STRAIGHT LINE COORDINATE GEOMETRY

GRADIENTS

AND

INTERCEPTS

Created by T. Madas

Question 1
For each of the following lines find its gradient, its y intercept and its x intercept.
a) $y=2 x+3$
b) $x=4-2 y$
c) $4 x-3 y=15$
d) $4 x-2 y=9$
e) $3 x=8-4 y$
f) Which of the above lines are parallel or perpendicular to each other?
\(\left.$$
\begin{array}{|l|l|l|l}\begin{array}{l}m=2 \\
(0,3) \\
\left(-\frac{3}{2}, 0\right)\end{array} \\
\hline \begin{array}{l}m=-\frac{1}{2} \\
(0,2) \\
(4,0)\end{array} \\
\hline\left(\frac{15}{4}, 0\right)\end{array}
$$, $$
\begin{array}{l}m=\frac{4}{3} \\
(0,-5) \\
\left(\frac{9}{4}, 0\right)\end{array}
$$, $$
\begin{array}{l}m=2 \\
\left(0,-\frac{9}{2}\right)\end{array}
$$,, \begin{array}{l}m=-\frac{3}{4}

(0,2)

\left(\frac{8}{3}, 0\right)\end{array}\right],\)| $a \perp b$ |
| :--- |
| $b \perp d$ |
| $a \\| d$ |
| $c \perp e$ |

Created by T. Madas

Question 2

For each of the following lines find its gradient, its y intercept and its x intercept.
a) $y=3 x+2$
b) $y=\frac{1}{3} x-2$
c) $x=2-3 y$
d) $6 y-3 x=2$
e) $2 x=\frac{2 y+1}{3}$
f) Which of the above lines are parallel or perpendicular to each other?

USING

STANDARD

FORMULAE

Created by T. Madas

Question 1
Given the points $A(4,6)$ and $B(8,18)$ find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the exact distance $A B$.
d) ... the equation of the straight line which passes through A and B, giving the answer in the form $y=m x+c$, where m and c are constants.

$$
M(6,12), m=3, d=4 \sqrt{10}, y=3 x-6
$$

- $A(4,6) B(8,1,6)\}$

(d) Desting $=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}=\sqrt{(12-6)^{2}+(8-4)^{2}}=\sqrt{144+16}$
(d) $y-y_{0}=m\left(x-x_{0}\right) \quad m=3$
$y-6=3(x-4) \quad(4,6)$
$y-6=3 x-12$
$y=3 x-6$

Created by T. Madas

Question 2
Given the points $A(5,-1)$ and $B(3,5)$ find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the exact distance $A B$.
d) ... the equation of the straight line which passes through A and B, giving the answer in the form $y=m x+c$, where m and c are constants.
$M(4,2), m=-3, d=2 \sqrt{10}, y=-3 x+14$

Created by T. Madas

Created by T. Madas

Question 3
Given the points $A(3,1)$ and $B(-6,22)$, find \ldots
a) \ldots the exact coordinates of the midpoint of $A B$.
b) \ldots the exact gradient of $A B$.
c) ... the exact distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y=c$, where a, b and c are integers.

Created by T. Madas

Question 4
Given the points $A(-6,1)$ and $B(2,7)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the exact gradient of $A B$.
c) ... the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
M(-2,4), m=\frac{3}{4}, d=10,3 x-4 y+22=0
$$

Created by T. Madas

Question 5
Given the points $A(4,9)$ and $B(-4,-11)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the exact gradient of $A B$.
c) ... the exact distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

Created by T. Madas

Question 6
Given the points $A(-1,8)$ and $B(5,-2)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the exact distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
M(2,3), m=-\frac{5}{3}, \quad d=\sqrt{136}=2 \sqrt{34}, 5 x+3 y-19=0
$$

Created by T. Madas

Question 7
Given the points $A(4,6)$ and $B(-1,9)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the exact distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
M\left(\frac{3}{2}, \frac{15}{2}\right), m=-\frac{3}{5}, \quad d=\sqrt{34}, 3 x+5 y-42=0
$$

Created by T. Madas

Question 8
Given the points $A(-12,7)$ and $B(-6,-3)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

Created by T. Madas

Question 9
Given the points $A(-3,2)$ and $B(4,-7)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) \ldots the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

Created by T. Madas

Question 10
Given the points $A(-4,9)$ and $B(2,-1)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y=c$, where a, b and c are integers.

$$
M(-1,4), m=-\frac{5}{3}, \quad d=\sqrt{136}=2 \sqrt{34}, 5 x+3 y=7
$$

Created by T. Madas

Question 11
Given the points $A(5,-2)$ and $B(7,5)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) ... the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
M\left(6, \frac{3}{2}\right), m=\frac{7}{2}, d=\sqrt{53}, 7 x-2 y-39=0
$$

Created by T. Madas

Question 12

Given the points $A(-5,8)$ and $B(15,-8)$, find \ldots
a) \ldots the coordinates of the midpoint of $A B$.
b) \ldots the gradient of $A B$.
c) \ldots the distance $A B$.
d) \ldots an equation of the straight line which passes through A and B, giving the answer in the form $a x+b y=c$, where a, b and c are integers.

