,

Question 80 (****)
The radioactive decay of a phosphorus isotope is modelled by the equation

$$
m=m_{0} \times 2^{-0.2 t}, t \geq 0
$$

where m is the mass of phosphorus left, in grams, and t is the time in days since the decay started. The initial mass of phosphorus is m_{0}.
a) Find the mass of the phosphorus left, when an initial mass of 20 grams is left to decay for 10 days, according to this model.

An initial mass, m_{0} grams, of this type of phosphorus decays to $\frac{m_{0}}{64}$ grams in T days.
b) Find the value of T.

After N days have elapsed, less than 1% of this type of phosphorus remains from its initial mass m_{0}.
c) Find the smallest integer value of N.

Question 81 (****)
Solve the following logarithmic equation

Solve the following simultaneous logarithmic equations.

$$
\begin{aligned}
& \log _{2}(y-1)=1+\log _{2} x \\
& 2 \log _{3} y=2+\log _{3} x
\end{aligned}
$$

$x=1, y=3$ or $x=\frac{1}{4}, y=\frac{3}{2}$

Created by T. Madas

Created by T. Madas

Question 83 (****)

Solve the following logarithmic equation

$$
\frac{\log _{2} 128-\log _{2} 8}{\log _{2} x}=\log _{2} x .
$$

Two curves C_{1} and C_{2} are defined for all values of x and have respective equations

$$
y_{1}=9^{x} \quad \text { and } \quad y_{2}=6 \times 5^{x}
$$

Show that the x coordinate of the point of intersection of the two curves is given by :

$$
\frac{1+\log _{3} 2}{2-\log _{3} 5}
$$

Question 85 (****+)
Solve each of the following equations.
a) $\frac{1}{2} \times 4^{3 x+1}=600^{600}$.
b) $\log _{3}(2 y+5)=1-\log _{3} y$.
\square $x=922.7152024 . . ., y=\frac{1}{2}$
a) MANiPuATi As focous
$\Rightarrow \frac{1}{2} \times 4^{3 x+1}=600^{600}$ $\Rightarrow \log _{m}\left(\frac{1}{2} \times 4^{3 x+1}\right)=\log 600^{600}$
$\Rightarrow \log _{100}\left(\frac{1}{2}\right)+\log _{10} 4^{3 x+1}=600 \log 600$
$\Rightarrow \log _{6}\left(\frac{1}{2}\right)+(3 x+4) \log _{5} 4=600 \log _{10} 600$
$\Rightarrow(3 x+1) \log _{m} 4=600 \log , 600-\log \left(\frac{1}{2}\right)$
$\Rightarrow 3 x+1=\frac{600 \log _{10} 600-\log _{10}(0.5)}{\log _{010} 4}$
$\Rightarrow 3 x+1=2769.145607 \ldots$
$\Rightarrow x=922.7152024$.
b)

- Pnocffo cosmer: TIIt Rulse or was
$\Rightarrow \log _{3}(2 y+5)=1-\log _{3} y$
$\Rightarrow \log _{3}(2 y+5)+\log _{4} y=1$
$\Rightarrow \log _{3}[y(2 y+5)]=\log _{3} 3$
$\Rightarrow \log _{3}\left[2 y^{2}+5 y\right]=\log _{3} 3$
$\Rightarrow 2 y^{2}+5 y=3$

Created by T. Madas

Question $86 \quad(* * * *+)$
a) Describe the geometric transformation which maps the graph of the curve with equation $y=2^{x}$, onto the graph of the curve with equation $y=\left(\frac{1}{2}\right)^{x}$.
b) Sketch the graph of $y=3 \times 2^{x}$.

The curve with equation $y=\left(\frac{1}{2}\right)^{x}$ intersects the curve with equation $y=3 \times 2^{x}$ at the point P.
c) Determine, as an exact simplified surd, the y coordinate of P.
\square, reflection in the y axis,$y=\sqrt{3}$

Question 87 (****+)
Solve each of the following logarithmic equations, giving the answers in exact simplified form where appropriate.
a) $\log _{2}\left(256 x^{2}\right)=1+2 \log _{2}\left(\frac{1}{2} x^{4}\right)$.

