LOGARIA EXAM QUESTIONS ASSURABLE COUL I. Y. C.B. HARRASHARKSCOUL I.Y.C.B. MARACA

Question 1 (**)

Show clearly that

 $\log_a 36 + \frac{1}{2} \log_a 256 - 2 \log_a 48 = -\log_a 4.$

Question 2

Simplify

 $\log_2 5 + \log_2 1.6$,

giving the final answer as an integer.

 $S_{2} = 8_{2} g_{2} (s_{1} + (s_{1})_{2}) g_{2} = 1_{2} g_{2} (s_{1} + (s_{1})_{2}) g_{2} = 1_{2} g_{2} g_{2} + 1_{2} g_{2} + 1_{2}$

proof

Question 3 (**+)

Given that $x = 2^p$ and $y = 4^q$, show clearly that

 $\log_2(x^3y) = 3p + 2q \,.$

proof

3

 $\begin{aligned} & (3g)^{-1} = \frac{1}{2} \partial_{g_{2}} x^{2} + \log g = 3 \log_{2} x + \log_{2} g \\ & = 3 \log_{2} x^{2} + \log g + \frac{1}{2} \log_{2} g + \log_{2} g \\ & = 3p + d \left(2 \log_{2} g \right) = 3p + 2d \\ & \leq 1 \\$

Question 4 (**+)

Simplify each of the following expressions, giving the final answer as an integer.

a) $\log_2 3 - \log_2 24$.

b) $\log_a a^2 - 4\log_a \left(\frac{1}{a}\right), \ a > 0, \ a \neq 1.$

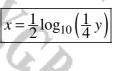
Full workings, justifying every step, must support each answer.

-3,6

Question 5 (**+)

Given that $y = \log_2 x$, write each of the following expressions in terms of y.

a) $\log_2 x^2$


b) $\log_2(8x^2)$

|2y|, |3+2y|

(a) $\log_2 x^2 = 2\log_2 x = 2y$ (b) $\log_2(8x^2) = \log_2 8 + \log_2 x^2 = \log_2 x^3 + 2\log_2 x$ $= 3\log_2 x + 2\log_2 x = 3 + 2y$

Question 6 (**+)

Given that $y = 4 \times 10^{2x}$ express x in terms of y, giving an exact simplified answer in terms of logarithms base 10.

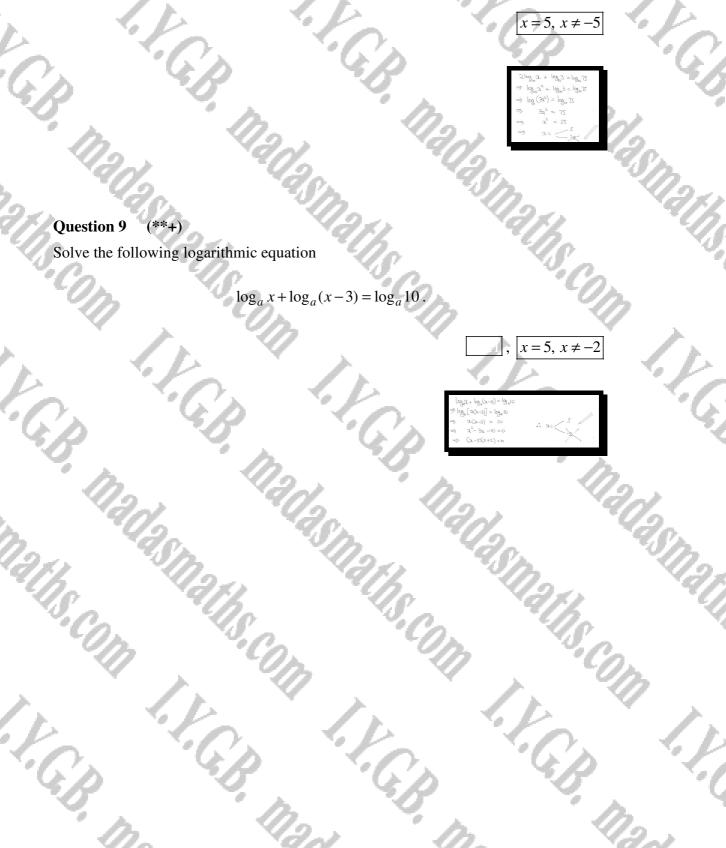
Question 7 (**+)

An exponential curve has equation

 $y = ab^x, x \in \mathbb{R},$

where a and b are non zero constants.

Make x the subject of the above equation, giving the final answer in terms of logarithms base 10.


 $x = \frac{\log y - \log a}{\log b}$

=> log y = log a + alogb	⇒ læg y = læg + ×læb ⇒læg y = læg (abz) ⇒læg y = læg (abz)	$ \Rightarrow x \log_b = \log_y - \log_q \\ \Rightarrow x = \frac{\log_y - \log_q}{\log_b} $
--------------------------	--	--

Question 8 (**+)

Solve the following logarithmic equation

 $2\log_{10} x + \log_{10} 3 = \log_{10} 75 \,.$

- (***) **Question 10**
- An exponential curve C has equation

 $y = \frac{1}{3^x}, x \in \mathbb{R}.$

a) Sketch the graph of C.

Smarns.com I.F.C.B

I.F.G.B

b) Solve the equation $y = \frac{2}{3}$, giving the answer correct to 3 significant figures.

		(a) $g = \frac{1}{3^3}$ (b) $\frac{1}{3^3} + \frac{2}{3^3}$ $3^3 = \frac{3}{2}$ $[g_0, g_3] = \frac{1}{3^3 + 1}$ $3^4 = \frac{3}{2}$	'/20. [□]	0.369
nath "ash	29	12/1 (* y= 1/3) *	= 3 ^{-x} (m) (1-3) (1-3)	(a))
	Co.	$ \begin{array}{c} (b) & \frac{1}{3^{2}} * \cdot \frac{2}{3} \\ & 3^{2} = \frac{3}{2} \\ & (g_{\mu}(3) = \\ & \lambda (g_{\mu}(3) = \\ & \lambda (g_{\mu}(3) - k) \\ & \lambda = \frac{1}{(g_{\mu})^{2}} \end{array} $	ing_(₹) ~ 0 30/	3
			1.1.	- 112/23
GB	GB IN			3
			201	12da
12/18	nath.	alls	"asing	2 2
	Con			S.Com
1.1.	Ko.	1.1	1.V	у. Э. ч

Ths.com

The COL

I.V.G.S.

G

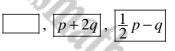
1.

Inadasman

Created by T. Madas

l.V.C.p

Question 11 (***)


Given that

 $p = \log_a 4$ and $q = \log_a 5$,

express each of the following logarithms in terms of p and q.

- **a**) log_{*a*}100
- **b**) $\log_a 0.4$

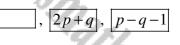
The final answers may not contain any logarithms.

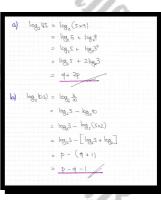
6)	$ \log_{a} 100 = \log_{a}(25 \times 4) = \log_{a} 25 + \log_{4} 4 $ $ = \log_{a} 5^{2} + \log_{4} 4 $
	= 5d+b
(b)	$\log_{q}(0, \psi) = \log_{q}(\frac{2}{5}) = \log_{q} 2 - \log_{q} 5$ = $\log_{q} \psi_{p}^{\pm} - \log_{q} 5$
	$=\frac{1}{2}e^{g_{0}t}-1e^{g_{0}t}$ $=\frac{1}{2}e^{-\frac{1}{2}t}-\frac{1}{2}e^{-\frac{1}{2}t}$

Question 12 (***) Solve the following logarithmic equation

 $\log_5(4t+7) - \log_5 t = 2.$

Question 13 (***)

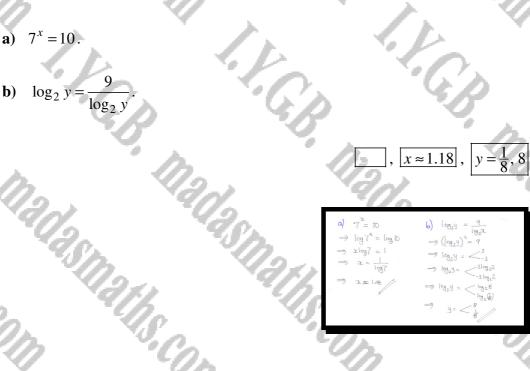

Given that


 $p = \log_2 3$ and $q = \log_2 5$,

express each of the following logarithms in terms of p and q.

- **a**) log₂ 45
- **b**) $\log_2 0.3$

The final answers may not contain any logarithms.



(***) **Question 14**

b)

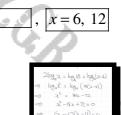
Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.

Question 15 (***)

Ka

Solve the following logarithmic equation for x.

 $\log_a (x^2 - 10) - \log_a x = 2\log_a 3.$


 $x = 10, x \neq -1$

1

Question 16 (***)

Solve the following logarithmic equation for x.

 $2\log_a x = \log_a 18 + \log_a (x - 4)$.

3

5

nadasn.

Question 17 (***) Solve the following logarithmic equation

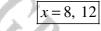
F.G.B.

I.C.B.

K.C.

 $\log_2(2z+1) = 2 + \log_2 z \,.$

Mada,


 $\begin{array}{c} \log_{q}(2\epsilon_{H}) = 2 + (q_{0},\overline{\epsilon}) \\ \Rightarrow \log_{q}(2\epsilon_{H}) = 2 \log_{q}(2\epsilon_{H}) \\ \Rightarrow \log_{q}(2\epsilon_{H}) = \log_{q}(1+\epsilon_{H}) \\ \Rightarrow \log_{q}(2\epsilon_{H}) = \log_{q}(4\epsilon_{H}) \\ \Rightarrow \log_{q}(2\epsilon_{H}) = \log_{q}(4\epsilon_{H}) \\ \Rightarrow 2\epsilon_{H} = 4\epsilon_{H} \\ c = 2\epsilon_{H} \\ \overline{\epsilon} = \frac{1}{2} \end{array}$

F.C.P.

Question 18 (***)

Solve the following logarithmic equation for y.

 $2\log_a y - \log_a(5y - 24) = \log_a 4$.

$2\log_4 y - \log_4(s_4 - 24) = \log_4 4$	
$\Rightarrow \log_{4} y^{2} - \log_{6} (Sy - 24) = \log_{6} 4$	
$\Rightarrow \log_{q} \left(\frac{y^{2}}{y_{q} - 2\psi} \right) = \log_{q} (\psi)$	
$\Rightarrow \frac{y^2}{5y^{-2+}} = 4$	
⇒ y ² = 20y-96	
⇒ y ² - 20y + 96 =0	u = /8
$\Rightarrow (y - B)(y - 12) = 0$	3-1-12

Question 19 (***)

It is given that x satisfies the logarithmic equation

$$\log_a x = 2(\log_a k - \log_a 2),$$

where k > 0, a > 0, $a \neq 1$.

a) Find x in terms of k, giving the answer in a form not involving logarithms.

Suppose instead that x satisfies

$$\log_x(5y+1) = 4 + \log_x 3$$

where x > 0, $x \neq 1$ and y > 0, $y \neq 1$.

b) Solve the above equation expressing y in terms of x, giving the answer in a form not involving logarithms.

0	$x = \frac{k^2}{4}$,	$y = \frac{3x^4 - 1}{5}$	
		Ŀ,	× ×	

(a) $\log_{q} x = 2(\log_{q} k - \log_{q} 2)$	(b) log_ (59+1) = 4+ log_3
$\Rightarrow \log_{q^{\chi}} = 2\log_{q}k - 2\log_{q}2$ $\Rightarrow \log_{q}k^2 = \log_{q}k^2 - \log_{q}k$	= log_(64+1) = 4log_2 + log_3
$\Rightarrow \log_{2}(z) = \log_{2}(\frac{1}{z})$	$\Rightarrow \beta^{(2d+1)} = \beta^{(2d+1)} + \beta^{(2d+1)}$
=) 2= <u>k</u>	$\Rightarrow \log(2g_{H}) = \log^{3}(3x_{A})$
4	$\Rightarrow \qquad \qquad$

Question 20 (***)

F.G.B.

I.G.B.

Solve the following logarithmic equation

R.

 $\log_5(125x) = 4.$

Question 21 (***) Solve the following logarithmic equation

 $1 + 2\log_5 x = \log_5(16x - 3)$

 $x = 3, x = \frac{1}{5}$

i G.B.

nadasn.

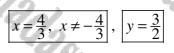
1 + 2log_2 = log_2(62-3)	$\Rightarrow Sa^{z} - IGx + 3 = 0$
$= \log_1 S + 2\log_1 Z = \log_1(16\alpha - 3)$	$\Rightarrow (52 - 1)(2 - 3) = c$
= log_5 + log_2 = log_(62-3)	$\Rightarrow 2z < \frac{3}{2}$
$\Rightarrow \log_5(Sa^2) = \log_5(Ma-3)$	1
\Rightarrow $Sx^2 = 16x - 3$	1

Question 22 (***)

Every £1 invested in a saving scheme gains interest at the rate of 5% per annum so that the total value of this £1 investment after t years is £ y.

This is modelled by the equation

$y = 1.05^t$, $t \ge 0$.


Find after how many years the investment will double.

Question 23 (***)

Solve each of the following logarithmic equations.

- **a**) $\log_x 16 = \log_x 9 + 2$
- **b**) $\log_y 27 = 3 + \log_y 8$.

(a) $\log_{16} \xi = \log_{10} \frac{3}{2} + 2$ $\log_{16} \xi = \log_{16} \frac{3}{4} + 2\log_{17} \frac{3}{4}$ $\log_{16} \xi = \log_{10} \frac{3}{4} + \log_{10} \frac{3}{4}$ $\log_{16} \xi = \log_{10} \frac{3}{4} + \log_{10} \frac{3}{4}$ $\xi = q_{17}$ $\xi = q_{17}$ $\xi = q_{17}$ $\xi = q_{17}$ $\xi = q_{17}$	$ \begin{array}{c} \textbf{(b)} & (q_{0}, x^{2} = 3 + \log_{3} a \\ & (q_{0}, x^{2} = 3 \log_{3} a + \log_{3} a \\ & (q_{0}, x^{2} = 3 \log_{3} a + \log_{3} a \\ & (q_{0}, x^{2} = \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a + \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a + \log_{3} a + \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a + \log_{3} a + \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_{3} a \\ & (\log_{3} x^{2} = \log_{3} a + \log_$

Question 24 (***)

Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.

- **a**) $2 \times 3^x = 900$.
- **b**) $\log_2(7y-1) = 3 + \log_2(y-1)$.

a) $2 \times 3^{2} = 900$ $\Rightarrow 3^{2} = 450$ $\Rightarrow \log 3^{2} = \log 450$ $\Rightarrow a \log 3 = \log 450$ $\Rightarrow a = \frac{\log 450}{\log 3}$ $\Rightarrow a = \frac{\log 450}{\log 3}$ $\Rightarrow a = \frac{\log 450}{\log 3}$	$\begin{array}{c} \left(\begin{array}{c} \left(\left\{ x, x \right\} \right) \right) \\ \left\{ x, y \right\} \\ \left\{ x, y$
	At BASEL
b) $\log_2(7y-1) = 3 + \log_2(7y-1)$	y_1)
$\implies \log_2(7y-1) - \log_2(y-1) =$	3
$= \log_2\left(\frac{7y-1}{y-1}\right) = 3\log_2 2$	

100,8

 $], x \approx 5.56, y = 7$

Question 25 (***+) Simplify fully

 $1+2\log_n 3+\log_n 4,$

giving the final answer as a single logarithm.

