GEOMETRIC MENSURATION

Created by T. Madas

The figure above shows a circular sector $O A B$, subtending an angle of θ radians at its centre O.

The radius of the sector is 6 cm and the length of the chord $A B$ is 8 cm .
a) Find the size of the angle θ in radians, correct to two decimal places.
b) Determine the area of the circular segment, shown shaded in the figure.

Question 2 (**)

The figure above shows a circle with centre at O and radius 5 cm .

The points A and B lie on the circle so that the angle $A O B$ is 1.8 radians.
a) Find the area of the sector $O A B$.
b) Determine the length of the chord $A B$.
c) Hence show that the perimeter of the minor segment, shown shaded in the figure, is approximately 16.8 cm .

$$
\text { area }=22.5,|A B| \approx 7.83
$$

Created by T. Madas

Question 3 (**)

The figure above shows two concentric circular sectors $O A B$ and $O C D$, where O is their common centre. Both sectors subtend an angle of 1.8 radians at O.

The point A lies on $O C$ and similarly the point B lies on $O D$.

It is further given that $|O A|=|O B|=20 \mathrm{~cm}$ and $|O C|=|O D|=25 \mathrm{~cm}$.

The finite region $A C D B$ is shown shaded in the above figure.
Determine the perimeter and the area of $A C D B$.

Created by T. Madas

The figure above shows a triangle $A B C$ where the following information is given.

$$
|A B|=7 \mathrm{~cm},|B C|=8 \mathrm{~cm} \text { and }|A C|=5 \mathrm{~cm} .
$$

Find the size of the angle $\measuredangle A C B$ in degrees, and hence determine as an exact surd the area of the triangle $A B C$.

Created by T. Madas

Question 5 (**)

The figure above shows a circular sector $O A B$, subtending an angle of θ radians at its centre O.

The radius of the sector is 37 m and the length of the chord $A B$ is 70 m .
a) Show that θ is approximately 2.481 radians.
b) Calculate to an appropriate degree of accuracy...
i. ... the length of the arc $A B$.
ii. ... the shortest distance from O to the chord $A B$.
iii. .. the area of the circular segment, shown shaded in the figure.

Created by T. Madas

The figure above shows a circular sector $A B C$ of radius $r \mathrm{~cm}$ subtending an angle θ radians at C.

The length of the arc $A B$ is $\frac{2}{9}$ of the perimeter of the sector.

Show that $\theta=\frac{4}{7}$ radians.

Created by T. Madas

The figure above shows a circular sector $A B C$ of radius 7 cm subtending an angle θ radians at C.

Given the perimeter of the sector is numerically equal to the area of the sector show that θ is 0.8 radians.

Created by T. Madas

The figure above shows a circular sector $A B C$ subtending an angle of 2.5 radians at the point A.

Given that the area of the sector is $45 \mathrm{~cm}^{2}$, find its perimeter.
\square , $P=27 \mathrm{~cm}$
$\frac{\text { