INDECES TRANSPORTED TO A CONTRACT OF A CONTR A. Exa. Exa. I. K. B. Balashallison I. K. Balashallison I. K. B. Balashallison I. K. B. Balashallison I. K. Balashalli ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

Question 1 (**)

I.C.B.

I.C.B.

a) Evaluate the following indicial expression, giving the final answer as an exact simplified fraction.

 $\frac{12y}{3y}$

Y.C.P

 $\frac{\overline{4}}{y^3}$

1.

madasn.

 $4y^{-3} =$

i G.B.

b) Simplify fully the following expression

Question 2 (**)

F.G.B.

I.G.p.

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.

 $\left(4xy^2\right)$

(2x)

20/2.sn

11+

madasn.

 $2y^4$

 $2y^4x^{-1}$

CA

 $\frac{3}{16}$

 $\begin{array}{c} (\mathfrak{A}) \quad \left(\begin{array}{c} \mathfrak{A} \\ \mathfrak{B} \\ \mathfrak{C} \end{array} \right) \quad \left(\begin{array}{c} \mathfrak{B} \\ \mathfrak{C} \\ \mathfrak{B} \\ \mathfrak{C} \end{array} \right)^{\frac{3}{4}} \quad = \quad \left(\begin{array}{c} \mathfrak{A} \\ \mathfrak{A} \\ \mathfrak{B} \\ \mathfrak{C} \\ \mathfrak{C} \end{array} \right)^{\frac{3}{4}} \quad = \quad \left(\begin{array}{c} \mathfrak{A} \\ \mathfrak{B} \\ \mathfrak{B} \\ \mathfrak{C} \\ \mathfrak{B} \\ \mathfrak{C} \end{array} \right)^{3} = \\ \end{array}$

<u>27</u> 8

 $+8^{-1}$ 2 $\left(\frac{81}{16}\right)^{\frac{3}{4}}$ ii.

b) Simplify fully the following expression

Question 3 (**+)

F.C.B.

I.G.p.

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.

 $64^{\frac{3}{2}} + 64^{\frac{2}{3}}$. $\left(\frac{25}{16}\right)^{-}$ ii.

b) Simplify fully the following expression

 $3a^4 \times (10a)^3$ $(5a^2)$

 $528, \frac{4}{5}, 24a$

.C.A.

madasn.

20/2.07

1.4

 $\begin{array}{l} (\mathbf{g}) \langle \mathbf{g} \rangle & \langle \mathbf{g} \rangle^{\frac{1}{2}} + c \mathbf{f}^{\frac{1}{2}} &= (\frac{1}{\sqrt{16^{4}}})^{\frac{1}{2}} + (\frac{1}{\sqrt{56^{4}}})^{\frac{1}{2}} &= \mathbf{g}^{\frac{1}{2}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= (\frac{1}{\sqrt{32}})^{\frac{1}{2}} &= \sqrt{\frac{1}{\sqrt{122}}}^{\frac{1}{2}} &= \frac{1}{2} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= (\frac{1}{\sqrt{32}})^{\frac{1}{2}} &= \sqrt{\frac{1}{\sqrt{122}}}^{\frac{1}{2}} &= \frac{1}{2} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g}) & \langle \mathbf{g} \rangle^{\frac{1}{2}} &= \frac{1}{\sqrt{32}} \\ (\mathbf{g})$

Question 4 (**+)

F.C.P.

I.C.B.

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.

 $16^{\frac{1}{2}} + 16^{\frac{1}{4}}$. $\left(\frac{2}{3}\right)$ ii.

b) Simplify fully the following expression

 $x^{\frac{5}{2}} \times \sqrt{x}$.

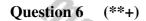
24

Ĉ.p.

madasn.

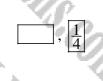
2

(a) (b) $||\dot{b}_{+}^{\pm}||\dot{b}_{+}^{\pm} = \frac{1}{3}||\ddot{b}_{+}^{\pm}||\ddot{b}_{+}^{\pm} = \frac{1}{4}||\ddot{b}_{+}^{\pm}||\dot{b}_{+}^{\pm} = \frac{1}{4}||\dot{b}_{+}^{\pm}||\dot{$


Question 5 (**+)

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.

i. $2^{-5} - 8^{-2}$. **ii.** $\left(\frac{4}{9}\right)^{\frac{3}{2}}$.


b) Solve the equation

 $\frac{1}{3} = 8$.

Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

 $\left(36^{\frac{1}{2}}+16^{\frac{1}{4}}\right)^{-\frac{2}{3}}$

 $\frac{8}{27}$, $\frac{1}{512}$

 $\frac{1}{64}$

(**6**) $\mathfrak{D} 2^{-5} - 8^{-2} = \frac{1}{2^{6}} - \frac{1}{8^{2}} = \frac{1}{3_{2}} - \frac{1}{64} = \frac{2}{64} - \frac{1}{64} + \frac{1}{64}$

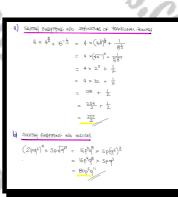
 $\left(\frac{1}{9}\right)^{\frac{1}{2}} = \left(\sqrt{\frac{4}{9}}\right)^{3} = \left(\frac{2}{3}\right)^{3}$

 $\begin{array}{l} \left(3(\frac{1}{2}+(j\frac{1}{2})^{-\frac{2}{3}}=(\sqrt{|x|^{2}}+\sqrt{|y|})^{-\frac{2}{3}}=(\sqrt{|x|^{2}}+\sqrt{|x|})^{-\frac{2}{3}}=0^{-\frac{2}{3}}=\frac{1}{\partial^{\frac{2}{3}}}\\ =\frac{1}{(\sqrt{|y|})^{2}}=\frac{1}{2^{2}}=\frac{1}{2^{2}}=\frac{1}{2} \end{array}$

Question 7 (**+)

C.A.

I.G.B.


a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

 $4 \times 4^{\frac{5}{2}} + 8^{-\frac{1}{3}}$.

The answer to this part of the question must be fully supported by a detailed method, justifying each step in the evaluation.

b) Simplify fully the following expression

 $\left(2pq^2\right)^4 \times 5p\sqrt{q^6}$.