 $\log_n(36n)$

 $\frac{\log_{4}(n \times 1 \times 4)}{\log_{4} 3 + \log_{4} 4 + \log_{6} 3 + \log_{4} 4 + \log_{6} 9 + \log_{6} 4 + \log_{6$

Question 26 (***+)

Solve each of the following exponential equations, giving the final answers correct to 3 significant figures.

11+

Question 28 (***+)

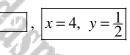
Solve the following exponential equation

$\frac{1}{6} = \left(\frac{1}{2}\right)^x,$

giving the answer as single logarithm of base 2.

<u>.</u>	
$\frac{1}{6} = \left(\frac{1}{2}\right)^{n}$ $\Rightarrow \frac{1}{6} = \left(\frac{1}{2}\right)^{n}$ $\Rightarrow 6^{-1} = 2^{-n}$ $\Rightarrow \log_{2} 6^{-1} = \log_{2} 2^{n}$ $\Rightarrow -\log_{2} 6 = -2\log_{2} 2^{-1}$ $\Rightarrow \log_{2} 6 = -2\log_{2} 2^{-1}$ $\Rightarrow 2 \log_{2} 6 = -2(\log_{2} 2^{-1})$	$\begin{array}{c} \underline{AUDUMUT} & \frac{1}{16} = \left(\frac{1}{2}\right)^{\infty} \\ \Rightarrow & [o_{21}\zeta_{11}] = [o_{21}\zeta_{12}] \\ \Rightarrow & [o_{22}\zeta_{12}] = 2 \cdot [o_{22}\zeta_{12}] \\ \Rightarrow & -lo_{22}\zeta_{12} = -2 \cdot (o_{22}\zeta_{12}) \\ \Rightarrow & b_{22}\zeta_{12} = -2 \cdot (o_{22}\zeta_{12}) \\ \Rightarrow & b_{23}\zeta_{12}\zeta_{12} = -2 \cdot (o_{23}\zeta_{12}) \\ \end{array}$
$\Rightarrow 2 = \log_2 2 + \log_2 3$	

 $x = \log_2 6 = 1 + \log_2 3$


Question 29 (***+)

R

Solve the following simultaneous logarithmic equations

 $\log_2(xy^2) = 0$

 $\log_2(x^2y) = 3.$

$(\log_2(2ij^2) = 0)$ $(\log_2(2ij) = 3)$	$\frac{4!t_{multisk}}{(\log_2(2y^2) = 0\log_2 2)}$
$(\log_2 2 + \log_2 y^2 = 0)$	$\begin{pmatrix} \log(2\beta) = \log_2 2^{\circ} \\ \log(2\beta) = \log_2 2^{\circ} \end{pmatrix}$
(1092 x + 1092 y =0 (1092 x + 21092 y =0	$\begin{pmatrix} x_n^2 - 8 \\ x_n^2 - 1 \end{pmatrix}$
$\begin{pmatrix} X+2Y=0\\ 2X+Y=3 \end{pmatrix}$	$\begin{pmatrix} \mathfrak{D}_{q}^{2}\mathfrak{Y}_{q}^{2} = 1\\ \mathfrak{D}_{q}^{2}\mathfrak{Y}_{q}^{2} = 8 \end{cases}$
-2X - 4Y = 0 $\partial X + Y = 3$	$\frac{3_{z}n}{3_{z}n_{z}} = \frac{3}{7}$
-3Y = 3 Y = -1 X = 2	$y_{\tau}^{a} = \frac{1}{2}$ $y_{\tau}^{a} = \frac{1}{2}$
• $\log_2 y = -1 \Rightarrow y = \frac{1}{2}$ • $\log_2 x = 2 \Rightarrow x = 4$	ス(2) ² =1 オスモ1 3=4
0-	- //

Question 30 (***+)

Y.C.F.

I.C.B.

I.C.p

Solve the following logarithmic equation

ŀ.G.B.

 $2\log_3 t = 1 + \log_3 7t$.

3

Madasn

 $t = 21, t \neq 0$

Question 31 (***+) Solve the following logarithmic equation

 $\log_3 8 - 3\log_3 t = 3.$

 $\begin{array}{l} & = \frac{1}{2} \sum_{i=1}^{N} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{$

ŀ.G.p

Created by T. Madas

2017

R.

Question 32 (***+)

Solve the following logarithmic equation

 $\log_5(4-w) - 2\log_5 w = 1.$

Question 33 (***+)

2

Simplify fully the following logarithmic expression, showing clearly all the workings.

nadasm.

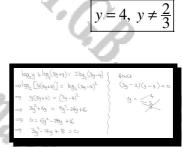
 $\log(10+3\sqrt{10}) + \log(10+\sqrt{90+\sqrt{90}}) + \log(10-\sqrt{90+\sqrt{90}}).$

 $\log(10+3\sqrt{10})+\log(10+\sqrt{10+\sqrt{10+10}})+\log(10-\sqrt{10+\sqrt{10}})$

1

 $w = \frac{4}{5}$

, w≠-


- $= \log \left(10 + 3\sqrt{10} \right) + \log \left[\left(10 + \sqrt{90 + \sqrt{90}} \right) \left(10 \sqrt{90 + \sqrt{90}} \right) \right]$
- = log(10+3/10") + log[100-(90+
- $= \log(10+3\sqrt{10^{-1}}) + \log(10-\sqrt{90^{-1}})$ $= \log(10+3\sqrt{10^{-1}}) + \log(10-\sqrt{90^{-1}})$
- $= \log \left[(10 + 3 \sqrt{10}) (10 3 \sqrt{10}) \right] = \log (100 90) = \log (10 = 1)$

Question 34 (***+)

Solve the following logarithmic equation

F.G.B.

$\log_2 y + \log_2$	(3y+4) =	$2\log_2(3y-4)$
---------------------	----------	-----------------

2

.

madasn.

Question 35 (***+)

1

I.C.B.

I.C.B

Solve the following logarithmic equation

 $\log_2(6-x) = 3 - \log_2 x.$

1120231

$$\begin{split} & \Rightarrow \log_3(\varepsilon \cdot x) \equiv 3 - (\log_3 \chi) \\ & \Rightarrow \log_3(\varepsilon \cdot x) \equiv 3 \log_2 \chi - \log_3 \chi \\ & \Rightarrow \log_4(\varepsilon \cdot x) \equiv \log_2 \xi - \log_3 \chi \\ & \Rightarrow \log_4(\varepsilon \cdot x) \equiv \log_2 \xi - \log_3 \chi \\ & \Rightarrow \log_4(\varepsilon \cdot x) \equiv \log_4 \xi - \log_3 \chi \\ & \Rightarrow \log_4(\varepsilon \cdot x) \equiv \log_4(\xi - \log_2 \chi) \\ & \Rightarrow \xi - \chi = \frac{6}{3} \\ & \Rightarrow \xi - \chi = \frac{6}{$$

ŀ.G.p.

Created by T. Madas

2017

Question 36 (***+)

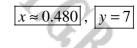
Solve the following logarithmic equation

F.G.B.

 $\log_4 x = \log_3 9.$

Madasm.

Question 37 (***+)


F.C.B.

I.C.B.

Solve each of the following equations.

a) $2 \times 3^{\frac{1}{2}x+2} = 23.43$.

b) $\log_5(y+2) + \log_5(4y-3) = 2\log_5(2y+1)$.

i G.B.

x = 16

3

1+

(a) $2x3 = 23.43$ $\Rightarrow 3^{294} = 11.15$ $\Rightarrow \log_{3}^{2494} = \log_{4}(11.715)$) $\rightarrow [\delta^{1}(\mathcal{A}_{3}^{-}, \mathcal{A}^{2}, \mathcal{A}^{2}, \mathcal{A}^{2}) = [\delta^{2}(\mathcal{A}_{3}^{-}, \mathcal{A}^{2})] = [\delta^{2}(\mathcal{A}^{2}, \mathcal{A}^{2})]_{3}$) $\rightarrow [\delta^{2}[\tilde{\mathcal{A}}_{3}(\mathcal{A})(\mathcal{A}^{2}, \mathcal{A}^{2})] = [\delta^{2}(\mathcal{A}^{2}, \mathcal{A}^{2})]_{3}$ ($\delta^{2}(\mathcal{A}^{2}, \mathcal{A}^{2}) = \mathcal{A}(\mathcal{A}^{2}, \mathcal{A}^{2})]_{3}$
$\Rightarrow \left(\frac{1}{2}x_{+}2\right) \log_{B} S = \log_{B} \left(11.715\right) \left(\frac{1}{2}x_{+}2\right) = \frac{\log_{B} \left(11.715\right)}{\log_{B} \left(11.715\right)} \left(\frac{1}{2}x_{+}2\right) + \frac{\log_{B} \left(11.715\right)}{\log_{B} \left(11.715\right)} \left(\frac{\log_{B} \left(11.715\right)}{\log_{B} \left(11.715\right)} \left(\frac{\log_{B} \left(11.715\right)}{\log_{B} \left(11.715\right)} \left(\frac$	$\begin{array}{l} (1) = (1) +$
$ \begin{array}{c} \Rightarrow \frac{1}{2} \alpha + 2 \propto 2 \cdot 73 \cdot 9 \cdot \cdots \\ \Rightarrow \frac{1}{2} \alpha \approx \ 0 \cdot 73 \cdot 9 \cdot \cdots \\ \Rightarrow 2 \approx \ 0 \cdot 48 \circ \end{array} $	y = 7

Question 38 (***+)

The population P of a certain town in time t years is modelled by the equation

$$P = A \times 10^{kt}, \ t \ge 0,$$

where A and k are non zero constants.

When t = 3, P = 19000 and when t = 6, P = 38000.

Find the value of A and the value of k, correct to 2 significant figures.

• A =	=9500, k = 0.10
19	2
P= 4×10 ^{tt}	
$\begin{array}{c} 19000 = 4 \times 10^{3k} \\ 38000 = 4 \times 10^{6k} \end{array} \Big) \implies$	X×10 ²² = 38000 X×10 ³² = 19000
	10 ^{3k} = 2,
an an drive that by this carry to the second	log 10° = log 2
	sklagto = log2
	3k= lag2
	k= = = = = = = = = = = = = = = = = = =
49WGE AX 103K = 19000	"
24 = 19000	
-4 = 9500	

Question 39 (***+) Solve the following logarithmic equation

 $2\log_3 x - \log_3(x-2) = 2$

 $\begin{array}{c} 2\log_{3}\mathcal{Z}_{-} - \log_{3}(x-x) = 2 \\ \Rightarrow \log_{3}\mathcal{X}_{-} \log_{3}(x,x) = 2\log_{3}3 \\ \Rightarrow \log_{3}\left(\frac{x}{x-x}\right) = \log_{3}\left(\frac{x}{x-x}\right) \\ \Rightarrow \frac{x}{x-x} = q \\ \Rightarrow \frac{x}{x} = 1, \\ \Rightarrow x = -1, \\ \Rightarrow x = -1$

Question 40 (***+)

Solve the following logarithmic equation

R,

$$\log_2 4^{2x} = \log_3 27^{x-1}$$

-6	x = -3
$\begin{split} & \left \begin{array}{c} y_{1} \ \psi^{2n} \ = \ \left \begin{array}{c} y_{2} \ \psi^{2n} \ = \ \left \begin{array}{c} y_{2} \ \psi^{2n} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{1} \right) \left \begin{array}{c} y_{2} \ \psi \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \psi \ \\ \end{array} \right \\ & = \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \end{array} \right \\ & \Rightarrow \ \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \\ & \Rightarrow \ \left(y_{2} \right) \left \left(y_{2} \right) \left \begin{array}{c} y_{2} \ \\ \\ & \end{array} \right \\ & \\ & \Rightarrow \ \left(y_{2} \right) \left \left(y_{$	$ \begin{array}{l} \left \log_2 \frac{1}{4}^{2k} = \log_3 2^{2k-1} \\ \Rightarrow \log_2 \frac{1}{4}^{2k} = \log_3 2^{2k-2} \\ \Rightarrow \log_2 2^{2k} = \log_3 2^{2k-2} \\ \Rightarrow \log_1 2^{2k} = (\log_3 2^{2k-2} \\ \Rightarrow 4\lambda_1 \otimes_2 2^{2k} = (\lambda_1 - \lambda_1) \otimes_3 2^{2k} \\ \Rightarrow 4\lambda_2 = 3\lambda_{k-2} \\ \Rightarrow \lambda_{k-2} = -3 \end{array} \right) $

1+

 $\frac{a^2}{b}$

Question 41 (***+) Given that $a \neq 0, b \neq 0, y \neq 0$ and

Y.C.

 $2 + \log_a b + 3\log_a y = 2\log_a \left(a^2 y\right),$

express y in terms of a and b, in a form **not** involving logarithms.

21/2

 $\begin{array}{rcl} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

Question 42 (***+)

 $2\log\left(\frac{x}{y}\right) - 1 = \log(10x^2y), x \neq 0, y \neq 0.$

Find the exact value of y.

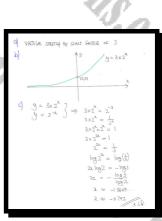
$2\log\left(\frac{\pi}{3}\right) - 1 = \log(\log^2 y)$	S BUT ato
$\Rightarrow \log(\frac{\pi^2}{y^2}) - \log_{10}\log = \log_{10}(\omega_{1}^2y)$	$\Rightarrow 1 = 100 \text{ y}^3$
$\Rightarrow \log_{10}\left(\frac{1^2}{\log^2}\right) = \log_{10}\left(\log^2 q\right)$	$\Rightarrow y^3 = \frac{1}{100}$
$\Rightarrow \frac{3^2}{\log^2} = \log^2 y$	$\Rightarrow y = \frac{L}{\sqrt{100}}$
\Rightarrow $a^{\pm} = (00a^2y^3)$	

Question 43 (***+) non calculator The points *P* and *Q* lie on the curve with equation

 $y = 6\log_2 x - \log_2 7, x > 0.$

The x coordinates of P and Q are 3 and 6, respectively.

Find the gradient of the straight line segment PQ.


Question 44 (***+)

 $y = 3 \times 2^x$.

- a) Describe the geometric transformation which maps the graph of the curve with equation $y = 2^x$, onto the graph of the curve with equation $y = 3 \times 2^x$.
- **b**) Sketch the graph of $y = 3 \times 2^x$.

The curve with equation $y = 2^{-x}$ intersects the curve with equation $y = 3 \times 2^{x}$ at the point *P*.

c) Determine, correct to 3 decimal places, the x coordinate of P.

vertical stretch by scale factor 3, $x \approx -0.792$

Question 45 (***+)

It is given that $p = \log_6 25$ and $q = \log_6 2$.

Express in terms of p and q each of the following expressions

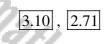
- **a**) log₆ 200
- **b**) $\log_6 3.2$
- **c**) log₆75

Ĝ.

