QUADRATIC

INEQUALITIES

EXAM QUESTIONS

Created by T. Madas

Question 1 (**)

$$
f(x)=2 x^{2}-9 x+4, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$. The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
b) Solve the inequality
$\square, x<\frac{1}{2} \cup x>4$

b) Loocing at Tite gendy Arook $f(x)>0 \Rightarrow x<\frac{1}{2}$ or $x>4$

Question 2 (**+)
Solve each of the following inequalities.
a) $4(4-2 x)<30$.
b) $x+3\left(x^{2}-4 x+2\right)>0$.
\square $x>\frac{7}{4}$, \square $x<\frac{2}{3} \cup x>3$

Question 3 (**+)
a) Solve the linear inequality

$$
4(2 x+3)+x>47-5 x
$$

b) Solve the quadratic inequality

$$
(5-x)(2 x+1) \leq 0
$$

c) Hence determine the range of values of x that satisfy both the inequalities of part (a) and part (b).

Created by T. Madas

Question $4 \quad(* *+)$

The figure above shows the graphs of $y=(x+1)^{2}$ and $y=4 x+9$.
a) Find the coordinates of the points of intersection between the two graphs.
b) Hence solve the inequality

$$
(x+1)^{2} \geq 4 x+9
$$

fully justifying the answer.

Question 5 (**+)
Solve each of the following inequalities.
a) $\frac{x+2}{3}<3 x-1$.
b) $x+6\left(x^{2}+x\right)>20$.

Created by T. Madas

Question 6 (***)
A rectangle is such so that its length is 6 cm greater than its width.

Given the area of the rectangle is at least $40 \mathrm{~cm}^{2}$, determine the range of the possible values of the length of the rectangle.

Given the area of the rectangle is at most $60 \mathrm{~cm}^{2}$, and its perimeter at least 14 cm , determine the range of the possible values of x.

Question 8 (***)
a) Solve the linear inequality

$$
8+3 x>4(x-3)+2
$$

b) Solve the quadratic inequality

$$
(x-10)(x-4) \geq 5(x-1)-3
$$

c) Hence determine the range of values of x that satisfy both the inequalities of part (a) and part (b).
\square
$, x<18, x \leq 3 \cup x \geq 16, x \leq 3 \cup 16 \leq x<18$

Question 9 (***)
a) Solve the linear inequality

$$
6-2(x+2)<10
$$

b) Solve the quadratic inequality

$$
(x+1)^{2} \geq 4 x+9
$$

c) Hence determine the range of values of x that satisfy both the inequalities of part (a) and part (b).
\square $, x>-4, x \leq-2 \cup x \geq 4,-4<x \leq-2 \cup x \geq 4$

Question $10 \quad\left({ }^{* * *+)}\right.$
The curve C has equation

$$
y=(x-4)^{2}+2
$$

The line L has equation

$$
y=13-2 x
$$

a) Sketch on the same diagram the graph of C and the graph of L. The sketch must include the coordinates of any points where these graphs meet the coordinate axes.
b) Solve the equation

$$
(x-4)^{2}+2=13-2 x
$$

c) Hence find the range of values of x for which

$$
(x-4)^{2}+2<13-2 x
$$

\square $, x=1,5,1<x<5$

Question 11 (***+)
Find the set of values of x, that satisfy the following inequality.

Created by T. Madas

Question $12 \quad(* * *+)$

A rectangle $A B C D$ measures $(3 x+2) \mathrm{cm}$ by $(2 x+4) \mathrm{cm}$.

A second rectangle $P Q R D$ is removed from the rectangle $A B C D$, as shown in the figure above. The perimeter of the composite shape $A B C P R Q$ is greater than 27 cm but less than 52 cm .
a) Find the range of the possible values of x.