257

 $80p^5q^{11}$

C.P.

nadasn.

2

Question 8 (***)

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.

F.G.B. $8^{\frac{1}{3}} + 8^{-\frac{1}{3}}$ Ś **ii.** $8^{-4} \times 2^{11}$ Madasn, **b**) Simplify fully $\sqrt{9x^6y^4}$ $3x^2$ $\left[\frac{5}{2}\right], \left[\frac{1}{2}\right],$ $3xy^4$ (1) $8^{\frac{1}{3}} + 8^{\frac{1}{3}} = \sqrt[3]{8} + \frac{1}{\sqrt{8}} = 2 +$ I.C.B. 1+ I.G.B ŀ.G.p. 5 . madasn Created by T. Madas

Question 9 (***)

a) Simplify the following expression, writing the final answer in the form $a+b\sqrt{3}$, where a and b are integers

 $\frac{x}{16}$

 $\frac{3-\sqrt{3}}{3+\sqrt{3}}$

 $x \neq 0$.

K.G.P.

 $7, 2-\sqrt{3}, x=\pm 4$

ŀ.G.p.

Ś

5

madasn,

b) Solve the equation

I.C.B.

I.C.B

Created by T. Madas

2017

Question 10 (***)

I.G.p

I.V.G.B

a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

 $\left(6\frac{1}{4}\right)^{-\frac{3}{2}}.$

 $\frac{12(x^3y^2z)^4}{(4x^2z^6)^2}$

 $\frac{8}{125}$

ŀ.G.p.

(A) $(G_{24}^{1})^{-\frac{3}{2}} =$

KCA

3

2

madasn.

b) Simplify fully the following expression

Question 11 (***)

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions, where appropriate.

ii. $\left(1\frac{7}{9}\right)^{\frac{3}{2}}$.

b) Solve the equation

. R.B.

i C.B.

= 27.

24, $\frac{64}{27}$ z = 9

nadasn.

(a) (f) $\frac{6}{2^{-2}} = \frac{6}{\frac{1}{4}} = 24$	
$(\Pi) (14)_{z=1} (36)_{z=1} (16)_{z=1} (36)_{z=1} (36)_$	
$ \begin{array}{c} (\underline{b}) \mathbb{Z}^{\frac{3}{2}} = 27 \implies (\mathbb{Z}^{\frac{3}{2}})^{\frac{3}{2}} = 27^{\frac{3}{2}} \\ \implies \mathbb{Z}^{1} = (\sqrt{27})^{2} \end{array} $	
$= (N^{2})$	
=) Z = 3	

Question 12 (***)

a) Simplify the following expression, writing the final answer in the form $a+b\sqrt{3}$, where a and b are integers

 $\frac{2\sqrt{3}-1}{2-\sqrt{3}}.$

b) Solve the equation

 $2^{x+2} = 4\sqrt{2}$.

Question 13 (***)

5

a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

 $27^{-4} \times 3^{11}$.

b) Solve the equation

 $t^{-\frac{1}{2}} = \frac{1}{4}.$

a)	27 ⁻⁴ 3 ⁴ =	$(3^{\circ})^{\circ \downarrow} \times 3^{\circ} = 3^{\circ} \times 3^{\circ} =$	-1 3 =	43
6	t"= 1	$t^{-\frac{1}{2}} = \frac{1}{4}$		÷.,
	$\frac{1}{1t} = \frac{1}{4}$	$\left(t^{-\frac{1}{2}}\right)^{2} = \left(\frac{1}{4}\right)^{-2}$		
\Rightarrow	√t ¹ = 4	$t' = (4)^2$		
\Rightarrow	t = 16	t = Vo		

 $, 4+3\sqrt{3}, x=\frac{1}{2}$

Question 14 (***)

 $6x^{-\frac{1}{2}} - x^{\frac{1}{2}} = 5.$

a) Show that the substitution $y = x^{\frac{1}{2}}$ transforms the above indicial equation into the quadratic equation

 $y^2 + 5y - 6 = 0$.

b) Solve the quadratic equation and hence find the root of the **indicial** equation.

 $\begin{array}{c} \mathbf{a} & \mathbf{b} \\ \mathbf{a} & \mathbf{c}_{\mathbf{a}}^{-1} - \mathbf{a}_{\mathbf{a}}^{+} = \mathbf{s} \\ \mathbf{a} & \mathbf{c}_{\mathbf{a}}^{-1} - \mathbf{c} \\ \mathbf{a} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\$

x = 1

n = 2

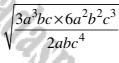
Question 15 (***) The points (2,14) and (6,126) lie on the curve with equation

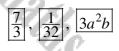
 $y = ax^n, x \in \mathbb{R}$

where a and n are non zero constants.

Find the value of a and the value of n.

Question 16 (***)


F.G.B.


I.C.B.

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.

 $4^{\frac{1}{2}} + 9^{-\frac{1}{2}}$

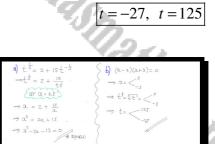
- **ii.** $32^5 \times 8^{-10}$.
- **b**) Simplify fully the following expression

C.A.

nadasn.

(a) (b) $4^{\frac{1}{2}} + 5^{\frac{1}{2}} = \sqrt{4^{1}} + \frac{1}{\sqrt{3^{1}}} = 2 + \frac{1}{3} = \frac{7}{3}$
$(\mathbf{II})_{32}^{5} \times 8^{-10} = (2^{5})^{5} \times (2^{3})^{-10} = \lambda^{25} \times 2^{-30} = 2^{-5} = \frac{1}{2^{17}} = \frac{1}{32}$
$ (b) \int \frac{3a_{bc}^{3}\times 6a_{b}^{2}c^{3}}{2a_{b}c^{4}} = \sqrt{\frac{18a_{b}^{3}c^{4}}{2a_{b}c_{4}}} = \sqrt{9a_{b}^{4}b^{2}} = 3a_{b}^{2} b $

Question 17 (***)


12

 $t^{\frac{1}{3}} = 2 + 15t^{-\frac{1}{3}}.$

a) Show that the substitution $x = t^{\frac{1}{3}}$ transforms the above indicial equation into the quadratic equation

 $x^2 - 2x - 15 = 0$.

b) Solve the quadratic equation and hence find the two solutions of the **indicial** equation.