Ka

 $, \ \boxed{\log_6 200 = p + 3q}, \ \boxed{\log_6 3.2 = -\frac{1}{2}p + 4q}, \ \boxed{\log_6 75 = p - q + 1}$

	P= log_25 & d= log_2
۵)	$log_{g}_{200} = log_{g}(25, 8)$ $= log_{g}_{2} 25 + log_{g}_{2} 2^{3}$ $= log_{g}_{2} 25 + log_{g}_{2} 2^{3}$ $= log_{g}_{2} 25 + 3log_{g}_{2}$ $= \frac{p}{q} + \frac{3}{q}$
6)	$\begin{array}{l} \log_{k}\left(\Im_{2}\right) = \left(\log_{k}\left(\frac{\Im_{2}}{2}\right) = \log_{k}\left(\frac{16}{8}\right) \\ = \log_{k}(\varepsilon - \log_{k}S \\ = \log_{k}S^{2} - \log_{k}S^{2} \\ = \log_{k}2 - 2 + \log_{k}SS \\ = 4\log_{k}2 - \frac{1}{2}+\log_{k}S \\ = 4q(-\frac{1}{2})^{p} \end{array}$
4)	$log_{c}(2s \times 3) = log_{a}(2s \times 3)$ = log_{a}($\frac{2s \times 6}{2s}$) = log_{c}(2s + log_{c}6 - log_{a}2) = <u>p+1-d</u>


.

Question 46 (****)

 $y=3^{x-1}, x \in \mathbb{R}.$

- a) Sketch the graph of $y = 3^{x-1}$ showing the coordinates of all intercepts with the coordinate axes.
- **b**) Find to 3 significant figures the x coordinate of the point where the curve $y = 3^{x-1}$ intersects with the straight line with equation y = 10.

c) Determine to 3 significant figures the x coordinate of the point where the curve $y = 3^{x-1}$ intersects with the curve $y = 2^x$.

(a) (a)	$y = 3^{\alpha - 1}$	
$ \begin{array}{l} (b) & 3^{2+1} \\ \neg & \log_{2} 3^{2+1} \\ \Rightarrow (2n) \log_{2} 3 \\ \Rightarrow (2n) \log_{2} 3 \\ \neg & 2n \\ \neg & 2n$	$ \begin{array}{c} \begin{pmatrix} \mathbf{G} \\ \mathbf{G} \end{pmatrix} = \mathbf{J}^{\mathbf{A}} \\ \Rightarrow \begin{pmatrix} \mathbf{G} \\ \mathbf{G} \end{pmatrix} = \begin{pmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \end{pmatrix} = \begin{pmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \end{pmatrix} \\ \Rightarrow \begin{pmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \end{pmatrix} = \mathbf{J} \\ \mathbf{G} $	

Question 47 (****) Solve the following logarithmic equation

 $16\log_2 x + 4\log_4 x + 2\log_{16} x = 37, \quad x > 0.$

 $\begin{array}{c} \left| b(\log_{2}x + t)(\log_{2}x + 2\log_{4}x = 37 \right\rangle & \Rightarrow 31(\log_{2}x = 74 \\ \Rightarrow b(\log_{2}x + 4(\log_{2}x) + 2(\log_{2}x) = 37 \\ \Rightarrow b(\log_{2}x + 4(\log_{2}x) + 2(\log_{2}x) = 37 \\ \Rightarrow b(\log_{2}x + 2\log_{2}x + \frac{1}{2}\log_{2}x = 27 \\ \Rightarrow b(\log_{2}x + 2\log_{2}x + \frac{1}{2}\log_{2}x = 77 \\ \end{array} \right) \\ \end{array}$

x = 4

Question 48 (****)

In 1970 the average weekly pay of footballers in a certain club was $\pounds 100$.

The average weekly pay, $\pounds P$, is modelled by the equation

$P = A \times b^t,$

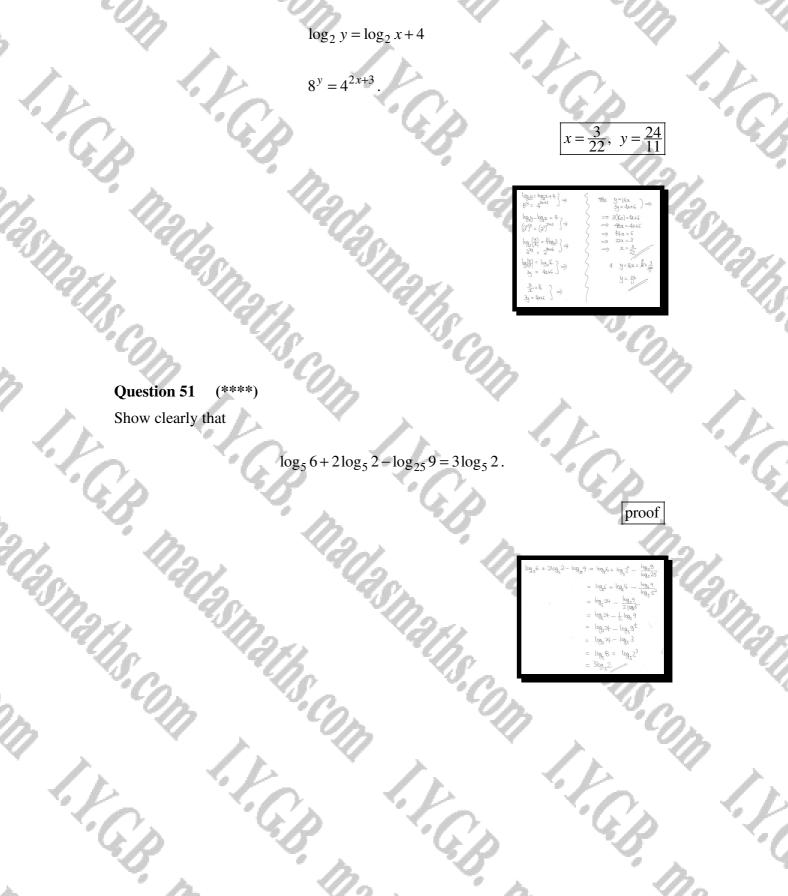
where t is the number of years since 1970, and A and b are positive constants.

- In 1991 the average weekly pay of footballers in the same club had risen to $\pounds740$.
 - a) Find the value of A and show that b = 1.10, correct to three significant figures.
 - b) Determine the year when the average weekly pay of footballers in this club will first exceed £10000.

h	
P= A×6t	(6) [P=100×1.1t]
t=0 P=100 ⇒ 100 = A×b° [100 = A)	$\Rightarrow 10000 = 100 \times 1.1t$ $\Rightarrow 100 = 1.1t$
 t=21 P=740 ⇒ 740=100×b² 7.4 = b²¹ 	
174 ≈ b	$(\Rightarrow 2 = t \log (1))$ $\Rightarrow t = \frac{2}{\log(1)}$
b ~ 1.09999 b ~ 1.10,5	e_{-} $\rightarrow t \sim 48.32$
(Jack) to equip of	(t= 49
-th original	1 : 1970 + 49 = 2019

, A = 100, 2019

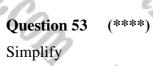
Question 49 (****)


Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.

- **a**) $6^{3x+2} = 30$.
- **b**) $\log_4(12y+5) \log_4(1-y) = 2$.
- c) $8^{2t} 8^t 6 = 0$.

<i>x</i> ≈ −0.033	$\overline{9}$, $y = \frac{11}{28} \approx 0$	0.393 , $t \approx 0.528$
12/16	a) $\begin{cases} 3x+2 \\ = 30 \\ \Rightarrow \log 6^{342} \\ \log 6^{-342} \\ \log 6^{-362} \\ \approx 30 \\ \Rightarrow 32+2 \\ = \frac{\log 30}{\log 6} \\ \frac{\log 30}{\log 6} \\ \end{cases}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $
~1	$\Rightarrow 3a = -6.107$ $\Rightarrow a = -6.0339$ $\Rightarrow (b^{2} - b^{2} - 6 = 0$ $\Rightarrow (b^{2})^{2} - (b^{2}) - 6 = 0$ $+$	$ \begin{array}{c} \Rightarrow \qquad 2 \cdot j + S = 6 - 6 \cdot g \\ \Rightarrow \qquad 2 \cdot g \cdot g = 1 \\ \Rightarrow \qquad g \cdot g \cdot g = \frac{1}{28} / c \cdot 6 \cdot 3 \cdot g \\ \end{array} $
1h	$\begin{array}{c} (\epsilon_{\Gamma} \ \alpha = p^{L} \\ \Rightarrow \ \alpha^{2} - \alpha - (6 = 0) \\ \Rightarrow \ (\alpha - 3\chi_{\alpha + 2}) = 0 \\ \Rightarrow \ \alpha = <_{-2}^{3} \\ \Rightarrow \ e^{L} = (e_{3}S) \\ \Rightarrow \ f \log \theta = (e_{3}S) \end{array}$	
9	$\Rightarrow t = \frac{\log 3}{\log 6}$ $\Rightarrow t \approx 0.528$	

Question 50 (****)


Solve the following simultaneous equations, giving your answers as exact fractions

Question 52 (****)

Solve the following logarithmic equation

 $\log_{10}(x+4) + \log_{10}(x+16) = 1 + 2\log_{10}x.$

 $\log_4 8 - \log_{27} 3$,

2112.81

giving the final answer as a simplified fraction.

log+8 - log_3	HUBBLINATIUE: logy	8 - log, 3.
= log 4 - log 27 \$	- logz	8 - log_327
= = 10944 - ± log 27	= log_2	$\frac{2^3}{2^2} - \frac{1}{\log_3 s^3}$
3	= <u>3log</u> 21og	12 . 1
4	= <u>3</u> 2	$-\frac{1}{3} = \frac{-7}{6}$

 $\frac{7}{6}$

2

 $x = 4, x \neq -\frac{16}{9}$

 $x \approx 9.00$

 $\begin{array}{ll} \text{(b)} & \log_2(\mathrm{eg}_{-1}) - 2\log_2(\mathrm{g}_{+1}) = 3 - \log_2(\mathrm{g}_{+2}) \\ \\ & \Rightarrow \log_2(\mathrm{eg}_{-1}) - \log_2(\mathrm{g}_{+1})^2 = 3\log_2 2 - \log_2(\mathrm{g}_{+2}) \end{array}$

 $\Rightarrow \log_2\left(\frac{8g}{(j^++g_{i+1})} - \log_2\left(j^++g_{i+1}\right) = \log_2\left(-\log_2\left(g_{i+1}\right)\right) \\ \Rightarrow \log_2\left(\frac{8g}{(j^++g_{i+1})} = \log_2\left(\frac{8}{g_{i+1}}\right) \\ \end{cases}$

 $\Rightarrow \frac{g_{y-1}}{(y^2+2y+1)} = \frac{g_{y+1}}{(y+4)}$ $\Rightarrow (g_{y-1})(y+4) = g(y^2+2y+1)$ $= \frac{2}{y}(y+4) = \frac{2}{y}$

 $\Rightarrow 8y^2 + 32y - y - 4 = 8y^2 + 16y + 8$ $\Rightarrow 15y = 12$

-6

 $+\frac{-\log_2 8}{\log_2 2}$ + $-\log_2 2^3$ 1 3 $\log_2 2$

7 y = 12/15

310g1 (2) - 310g2

(a) $e^{X}\left(\frac{1}{2}\right)_{\frac{3}{2-4}} = 0.312$

 $\implies \left[\operatorname{cd}_{\mathrm{loc}}(\underline{z})^{\frac{3-4}{3}} = \log_{\mathrm{loc}}(0.315) \right]$

 $= \frac{1}{2} \frac{1}{2} = \frac{\log_{\theta}(0.5)}{\log (\frac{1}{2})} = \frac{\log_{\theta}(0.5)}{\log (0.5)}$

-> = + = 1.666 ...

2-4= 4.099. 2=9.00

Question 54 (****)

Solve each of the following equations.

a)
$$6 \times \left(\frac{1}{2}\right)^{\frac{x-4}{3}} = 1.89$$
.

b) $\log_2(8y-1) - 2\log_2(y+1) = 3 - \log_2(y+4)$.

Question 55 (****

Simplify

5

 $\log_{\frac{1}{2}} 8 + \log_2 \frac{1}{8}$

giving the final answer as an integer.

Question	56	(****)
•		· · · · ·

>

Given that $a = \log_b 16$, express $\log_b(8b)$ in terms of a.

I.C.P.

S,

2

.

Ea = logile	(agb(BP) = logb B + logpp
Ea = logb2#	$\log_{b}(8b) \approx \log_{b}2^{3} + 1$
$\left(a = 4 \log_{b^2} \right)$	$\log_b(Bb) = 3\log_b^2 + 1$
1 log_2 = 49	$\log_b(g_b) = 3x(\pm a) + 1$
und	$\log_b(8b) = \frac{3}{4}a + 1$

Question 57 (****)

 $\log_a y = \frac{1}{3}$ and $\log_8 a = x + 1$.

Show clearly that $y = 2^{x+1}$

200

I.G.B.

I.Y.G.B

proof

:0m

madasn

I.C.B.

· [0g, g = 1]	· loga = 24	$f_{\text{MCE}} = \left(\theta_{\mathcal{J}^{(\mu)}} \right)_{\frac{1}{2}}$
⇒log.y = 5log.a	⇒logea = (arri)loge8	⇒y= 8 ^{t(a+1)}
⇒log y = log as	⇒ log ₈ a = log ₈ 8 ²⁴¹	$\Rightarrow y = (2^{\delta})^{\frac{1}{\delta}(2L+1)}$
$\Rightarrow \left[9 = \alpha^{\frac{1}{3}} \right]$	⇒ 0 = 8 _{3r+1}	=> y= 2 ^{2H}
10 1		× //

200

Created by T. Madas

2011

2

Question 58 (****)

It is given that

i.

 $p = \log_6 25$ and $q = \log_6 2$.

Simplify each of the following logarithms, giving the final answers in terms of p, q and positive integers, where appropriate.

 $\log_6(200)$.

ii. $\log_6(3.2)$.

iii. $\log_6(75)$.

p+3q, $p+3q$,	$4q - \frac{1}{2}p$, $p+1-q$
in.		· Co

P= log_25 a

	0000000000000
a)	$\log_{6} 2\infty = \log_{6} (25 \times 6)$ = $\log_{6} 25 + \log_{6} 8$
	= log_2s + log_23
	= leg_25 + 3leg_2
	= <u>p + 3q</u>
0)	$\log_{4}(3.2) \approx \log_{6}\left(\frac{3.2}{10}\right) \approx \log_{6}\left(\frac{16}{5}\right)$
	= log_616 - log_5
	= log_624 - log_252
	$= 4\log_{e}2 - \frac{1}{2}\log_{e}2S$
	$= 4q - \frac{1}{2}P$
	log_75 = log_(25×3)
	$= \log_{\epsilon} \left(\frac{25 \times 6}{2} \right)$
	$= \log_{10} 25 + \log_{10} 6 - \log_{10} 2$

Question 59 (****)

Le,

Solve the following exponential equation, giving the answer correct to 3 s.f.

 $2^{2x} - 2^x - 6 = 0.$

Question 60 (****)

5

Two curves C_1 and C_2 are defined for all values of x and have respective equations

 $y_1 = 8^x$ and $y_2 = 2 \times 3^x$.

Show that the x coordinate of the point of intersection of the two curves is given by

 $\frac{1}{3-\log_2 3}.$

proof

 $x \approx 1.58$

3 ALTHENATTING

asmaths.com

asmans.com

(****) **Question 61**

T. K.C.B. HARISSHARSON I. Y.C.B. HARISSHARSON I. olo. Solve the following logarithmic equation

ARSINGIN I.Y.C.B. MARASINANS.COM I.Y.C.B. MARASIN

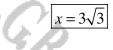
Question 62 (****)

The functions f and g are defined as

$$f(x) = 3(2^{-x}) - 1, x \in \mathbb{R}, x \ge 0$$

$$g(x) = \log_2 x, x \in \mathbb{R}, x \ge 1.$$

- **a**) Sketch the graph of f.
 - Mark clearly the exact coordinates of any points where the curve meets the coordinate axes. Give the answers, where appropriate, in exact form in terms of logarithms base 2.
 - Mark and label the equation of the asymptote to the curve.
- **b**) State the range of f.
- c) Find f(g(x)) in its simplest form.
 - $[1, (0,2)], (10g_23,0)], [y=-1], [-1 < f(x) \le 2], f(g(x)) = \frac{6}{x} 1$


a)	STARTING WITH THE GRAPH OF $y=2^{\frac{1}{2}}$ a its transformation
	$(a_1, y_2)^2 \qquad (a_2)^2 \qquad (a_3)^2 \qquad$
	HAVE TEANSLATING "DOWNWARDS" BY ONE OWN
	49 49=3(5)-1 (log_3o) 3(2)-1∞0 2 = ± 2 = 3 2 = log_33 2 = log_33
	$(b_{23,3,0}) \rightarrow a \begin{cases} 2^{x} = 3 \\ x = \log_2 3 \end{cases}$
6)	bodulos at the Alebe confit $-1 < f(b) \leq 2$
4	$-\left(\left(\mathfrak{g}(\boldsymbol{\lambda})\right) = -\left(\left[\log_{k}\boldsymbol{u}_{i}\right]\right) = -3\left(2^{-\log_{k}\boldsymbol{x}}\right) - 1$
	$= 3(2^{\log_2 \tilde{u}^1}) - 1$
	$= 3 \left(2 \log^{2}(4) \right) - 1$
	= 3 (±) -1
	$=\frac{3}{x}-1$

Question 63 (****)

Solve the following logarithmic equation

2

 $\log_3 x = \log_9 27.$

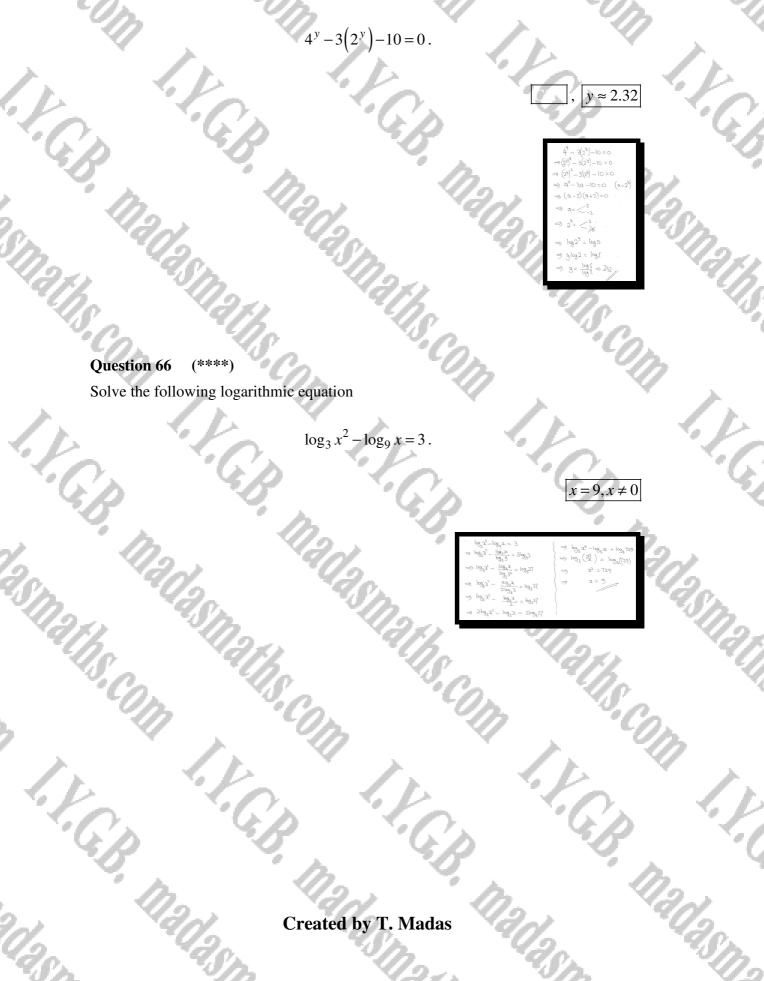
$\log_3 x = \log_3 x7$	{ -> log32 = 3 log33	(OR BY INSPECTION 3)
$\Rightarrow (og_3) = \frac{\log_2 27}{\log_2 9}$	< => lag32 = lag332	< 10332 = 103,92 <
=> log32 = log333	$\Rightarrow x \cdot 3^{\frac{3}{2}}$	$\left\{\begin{array}{c} (\underline{a}_3 z = \frac{3}{2} \\ ba_4 z = \frac{3}{2} ba_4 3 \end{array}\right\}$
10873s	$\Rightarrow 2 = (\sqrt{3})^3$	$\begin{cases} \log_3 z = \frac{3}{2} \log_3 z \\ \text{etc} \end{cases}$
=> log, 2 = 3 logst - 21983	= 2= 3/3	hund

Question 64 (****)

The points (2,10) and (6,100) lie on the curve with equation

 $y = ax^n$,

where a and n are non zero constants.


Find, to three decimal places, the value of a and the value of n.

USING THE COORDINATE TO SET SMUTCH-HOW EQUITIONS	28
$ \begin{pmatrix} \zeta_{1}(\omega) & \Longrightarrow & \mathcal{W} \subset \mathcal{Q} \times \mathcal{Q}^{H} \\ \begin{pmatrix} \zeta_{1}(\omega) & \multimap & \mathcal{W} \subset \mathcal{Q} \times \mathcal{Q}^{H} \\ \end{pmatrix} $	
DIVIDING. THE QUARTONS, SLOCE BY SIDE	
$\frac{\alpha^{44}}{\alpha^{4}} = \frac{100}{10} \qquad \qquad$	
⇒ log 3° = log 10	
-> hlag3 = 1	
\rightarrow h= $\frac{1}{\log 3} \approx 2.096$	
$Reflec: Po = a \times Z_{\mu}$	
$a = \frac{2^{n}}{2^{n}} = \frac{10}{2^{2} \cdot 96} = 2 \cdot 3342155$	
∴ A ≃ 2.339	
h ~ 2.0%	

a = 2.339, $n \approx 2.096$

Question 65 (****)

Solve the following exponential equation, giving the answer correct to 3 s.f.

Question 67 (****)

?p

F.G.B.

I.G.B.

Show that x = 4 and y = 8 is the only solution pair of the following logarithmic simultaneous equations

 $\log_2(3x+4) = 1 + \log_2 y \, .$

 $2\log_2 y = 3\log_2 x \, .$

2012

F.G.P.

proof

24

2

17202

Question 68 (****)

A population P of an endangered species of animals was introduced to a park.

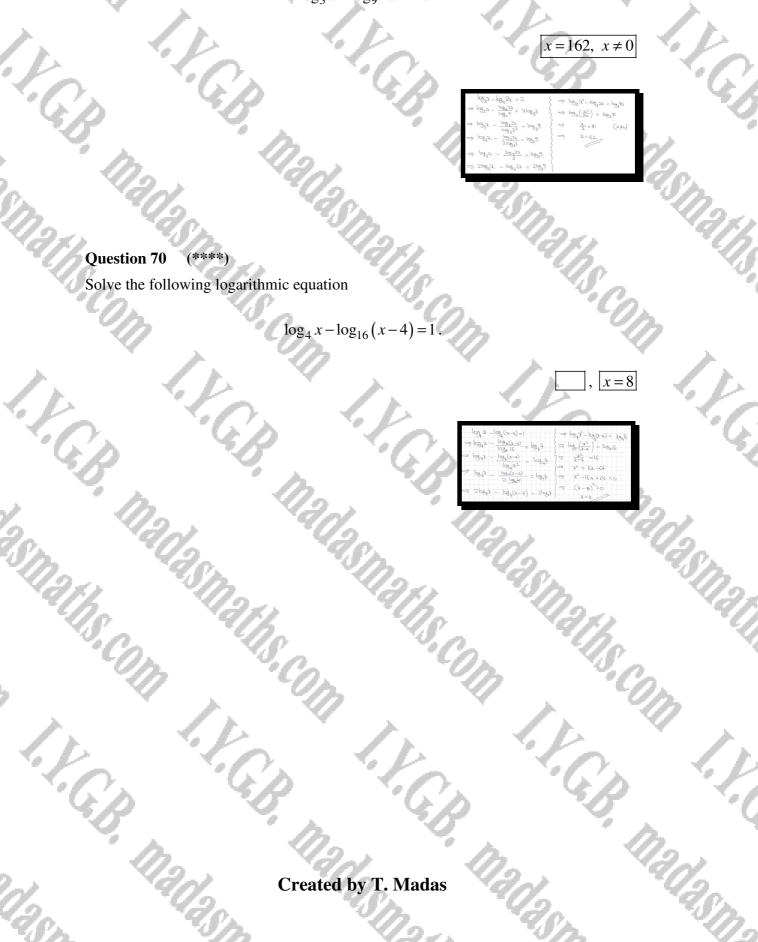
The population obeys the equation

$$P = \frac{125ka^t}{k+2a^t}, \ t \ge 0,$$

where k and a are positive constants, and t is the time in years since the species was introduced to the park.

Initially 100 individual animals were introduced to the park, and this population doubled after 5 years.

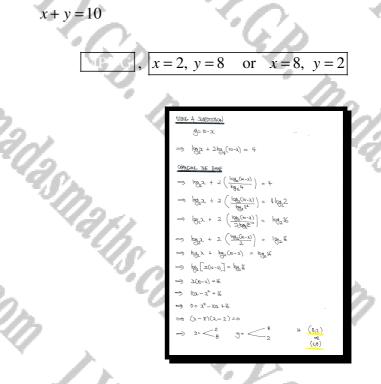
- **a**) Show that k = 8.
- **b**) Find the value of *a*, correct to 4 significant figures.
- c) Determine the value of t when the P = 400.
- d) Explain why this population cannot exceed 500.


1	0		
	$P = \frac{125 ka^2}{k+2a^4}, t \ge 0$	P= P=(W498) t = THF(W7498) t=0 , f= 100 t=5 , P= 200	$C = \frac{2\pi x a_{x} a_{y}}{a_{y}} = \frac{1}{2} 1$
a) (SING too, P=100 IN THE ABOUT FORMULA		
	$100 = \frac{125k \times q^0}{k + 2xq^0}$		
	100 = 1252 2+2		\implies $b + 4a^t = Sa^t$
	loo(k+2) = 125k		⇒ 16 = α ^t
	1251 = 1252 = 1200		⇒ log l6 = log a ^t
P	2∞ = 25k <u>k = 8</u>		$ = \int \log k = t \log \alpha $ $ = \int \log \frac{k}{\log 4} - \frac{\log k}{\log (2457)} - \frac{14 + 13370}{\log (12457)} $
	NO. Tons , P= 200 IN THE REVISED FORMULA		.: <u>te 14-13</u>
	$P = \frac{125 \times 8 \times a^{t}}{9 + 2 \times a^{t}}$ $2\infty = \frac{121 \times 8 \times a^{t}}{9 + 2 \times a^{t}}$		d) WORKIG AT THE GRAVIA $P = \frac{1000 a^4}{9 + 3x^4}$ when on services
	200 ≈ 1000005 8+205 ÷200		TO $P = \frac{500a^{4}}{4+a^{4}}$ Divide the Britch of the Riveria BY a^{\dagger} is only
1	$= \frac{5q^5}{8t 2a^5}$		$P = \frac{\frac{500}{a^4}}{\frac{4}{a^4}} \xrightarrow{p} P = \frac{500}{\frac{4}{a^4} + 1}$
ţ,	$8 + 2a^5 = -5a^4$		At the at the at the erec (the ation)
	8 = 3a ⁵		So de BELOURD PRACTICATING 2000, WHILE UNAN LA AVIA
	9 = <u>9</u>		AS THE POPULATION START FOUL 100 THE WITHING UNDER SOO & OWNER SECTION
Þ	$\alpha = \sqrt{\frac{\alpha}{21}} + 121728684 \qquad \therefore \frac{\alpha \approx 1}{2}$	217	

 $, |a \approx 1.217|, |t \approx 14.13|$

Question 69 (****)

Solve the following logarithmic equation


 $\log_3 x - \log_9 2x = 2.$

Question 71 (****)

Solve the following simultaneous equations

 $\log_2 x + 2\log_4 y = 4$

Question 72 (****)

Given that a is positive constant greater than 1, solve the following logarithmic equation

 $\log_a x = \log_{a^2} \left(x + 20 \right).$

	· · ·	262,0		
	- loga - 1	ay ₀ (x+20) 2		
	======================================	loga (2+20)		
	$\Rightarrow \log_{\theta} x_{r} = 1$	icg (2+30)		
	==) Q ² = 2 + 20			
	⇒ 2 ² -x - 20 ≈	0		
,	$\Rightarrow (\mathcal{I} - 2)(\mathcal{I} + q)$,)=0		
	y= <2 ≥			
	*		1 a=	s //

Question 73 (****)

Two curves C_1 and C_2 are defined for all values of x and have respective equations

 $y_1 = 7^x$ and $y_2 = 2 \times 5^x$.

Show that the x coordinate of the point of intersection of the two curves is given by

 $\overline{\log_2 7 - \log_2 5}$

Question 74 (****)

Solve the following exponential equation, giving the answer correct to 3 s.f.

 $3^{t+1} = 6 + 3^{2t-1}$

, $t = 1 \text{ or } t \approx 1.63$

proof

. As exponen

$\frac{17}{3} \xrightarrow{744} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} = 6 + 3^{2t-1}$	ATIC N 3 ^t
$ \Rightarrow 3^{t}x_{3}^{t} = 6 + 3^{a^{t}}x_{3}^{-1} \Rightarrow 3(3^{t}) = 6 + (3^{t})^{2}x_{3}^{-1} \Rightarrow 3a = 6 + \frac{1}{3}a^{2} $	[witter a= 3 ^{tc}]
Solute The quadrance was a $\Rightarrow q q = 16 + q^2$ $\Rightarrow 0 = q^2 - qq + 18$ $\Rightarrow (q - 3)(q - 6) = 0$ $\Rightarrow q = \sqrt{\frac{3}{5}}$	
\Rightarrow $5^{t_{\pm}} < \frac{3}{6}$ by inspection for $5^{t_{\pm}} = 3$ a	us/NO lass be 3 ^c =6
enve t-1 <u>se</u>	$\begin{array}{c} 3^{4} = 6\\ [9] 5^{4} = 1696\\ [10g] 4 = 1696\\ [10g] 4 = 163\\ [10g] 4 = 163\\$

Question 75 (****)

Solve the following simultaneous logarithmic equations

 $\log_{y} x = 5$

asma

 $\log_2 x = 2 + \log_2 y \, .$

Give the answer as exact simplified surds.

x =	$4\sqrt{2},$	$y = \sqrt{2}$
0		
$\left \begin{array}{c} \log \mathcal{Q}_{1} = S \\ \log_{2} \mathcal{X}_{2} = 2 + \log_{2} \mathcal{Y}_{2} \end{array} \right \neq 0$	< -44xe	45 = 4
[og., z = 5]og.y [og., z = log.y =2] =>	Ş	$y^{4} = 4$ $y^{2} = 4$ $y = +\sqrt{2}$
$\log_{3} \alpha = \log_{3} y^{5}$ $\log_{2} \left(\frac{\alpha}{2}\right) = 2\log_{2}^{2}$ \Longrightarrow	ş	$\alpha = (\sqrt{z})^2$
$\log_{2} (\frac{x}{3}) = \log_{2} (\frac{y}{3}) = \log_{2} (\frac{y}{3})$	ž	2 = 412
2 = 4 } = 7 2 VB710# (D) H=(2)	5	

Question 76 (****)

K.C.

Solve the following logarithmic equation

 $\log_4 x + \log_x 16 = 3, x > 0, x \neq 1.$

1+

log, 2 + log_ 16 =3 ($\Rightarrow (9-2)(9-()=0)$
$\Rightarrow \frac{\log_{4^{2}}}{\log_{4^{2}}} + \frac{\log_{4^{16}}}{\log_{4^{2}}} = 3$	⇒ 3=<2
$\Rightarrow \frac{1}{\log^4 x} + \frac{1}{\log^4 \eta_s} = 3$	→ log42=<2
$= \log_{42} + \frac{2\log_{4} + 3}{\log_{12} + 3}$	- 2= 4
$\Rightarrow \frac{y}{y} + \frac{z}{y} = 3 (9 = \log p)$	- 16
$\Rightarrow y^2 + 2 = 3y$	
$= y^2 - 3y + 2 = 0$	

Question 77 (****)

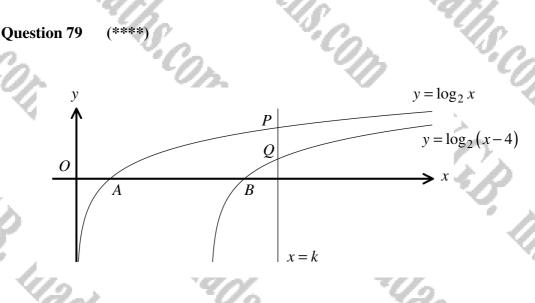
Find, to the nearest integer, the solution of the following exponential equation

$$\frac{1}{2} \times 4^{2x} = 500^{500}$$
.

 $x = \sqrt{2}, \quad y = \sqrt{8}$

$\frac{1}{2} \times U^{2\lambda} = SO^{So}$	=) = 1032 + 500 log 500
$\Rightarrow 4^{2\lambda} = 2 \times S_{00}^{500}$ $\Rightarrow \log 4^{2\lambda} = \log (2 \times S_{00}^{500}) \qquad ($	210g4 ⇒ 2 = (121
=> 2x/0g4 = 10g2 + 10g 500 500	ntarest intiger
=) 2210g 4 = log 2 + 500 log 500	

Question 78 (****)


Solve the following simultaneous logarithmic equations.

 $3\log_8(xy) = 4\log_2 x$

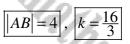
 $\log_2 y = 1 + \log_2 x$

<u> </u>	
PROCEED AS ROUDUS	2= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\Rightarrow \begin{cases} 3 \log_8(ay) = 4 \log_2 x \\ \log_2 y = 1 + \log_2 x \\ \log_2 z \end{cases} \xrightarrow{\text{CHYMCE OF BASE RULE}} \\ \log_2 z = \frac{\log_2 x}{\log_2 a} \end{cases}$	$\therefore (\underline{\alpha}_{1}, \underline{\beta}) = (\sqrt{2}, \sqrt{2})$
$\Rightarrow \begin{cases} 3 \frac{(\log_2(u_2))}{(\log_2 \theta)} = 4 \log_2 2 \\ \log_2 \theta = \log_2 2 + \log_2 2 \end{cases}$	AITRANTINE / UNRINTICAL
$\Rightarrow \begin{cases} \mathcal{S}\left[\frac{\log_{2}(x_{0})}{\mathcal{S}(a_{0},x^{*})}\right] = \log_{2} 2^{\frac{1}{2}} & \left[\log_{2} 8 - \log_{2} 2^{\frac{1}{2}} - 3\log_{2} 2\right] \\ \log_{3} 9 & = \log_{2}(x_{0}) \end{cases}$	$\begin{array}{c} & \underset{\mathcal{C} \in \mathcal{C}}{\longrightarrow} \\ & \underset{\mathcal{C} \in \mathcal{C} \\ & \underset{\mathcal{C} \in \mathcal{C}}{\longrightarrow} \\ & \underset{\mathcal{C} \to \mathcal{C} \\ & \underset{\mathcal{C} \to \mathcal{C}}{\longrightarrow} \\ & \underset{\mathcal{C} \to \mathcal{C} \\ & \underset{\mathcal{C} \to \mathcal{C} \\ & \underset{\mathcal{C} \to \mathcal{C}}{\longrightarrow} \\ & \underset{\mathcal{C} \to \mathcal{C} \\ & \underset{\mathcal{C} \to $
$(\log_{10}(2u)) = \log_{10}(2^{4})$	$= \sum_{i=1}^{n} \frac{ a_i _{i=1}^n}{ a_i _{i=1}^n} $
$\int \frac{1}{\log_2 y} = \log_2 2t$	$\implies \sum_{i=1}^{n} \frac{\log^2 \pi}{2} + \frac{\log^2 \pi}{2} + \frac{\log^2 \pi}{2} + \frac{\log^2 \pi}{2}$
$= \int_{0}^{\infty} \frac{dy}{y} = \frac{2x}{2}$ Solute as providence on exertitione.	$\Rightarrow \begin{cases} x + y = 4x \\ y = 1 + x \end{cases} = \frac{\log(4)}{\log^2 - 1}$ $\Rightarrow \begin{cases} y = 3x \\ y = x + 1 \end{cases}$
$\rightarrow 2 = \frac{\alpha^3}{2}$	⇒ 3x = ×+1
$\Rightarrow 0 = x^3 - 2x$	$\implies \qquad \qquad$
$\Rightarrow 0 = \mathcal{L}(\mathcal{U}^2 - 2)$ $\Rightarrow 0 = \mathcal{L}(\mathcal{U} - \sqrt{\mathcal{L}})(\mathcal{U} + \sqrt{\mathcal{L}})$	• $\log_2 \alpha = \frac{1}{2}$ • $\log_2 y = \frac{3}{2}$ $\log_2 \alpha = \frac{1}{2}\log_2 2$ · $\log_2 y = \frac{3}{2}\log_2 2$ $\log_2 \alpha = \log_2 2^{\frac{1}{2}}$ · $\log_2 y = \log_2 2^{\frac{1}{2}}$
	$\frac{1}{2-2^{\frac{1}{2}}-\sqrt{2}} \frac{1}{2} = 2^{\frac{1}{2}} = 2^{\frac{1}{2}}$

入

The figure above shows the graphs of the curves with equations

 $y = \log_2 x$, and $y = \log_2 (x-4)$.


The points A and B are the respective x intercepts of the two graphs.

- a) Describe the geometric transformation which maps the graph of $y = \log_2 x$ onto the graph of $y = \log_2 (x-4)$.
- **b**) State the distance *AB*.

The straight line with equation x = k, where k is a positive constant, meets the graph of $y = \log_2 x$ at the point P and the graph of $y = \log_2(x-4)$ at the point Q.

c) Given that the distance PQ is 2 units determine the value of k.

, translation, 4 units to the "right"

 $\begin{array}{l} \text{(b)} & \text{Therappol}_{1} \ \text{(b)} \ \text{($

Question 80 (****)

The radioactive decay of a phosphorus isotope is modelled by the equation

$$m = m_0 \times 2^{-0.2t}, t \ge 0$$

where m is the mass of phosphorus left, in grams, and t is the time in days since the decay started. The initial mass of phosphorus is m_0 .

a) Find the mass of the phosphorus left, when an initial mass of 20 grams is left to decay for 10 days, according to this model.

An initial mass, m_0 grams, of this type of phosphorus decays to $\frac{m_0}{c_1}$ grams in T days.

b) Find the value of T.

After N days have elapsed, less than 1% of this type of phosphorus remains from its initial mass m_0 .

c) Find the smallest integer value of N.

m = 5, T = 30, N = 34

(c) $(W_{1} \approx W_{10} \times 2^{-0.2 t})$ $W_{1} = 20 \times 2^{-0.2 t}$ $W_{1} = 5 \times 2^{-0.2 t}$ $W_{1} = 5$	(a) $ \begin{split} & \psi_{1} = \psi_{0} \times 2^{-6.2\xi} \\ & \frac{\psi_{0}}{6\tau} = \psi_{0}^{*} \times 2^{-4.2T} \\ & \frac{1}{6\tau} = \psi_{0}^{*} \times 2^{-4.2T} \\ & \frac{1}{6\tau} = 2^{-6.2T} \\ & \frac{1}{2} = 2^{-6.2T} \\ & \frac{1}{2} = 2^{-6.2T} \\ & -6 = -6.2T \\ & T = 30 \end{split} $
$ \begin{array}{l} \textbf{(e)} & \textbf{W} \in \boldsymbol{W}_{0} \times 2^{-0.2 \text{f}} \\ \Rightarrow \frac{\textbf{W}_{0}}{100} = \boldsymbol{W}_{0} \times 2^{-0.2 \text{f}} \\ \Rightarrow \frac{1}{100} = 2^{-0.2 \text{f}} \\ \Rightarrow (\textbf{Q}(\frac{1}{100}) = \log(2^{-0.2 \text{f}}) \end{array} $	$\begin{cases} \Rightarrow \log(\frac{1}{100}) = -6.3t \log 2 \\ \Rightarrow t = -\frac{\log K_0}{-2 \log 2} \\ \Rightarrow t \approx 33.215 \\ \therefore N = 34 \end{cases}$

(****) Question 81

Solve the following logarithmic equation

 $\log_4 x - 2\log_x 4 = 1.$

adasm

Question 82 (****)

4

K.C.

Solve the following simultaneous logarithmic equations.

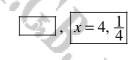
 $\log_2(y-1) = 1 + \log_2 x$

 $2\log_3 y = 2 + \log_3 x \,.$

122	
Places is founds	
$\begin{cases} \log_2(y-1) = 1 + \log_2 z \\ 2 \log_3 y = z + \log_3 z \end{cases} =$	\[\left(\mathbf{Q}_2(\mathbf{Q}_1) = \mathbf{D}_2 \mathbf{Z} + 1 \mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{Q}_2(\mathbf{Q}_1 - 1) = \mathbf{D}_2 \mathbf{Z} + 1 \mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{D}_2 \mathbf{Q}_2 + 1 \mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{D}_2 \mathbf{Q}_2 + 1 \mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{D}_2 \mathbf{X} \\ \left(\mathbf{D}_2 \mathbf{N} \\ \left(\mathbf{D}_2 \mathbf{D}_2 \mathbf{D}_2 \mathbf{D}_2 \mathbf{D}_2 \mathbf{N} \\ \left(\mathbf{D}_2 \mathbf{D}_
	$ = \begin{cases} \log_2(y-1) = \log_2(2z) \\ \log_2(y^2) = \log_2(2z) \end{cases} $
	$\Rightarrow \begin{cases} \log_2(y_{-1}) = \log_2(2x) \\ \log_3 y^2 = \log_2(2x) \\ \end{cases}$
ERTERIOR THE LOGARITHS IN EACH	4 Equitions
$y^2 = qx$ $y^2 = qx$ $y^2 = \frac{y^2}{y^2} = \frac{2}{qy}$	HE FOUNTIONS SIDE BY SOLE Z
⇒ 2y ² = 9. ⇒ 2y ² - 9. ⇒ (2y-3)(+9=0
⇒ y = <	3 ¥2
$\Rightarrow a_z < \\ \therefore (v_{i,3})$	$\frac{\frac{3}{2}}{2} = \frac{1}{4}$ or $\left(\frac{1}{4}, \frac{1}{2}\right)$
	TTI ARE C.W

x = 1, y = 3 or $x = \frac{1}{4}, y = \frac{3}{2}$

6


 $x = \frac{1}{4}, 16$

1+

Question 83 (****)

Solve the following logarithmic equation

 $\frac{\log_2 128 - \log_2 8}{\log_2 x} = \log_2 x \,.$

10g2128-10g2 = 10g22	$ \begin{cases} \Rightarrow flog_{Z} = (g_{2}\chi)^{2} \end{cases} $
- (og 2 (128) = = log_22	$ \begin{array}{c} (\log_2 \alpha)^2 = 4 \\ \Rightarrow (\log_2 \alpha) = 2 \end{array} $
$\Rightarrow \frac{1}{\log_2 2} = \log_2 2$ $\Rightarrow \frac{1}{\log_2 16} = (\log_2 2)^2$	$\int \frac{\partial z^2}{\partial z^2} = -2$ $\Rightarrow \log_2 z = -2$
$\implies (\operatorname{og}_{z}^{2^{k}} = (\operatorname{log}_{z}^{\chi})^{2^{k}}$	-2loy_2 4
	14

Question 84 (****)

12

Two curves C_1 and C_2 are defined for all values of x and have respective equations

 $y_1 = 9^x$ and $y_2 = 6 \times 5^x$.

Show that the x coordinate of the point of intersection of the two curves is given by :

 $\frac{1+\log_3 2}{2-\log_3 5}$

, proof

(****+) **Question 85**

Smarns-Com Free

1121128

I.V.G.B.

