Created by T. Madas

Question 1
a) Evaluate the following indicial expression, giving the final answer as an exact simplified fraction.

$$
4 \quad 4^{\frac{3}{2}}+4^{-\frac{1}{2}}
$$

b) Simplify fully the following expression
\square
$4 y^{-3}=\frac{4}{y^{3}}$
\square

\square

Question 2 (**)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.
i. $\quad 2^{-4}+8^{-1}$.
ii. $\left(\frac{81}{16}\right)^{\frac{3}{4}}$.
b) Simplify fully the following expression

$$
\frac{\left(4 x y^{2}\right)^{2}}{(2 x)^{3}}
$$

$$
\square, \frac{3}{16}, \frac{27}{8}, 2 y^{4} x^{-1}=\frac{2 y^{4}}{x}
$$

(a) (I) $2^{-4}+8^{-1}=\frac{1}{2^{4}}+\frac{1}{8}=\frac{1}{16}+\frac{1}{8}=\frac{1}{16}+\frac{2}{16}=\frac{3}{16}$
(II) $\left(\frac{81}{16}\right)^{\frac{3}{4}}=\left(\sqrt[4]{\frac{81}{16}}\right)^{3}=\left(\frac{3}{2}\right)^{3}=\frac{27}{8}$

Question $3 \quad(* *+)$
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.
i. $64^{\frac{3}{2}}+64^{\frac{2}{3}}$.
ii. $\left(\frac{25}{16}\right)^{-\frac{1}{2}}$.
b) Simplify fully the following expression

$$
\frac{3 a^{4} \times(10 a)^{3}}{\left(5 a^{2}\right)^{3}}
$$

$528, \frac{4}{5}, 24 a$
(a) $(\mathrm{I}) 64^{\frac{3}{2}}+64^{\frac{2}{3}}=(\sqrt[2]{64})^{3}+(\sqrt[3]{64})^{2}=8^{3}+4^{2}=512+16=528$ (II) $\left(\frac{21}{16}\right]^{-\frac{1}{2}}=\left(\frac{16}{25}\right)^{\frac{1}{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$

Question $4 \quad(* *+)$
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.
i. $16^{\frac{1}{2}}+16^{\frac{1}{4}}$.
ii. $\left(\frac{2}{3}\right)^{-2}$.
b) Simplify fully the following expression

Question 5 (**+)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.
i. $\quad 2^{-5}-8^{-2}$.
ii. $\left(\frac{4}{9}\right)^{\frac{3}{2}}$.
b) Solve the equation

Question $7 \quad(* *+)$
a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

$$
4 \times 4^{\frac{5}{2}}+8^{-\frac{1}{3}}
$$

The answer to this part of the question must be fully supported by a detailed method, justifying each step in the evaluation.
b) Simplify fully the following expression

$$
\left(2 p q^{2}\right)^{4} \times 5 p \sqrt{q^{6}}
$$

Question 8 (***)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.
i. $8^{\frac{1}{3}}+8^{-\frac{1}{3}}$.
ii. $8^{-4} \times 2^{11}$.
b) Simplify fully

$$
\frac{\sqrt{9 x^{6} y^{4}}}{\left(3 x^{2} y^{3}\right)^{2}}
$$

Question 9 (***)
a) Simplify the following expression, writing the final answer in the form $a+b \sqrt{3}$, where a and b are integers
b) Solve the equation

Question 10
a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

$$
\left(6 \frac{1}{4}\right)^{-\frac{3}{2}}
$$

b) Simplify fully the following expression

Question 11 (***)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions, where appropriate.

b) Solve the equation

Question 12 (***)
a) Simplify the following expression, writing the final answer in the form $a+b \sqrt{3}$, where a and b are integers

$$
\frac{2 \sqrt{3}-1}{2-\sqrt{3}}
$$

b) Solve the equation
\square
(1) $4+3 \sqrt{3}, x=\frac{1}{2}$

Question 13 (***)
a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

b) Solve the equation

$$
t^{-\frac{1}{2}}=\frac{1}{4}
$$

Question 14 (***)

$$
6 x^{-\frac{1}{2}}-x^{\frac{1}{2}}=5
$$

a) Show that the substitution $y=x^{\frac{1}{2}}$ transforms the above indicial equation into the quadratic equation

$$
y^{2}+5 y-6=0
$$

b) Solve the quadratic equation and hence find the root of the indicial equation.

Question 15 (***)
The points $(2,14)$ and $(6,126)$ lie on the curve with equation

$$
y=a x^{n}, x \in \mathbb{R}
$$

where a and n are non zero constants.

Find the value of a and the value of n.