Question 88 (****+)
Solve the following simultaneous logarithmic equations.

$$
\begin{aligned}
& \log _{2}\left(x^{2} y\right)=2 \\
& 11+\frac{1}{2} \log _{2} y=3 \log _{2} x
\end{aligned}
$$

\square

$$
x=8, \quad y=\frac{1}{16}
$$

ALTEENATLUE NETTPD/APPCOATCH Sthering wot THe gumtion a procten \& Fowows:
$\left.\left.\begin{array}{l}\log _{2}\left(x^{2} y\right)=2 \\ 1+\frac{1}{2} \log _{2} y=3 \log _{2} x\end{array}\right\} \Rightarrow \begin{array}{l}\log _{2} x^{2}+\log _{8} y=2 \\ 1+\frac{1}{2} \log _{2} y=3 \log _{2} x\end{array}\right\} \Rightarrow$ $\left.\begin{array}{r}2 \log _{2} x+\log _{2} y=2 \\ 11+\frac{1}{2} \log _{2} y=3 \log _{2} x\end{array}\right\} \rightarrow \begin{aligned} & 2 x+y=2 \\ & 11+\frac{1}{2} y=3 \times \times(-2)\end{aligned}$ $\left.\begin{array}{rl}2 x+y=2 \\ -22-y=-6 x\end{array}\right\} \Rightarrow \begin{aligned} & 2 x-22=2-6 x \\ & \end{aligned}$ $\Rightarrow 8 x=24$
$\Rightarrow x=3$ $\Rightarrow \quad x=3$
$\Rightarrow \quad \log _{2} x=3$
$\Rightarrow \quad \log _{2} x=3 \log _{2} 2=\log _{2} 8$
$\Rightarrow \quad x=8$
$\Rightarrow x=8$
\& $\quad \begin{aligned} 2 x+y & =2 \\ 6+y & =2\end{aligned}$
$\rightarrow \quad \begin{aligned} & y=-4 \\ & \log _{2} y=-4\end{aligned}$
$\Rightarrow \quad \log _{2} y=-4 \log _{2} 2=\log _{2} 2^{-4}$
$\Rightarrow \quad y=2.4$
$\begin{array}{ll}\rightarrow & y=2^{4} \\ \rightarrow & y=\frac{1}{16}\end{array}$

Question 89 (****+)
Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.
a) $4 \times 3^{x+2}=3 \times 4^{x}$.
b) $\log _{a}(1+\sqrt{x})=\frac{1}{2} \log _{a}(9+\sqrt{16 x})$.
\square $, x \approx 8.64, y=16$

TALES $\Rightarrow 4 \times 3$ $\Rightarrow \log \left(4 \times 3^{x+2}\right)=\log \left(3 \times 4^{2}\right)$ $\Rightarrow \log 4+\log 3^{x+2}=\log 3+\log 4^{x}$ \qquad \qquad

b) "Exteta" THe wes As buows
$\Rightarrow \log _{a}(1+\sqrt{x})-\frac{1}{2} \log _{9}(9+\sqrt{162})$
$\Rightarrow \log _{3}(1+\sqrt{x})=\log _{2}(9+\sqrt{b x})$
$\left.\Rightarrow \log _{a} C 1+\sqrt{2}\right)^{2}=\log _{9}(9+\sqrt{162})$
$\Rightarrow(1+\sqrt{x})^{2}=9+\sqrt{61}$
$\Rightarrow 1+2 \sqrt{x}+x=9+4 \sqrt{x}$
$\Rightarrow x-2 \sqrt{x}-8=0$
$\Rightarrow(\sqrt{x}-4)(\sqrt{x}+2)=0$
$\Rightarrow \sqrt{x}=<_{-2}^{4}$
$\Rightarrow x=16$

Created by T. Madas

Question 90 (****+)

Solve the following exponential equation.

$$
4^{x+1} \times 3^{1-2 x}=24 .
$$

Give the answer correct to 3 decimal places.