201

13×1 911	400	dri	
Question 85 (****+)	S.C.	20	1
Solve each of the following	equations.	5 °C	b .
			5
a) $\frac{1}{2} \times 4^{3x+1} = 600^{600}$.	×	1 Y.	× ,
	4.1	10	
b) $\log_3(2y+5) = 1 - \log_3(2y+5) = 1 + \log_3(2y+$	g ₃ y.	60	
1. C. C.D.	40		1
60 0	<u>,</u>	x = 922.7152024, y	$r=\frac{1}{2}$
	$p \leq q$	<u>n</u>	20
0. 12.	a) MANDRICATE AS GUIDAU $\Rightarrow \frac{1}{2} \times 4^{3CH} = 600^{6m}$	$\Rightarrow 2y^2 + 5y - 3 = 0$ $\Rightarrow (2y - 1)(y + 3) = 0$	20
Sp. Co.	$\begin{array}{l} \overset{\sigma_{\alpha}}{\longrightarrow} \log_{\alpha} \left[= \left(\overset{\mu_{\alpha}}{\longrightarrow} \chi_{\alpha}^{2} \right)_{\alpha} \log_{\alpha} \left(\overset{\mu_{\alpha}}{\longrightarrow} \chi_{\alpha}^{2} \right)_{\alpha} \right] & \longleftrightarrow \\ \varsigma_{\alpha} \left[\underset{\alpha}{\longrightarrow} \eta_{\alpha}^{2} \right] \stackrel{\mu_{\alpha}}{\longrightarrow} \left[\underset{\alpha}{\longrightarrow} \eta_{\alpha}^{2} \right]$	A THIS MALES THE GOAD ARIANT NEATUR	eDituis
Var Sp	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	$\frac{y_{\pm}-\frac{1}{2}}{2}$	
100 421	3x+1 = 2764.145667		
· Co · CO	$\Rightarrow \alpha = \frac{1}{22 \cdot 715 \cdot 2024 \cdots}$		
~0m ~0	b) Anades alling. Tilt buth or loss i) logs (29,+5) = 1 - logsy		ろ
	$\Rightarrow \log_3(2g_3+s) + \log_3 y = 1$ $\Rightarrow \log_3[g_3(2g_3+s)] = \log_3 3$		
1. 6.12	$\Rightarrow \log_3 \left[2y^2 + 5y \right] = \log_3 2$ $\Rightarrow 3y^2 + 5y = 3$		
· V · · · · ·		10	-
A Ch Ch	So.	- 62)
	1 SA		
a h	12. 4		m.
2. 420	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12.	AN.
Sp 420	Sh	905	
Var Vn	4200	Sp.	~
100 21	2 00	121	
· · Co · · ·	P S		0
	°Co.	Up V	Co
	~m	×	-Up
			N N
5. K.	· · · ·		
	0 5.0	· · · · · · · · · · · · · · · · · · ·	ろ

I.F.C.P.

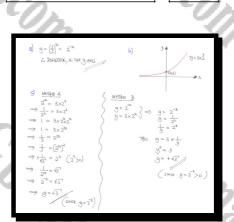
Ths.com

The COL

I.G.S.

Madasman

L. C.B. Madasm


Question 86 (****+)

$y = \left(\frac{1}{2}\right)^x$.

- a) Describe the geometric transformation which maps the graph of the curve with equation $y = 2^x$, onto the graph of the curve with equation $y = \left(\frac{1}{2}\right)^x$.
- **b**) Sketch the graph of $y = 3 \times 2^x$.

The curve with equation $y = \left(\frac{1}{2}\right)^x$ intersects the curve with equation $y = 3 \times 2^x$ at the point *P*.

c) Determine, as an exact simplified surd, the y coordinate of P.

, reflection in the y axis , $y = \sqrt{3}$

(****+) **Question 87**

I.C.B.

I.G.B.

Solve each of the following logarithmic equations, giving the answers in exact simplified form where appropriate.

ed form w... $\log_2(256x^2) = 1 + 2\log_2\left(\frac{1}{2}x^4\right).$ a)

b) $2\log_2\left(\frac{y}{2}\right) + \log_2\sqrt{y} = 8$.

	42.	do.
a)	PLOCEED TO EVUNINATE-THE VOGAETTHUS	WINH A SIMILYE WETHED TO PHYET (1)
	$ \begin{array}{l} & \mapsto & \log_2(2\pi\Omega^2) = (+2\log_2(\frac{1}{2}x^4)) \\ & \longrightarrow & \log_2(2\pi\Omega^2) = \log_2 2 + \log_2(\frac{1}{2}x^4)^6 \\ & \mapsto & \log_2(2\pi\Omega^2) = \log_2 2 + \log_2(\frac{1}{2}x^4) \\ & \longrightarrow & \log_2(2\pi\Omega^2) = \log_2(2\times\frac{1}{2}x^4) \\ & \longrightarrow & \log_2(2\pi\Omega^2) = \log_2(\frac{1}{2}x^4) \\ & \mapsto & \log_2(2\pi\Omega^2) = \log_2(\frac{1}{2}x^4) \\ \end{array} $	$ \begin{array}{rcl} & \Rightarrow & 2\log_2\left(\frac{d_1}{d_1}\right) + \log_2\sqrt{g} & = 8 \\ & & & & \\ & $
	EXTRACTING LOGS	EXTERATING: FROM THE LOGS
	\Rightarrow sex ² = $\frac{1}{2}x^8$	$\Rightarrow \frac{y_{2}}{4} = 25c$
	$\implies \frac{1}{2}x^8 - 256x^2 = D$	$\Rightarrow g^{\frac{1}{2}} = 1024$
	⇒ 2 ⁸ - 512x ² =0	$\Rightarrow (y^{\frac{1}{2}})^{\frac{2}{3}} = 1024^{\frac{2}{3}}$
	$\Rightarrow 3^2(\tau^2 - S(2) = 0$	
	=) $3^6 - 512 = 0$ $(3^2 \neq 0$ Belonise of THE loss)	· · · · · · · · · · · · · · · · · · ·
	\Rightarrow $(3^2)^3 = 512$ (512 Give 2005) BOT IT DOG	⇒ y = 4*
	→ J ² = 8 = J	⇒ y = 16
	$\Rightarrow \Delta_{\pm} \pm \sqrt{8}' = \pm 2\sqrt{2}'$	

 $x = \pm \sqrt{8}$

I.C.B.

M2(12)

y = 16

1:0.

1

Created by T. Madas

N.

Question 88 (****+)

.Y.C.F

, Y.G.B.

I.G.p

Solve the following simultaneous logarithmic equations.

 $\log_2\!\left(x^2y\right) = 2$

$$11 + \frac{1}{2}\log_2 y = 3\log_2 x$$

S.Com

 $y = \frac{1}{16}$

x = 8,

I.F.C.p

1:0.

nadasn

MANNON ME WITH COMMITTING AN AND AND AND AND	
MANIPULATE THE QUATTONS, SO WE CAN DEMOUS THE LOGS	-ALTENATUR METHOD/APPEDACH
$ \begin{array}{c} \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = 2 \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = 2(\eta_{0_{k}}2) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = 2(\eta_{0_{k}}2) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = (\eta_{0_{k}}2) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = (\eta_{0_{k}}(2\tilde{\zeta}_{k})) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) = (\eta_{0_{k}}(2\tilde{\zeta}_{k})) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}(2\tilde{\zeta}_{k})) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k}}(2\tilde{\zeta}_{k})) \\ \xrightarrow{ \rightarrow 0} & (\eta_{0_{k$	Similar with the equation of process $[o_{g_1}(x^i_g) = 2$ $(o_{g_2}(x^i_g) = 2$ $(o_{g_2}(x^i_g) = 2)$ $(i) + \frac{1}{2}(o_{g_2}(x - 1)o_{g_2}(x - 1)o_{g_2}($
$\frac{\text{SOUNGS BY DEWSOL}}{y_{x,x}^{2} = x^{6}} \xrightarrow{2} \qquad \qquad$	$\begin{array}{c} 2x + y = 2 \\ -22 - y = -6x \end{array} \xrightarrow{?} \qquad \qquad$

Created by T. Madas

COM

N.C.

Question 89 (****+)

Solve each of the following equations, giving the final answers correct to three significant figures, where appropriate.

a) $4 \times 3^{x+2} = 3 \times 4^x$.

F.G.P.

I.G.B.

b) $\log_a(1+\sqrt{x}) = \frac{1}{2}\log_a(9+\sqrt{16x}).$

7 7475 IO DA BOIH 21DR
= 3×4 ²
$\left(\frac{3+2}{3}\right) = \log \left(3 \times 4^{3}\right)$
log 3 ²⁶² = log 3 + log 42
(X+Z) log3 = log3 + Sclog4
alogiz + 2logiz = logiz + alogit
2log2_log3_=2log4_2log3
$\log 3 = \infty (\log 4 - \log 3)$
$\frac{\log 4 + \log 3}{\log 4 - \log 3} = \frac{\log 12}{\log \frac{1}{2}} \simeq \frac{8 \cdot 64}{\log \frac{1}{2}}$
0 0

⇒ 4x3³⁺² 3

 $x \approx 8.64$

y = 16

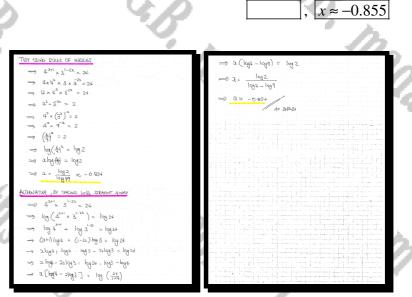
,GB

Mana.

Question 90 (****+)

N.C.B. Madasm

COM


Smaths,

I.V.G.B.

Solve the following exponential equation.

 $4^{x+1} \times 3^{1-2x} = 24 \; .$

Give the answer correct to 3 decimal places.

22

The Com

. G.D.

5

.

11202sm

00

Madasn

I.F.G.B.

Created by T. Madas

2017

K.C.A

äsillätils.col

. G.D.

6

(****+) **Question 91**

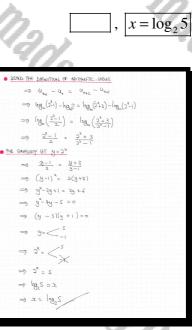
>

Solve the following logarithmic equation.

 $2\log_2 x + \log_2 (x-1) - \log_2 (5x+4) = 1.$

Question 92 (****+)

Y.G.B. May


I.G.B.

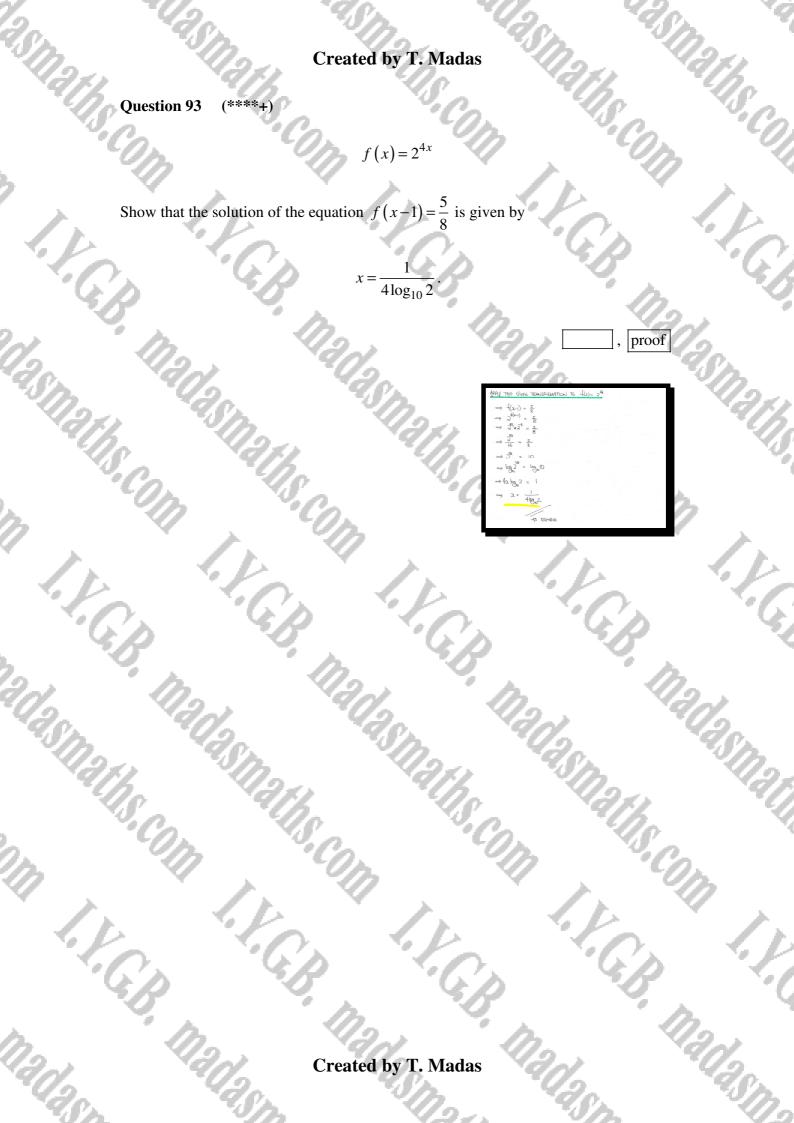
The following three numbers

 $\log_{10} 2$, $\log_{10} (2^x - 1)$, $\log_{10} (2^x + 3)$,

are consecutive terms in an arithmetic progression.

Determine the value of x as an exact logarithm, of base 2.

I.C.P.


COM

m21/2

Created by T. Madas

D

R.

Question 94 (****+)

I.C.B.

aths

I.V.G.B.

12,

 $2\log_2 x - \log_2 y = 1$

 $\log_2\!\left(4x\sqrt{y}\right) = 1.$

²0_{2,81}

Solve the above simultaneous logarithmic equations, giving the final answers as exact powers of 2.

 $x = 2^{-\frac{1}{4}}, \ y = 2^{-\frac{3}{2}}$

ths.com

USING THE RUGHT OF LOGARTH	21
$ \begin{array}{l} \bullet & 2 g_{z}^{2} - g_{y}^{2} = 1 \\ \Rightarrow & g_{z}^{2} - g_{z}^{2} = g_{z}^{2} = g_{z}^{2} \\ \Rightarrow & g_{z}^{2} \left(\frac{2^{2}}{3}\right) = g_{z}^{2} \\ \end{array} $	• log. $(4\alpha \sqrt{y}) = 1$ $\Rightarrow \log_2(4\alpha \sqrt{y}) = 1 \times \log_2 2$ $\Rightarrow \log_2(4\alpha \sqrt{y}) = \log_2 2$
$\Rightarrow \frac{\partial^2}{\partial x^2} = 2$ $\Rightarrow 2^2 \pi - 2q$	$\Rightarrow 42\sqrt{9} = 2$ $\Rightarrow 16x_{29}^{2} = 4$ $\Rightarrow x^{2} = \frac{1}{49}$
$2y = \frac{1}{4y}$ $\Rightarrow y^2 = \frac{1}{4y}$ $\Rightarrow g = +\sqrt{\frac{1}{6}}$	(очинове коју и пот значка)
$\Rightarrow y = + e^{\frac{1}{4}}$ $\Rightarrow y = (z^{2})^{-\frac{1}{4}}$ $\Rightarrow y = 2^{\frac{1}{4}}$	
NOW WE ON OBJANN OL	
$\Rightarrow a^2 = 2y$ $\Rightarrow a^2 = 2 \times 2^{-\frac{3}{2}}$	
$ \Rightarrow x^{k} = 2^{-\frac{k}{2}} $ $ \Rightarrow \alpha = +\sqrt{2^{-\frac{k}{2}}} $ $ \Rightarrow \alpha = +(2^{-\frac{k}{2}})^{\frac{k}{2}} $	(otthewat log_x is ner entitiente)
$\rightarrow a = p^{-\frac{1}{2}}$	

21/15.000

I.C.

$\begin{split} & \log_2\left(4 q_1^{-1} = 1 \right) \\ & \log_2\left(4 + \log_3 x + \log_3 (q_1^{-1} + 1) \right) \\ & \log_2\left(2 + \log_2 x + \log_2 q_1^{-1} + \log_2 q_1^{-1} \right) \\ & \log_2\left(2 + \log_2 x + \log_2 q_1 + 1 \right) \\ & \log_2\left(2 + \log_2 x + \log_2 q_1 + 1 \right) \\ & \Omega + \log_2 x + \log_2 q_2 - 2 \right) \\ & \log_2 x + \log_2 q_1 + 2 \right) \\ & \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + 2 \right) \\ & \Omega + \log_2 q_1 + \log_2 q_2 + \log_2 $
Hgz2 + lggz + ±lggy=1 2 + lggz + ±lgyy=1 4 2lggz + lggy=2 - Dlggz + lggzy=-2 lggzy
Hgz2 + lggz + ±lggy=1 2 + lggz + ±lgyy=1 4 2lggz + lggy=2 - Dlggz + lggzy=-2 lggzy
f 1 210g2 + 10g2y=2 - Dlog2 + 10g2y=-2 10g2y
Dlog2e + log2y = −2 log2y
1-324
1-324
and the second sec
litues
and the second strands a second prime strands
/
/
· · · · · · · · · · · · · · · · · · ·
ار از از از این

ne,

I.F.C.P.

COM

INadası

1+

aths com

Question 95 (****+)

Solve the following logarithmic equation

 $5 \times 5^{\log x} + 5^{2 - \log x} = 30, \quad x > 0.$

1. 4.1	1. V.	x = 1, x = 10	61
S.V. S.M.		SP	- C
S.C. S.A		This is such tails of quality out managements 	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A	$ = 2 \times 2 \frac{2}{3} \times 2 \times $	
	nadasmark	LET S ^{KOR} = X	2
(2. · · · 2.)	1900 -	$\Rightarrow X_y + 2 = e \times$	9 ₅₀
482 402	982	$\Rightarrow \chi_{r} - \varrho \times + 2 = 0$	
Var Sh	102	$\overset{g}{\to} \overset{g}{\to} \overset{g}{\sim} \overset{g}{\leftarrow} \overset{g}{\downarrow} \overset{g}{\to} \overset{g}{\leftarrow} \overset{g}{\downarrow}$	
100 V22	, Th.	BY INGREETICN & INCLUSE THAT IN THE ASSAULTS OF BACE STATE BACE II D	
N.C. Th	S.	$\frac{\partial \partial g}{\partial x} = 0 \qquad \qquad \int_{O_{0}}^{O_{0}} \chi \ll 1$	
Con to	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		2
$h \sim 10$	Op.	10 V	
I.L. YA		1. J.	- Ye.,
10 C	5 V	S.C.	
- GD - O		S SP	
	m 70		_
$\frac{1}{2}$	nadasmari	madasmo-	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·420	120	06
	The second	·420	1
dry no	211	in.	×
48. 91	8 90	· · · · · · · · · · · · · · · · · · ·	
· · · Co. · ·	S. S.	Co. De	
9m 407	COL	"m "C	2.
	~0		m.
1. 44		4.15	¥
the the	2. 6.1.	. S.O.	
	$\rho \to 0$	60	1
~ <i>G</i>	S . S	$q \sim q$	
h ' h	100.	h l	2.
02. 42.	Created by T. Madas	(22) X	90
· 90/2 · 10/2	Created by 1. Madas		10

Question 96 (****+)

It is given that

 $\sum_{r=1} \log_a x^r$  $\left(\log_a x\right)^r$ ,

where a and x are positive numbers such that  $x \neq a$ ,  $x \neq 1$  and a > 1.

x = a

Show clearly that

ŀ.G.B.

I.C.P.

## , proof

E.B.

S,

5

mada.

### $\Rightarrow \sum_{i=1}^{n} \log_{i} x^{i} = \sum_{i=1}^{n} (\log_{i} x)^{i}$

- $\longrightarrow \log_{q} x + \log_{q} x^{2} + \log_{q} x^{3} = (\log_{q} x)^{l} + (\log_{q} x)^{2} + (\log_{q} x)^{3}$
- $= \log_{n} x + 2\log_{n} x + 3\log_{n} x = \log_{n} x + (\log_{n} x)^{2} + (\log_{n} x)^{3}$
- $\implies e^{i} e^{j} e^{i} = e^{j} e^{i} + e^{i} e^{j} + e^{i} e^{j} + e^{i} e^{j} + e^{i} e^{i} + e^{i} + e^{i} e^{i} + e^{i}$
- $\Rightarrow (\log_{q} x)^{2} + (\log_{q} x)^{2} S(\log_{q} x) = 0$
- THUS IS A CUBIC IN boy , which perforces to A pumpratic -AFTRE FACTORIZENCE A COMMON FACTOR
- $\implies (\log^4 x) \left[ (\log^4 x)_5 + (\log^4 x) 2 \right] = 0$
- NOW  $\log_{Q} X = 0 \implies X = 1$   $(X \neq 1)$
- BY THE QUADRATIC PODULA WE CRITIN  $\implies \log_{0} x = \frac{-1 \pm \sqrt{1^{2} - 4x |x(-s)|^{2}}}{1 + \sqrt{1^{2} - 4x |x(-s)|^{2}}}$
- $\longrightarrow \log^{q} x = \frac{5}{-177 + 127} = \frac{5}{100}$
- a 1±52 - a - 2 - A Expute

Question 97 (****+)

Smarns com trees

lasmarns.com  $2\log_2 x + \log_2 (x-1) - \log_2 (5x+4) = 1.$ 



asinans.com

Ś

G

2

Madasman

I.V.C.B. Madasm

Created by T. Madas

.C.P.

#### (****+) **Question 98**

i.G.B.

I.C.P.

Solve the following simultaneous logarithmic equations

$$y^{\log x} = 100$$

$$\log \sqrt{\frac{xy}{10}} = 1$$
,

given further that  $x, y \in \mathbb{R}$ , with x > 0, y > 0.

112.				An.
4	$y^{\log x} = 100$			1
	1.1.	- S.	Ka	
	$\log \sqrt{\frac{xy}{10}} = 1,$		65	
	¥ 10	>	10	
, with x	>0, y>0.			ろ
D.		D.		21
X Ə	x = 10,	y = 100, or t	he other way r	ound
-4	20.		0.	
	2000	MANIAULATINS- THE E		
	121	log 1 = 1	$\begin{cases} \implies \log(y^{l}gx) = \log\log \\ \log(y^{l}gx) = \log\log \\ \log \sqrt{\frac{2\pi}{2}} = \log \\ \log \sqrt{\frac{2\pi}{2}} \end{cases}$	Э.
	- 20	$= (\underline{y}_{\underline{y}})(\underline{z}_{\underline{y}})$ $= \sqrt{\frac{\underline{z}_{\underline{y}}}{\alpha_{1}}}$	$\left\{\begin{array}{c} 2\\ \end{array}\right\} \Longrightarrow \left(\log \alpha\right) \left(\log y\right) = 2\\ \arg y = 1000 \end{array}$	3⇒
2		(logz)(logy) = 2 log(ay) = logl	$2 \qquad \begin{array}{c} 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	
0		$\begin{array}{c} XY = 2 \\ X + Y = 3 \end{array}$	$\Rightarrow X^{2} + XY = 3X$ $\Rightarrow X^{2} + 2 = 3X$	1
	7		$\Rightarrow X^{2} - 3X + 2 = 0$ $\Rightarrow (x - 2)(x - 1)$	
	· · · · ·		$\exists X = <_2^1 Y = <_1^2$	
	1. 1.		$\exists \log x = < \frac{1}{2} \log y = < \frac{2}{1}$	
5		-	$\omega_{\alpha} > z_{\alpha} < \omega_{\alpha}$	
	10	×	$(e (\alpha_{ij} b) = (i_{0j} b_{00})  \forall b \in (i_{00} b_{00})$	
		$\varphi^{-}$		
- An				- A

120/2sm

202

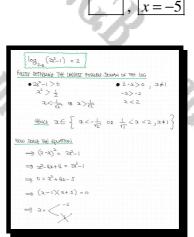
Madasn,

The.

¥.G.P.

## Created by T. Madas

COM


2

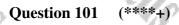
Smarns.

### Question 99 (****+)

Solve the following logarithmic equation, over the largest real domain

 $\log_{2-x} \left[ 2x^2 - 1 \right] = 2, \ x \in \mathbb{R}.$ 




Question 100 (****+)

Solve the following simultaneous equations

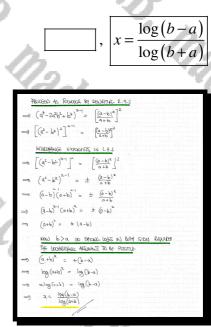
 $a^{2x} \times b^{3y} = c^5$  $a^{3x} \times b^{2y} = c^{10}$ 

Give the answers in exact form in terms of  $\log a$ ,  $\log b$  and  $\log c$ .

	$ , x = \frac{4\log c}{\log a}, y = -\frac{\log c}{\log b} $
as 1976	100
THUR LOGARTHUS ON ROTH SIDES	Avita
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} a_{g}^{\gamma} P_{\beta,2} \sim c_{\mu} \\ a_{g}^{\gamma} P_{\beta,2} \sim c_{\mu} \\ \hline \end{array} \right\} \Longrightarrow \begin{cases} (q_{\mu}^{\gamma} N_{\beta})_{\mu} = (c_{\mu})_{\mu} \\ (q_{\mu}^{\gamma} P_{\beta})_{\mu} = (c_{\mu})_{\mu} \\ \hline \end{array} \end{cases}$
$\left(\log a_{2x} + \log b_{2y} = \log a_{C}\right)$	$\Longrightarrow \begin{cases} a^n x b^{6q} = c^n \\ a^n x b^{6q} = c^n \end{cases}$
$\left(\begin{array}{c} \lambda \log a + 3 \eta \log b = 2 \log c \times (-3) \\ 3 \lambda \log a + 3 \eta \log b = 10 \log c \times 2 \end{array}\right)$	$\frac{\partial \mathcal{D}_{i}}{\partial \mathcal{D}_{i}} = C_{30}$
(-Gilgar - gligab = -15/0gC Girlga + gligab = 20/0gC -400WG	$(\Delta^{\chi})^{\Gamma} = (C^{\eta})^{\Gamma}$
-Sylayle = Slage	a = C, log $a^{+} = \log c^{+}$ .
$y = -\frac{\log c}{\log b}$	
0 1086	$\frac{1}{2} \frac{1}{2} \frac{1}$
1 Brishuy althorismic ac	A BHORE
⇒ Zetoga + 3y logb = SlagC.	a y simulaes
$\implies 2\lambda \log q + 3 \left(-\frac{\log c}{\log b}\right) \log b = 5 \log c$	
⇒ 2xloga - 3logC = 5logC	
=> 22loga = BlogC	
$\Rightarrow \pi = \frac{4\log c}{\log a}$	
	1



Solve the following logarithmic equation




### Question 102 (****+)

Solve the following equation

 $(a^4 - 2a^2b^2 + b^4)^{x-1} = (a-b)^{2x}(a+b)^{-2}$ 

Give the answers in exact form in terms of a and b.



**Question 103** (*****) Solve the following logarithmic equation

. F.G.B.  $\frac{2 - \log_4 x^7}{7 - \log_4 x^2} + (\log_4 x)^2 = 0$ 

2	10
$\frac{2 - \log_4 x^7}{7 - \log_4 x^2} + (\log_4 x)^2 = c$	
= 2-71002 + (108+2)2 7-210342 + (108+2)2	$= 0 \begin{cases} \Rightarrow (y_{-1})(zy_{-1})(y_{-2})=0 \\ \Rightarrow y_{-1} \leftarrow z \\ = 0 \end{cases}$
$\Rightarrow \frac{2-7y}{7} + y^2 = 0$	y=log_2) { 2

x = 2, x = 4, x = 16

#### (*****) **Question 104**

Smarns.com

Mada.e,

I.F.G.B.

>

I.F.G.B.

Show by valid mathematical arguments that

⁸√8! < √9!



ás marns.com

F.G.B.

N.G.

I.F.C.B. Madasm

Created by T. Madas

I.V.G.P.

Question 105 (*****)

i. Simplify the following expression.

 $9\log_{24}2 + \log_{24}27$ .

Show detailed workings in this simplification.

**ii.** It is given that

I.C.P.

 $5 \times 2^{t-1} = 2 \times t^{2t} \implies (10k)^t = k$ 

Determine the value of k.

a) 2400007 24 CF330019 (b	
$\begin{array}{rcl} 9\log_{24}2 + \log_{34}27 &=& 9\log_{34}2 + \log_{34}3^3 \\ &=& 9\log_{34}2 + \log_{34}3 \\ &=& 3\left[3\log_{34}2 + \log_{34}3\right] \\ &=& 3\left[\log_{34}2^3 + \log_{34}3\right] \\ &=& 3\left[\log_{34}2^3 + \log_{34}3\right] \\ &=& 3\left[\log_{34}2^4 + \log_{34}3\right] \\ &=& 3\log_{34}2^4 \end{array}$	
ALTHONATINE	
$\begin{array}{rcl} 9 \log_{14} 2 + \log_{14} 27 &= & \log_{14} 2^4 + & \log_{14} 27 \\ &= & \log_{14} \left( 2^4 \times 27 \right) \\ &= & \log_{14} \left( 2^4 \times 2^4 \right) \end{array}$	)
$\frac{4645}{2} = \frac{24}{242} = \frac{24}{24} = \frac{24}{3} = \frac{1}{100} = 1$	1
> 3/00, 24 = 3 70 BANKE	

$\begin{array}{c} \begin{array}{c} 4119 \times 4114 \times 42142 \times 4214$

6

i GB

, [3], [k=1.25]

i C.P.

1+

### Question 106 (*****)

On the 1st January 2000 a rare stamp was purchased at an auction for £16384 and by the 1st January 2010 its value was four times as large as its purchase price.

The future value of this stamp,  $\pounds V$ , t years after the 1st January 2000 is modelled by the equation

$$V = Ap^t, t \ge 0,$$

where A and p are positive constants.

On the 1st January 1990 a different stamp was purchased for £2.

The future value of this stamp,  $\pounds U$ , t years after the 1st January 1990 is modelled by the equation

$$U=Bq^t,\ t\ge 0,$$

where B and q are positive constants.

Given further that  $q = p\sqrt{2}$ , determine the year when the two stamps will achieve the same value according to their modelling equations.

 $U = B \times q^{t}$ 16384 = -4 = 16384×P^t 8192 8192 = log 20 leg 204 V = 16384

2012

### Question 107 (*****)

It is given that

- a and x are positive real numbers such that  $x \neq a$ ,  $x \neq 1$  and a > 1.
- n is a positive integer such that n > 1.

Show that the equation

$$\sum_{r=1}^{n} \log_a x^r = \sum_{r=1}^{n} (\log_a x)^r$$

can be written as

Сŀ,

F.C.B.