The area of the rectangle $P Q R D$ is $4 x \mathrm{~cm}^{2}$.
b) Given further that the area of the composite shape $A B C P R Q$ is less than $98 \mathrm{~cm}^{2}$, determine an amended range of the possible values of x.
\square , $1.5<x<4,1.5<x<3$

\square

Created by T. Madas

Created by T. Madas

Question 13 (***+)

$$
f(x)=x^{2}-2 x-4, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.
b) Find in exact form the solutions of the equation $f(x)=0$.
c) Hence solve the inequality

$$
2(3 x-4)-(x+6)(x-2)>0
$$

$\square,(x-1)^{2}-5, x=1 \pm \sqrt{5}, 1-\sqrt{5}<x<1+\sqrt{5}$

Created by T. Madas

Question 14 (***+)
Determine the range of values of x that satisfy both the inequalities given below.

$$
6-2(7-3 x) \geq 8-(3 x+7)
$$

$(2 x-3)(x+4)<x(x+6)$.
\square
$\square, 1 \leq x<4$

Question 15 (***+)
Solve the following quadratic inequality.
$x^{2}-2 x-4>0$.
\square $x<1-\sqrt{5} \cup x>1+\sqrt{5}$
C

Created by T. Madas

Question 16 (***+)

$$
f(x)=x^{2}-12 x+30, x \in \mathbb{R}
$$

a) Find in exact surd form the solutions of the equation $f(x)=0$.
b) Hence solve the inequality ...
i. $\ldots f(x)<0$.
ii. $\ldots n^{2}-12 n+30<0$, where n is an integer.
$\square, x=6 \pm \sqrt{6}, 6-\sqrt{6}<x<6+\sqrt{6}, n=4,5,6,7,8$

Created by T. Madas

Question $17 \quad\left({ }^{* * *+)}\right.$

Farmhouse Wall

The figure above shows the plan of a rectangular enclosure to be built next to a farmhouse. One of the farmhouse's walls will form one of the sides of the enclosure and 25 metres of fencing will form the other three sides.

The width of the enclosure is x metres, as shown in the figure.

The area of the enclosure must be at most $75 \mathrm{~m}^{2}$.

Given further that the width of the enclosure must be at least 3 metres but no more than 9 metres, determine the range of the possible values of x.

Created by T. Madas

Question 18 (***+)
Determine the range of values of x that satisfy both the inequalities given below.

$$
\begin{aligned}
& 5 x+8 \geq 4(x+1) \\
& (x+1)^{2}-8(x+1)(x+2)<0
\end{aligned}
$$

$$
C . V=<\begin{aligned}
& -1 \\
& -15 \\
& \hline
\end{aligned}
$$

$x<-\frac{15}{7} \quad$ of $\quad x>-1$
combining The souttons

Question 19 ($* * * * *)$
Find, as exact simplified surds, the solution interval that satisfies both the following inequalities.

$$
\begin{aligned}
& (x+2)(x+4)>10 x+7 \\
& x \sqrt{3}<2+\frac{2(2 x-1)}{\sqrt{3}}
\end{aligned}
$$

\square $2-2 \sqrt{3}<x<2-\sqrt{3} \cup x>2+\sqrt{3}$

SOWING THE FRST -NEGOAUTY
$\Rightarrow(x+2)(x+4)>10 x+7$
$\Rightarrow x^{2}+6 x+8>10 x+7$ $\Rightarrow x^{2}-4 x+1>0$
 Completing. THe spunle in the ceraffondina Epuation - or IE quapratic premula
$\Rightarrow x^{2}-4 x+1=0$
$\Rightarrow(x-2)^{2}-4+1=0$ $\Rightarrow(x-2)^{2}=3$ $\Rightarrow \quad x-2= \pm \sqrt{3}$ $\Rightarrow \quad x=2 \pm \sqrt{3}$ looking at the diafram $\xrightarrow[{2-\sqrt{5}}]{\substack{2+\sqrt{3}}} \rightarrow$ $a<2-\sqrt{3}$ or $a>2+\sqrt{3}$ Solbung the serand inequauty
$\Rightarrow 2 \sqrt{3}<2+\frac{2(2 x-1)}{\sqrt{3}}$
$\Rightarrow 3 a<2 \sqrt{3}+2(22-1)$

Question 20 (****)
The cost for framing a picture is

- 2 pence per cm^{2} of glass.
- 5 pence per cm of wooden frame.