Question $91 \quad(* * * *+)$
Solve the following logarithmic equation.

$$
2 \log _{2} x+\log _{2}(x-1)-\log _{2}(5 x+4)=1
$$

Question 92 (****+)
The following three numbers

$$
\log _{10} 2, \quad \log _{10}\left(2^{x}-1\right), \quad \log _{10}\left(2^{x}+3\right)
$$

are consecutive terms in an arithmetic progression.

Determine the value of x as an exact logarithm, of base 2 .
\square ,$x=\log _{2} 5$

Question $93 \quad(* * * *+)$

$$
f(x)=2^{4 x}
$$

Show that the solution of the equation $f(x-1)=\frac{5}{8}$ is given by

$$
\begin{aligned}
& 2 \log _{2} x-\log _{2} y=1 \\
& \log _{2}(4 x \sqrt{y})=1
\end{aligned}
$$

Solve the above simultaneous logarithmic equations, giving the final answers as exact powers of 2 .

Question $95 \quad(* * * *+)$
Solve the following logarithmic equation

$$
5 \times 5^{\log x}+5^{2-\log x}=30, \quad x>0
$$

\square $x=1, x=10$
${ }^{\circ}$

Created by T. Madas

Question 96 (${ }^{* * * *+) ~}$
It is given that

$$
\sum_{r=1}^{3} \log _{a} x^{r}=\sum_{r=1}^{3}\left(\log _{a} x\right)^{r}
$$

where a and x are positive numbers such that $x \neq a, x \neq 1$ and $a>1$.

Show clearly that

Question $97 \quad(* * * *+)$

$$
2 \log _{2} x+\log _{2}(x-1)-\log _{2}(5 x+4)=1 .
$$

Find the only real root of the above logarithmic equation.

Question $98 \quad(* * * *+)$
Solve the following simultaneous logarithmic equations

$$
\begin{aligned}
& y^{\log x}=100 \\
& \log \sqrt{\frac{x y}{10}}=1
\end{aligned}
$$

given further that $x, y \in \mathbb{R}$, with $x>0, y>0$.
$\square, x=10, y=100$, or the other way round

Created by T. Madas

Question 99 (****+)
Solve the following logarithmic equation, over the largest real domain

$$
\log _{2-x}\left[2 x^{2}-1\right]=2, x \in \mathbb{R}
$$

Question 100 (****+)

Solve the following simultaneous equations

$$
\begin{aligned}
& a^{2 x} \times b^{3 y}=c^{5} \\
& a^{3 x} \times b^{2 y}=c^{10}
\end{aligned}
$$

Give the answers in exact form in terms of $\log a, \log b$ and $\log c$.

Question 101 (****+)
Solve the following logarithmic equation

Question 102 (****+)
Solve the following equation

$$
\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)^{x-1}=(a-b)^{2 x}(a+b)^{-2}
$$

Give the answers in exact form in terms of a and b.
\square $x=\frac{\log (b-a)}{\log (b+a)}$

Question 103 (*****)
Solve the following logarithmic equation

$$
\frac{2-\log _{4} x^{7}}{7-\log _{4} x^{2}}+\left(\log _{4} x\right)^{2}=0
$$

\square

$$
x=2, x=4, x=16
$$

Question 104 (*****)
Show by valid mathematical arguments that

Question 105
i. Simplify the following expression.

$$
9 \log _{24} 2+\log _{24} 27
$$

Show detailed workings in this simplification.
ii. It is given that

$$
5 \times 2^{t-1}=2 \times t^{2 t} \quad \Rightarrow \quad(10 k)^{t}=k^{\prime}
$$

Determine the value of k.
\square

Question 106 (*****)
On the $1^{\text {st }}$ January 2000 a rare stamp was purchased at an auction for $£ 16384$ and by the $1^{\text {st }}$ January 2010 its value was four times as large as its purchase price.

The future value of this stamp, $£ V, t$ years after the $1^{\text {st }}$ January 2000 is modelled by the equation

$$
V=A p^{t}, t \geq 0
$$

where A and p are positive constants.

On the $1^{\text {st }}$ January 1990 a different stamp was purchased for $£ 2$.