Question 18 (***)

a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.

 $8^{\frac{5}{3}} - 16^{\frac{3}{4}}$.

ii. $(2.25)^{-\frac{3}{2}}$.

b) Simplify fully the following expression

 $(2a^{\frac{1}{2}}b^{3})^{4} \times (4a^{6}b^{2})^{-\frac{1}{2}}.$

 $\frac{8}{27}$

24,

 $8b^{11}$

 $8a^{-1}b^{11} =$

Question 19 (***)

Given that the curve with equation

 $y = ax - x^{\frac{1}{3}}, \ x \ge 0,$

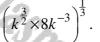
passes though the point with coordinates $\left(\frac{1}{8}, 0\right)$, find the value of the constant *a*.

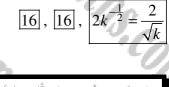
9	$\left\{ \begin{array}{c} q = \alpha \mathbf{x} - \mathbf{x}^{-1} \\ q = \alpha \mathbf{x} - \mathbf{x}^{-1} \end{array} \right\},$
	$\begin{pmatrix} \frac{2}{4} i_0 \end{pmatrix} \implies o = \frac{2}{6} \alpha - \sqrt[3]{\frac{2}{11}} \\ \bigcirc \phi = \phi = \frac{2}{6} \alpha + \frac{2}{6} \left(\frac{2}{11} \right)^{\frac{1}{2}}$
	$\Rightarrow \circ = \frac{1}{8}\circ - \frac{1}{2}$
	ラ 之二方の
	⇒. 4 = a
	1. a=4

а

Question 20 (***)

ii.


, F.G.B.


I.G.B.

a) Evaluate the following indicial expressions, giving the answers as integers.

 $\left(36^{\frac{1}{2}}+16^{\frac{1}{4}}\right)^{\frac{4}{3}}$. i. $\left(\frac{1}{4}\right)^{-2}$

b) Simplify fully the following expression

3

mada

20/20

(a) (\vec{I}) $\left(36^{\frac{1}{2}} + 16^{\frac{1}{4}}\right)^{\frac{3}{3}}$ $\left[\sqrt{36} + \sqrt[4]{16}\right]^{\frac{4}{3}} = \left[6 + 2\right]^{\frac{4}{3}} = 8^{\frac{4}{3}}$ 24 = 16/ $\left(\prod_{i=1}^{n} \left(\frac{1}{4}\right)^{2} \approx \left(\frac{4}{1}\right)^{2} \approx 16$ $\left(8\,k^{-\frac{3}{2}}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}}\left(k^{-\frac{3}{2}}\right)^{\frac{1}{3}} = 2 \times k^{-\frac{1}{2}}$ (h (k * × 8 +-3) 2

F.C.P.

Question 21 (***+)

a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{3}$.

i.
$$\sqrt{108} + \sqrt{3}$$
.
ii. $\frac{\sqrt{6} + \sqrt{3}}{\sqrt{2} + 1}$.

b) Solve the equation

madasm,

I.G.B.

I.C.B.

à.

 $(5-x)^{\frac{3}{2}} = 8$.

KGA

I.F.C.P.

F.G.B.

Ins.co

(C.D.

6

/

Madasn,

madasn.

Created by T. Madas

2017

5.01

Question 22 (***+)

a) Evaluate the following indicial expressions, giving the answers as integers.

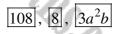
ii.

i.

C.B. Madasman

COM

I.F.G.B.


 $\left(\frac{1}{3}\right)^{-1}$

b) Simplify fully the following expression

.F.G.B.

I.C.

 $\left(\frac{6a^7b^2 \times 9b}{2a}\right)$

ŀ.G.B.

.C.5.

1

madasm.

2017

	$(\underline{A})\left(\underline{I}\right)\left(\frac{1}{3}\right)^{-3} + 2\overline{I}^{\frac{4}{3}} = \left(\frac{2}{1}\right)^{3} + \left(\frac{1}{3}\overline{A}\right)^{4} = 2\overline{I} + 3^{\frac{4}{3}} = 2\overline{I} + 8\overline{I} = 108$
	(II) $\frac{33_3}{8_e} = \frac{(3_2)_e}{(3_2)_e} = \frac{3_{1e}}{3_{1e}} = 3_2 = 8$
	$ \begin{array}{c} (\mathbf{b}) & \left(\frac{6\alpha^{7}b^{2}\times9}{2\alpha} \mathbf{b} \right)^{\frac{1}{2}} \stackrel{\sim}{=} \left(\frac{54\alpha^{7}b^{3}}{2\alpha} \right)^{\frac{1}{2}} \stackrel{\sim}{=} \left(27\alpha^{6}b^{3} \right)^{\frac{1}{2}} \stackrel{\sim}{=} 3\alpha^{2}b \end{array} $
1.	$\left\{ \begin{pmatrix} e^{i} \\ e^{i} \\$
61-	Soly.
10 C	. 40
- S/	

12.80

2017

Ĉ,

Created by T. Madas

00

Question 23 (***+)

a) Simplify fully each of the following expressions, writing the final answer as a single simplified surd.

i.
$$(2+\sqrt{3})(2\sqrt{3}-3)$$
.
ii. $\frac{\sqrt{6}+3\sqrt{2}}{\sqrt{6}+\sqrt{2}}$.

b) Solve the equation

F.G.B.

I.G.p.

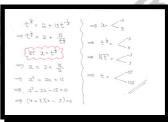
 $8w^{\frac{1}{2}} - w^{-1} = 0,$ $w \neq 0$.

(a) (1) (2+N3)(2N3-3)= 4N3-6+K-3N3=N3 (I) 46 + 312 -

C.p.

nadasn

 $\sqrt{3}$, $\sqrt{3}$,


 $w = \frac{1}{4}$

5

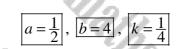
Question 24 (***+)

 $t^{\frac{1}{3}} = 2 + 15t^{-\frac{1}{3}}, \quad t \neq 0.$

Use the substitution $x = t^{\frac{1}{3}}$ to solve the above indicial equation.