A rectangular picture is such so that its length is 4 cm greater than its width, $x \mathrm{~cm}$.

If a maximum of $£ 10$ is available for framing, determine the range of the possible values of x.

Created by T. Madas

Question 21 (****)

The figure above shows a square piece of lawn $A B C D$ of side length x metres.

The lawn is surrounded by a path which is 2 metres wide, as shown in the figure.

The area of the lawn must be less than the area of the path.
a) Show clearly that

$$
x^{2}-8 x-16<0
$$

b) Hence determine the range of the possible values of x, in terms of surds where appropriate.

Created by T. Madas

Question 22 (****)

The figure above shows a right angled trapezium $A B C D$ where $|A B|=3 x+1$, $|A D|=3 x,|D C|=7 x+1$ and $\measuredangle D A B=\measuredangle C D A=90^{\circ}$.
a) Express the perimeter of the trapezium in terms of x.
b) Show that the area of the trapezium is $15 x^{2}+3 x$.

The perimeter of the trapezium has to be less than 92 and its area greater than 66 .
c) Determine the range of the possible values of x.
\square $P=18 x+2,2<x<5$

Created by T. Madas

Question 23 ($* * * * *)$
A rectangular piece of card has length $x \mathrm{~cm}$ and an area of $1200 \mathrm{~cm}^{2}$.

A square of side length 5 cm is removed from each corner and the sides of the remaining card are folded upwards to form an open box of height 5 cm .

The resulting box must have a volume greater than $2850 \mathrm{~cm}^{3}$.
a) Show clearly that

$$
x^{2}-73 x+1200<0
$$

b) Hence determine the range of the possible values of x.
\square

$$
25<x<48
$$

b) By the quadoatc formuit (al factorization) $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ $x=\frac{+73 \pm \sqrt{(-73)^{2}-4 \times 1 \times 1200}}{2 \times 1}$ $a=<{ }_{25}^{48}$

$$
y=x^{2}-2 x+7
$$

The figure above shows the graphs of $y=x^{2}-2 x+7$ and $y=2 x+7$.

Express the shaded region in the figure as a set of inequalities.

Question 25 (****)
Solve the inequality

$$
x^{2}+2 y^{2}<3 x y
$$

and hence indicate the solution in a suitable sketch.

Question 26 (****+)
Consider the following inequalities

$$
\begin{aligned}
& 5 x+13>4(x+2) \\
& (x-2)^{2}-k(x-2)(x+3)<0
\end{aligned}
$$

where k is a non zero constant.

The common solution interval of both these inequalities is

$$
-5<x<-\frac{17}{4} \cup x>m
$$

where m is a non zero constant.
\square $, m=2, k=5$
Determine, in any order, the value of k and the value of m.

Question 27 (*****)
Consider the following inequality

$$
k x^{2}+2 x+1 \leq(x+1)(x-3)
$$

where k is a real constant.

Find, in terms of k where appropriate, the solution intervals of the above inequality for all possible values of k.

$$
\left\{\begin{array}{cc}
\begin{array}{c}
k<1 \\
k=1
\end{array} & k<\frac{-2-\sqrt{2-k}}{k-1} \cup k>\frac{-2-\sqrt{2-k}}{k-1} \\
1<k<2 & k<\frac{-2-\sqrt{2-k}}{k-1} \cup k>\frac{-2-\sqrt{2-k}}{k-1} \\
k=2 & x=-2 \\
k>2 & \\
\text { no solutions }
\end{array}\right.
$$