 $2(\log_a x)^n - n(n+1)\log_a x + (n-1)(n+2) = 0.$ 

$\sum_{i=1}^{l \ge 1} l \mathcal{B}^{i} \mathcal{X}_{L} = \sum_{i=1}^{l \ge 1} (l \mathcal{B}^{i} \mathcal{X})_{L}$
$\implies \sum_{i=1}^{N} c_i G^{i} \mathcal{A} = \sum_{i=1}^{N} (G^{i} \mathcal{A})_i$
$\longrightarrow (\log_{2}x) + 2(\log_{4}x) + 3(\log_{4}x) + \cdots + w(\log_{4}x) = (\log_{4}x) + (\log_{4}x)^{2} + (\log_{4}x)^{2} + \cdots + (\log_{4}x)^{2}$
LET X = log _{er} z.
$\Rightarrow X+2X+3X+\eta\chi = X+X^2+X^2+\ldots+X^{\eta}$
$\Rightarrow (1+2+3+\dots+n) \times = \times + \times^2 + \times^3 + \dots + \times^{\ast}$
For $\chi \neq 0$ For $\chi \neq 1$ $(ag_{\chi}\chi \neq 0)$ $(ag_{\chi}\chi \neq 1)$ $\alpha \neq 1$ $\chi \neq q$
DIVIDE BY X & SUNTHE G.P ON THE RHS
$\implies \qquad l+2+3+\cdots+n \qquad =  l+\chi+\chi^n+\cdots+\chi^{n-l}$
$\Rightarrow \frac{1}{2}h(n+1) = \frac{1(1-x^{10})}{1-x}$
$\Rightarrow (I-X)_{\mathfrak{h}(\mathfrak{h}+1)} = 2(I-X^{\mathfrak{h}})$
$\implies (1-X)\eta(n+1) = -2X^{n} + 2$
$\implies 2X^{h} + CI - X) \eta(n+1) - 2$
$\Rightarrow \partial X^{\dagger} + \eta_{(n+1)} - \eta_{(n+1)} \times - 2$

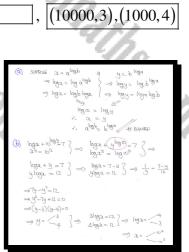
, proof

C.P.

- $\vartheta = 2\chi' \sim \eta(\eta+1)\chi' + \eta(\eta+1)-2 = 0$
- $\Rightarrow 2 \times^{6} N(n+1) \times + \eta^{2} + \eta 2 = 0$
- $\implies \Im X^{n} n(n+1)X + (n+2)(n-1) = 0$
- $= 2(\log_a x)^* n(n+1)(\log_a x) + (n+2)(n-1) = 0$

Question 108(*****)It is given that

i G.B.


Y.C.B.

 $a^{\log b} \equiv b^{\log a}, a > 0, b > 0.$ 

- **i.** Prove the validity of the above result.
- ii. Hence, or otherwise, solve the following simultaneous equations

 $\log x + 10^{\log y} = 7$ 

 $x^{y} = 10^{12}$ .



L.C.B.

3

2

(*****) **Question 109** The product operator  $\prod$ , is defined as

nadasmaths.com

I.F.G.B.

I.F.C.B.

COM

COM

I.C.B.

 $\prod [u_i] = u_1 \times u_2 \times u_3 \times u_4 \times \dots \times u_{k-1} \times u_k.$ 

 $\left[ \log_r (r+1) \right].$ 

Given that  $k \in \mathbb{N}$ , use a detailed method to find the value of

has (2-1) has (2+) I.C.B.

20

C.P.

Ins.com

F.G.B. Ma

k

./

1.Y.C.S.

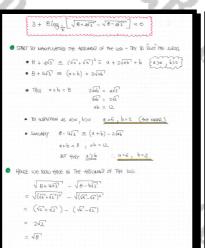
Created by T. Madas

COM

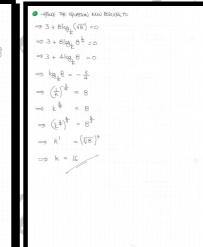
#### (*****) **Question 110**

I.F.G.P.

Smaths.com


Smaths.com

I.F.G.B.


0

Solve the following logarithmic equation.

The Com  $3 + 8 \log_{\frac{1}{k}} \left[ \sqrt{8 + 4\sqrt{3}} - \sqrt{8 - 4\sqrt{3}} \right] = 0,$  $k > 0, k \neq 1.$ 



E.B.



nadasn.

nn

, k = 16

The COL

G

./

nadasm;

The .

2010

I.V.C.B. Madasn

Created by T. Madas

2017

I.C.B.

### (*****) **Question 111**

>

Solve the following logarithmic equation.



16

#### (*****) **Question 112**

I.C.B. Madas

I.V.G.B

Solve the following logarithmic equation.

 $\log_{4x}\left(\frac{1}{2}\right) + \log_{x} 8 + \log_{\frac{1}{2}x}\left(\frac{1}{2}\right) = \frac{1}{4}, \ x > 0, \ x \neq 1.$ 

Give the answers in exact simplified form where appropriate.

 $x = 16, \quad x = 2^{\frac{1}{2}(7 \pm \sqrt{73})}$  $\log_{4}(\frac{1}{2}) + \log_{3} 8 +$ 129 1192 log_2 agat 1944+194,2 100 1 + 100 I  $0 = y^2(y-4) - 7y(y-4) - 6(y-4)$ 2+2 74  $A = \frac{7 \pm \sqrt{49 - 4 \times 1 \times (-6)^2}}{2}$  $\frac{3}{y} - \frac{1}{y+2} + \frac{1}{y-1} = \frac{1}{4}$ y = 1 (7± 50) wither g= log22 2NOITWOR E JUNT JW  $3(y+2)(y-1) - y(y-1) + y(y+2) = \frac{1}{4}y(y+2)(y-1)$ 3 (y+9-2) -g+4 +g+2y = +9(y+2+y-2) 2+(7-5)  $=\frac{1}{4}(y^3+y^2-2y)$ 

The Com

14.0

Com

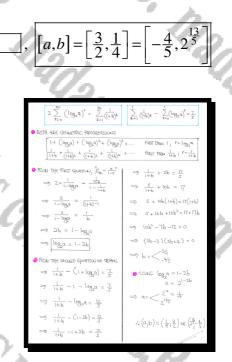
Created by T. Madas

I.C.

#### (****) Question 113

I.G.B.

I.G.B.


Solve the following simultaneous equations.

**Created by T. Madas**  
estion 113 (*****)  
we the following simultaneous equations.  

$$2\sum_{r=0}^{\infty} [\log_2 a]^r = \sum_{k=1}^{\infty} (1+b)^{-k} \text{ and } \sum_{k=1}^{1} (1+b)^{-k} - \sum_{r=0}^{1} [\log_2 a]^r = \frac{7}{5}.$$

You may leave the answers as indices in their simplest form, where appropriate.

20120,



200

2017

Madasn

ŀG.p.

Created by T. Madas

0

R.

Question 114 (*****)

It is given that

Ĝ,

ŀ.G.p.

 $a^{\log b} \equiv b^{\log a}, a > 0, b > 0.$ 

- a) Prove the validity of the above result.
- **b**) Hence, or otherwise, solve the equation

 $3^{\log x} + 3 \times x^{\log 3} = 36.$ 

x = 100

nana,

 $3 \times x^{\log 3} = 36$ 

2/093

293 /4ga

laga=2



Question 115 (*****)

It is given that

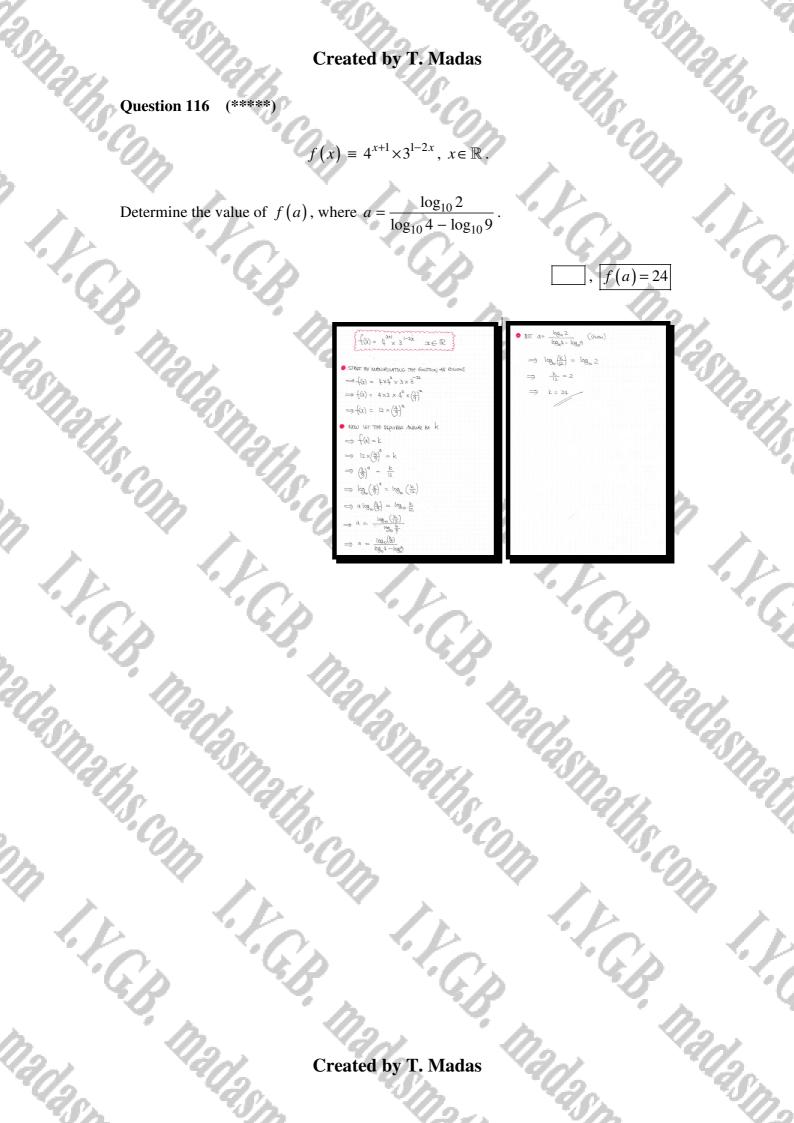
F.G.B.

I.C.P.

$$4p - \frac{1}{2}q = \log_6(3.6)$$
 and  $q - p + 1 = \log_6(75)$ 

Solve these simultaneous equations, to show that

 $p = \log_6 k \; ,$ 


where k is a positive integer to be found.



Ĉ.p.

2

Madasn



### Question 117 (*****)

The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

Show, with a detailed method, that the real solution of the following exponential equation

 $2^x + 4^x = 8^x,$ 

can be written in exact form as



FRATY SOME THE PUBLICATIC
$\begin{array}{rcl} 0=4-\frac{44}{9}-\frac{7}{9}4^{3} & \longleftrightarrow & 0=1-\varphi-\frac{2}{9}4^{3}\\ & = S & =S & \varphi & \Leftrightarrow \\ & & 2=5(1+\varphi) & \Longleftrightarrow & \varphi & \varphi$
STAR WITH THE EQUITION FIVEN
$ \Rightarrow 2^{2} + 4^{2} = 8^{2} $ $ \Rightarrow \frac{2^{2}}{4^{2}} + \frac{4^{2}}{4^{2}} = \frac{8^{2}}{4^{2}} $ $ \Rightarrow \frac{2^{2}}{4^{2}} + 1 = 2^{2} $ $ \Rightarrow 2^{2} + 1 = 2^{2} $ $ \Rightarrow 2^{2} - 2^{2} - 1 = 0 $ $ \Rightarrow 2^{2} = \frac{6}{2} $
Source the county, 2 sets 200 Minh
$\rightarrow x = \log_2 \phi$

proof

### Question 118 (*****)


î.p

I.V.G.B. May

I.C.B.

Show that the following logarithmic equation has no real solutions.

 $\log_{x^2+2} \left[ 2x^4 - 2x^3 + 7x^2 - 2x + 5 \right] = 2, \ x \in \mathbb{R}.$ 



F.G.B.

200

		1	Ε.			
$\implies \alpha + \frac{1}{\alpha} = 1$			-		_	
$= x^2 + 1 = x$						
$\Rightarrow x^2 - x + 1 = 0$						
62-40C = (-1)2-	4×1×1 =	-3 <	0			
2(KODU)02 ON						
//						

proof

1+

11.202st

COM

madasn

I.F.G.B.

Created by T. Madas

2017

K.C.A

COM

proof

ŀ.C.p.

Ś

1+

Mada

### Created by T. Madas Question 119 (*****) It is given that for x > 0, $x \ne 1$ and y > 0, $y \ne 1$ and $\log_x(x-y) = \log_y(x+y)$ . $\log_x y = \log_y x$ Show that $x^4 - x^2 - 1 = 0$ . $\log_{x} y = \log_{y} x$ log (x-y) = log (x+y) 8 $log^{x}(x-\frac{x}{T}) = -log^{x}(x+\frac{x}{T})$ $\log_x(x-\frac{1}{x}) + \log_x(x+\frac{1}{x}) =$ STARTING WITH THE FIRST SPUATION, TRYING TO EXTRACT THE LOSS $\log_{x}\left[\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right]$ ⇒ logay = logyx $\rightarrow \log_x y = \frac{1}{\log_x y}$ $\Rightarrow (\log y)^2 = 1$ 109.4= < ay or x=y -y) = logy (x+y) AS REPURIC (ogx(x+y) logxy I.C.B. THE REPORT FROM THE FIRST GUATION $\log_{\mathbf{x}}(\mathbf{x} + \frac{1}{\mathbf{x}})$ 103 (7)

Created by T. Madas

I.C.B.

 $\log_{\chi}(\chi + \frac{1}{2})$ 

-log_J

 $\log_2(x-\frac{1}{x}) =$ 

Question 120 (*****)

K.C.B. May

I.V.G.B

 $\log_{\sin x \cos x} (\sin x) \times \log_{\sin x \cos x} (\cos x) = \frac{1}{4}.$ 

Show that the solution of the above equation is given by

 $x = \frac{1}{4}\pi(8n-7), \ n \in \mathbb{N}.$ 

[log_smusa (Sm2)][log_smusa (w2)] = = o log smuss (I) ICHRE = ^A(SZOLOMZ) <= A = (LMZ)  $\mu_{\text{LLS}}(\omega_{\lambda}) = B \implies (\lambda_{\text{LS}})^{B} = \omega_{\lambda}$ THUS THE ORIGNAL QUATTON TRANSPORUS TO -AB = ∔ A + B = 1SOLUM. SILLAR A = 1 - B (1-B)B = 1  $B - B^2 = \frac{1}{2}$ 

READING TO OUT OF THE ORIGNAL GUATIONS

 $\Rightarrow SMALRER = SM_{X}^{2}$   $\Rightarrow \quad cax = SHQ \quad (SMQ_{40})$   $\Rightarrow \quad town x = 1$   $a = \frac{\pi}{4} \pm h \eta \quad h = c_{1/2,3,...}$   $b t \quad a = unt b t in the hair quadrant'' see the loss$ To be objected

sincues sino = ± ncues = [±]

The Com

proof

. G.D.

G

.

COM

madası

I.F.G.B.

· ス= 葉 + n町 , リニウ(1213).  $a = -\frac{2\pi}{4} + 2h\pi$  ,  $n \in \mathbb{N}$ x= = (8n-7) n∈N

Created by T. Madas

V.C.A