Question 16 (***)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions.
i. $\quad 4^{\frac{1}{2}}+9^{-\frac{1}{2}}$.
ii. $32^{5} \times 8^{-10}$.
b) Simplify fully the following expression

$$
\text { ? } 2 \sqrt{\frac{3 a^{3} b c \times 6 a^{2} b^{2} c^{3}}{2 a b c^{4}}}
$$

Question 17 (***)

$$
t^{\frac{1}{3}}=2+15 t^{-\frac{1}{3}}
$$

a) Show that the substitution $x=t^{\frac{1}{3}}$ transforms the above indicial equation into the quadratic equation

$$
x^{2}-2 x-15=0
$$

b) Solve the quadratic equation and hence find the two solutions of the indicial equation.

Question 18 (***)
a) Evaluate the following indicial expressions, giving the final answers as exact simplified fractions where appropriate.
i. $\quad 8^{\frac{5}{3}}-16^{\frac{3}{4}}$.
ii. $(2.25)^{-\frac{3}{2}}$.
b) Simplify fully the following expression

$$
\left(2 a^{\frac{1}{2}} b^{3}\right)^{4} \times\left(4 a^{6} b^{2}\right)^{-\frac{1}{2}}
$$

\square
$24, \frac{8}{27}, 8 a^{-1} b^{11}=\frac{8 b^{11}}{a}$
\square

Question 19 (***)
Given that the curve with equation

$$
y=a x-x^{\frac{1}{3}}, x \geq 0
$$

passes though the point with coordinates $\left(\frac{1}{8}, 0\right)$, find the value of the constant a.

$$
a=4
$$

Created by T. Madas

Question 20 (***)
a) Evaluate the following indicial expressions, giving the answers as integers.
i. $\left(36^{\frac{1}{2}}+16^{\frac{1}{4}}\right)^{\frac{4}{3}}$.
ii. $\left(\frac{1}{4}\right)^{-2}$.
b) Simplify fully the following expression

Question 21 (***+)
a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{3}$.
i. $\sqrt{108}+\sqrt{3}$.
ii. $\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}$.
b) Solve the equation

Question $22 \quad(* * *+)$
a) Evaluate the following indicial expressions, giving the answers as integers.
i. $\left(\frac{1}{3}\right)^{-3}$.
ii. $\frac{8^{6}}{32^{3}}$.
b) Simplify fully the following expression

Question 23 (***+)
a) Simplify fully each of the following expressions, writing the final answer as a single simplified surd.
i. $(2+\sqrt{3})(2 \sqrt{3}-3)$.
ii. $\frac{\sqrt{6}+3 \sqrt{2}}{\sqrt{6}+\sqrt{2}}$.
b) Solve the equation

Created by T. Madas

Question 24 (***+)

$$
t^{\frac{1}{3}}=2+15 t^{-\frac{1}{3}}, \quad t \neq 0 .
$$

Use the substitution $x=t^{\frac{1}{3}}$ to solve the above indicial equation.

Question 25 (***+)
An exponential curve has equation

$$
y=a b^{x}, x \in \mathbb{R},
$$

where a and b are non zero constants.

The points $A\left(\frac{1}{2}, 1\right), B(2,8)$ and $C\left(-\frac{1}{2}, k\right)$ lie on this curve.
a) Find the values of a and b.
b) Find the value of k.

Created by T. Madas

Question 26 (***+)

$$
\left(125^{\frac{1}{3}} \times 25^{\frac{1}{2}}+16^{\frac{3}{4}} \times 64^{\frac{1}{3}}+\frac{1}{49^{-\frac{1}{2}}}\right)^{-\frac{2}{3}}
$$

Evaluate the above indicial expression, giving the final answer as a simplified fraction.

You may not use any calculating aid in the above question, and detailed workings must support the answer.

Question 27 (***+)
a) Simplify fully each of the following expressions, writing the final answer in terms of $\sqrt{2}$.
i. $\sqrt{98}+\sqrt{2}$.
ii. $(\sqrt{2}+3)(2-3 \sqrt{2})$.
b) Solve the equation

Question 28 (***+)
a) Evaluate the following indicial expression, giving the final answers as an exact simplified fraction.

$$
\text { Solve the equation } 16^{\frac{1}{2}}+16^{-\frac{3}{4}} .
$$

Question 29 (***+)
An exponential curve has equation

$$
y=a b^{x}, x \in \mathbb{R}
$$

where a and b are non zero constants.

The points $A(1,7)$ and $B(3,175)$ lie on this curve.

Given that $b>0$, find the values of a and b.

$$
a=1.4, b=5
$$

\square

Question 30 (***+)
Solve the following simultaneous equations without using a calculator

$$
\begin{aligned}
& 8^{y}=4^{2 x+1} \\
& 27^{2 y}=9^{x-3}
\end{aligned}
$$

Question $31 \quad\left({ }^{* * *}+\right.$)
a) Solve the equation

$$
\sqrt{525}
$$

in the form $a \sqrt{b} \sqrt{c}$, where a, b and c are prime numbers.