27.

t =125


Question 25 (***+) An exponential curve has equation

 $y=ab^x, x\in\mathbb{R},$

where a and b are non zero constants.

The points $A(\frac{1}{2},1)$, B(2,8) and $C(-\frac{1}{2},k)$ lie on this curve.

- **a**) Find the values of a and b.
- **b**) Find the value of k.

$A\left(\frac{1}{2}n\right)$ B $\left(2n\right)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	$ \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	

Question 26 (***+)

Ĉ,

I.G.p.

 $\left| \begin{array}{c} \frac{2}{3} \\ \end{array} \right|$ $\left(125^{\frac{1}{3}} \times 25^{\frac{1}{2}} + 16^{\frac{3}{4}} \times 64^{\frac{1}{3}} + \frac{1}{49^{-\frac{1}{2}}}\right)$

Evaluate the above indicial expression, giving the final answer as a simplified fraction.

You may not use any calculating aid in the above question, and detailed workings must support the answer.

12sm

- 51 F.A.	
$(125^{\frac{1}{2}} \times 5^{\frac{1}{2}} + 16^{\frac{4}{7}} \times 64^{\frac{1}{2}}$	
$= \left[\frac{3}{\sqrt[3]{125}} \times \sqrt{25^{7}} + \left(\sqrt[4]{16^{7}} \right)^{3}_{+} \right]$	3 ₆₄ + 49 [±]] ⁻³
= [5×5 + 2×4 + √49	
$= \left(25 + 8x4 + 7\right)^{-\frac{3}{2}}$	
$= (25 + 32 + 7)^{-\frac{2}{3}}$	$\left\{ \begin{array}{c} -M \\ Q \end{array} = \frac{1}{-M} \end{array} \right\}$
= 64-2	$\left\{ \frac{a}{a^{\frac{M}{n}} = (\sqrt[N]{a})^{\frac{M}{n}}} \right\}$
$=\frac{1}{64\frac{2}{3}}$	humand
$=\frac{1}{(\lambda_{1}^{-1})^{2}}$	
$=\frac{1}{4^2}$	
= 16	

G.B.

Madasn

 $\frac{1}{16}$

Question 27 (***+)

a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{2}$.

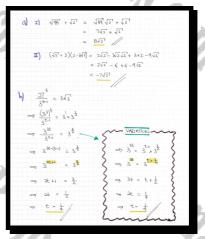
 $\frac{27^t}{3^{t-1}} = 3\sqrt{3} \; .$

i. $\sqrt{98} + \sqrt{2}$. ii. $(\sqrt{2} + 3)(2 - 3\sqrt{2})$.

b) Solve the equation

I.C.B.

I.V.G.B.


 $\boxed{8\sqrt{2}}, \boxed{-7\sqrt{2}}, \boxed{t} = \frac{1}{4}$

1.

G,

6

1720251

I.G.B.

Created by T. Madas

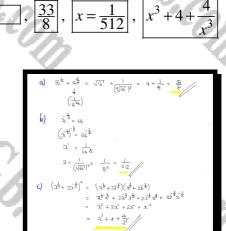
N.C.

Question 28 (***+)

a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

 $16^{\frac{1}{2}} + 16^{-\frac{3}{4}}$

 $x^{-\frac{2}{3}} = 64$.


 $x^{\frac{3}{2}} + 2x^{-\frac{3}{2}}$

b) Solve the equation

c) Simplify fully

ŀ.C.B.

I.G.B.

G.B.

nadası

202.80

5

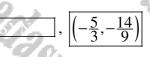
Question 29 (***+) An exponential curve has equation

 $y = ab^x, x \in \mathbb{R}$

where a and b are non zero constants.

The points A(1,7) and B(3,175) lie on this curve.

Given that b > 0, find the values of a and b.


		-
E. 1	a = 1.4,	b = 5
Ø	5	

A(1,7)	4= abx
B(3,175)	$ \begin{array}{c} (p^{\prime}) \Rightarrow (p^{\prime}) \Rightarrow (p^{\prime}) = \alpha \times p^{\prime} \\ (p^{\prime}) \Rightarrow (p^{\prime}) = \alpha \times p^{\prime} \\ \end{array} \right\} \text{ Dirice even on even of its that } $
	$\frac{a' \times b^2}{a' \times b} = \frac{175}{7}$ $\frac{a' \times b^2}{b^2} = 25$ $\frac{a' \times b^2}{5a = 7}$
	$b = S (bro) = \int_{a}^{b} \frac{1}{2} da = \frac{1}{2}$

Question 30 (***+)

Solve the following simultaneous equations without using a calculator

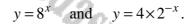
 $8^{y} = 4^{2x+1}$ $27^{2y} = 9^{x-3}$

algence equations who pavers	of 2 g 3	÷
$\implies \theta^{ij} = \psi_{3t+i}$	$\Rightarrow 27^{29} = 9^{\lambda-3}$	
$\implies (2^{i})^{i_{i_{j_{j_{i_{j}}}}}}}}}}$	= (31) ²³ = (32) ² =?	
⇒ 2 ³⁸ ∘ 2 ^{40,42}	= 364 = 322-6	
∴ <u>39</u> = 43+2	: 6y = 22-6	
5. 6y= 8x+4		
~		
→ 8x+	4= 22-6	
	= - §	
	- 3	
ANALOY WE HAVE		
$\implies 6y = 8x + 4$		
= 6y = - ++++		
$\implies 9y = -40 + 12$ $\implies 3y = -28$		
-> 9g = -14		
- 4=-14		

Question 31 (***+)

a) Solve the equation

b) Express


$\sqrt{525}$,

in the form $a\sqrt{b}\sqrt{c}$, where a, b and c are prime numbers.

Question 32 (***+)

5

Find the exact coordinates of the point of intersection between the curves with equations

 $\left(\frac{1}{2}, 2\sqrt{2}\right)$

 $5\sqrt{3}\sqrt{7}$

 $\frac{3}{2}$,

(b) 125 = 125 × 121

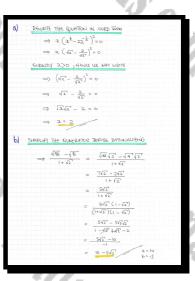
Question 33 (***+)

a) If x is a real number solve the following indicial equation

 $x\left(x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}\right)^2 = 0.$

b) Express

V.G.B. May


I.V.G.B.

 $\frac{\sqrt{98}-\sqrt{8}}{1+\sqrt{2}},$

in the form $a+b\sqrt{2}$, where a and b are integers.

I.G.B.

Y.C.

x=2, $10-5\sqrt{2}$

COM

madas,

20

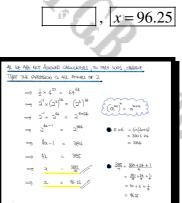
Madasn

I.G.B.

1.G.D.

16

./

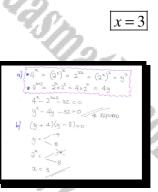

Created by T. Madas

0

Question 34 (***+)

Find, without the use of any calculating aid, the solution of the equation

 $\frac{1}{2} \times 4^{2x} = 64^{64}$.


Question 35 (***+)

 $4^x - 2^{x+2} = 32.$

a) Show that the substitution $y = 2^x$ transforms the above indicial equation into the quadratic equation

 $y^2 - 4y - 32 = 0$.

b) Solve the quadratic equation and hence find the root of the **indicial** equation.

Question 36 (****)

Solve the following simultaneous equations without using a calculator.

$$4x - 3y = 11$$
$$9^{y+3} = \frac{3\sqrt{3}}{27^x}$$

 $\begin{array}{c} (1-3) = 11/2 \\ (2x + 10 = -9) \\ (2x + 10 = -9) \\ (3x + 10 = -9) \\ (3x + 10) = -27 \\ (3x + 10) =$

 $\boxed{\left(\frac{1}{2},-3\right)}$

Question 37 (****)

5

Given that the curve with equation

5

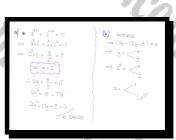
$$y = kx^{\frac{1}{2}} - x^{-\frac{3}{2}}, \ x \ge 0$$
,

passes though the point with coordinates $\left(3, \frac{5}{3}\sqrt{3}\right)$, show clearly that $k = \frac{16}{9}$.

proof

$ \begin{array}{c} & & & \\ & & & \\ $
$\left(3_{1} \xrightarrow{\xi} \sqrt{3}\right) \Longrightarrow \xrightarrow{\xi} \sqrt{3}^{*} * k_{X} \xrightarrow{\xi} - \xrightarrow{5} \frac{1}{3}$
$\Rightarrow \frac{5}{3}\sqrt{3} = k \times \sqrt{3} - \frac{1}{3^{\frac{3}{2}}}$
$\Rightarrow \frac{3}{2}\sqrt{3} = k^{\chi}\sqrt{3} - \frac{(\sqrt{3})^{3}}{1}$
$\Rightarrow \frac{2}{3}\sqrt{1} = k \times \sqrt{1} - \frac{3\sqrt{10}}{24}$ $\Rightarrow \frac{2}{3}\sqrt{1} = k \times \sqrt{1} - \frac{3\sqrt{10}}{241}$
=) $\frac{5}{3}\sqrt{3}$ = kx $\sqrt{3}$ - $\frac{\sqrt{3}}{3\sqrt{3}}$ PATONALIZE
=> == == == == == == == == == == == == =
$\Rightarrow \frac{5}{3} = k - \frac{1}{9}$
$\Rightarrow \frac{3}{2} + \frac{3}{7} = k$
$\implies \frac{15}{9} + \frac{1}{9} = k$
$\Rightarrow k \cdot \frac{k}{3}$

Question 38 (****) The indicial equation


$$2^{x+1} + 2^{3-x} = 17, \ x \in \mathbb{R},$$

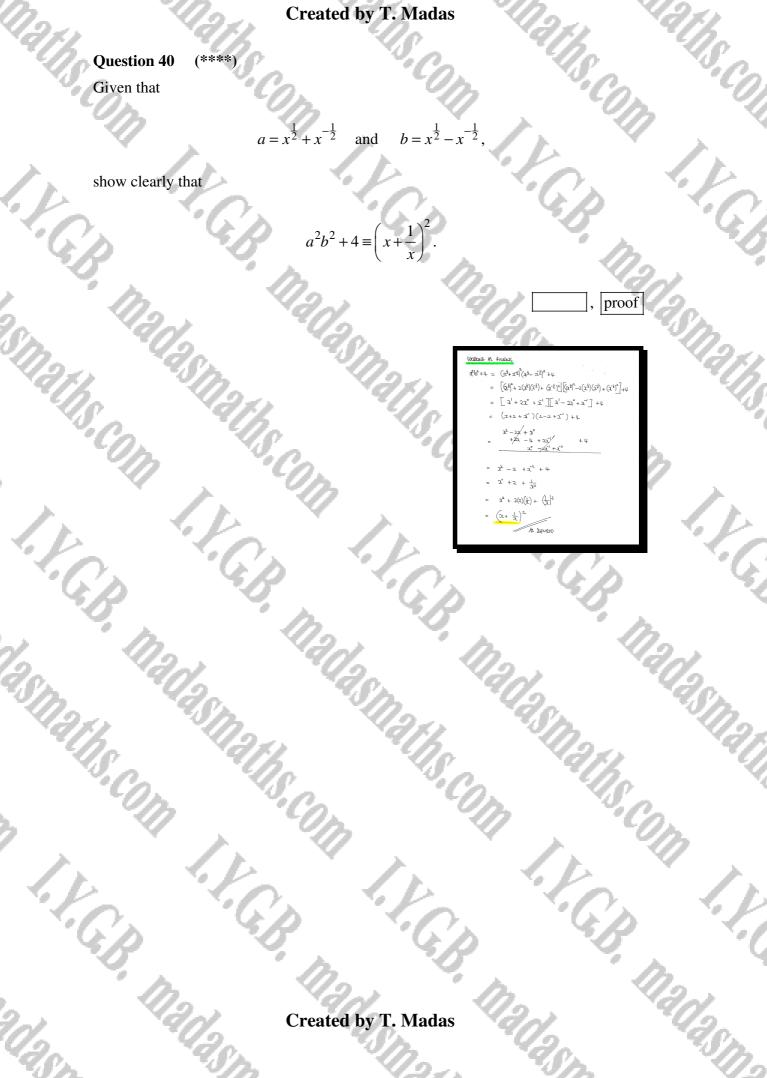
is to be solved by a suitable substitution.

a) Show clearly that the substitution $y = 2^x$ transforms the above indicial equation into the quadratic equation

$$2y^2 - 17y + 8 = 0.$$

b) Solve the quadratic equation by factorization and hence determine the two solutions of the indicial equation.

-1, 3


 $\overline{10}$

Question 39 (****)

Solve the equation

$$(25x^2)^{-\frac{1}{2}} = 2, \quad x \neq 0.$$

<u> </u>	
$ \begin{array}{c} \bullet \left((2\xi_{2}^{2})^{-\frac{1}{2}} = 2 \\ \Rightarrow \left[(2\xi_{2}^{2})^{-\frac{1}{2}} \right]^{-2} = 2^{2^{2}} \\ \Rightarrow \left((2\xi_{2}^{2})^{-\frac{1}{2}} \right)^{-2} = \frac{1}{4} \\ \Rightarrow & \Re^{\lambda} = \frac{1}{4} \\ \Rightarrow & \chi^{2} = \frac{1}{100} \\ \lambda = \pm \frac{1}{10} \end{array} $	$\begin{array}{c} 0 \widehat{\mathbf{y}}_{1}^{(\frac{1}{2})} \ \mathbf{z}_{1}^{-1} \ = 2 \\ \widehat{\mathbf{y}}_{2}^{(\frac{1}{2})} \ \mathbf{z}_{1}^{-1} \ = 2 \\ \widehat{\mathbf{y}}_{2}^{-1} \ \mathbf{z}_{1}^{-1} \ = 10 \\ \widehat{\mathbf{y}}_{1}^{-1} \ \mathbf{z}_{1}^{-1} \ = 10 \\ \widehat{\mathbf{y}}_{1}^{-1} \ \mathbf{z}_{1}^{-1} \ = \frac{1}{10} \\ \widehat{\mathbf{y}}_{1}^{-1} \ = \frac{1}{10} \\ \widehat{\mathbf{y}}_{1}^$

Question 41 (****)

. R.B.

i.C.B.

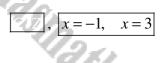
 $2^{2p-2} - 2^{p-2} - 3 = 0, \ p \in \mathbb{R},$

a) Show clearly that the substitution $x = 2^p$ transforms the above indicial equation into the quadratic equation

 $x^2 - x - 12 = 0$.

p=2

b) Solve the quadratic equation and hence determine the value of p.

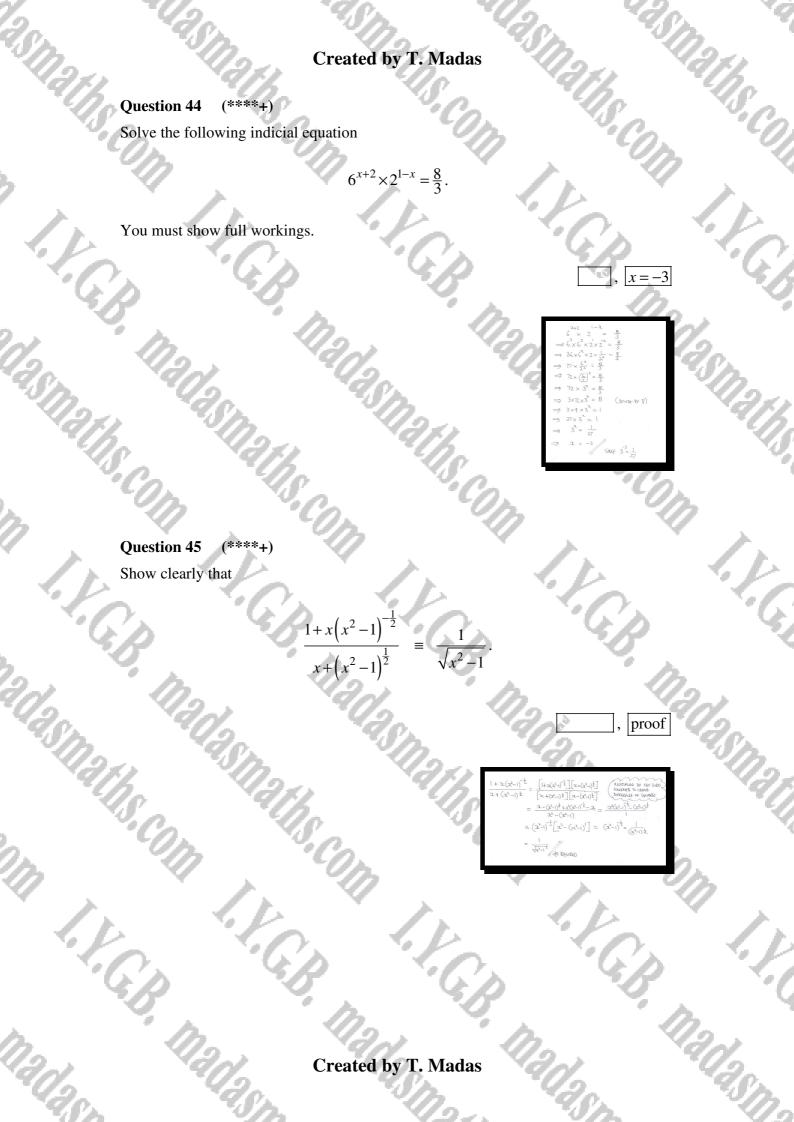

Question 42 (****)

$100^{x} - 10001(10^{x-1}) + 100 = 0.$

a) Show that the substitution $y = 10^x$ transforms the above indicial equation into the quadratic equation

 $10y^2 - 10001y + 1000 = 0.$

b) Solve the quadratic equation and hence find the two solutions of the **indicial** equation.


Question 43(****)Determine the value of k.