The future value of this stamp, $£ U, t$ years after the $1^{\text {st }}$ January 1990 is modelled by the equation

$$
U=B q^{t}, t \geq 0,
$$

where B and q are positive constants.

Given further that $q=p \sqrt{2}$, determine the year when the two stamps will achieve the same value according to their modelling equations.

Question 107
(*****)
It is given that

- a and x are positive real numbers such that $x \neq a, x \neq 1$ and $a>1$.
- $\quad n$ is a positive integer such that $n>1$.

Show that the equation
can be written as
\square proof
\square

Created by T. Madas

Question 108
(*****)
It is given that

$$
a^{\log b} \equiv b^{\log a}, a>0, b>0
$$

i. Prove the validity of the above result.
ii. Hence, or otherwise, solve the following simultaneous equations
\square
, (10000,3),(1000,4)

Question 109
(******)
The product operator \prod, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Given that $k \in \mathbb{N}$, use a detailed method to find the value of

Question 110
(******)
Solve the following logarithmic equation.

$$
3+8 \log _{\frac{1}{k}}[\sqrt{8+4 \sqrt{3}}-\sqrt{8-4 \sqrt{3}}]=0, \quad k>0, \quad k \neq 1
$$

$$
\cdots, k=16
$$

$\left\{+8 \log _{\frac{1}{k}}[\sqrt{8+4 \sqrt{3}}-\sqrt{8-4 \sqrt{3}}]=0\right.$

- $8+4 \sqrt{3} \equiv(\sqrt{a}+\sqrt{b})^{2} \equiv a+2 \sqrt{a b}+b\{a>0, b>b\}$
- $B+4 \sqrt{3} \equiv(a+b)+2 \sqrt{a b}$
- Thas $\begin{array}{rl}a+b=8 & 2 \sqrt{a b}\end{array}=4 \sqrt{3}$
- By inspection as $a>0, b>0 \quad a=6, b=2$ (Any orack)
- Sumanly $8-4 \sqrt{3} \equiv(a+b)-2 \sqrt{a b}$
$a+b=8, a b=12$
Brt HhRt $\stackrel{a>b}{=} \quad \therefore=6, b=2$
- Honce we now thoue in The terombra of THe wa
$\sqrt{8+4 \sqrt{3}}$
$=\sqrt{(\sqrt{6}+\sqrt{2})^{2}}-\sqrt{(\sqrt{6}-\sqrt{2})^{2}}$
$=(\sqrt{6}+\sqrt{2})-(\sqrt{6}-\sqrt{2})$ $=2 \sqrt{2}$ $=\sqrt{8}$

Question 111 (*****)
Solve the following logarithmic equation.

Question 112 (*****)
Solve the following logarithmic equation.

$$
\log _{4 x}\left(\frac{1}{2}\right)+\log _{x} 8+\log _{\frac{1}{2} x}\left(\frac{1}{2}\right)=\frac{1}{4}, x>0, x \neq 1
$$

Give the answers in exact simplified form where appropriate.
\square $x=16, \quad x=2^{\frac{1}{2}(7 \pm \sqrt{73})}$

Question 113 (*****)
Solve the following simultaneous equations.

$$
2 \sum_{r=0}^{\infty}\left[\log _{2} a\right]^{r}=\sum_{k=1}^{\infty}(1+b)^{-k} \text { and } \quad \sum_{k=1}^{1}(1+b)^{-k}-\sum_{r=0}^{1}\left[\log _{2} a\right]^{r}=\frac{7}{5}
$$

You may leave the answers as indices in their simplest form, where appropriate.
\square $[a, b]=\left[\frac{3}{2}, \frac{1}{4}\right]=\left[-\frac{4}{5}, 2^{\frac{13}{5}}\right]$