$$
M(5,0), m=-\frac{4}{5}, \quad d=\sqrt{656}=4 \sqrt{41}, 4 x+5 y=20
$$

Question 13

Find an equation of the straight line that passes through the points $A(1,3)$ and $B(4,9)$, giving the answer in the form $y=m x+c$, where m and c are constants .

$$
y=2 x+1
$$

Created by T. Madas

Question 14

Determine the equation of the straight line that passes through the points $A(5,6)$ and $B(2,-3)$, giving the answer in the form $y=m x+c$, where m and c are constants .

$$
y=3 x-9
$$

Question 15

Determine the equation of the straight line that passes through the points $A(3,2)$ and $B(5,12)$, giving the answer in the form $y=m x+c$, where m and c are constants

$$
y=5 x-13
$$

Question 16

Determine the equation of the straight line that passes through the points $A(1,4)$ and $B(3,-6)$, giving the answer in the form $y=m x+c$, where m and c are constants

PARALLEL

AND

PERPENDICULAR

LINES

Created by T. Madas

Question 1
The straight line L_{1} has equation

$$
y=2-3 x
$$

a) Find an equation of the straight line L_{2} which is parallel to L_{1} and passes through the point with coordinates $(2,5)$.
b) Find an equation of the straight line L_{3} which is perpendicular to L_{1} and passes through the point with coordinates $(-3,7)$.

Created by T. Madas

Question 2

The straight line L_{1} has equation

$$
4 y-3 x-20=0 .
$$

a) Find an equation of the straight line L_{2} which is parallel to L_{1} and passes through the point with coordinates $(8,2)$.
b) Find an equation of the straight line L_{3} which is perpendicular to L_{1} and passes through the point with coordinates $(7,-5)$.
c) Find the coordinates of the point of intersection between L_{2} and L_{3}.

$$
L_{2}: 3 x-4 y-16=0, L_{3}: 3 y+4 x=13,(4,-1)
$$

Created by T. Madas

Question 3

The straight line L_{1} has equation

$$
2 y=x-8 .
$$

a) Find an equation of the straight line L_{2} which is parallel to L_{1} and passes through the point with coordinates $(6,1)$.
b) Find an equation of the straight line L_{3} which is perpendicular to L_{1} and passes through the point with coordinates $(1,-3)$.
c) Find the exact coordinates of the point of intersection between L_{2} and L_{3}.

Question 4

Find an equation of the straight line that passes through the point $(1,2)$ and is perpendicular to the straight line with equation $3 x+2 y=5$.

Give the answer in the form $a x+b y=c$, where a, b and c are integers.

Created by T. Madas

Question 5

The straight line L_{1} has equation

$$
2 y+3 x=34 .
$$

a) Find an equation of the straight line L_{2} which is perpendicular to L_{1} and passes through the point with coordinates $(-2,7)$.
b) Find the coordinates of the point of intersection between L_{1} and L_{2}.

$$
L_{2}: 3 y=2 x+25,(4,11)
$$

Question 6

The straight line L_{1} has equation

$$
4 y-3 x=12 .
$$

a) Find an equation of the straight line L_{2} which is perpendicular to L_{1} and passes through the point with coordinates $(14,1)$.
b) Find the coordinates of the point of intersection between L_{1} and L_{2}.

$$
L_{2}: 3 y+4 x=59,(8,9)
$$

Created by T. Madas

Question 7

The line straight L_{1} has equation

$$
3 y+2 x=9 .
$$

a) Find an equation of the straight line L_{2} which is perpendicular to L_{1} and passes through the point with coordinates $(-5,2)$.
b) Find the coordinates of the point of intersection between L_{1} and L_{2}.

$$
L_{2}: 2 y=3 x+19,(-3,5)
$$

Question 8

The points A and B have coordinates $(1,7)$ and $(-3,-1)$, respectively.

Find an equation of the straight line that is perpendicular to the straight line $A B$, and passing through the midpoint of $A B$.

$$
2 y+x=5
$$

Created by T. Madas

Question 9

The points A and B have coordinates $(-1,5)$ and $(7,11)$, respectively.

Show that the equation of the perpendicular bisector of $A B$ is $4 x+3 y=36$.

Question 10

A straight line L has equation $4 x+2 y=3$ and the point A has coordinates $(5,2)$.

Find the coordinates of the points where the straight line that is parallel to L and passing through A, crosses the coordinate axes.

Created by T. Madas

Question 11

A straight line L has equation $3 x-y=3$ and the point A has coordinates $(2,12)$.

Find an equation of the straight line that passes through A and is parallel to L.

$$
y=3 x+6
$$

Question 12

A straight line L has equation $3 x+2 y=3$ and the point A has coordinates $(2,10)$.

Find an equation of the straight line that passes through A and is perpendicular to L.

$$
3 y=2 x+26
$$

Created by T. Madas

Question 13
The points A and B have coordinates $(3,4)$ and $(7,-6)$, respectively.

Find an equation of the straight line that passes through A and is perpendicular to $A B$, giving the answer in the form $a x+b y+c=0$ where a, b and c are integers.