You must show full workings.

uze the i	EXPRESSIO	N AS GUDU	LL LL	
2 ²⁸⁸ +	2 ²⁸⁵ =	2 ²⁸⁵ 2 ³	+ 2 2185	
	=	2 ²⁸⁵ 2 ³	<u>+ []</u>	
		2 × 4 9 2265		

k = 285

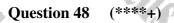
Question 46 (****+)

Solve the following exponential equation

 $16 + 8^{x+1} - 4^{x+1} - 2^{x+5} = 0, \ x \in \mathbb{R}.$

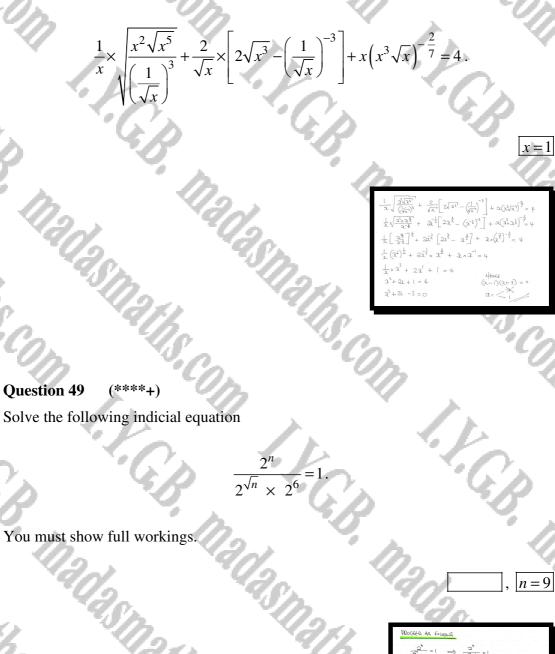
2

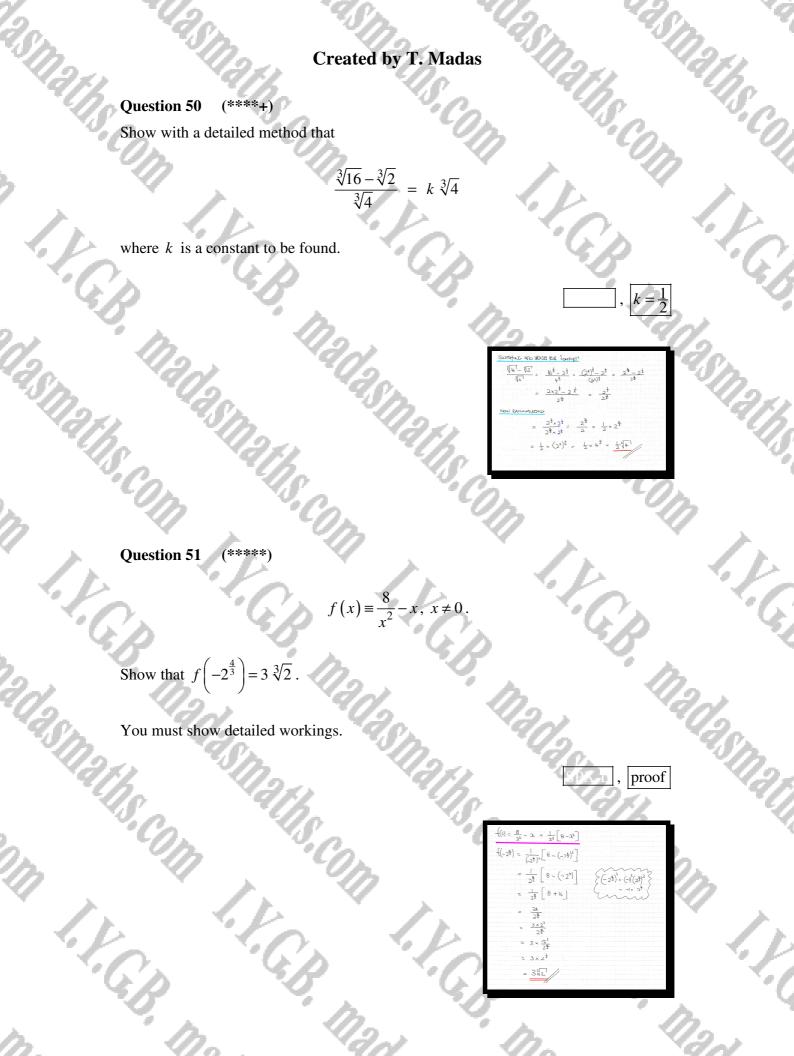
Question 47 (****+) Determine the value of *k*.