$2 \sum_{r=0}^{\infty}\left(\log _{2} a\right)^{r}=\sum_{k=1}^{\infty} \frac{1}{(1+b)^{k}}$	$\sum_{k=1}^{1} \frac{1}{(1+b) k}-\sum_{r=0}^{1}\left(\log _{2} a\right)^{r}=\frac{7}{5}$
(1) BOTH HRE GEOUATRC Prooressions	
$\begin{aligned} & 1+\left(\log _{2} a\right)+\left(\log _{2} a\right)^{2}+\left(\log _{2} a\right) \\ & \frac{1}{1+b}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+b)^{3}}+\frac{1}{(1+b)^{4}} \end{aligned}$	Fiest trem 1, $r=\log _{2} a$ fiet tien $\frac{1}{1+b}, r=\frac{1}{1+b}$
$\Rightarrow 2 \times \frac{1}{1-\log _{2} a}=\frac{\frac{1}{1+b}}{1-\frac{1}{1+b}}$	$\begin{aligned} & \Rightarrow \frac{1}{1+b}+2 b=\frac{17}{5} \\ & \Rightarrow \frac{5}{1+b}+10 b=1 \end{aligned}$
$\Rightarrow \frac{2}{1-\log _{2} a}=\frac{1}{(1+b)-1}$	$\Rightarrow s+\operatorname{tob}(1+b)=1 \pi(1+b)$
$\Rightarrow \frac{2}{1-\log _{5} a}=\frac{1}{b}$	$\Rightarrow 5+10 b+10 b^{2}=\pi+12 b$
$\Rightarrow 2 b=1-\log _{2} a$	$\Rightarrow 10 b^{2}-7 b-12=0$
$\Rightarrow \log _{2} a=1-2 b$	$\Rightarrow(2 b-3)(5 b+4)=0$
- Frou the stcond rquation we aritin)	$\Rightarrow b=<_{-4 / 5}^{\$ / 2}$
$\rightarrow \frac{1}{1+b}-\left(1+\log _{2} a\right)=\frac{7}{5}$	- using $\log _{2} a=1-2 b$
$\Rightarrow \frac{1}{1+b}-1-\log _{2} a=\frac{7}{5}$	$a=$
$\Rightarrow \frac{1}{1+b}-\log _{2} a=\frac{12}{5}$	$\Rightarrow a=<_{2^{16 / 5}}^{2^{-2}}=\frac{1}{4}$
$\Rightarrow \frac{1}{1+b}-(1-2 b)=\frac{12}{5}$	
$\Rightarrow \frac{1}{1+6}-1+2 b=\frac{12}{5}$	

Created by T. Madas

Question 114
(*****)
It is given that

$$
a^{\log b} \equiv b^{\log a}, a>0, b>0
$$

a) Prove the validity of the above result.
b) Hence, or otherwise, solve the equation

$$
3^{\log x}+3 \times x^{\log 3}=36
$$

\square , $x=100$
\square
\square

Question 115
It is given that

$$
4 p-\frac{1}{2} q=\log _{6}(3.6) \quad \text { and } \quad q-p+1=\log _{6}(75)
$$

Solve these simultaneous equations, to show that

$$
p=\log _{6} k,
$$

where k is a positive integer to be found.

Created by T. Madas

Question 116 (*****)

$$
f(x) \equiv 4^{x+1} \times 3^{1-2 x}, x \in \mathbb{R} .
$$

Determine the value of $f(a)$, where $a=\frac{\log _{10} 2}{\log _{10} 4-\log _{10} 9}$.
\square
$f(a)=24$

Question 117 (*****)
The positive solution of the quadratic equation $x^{2}-x-1=0$ is denoted by ϕ, and is commonly known as the golden section or golden number.

Show, with a detailed method, that the real solution of the following exponential equation

$$
2^{x}+4^{x}=8^{x}
$$

can be written in exact form as

Question 118 (*****)
Show that the following logarithmic equation has no real solutions.

Question 119 (*****)
It is given that for $x>0, x \neq 1$ and $y>0, y \neq 1$

$$
\log _{x} y=\log _{y} x \quad \text { and } \quad \log _{x}(x-y)=\log _{y}(x+y)
$$

Show that

$$
x^{4}-x^{2}-1=0
$$

\square , proof

\square

Question 120
(******)

$$
\log _{\sin x \cos x}(\sin x) \times \log _{\sin x \cos x}(\cos x)=\frac{1}{4}
$$

Show that the solution of the above equation is given by