Find the exact coordinates of the point of intersection between the curves with equations

$$
y=8^{x} \text { and } y=4 \times 2^{-x} .
$$

Question 33 (***+)
a) If x is a real number solve the following indicial equation

$$
x\left(x^{\frac{1}{2}}-2 x^{-\frac{1}{2}}\right)^{2}=0
$$

b) Express

$$
\frac{\sqrt{98}-\sqrt{8}}{1+\sqrt{2}}
$$

in the form $a+b \sqrt{2}$, where a and b are integers.
\square $, x=2,10-5 \sqrt{2}$

Question 34 (***+)
Find, without the use of any calculating aid, the solution of the equation

$$
\frac{1}{2} \times 4^{2 x}=64^{64}
$$

$$
4^{x}-2^{x+2}=32
$$

a) Show that the substitution $y=2^{x}$ transforms the above indicial equation into the quadratic equation

$$
y^{2}-4 y-32=0
$$

b) Solve the quadratic equation and hence find the root of the indicial equation.

Question 36 (****)
Solve the following simultaneous equations without using a calculator.

$$
\begin{aligned}
& 4 x-3 y=11 \\
& 9^{y+3}=\frac{3 \sqrt{3}}{27^{x}}
\end{aligned}
$$

Given that the curve with equation
Question 37 (****)

$$
y=k x^{\frac{1}{2}}-x^{-\frac{3}{2}}, x \geq 0
$$

passes though the point with coordinates $\left(3, \frac{5}{3} \sqrt{3}\right)$, show clearly that $k=\frac{16}{9}$.

Question 38 (****)
The indicial equation

$$
2^{x+1}+2^{3-x}=17, x \in \mathbb{R}
$$

is to be solved by a suitable substitution.
a) Show clearly that the substitution $y=2^{x}$ transforms the above indicial equation into the quadratic equation

$$
2 y^{2}-17 y+8=0
$$

b) Solve the quadratic equation by factorization and hence determine the two solutions of the indicial equation.

Question 40
$(* * * *)$
Given that

$$
a=x^{\frac{1}{2}}+x^{-\frac{1}{2}} \quad \text { and } \quad b=x^{\frac{1}{2}}-x^{-\frac{1}{2}}
$$

Created by T. Madas

Question 41 (****)

$$
2^{2 p-2}-2^{p-2}-3=0, p \in \mathbb{R}
$$

a) Show clearly that the substitution $x=2^{p}$ transforms the above indicial equation into the quadratic equation

$$
x^{2}-x-12=0
$$

b) Solve the quadratic equation and hence determine the value of p.

Created by T. Madas

Question 42 (****)

$$
100^{x}-10001\left(10^{x-1}\right)+100=0
$$

a) Show that the substitution $y=10^{x}$ transforms the above indicial equation into the quadratic equation

$$
10 y^{2}-10001 y+1000=0
$$

b) Solve the quadratic equation and hence find the two solutions of the indicial equation.

Question 43 (****)
Determine the value of k.

$$
\frac{2^{288}+2^{285}}{9}=2^{k}
$$

\square , $x=-1, \quad x=3$
\square
(b) $(10 y-1)(y-1000)=0$

You must show full workings.

Question $44 \quad(* * * *+)$
Solve the following indicial equation

Created by T. Madas

Question $46 \quad(* * * *+)$

Solve the following exponential equation

$$
16+8^{x+1}-4^{x+1}-2^{x+5}=0, x \in \mathbb{R}
$$

Question 47 (****+)

Determine the value of k.

You must show full workings.

Question 48 (****+)
Solve the following equation

$$
\frac{1}{x} \times \sqrt{\frac{x^{2} \sqrt{x^{5}}}{\left(\frac{1}{\sqrt{x}}\right)^{3}}}+\frac{2}{\sqrt{x}} \times\left[2 \sqrt{x^{3}}-\left(\frac{1}{\sqrt{x}}\right)^{-3}\right]+x\left(x^{3} \sqrt{x}\right)^{-\frac{2}{7}}=4
$$

Question 49 (****+)
Solve the following indicial equation
\qquad
You must show full workings.

$$
\frac{2^{n}}{2^{\sqrt{n}} \times 2^{6}}=1
$$

\square , $n=9$

Question $50 \quad(* * * *+)$
Show with a detailed method that

$$
\frac{\sqrt[3]{16}-\sqrt[3]{2}}{\sqrt[3]{4}}=k \sqrt[3]{4}
$$

where k is a constant to be found.