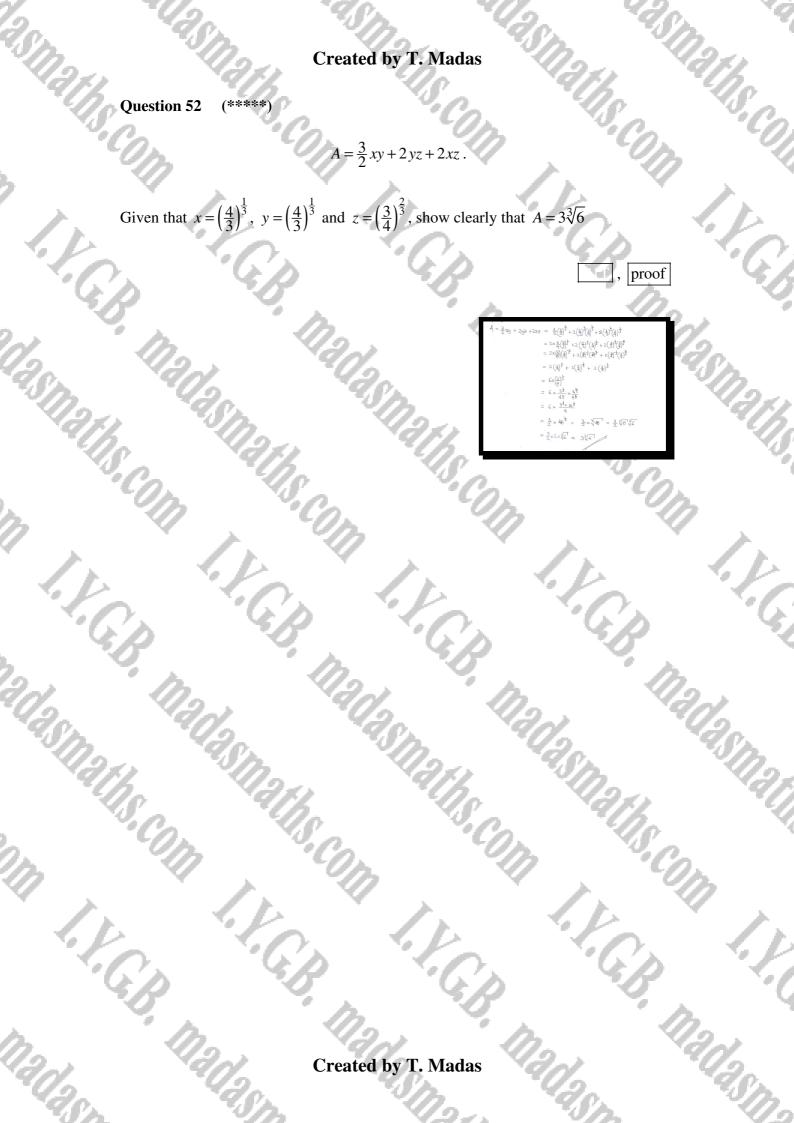

 $\frac{2^{399} - 2^{395}}{15} = 32^k$

You must show full workings.

I.C.P.


		0	1	
	1	<u></u>	<u> </u>	
Raceto At Guaus				
$\rightarrow \frac{2^{344}}{15} = \frac{2^{345}}{15} =$	32. ^K			
- 24 × 235 - 2	$\mathfrak{m} = (2^s)$			
$\rightarrow \frac{12}{16 \times 2_{31}} - 2_{31}$	s z _{sk}			
= <u>Kx 2 ×U</u> =	2.5%			
್ರಾ ೨ _{೫೭} ೮ 2.4				
295 - 4Z ç=				
-> k=71				
/				


, k = 79



Ka

Solve the following equation

Question 53 (*****) A curve has equation

Y.C.B. Madasm

Com

I.C.B.

 $f(x) \equiv 3^{ax} + b, \ x \in \mathbb{R},$

where a and b are non zero constants.

Find the value of a and the value of b, given further that

F.G.B.

 $f(3) = 2\sqrt{3}.$ $f(2) = 3 - \sqrt{3}$ and $, |a = \frac{1}{2}|$ $b = -\sqrt{3}$

ths.com

. G.D.

COM

madas,

I.C.p.

Y.C.B.

Created by T. Madas

2017

C1

Question 54 (*****)

A curve has equation

I.C.B. III

I.C.P.

 $f(x) \equiv 2^{ax} + b, \ x \in \mathbb{R},$

COM

ion

Mada

F.G.B.

3

. GR

where a and b are non zero constants.

Find the value of a and the value of b, given further that

 $f(2) = \frac{5}{2} \quad \text{and} \quad f(-2) = 4.$ $f(2) = \frac{5}{2} \quad \text{and} \quad f(-2) = 4.$ $f(2) = \frac{5}{2}, \quad b = 2$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(2) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(3) = \frac{5}{2}, \quad b = 4 - 2^{2}$ $f(4) = \frac{5}{2}, \quad c = 4$ $f(4) = \frac{5}{2},$

Created by T. Madas

R,

Question 55 (*****) A curve has equation

N.G.B. Madas

I.C.p

 $f(x) \equiv 4^{ax+b}, \ x \in \mathbb{R},$

and

where a and b are non zero constants.

Find the value of a and the value of b, given further that

F.G.B.

 $f\left(\frac{2}{3}\right) = \frac{1}{4}\sqrt[3]{4}$

 $f\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{2}.$ $f\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{2}.$ $\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{2}.$ $\left(\frac{1}{2}\right) = \frac{1}{2}, \quad \boxed{b = -1}$ $\left(\frac{1}{2}\right) = \frac{1}{2}, \quad \boxed{b = -1}$ $\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{2}.$ $\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{2}.$

Y.C.B.

COM

100

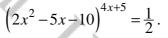
2017

I.C.B.

Created by T. Madas

00

R.

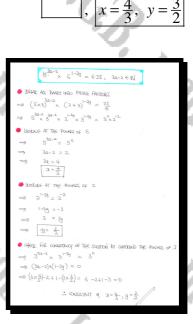

(*****) **Question 56**

Find the solutions for the following equation.

(*****) **Question 57**

Find a solution for the following equation.

asmains.com


asiliatilis.com

1.4.6.6

Question 58 (*****)

Determine the value of x and the value of y in the following equation

 $15^{3x-2} \times 6^{1-2y} = 6.25, \quad (3x-2) \in \mathbb{N}.$

Question 59 (*****)

10,

 $2^{m+1} + 2^m = 3^{n+2} - 3^n \,.$

Given that m and n are positive integers, find the value of m and the value of n.

(****) **Question 60**

>

I.F.G.B.

asmaths com

I.V.C.B. Madasm

Smaths.com

I.F.G.B.

Find the term independent of x in the expansion of

madasmaths.com

I.V.G.B.

I.F.G.p.

M2112.87

aths com

. ŀG.B.

I.V.C.B. Madasmatis Madasmatis.com

Ismaths.com

210

ISMATHS.COL

Y.C.S

6

Inadasman

I.Y.C.B. Madasm

Created by T. Madas

Madasmaths Com

I.C.B.

lasmaths.com

asinans.com

I.V.C.B. Madasm

1.6

1.4.6.5

(*****) **Question 61** Simplify the following expression.

I.Y.C.B. Madasmany Com

ISM3//IS-COM F. K.C.P.

$$\frac{x^6 - yz^4}{x^4 + xz^2\sqrt{y}}$$

Give the answer in the form $x^2 - x^r y^s z^t$, where r, s and t are constants. CASINALIS COM I.Y. C.B. INAUASINALIS COM Malasmans.com I.Y.C.B. Malasmans.com

Created by T. Madas

F.G.B.