\square , $k=\frac{1}{2}$
SWrithtar ind voices Be "Comber"

$$
\frac{\sqrt[3]{16}-\sqrt[3]{2}}{\sqrt[3]{4}}=\frac{1^{\frac{1}{5}}-2^{\frac{1}{3}}}{4^{\frac{5}{3}}}=\frac{\left(2^{4}\right)^{\frac{1}{2}}-2^{\frac{1}{5}}}{\left(2^{2}\right)^{\frac{1}{2}}}=\frac{2^{\frac{4}{4}}-2^{\frac{1}{2}}}{2^{\frac{1}{3}}}
$$

$$
=\frac{2 \times 2^{\frac{t}{2}}-2^{\frac{1}{2}}}{2^{\frac{2}{3}}}=\frac{2^{\frac{1}{2}}}{2^{\frac{2}{2}}}
$$

$$
=\frac{2^{5} \times 2^{\frac{1}{2}}}{2^{\frac{2}{3}} \times 2^{5}}=\frac{2^{\frac{2}{3}}}{2}=\frac{1}{2} \times 2^{\frac{2}{7}}
$$

Question 51 (*****)

Now RAIMNAUTAND

$$
=\frac{1}{2} \times\left(2^{2}\right)^{5}=\frac{1}{2} \times 4^{5}=\frac{\frac{1}{2} \sqrt[4]{4}}{}
$$

Show that $f\left(-2^{\frac{4}{3}}\right)=3 \sqrt[3]{2}$.

$$
f(x) \equiv \frac{8}{x^{2}}-x, x \neq 0
$$

You must show detailed workings.
\square

Created by T. Madas

Question 52 (*****)

$$
A=\frac{3}{2} x y+2 y z+2 x z .
$$

Given that $x=\left(\frac{4}{3}\right)^{\frac{1}{3}}, y=\left(\frac{4}{3}\right)^{\frac{1}{3}}$ and $z=\left(\frac{3}{4}\right)^{\frac{2}{3}}$, show clearly that $A=3 \sqrt[3]{6}$

Created by T. Madas

Question 53 (*****)
A curve has equation

$$
f(x) \equiv 3^{a x}+b, x \in \mathbb{R}
$$

where a and b are non zero constants.

Find the value of a and the value of b, given further that

$$
f(2)=3-\sqrt{3} \quad \text { and } \quad f(3)=2 \sqrt{3}
$$

$$
a, a=\frac{1}{2}, b=-\sqrt{3}
$$

Question 54 (*****)
A curve has equation

$$
f(x) \equiv 2^{a x}+b, x \in \mathbb{R}
$$

where a and b are non zero constants.

Find the value of a and the value of b, given further that

$$
\begin{aligned}
& f(2)=\frac{5}{2} \quad \text { and } \quad f(-2)=4 \\
&
\end{aligned}
$$

- sanome smaxatiososy	
$\Rightarrow 4-2^{-2 n}=\frac{5}{2}-2^{n}$	$\Rightarrow 4-\frac{1}{2^{2}}=\frac{5}{2}-2^{4}$
$\rightarrow 4-\frac{1}{4}=\frac{5}{2}-4 \quad\left(A=2^{2}\right)$	
$\Rightarrow 4 t-1=\frac{5}{2} A-A^{2}$	
$\Rightarrow 8 t-2-5 t-2 t^{2}$	
$\Rightarrow 24^{2}+34-2=0$	
$\rightarrow(2 A-1)(A+2)=0$	
$\Rightarrow A=<_{*}^{\frac{1}{3}}$	

\square

Created by T. Madas

Question 55 (*****)
A curve has equation

$$
f(x) \equiv 4^{a x+b}, x \in \mathbb{R}
$$

where a and b are non zero constants.

Find the value of a and the value of b, given further that

$$
f\left(\frac{2}{3}\right)=\frac{1}{4} \sqrt[3]{4} \quad \text { and } \quad f\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{2}
$$

$$
\square, a=\frac{1}{2}, b=-1
$$

\square

Question 56 ($* * * * *)$
Find the solutions for the following equation.

Question 57 (*****)
Find a solution for the following equation.

Question 58 (*****)
Determine the value of x and the value of y in the following equation

$$
15^{3 x-2} \times 6^{1-2 y}=6.25, \quad(3 x-2) \in \mathbb{N}
$$

$$
4
$$

$$
x=\frac{4}{3}, y=\frac{3}{2}
$$

\square
\square

Question 59 (*****)

$$
2^{m+1}+2^{m}=3^{n+2}-3^{n}
$$

Given that m and n are positive integers, find the value of m and the value of n.

Created by T. Madas

Question 60
(*****)
Find the term independent of x in the expansion of

Question 61 ($* * * * *)$
Simplify the following expression.

$$
\frac{x^{6}-y z^{4}}{x^{4}+x z^{2} \sqrt{y}}
$$

Give the answer in the form $x^{2}-x^{r} y^{s} z^{t}$, where r, s and t are constants.

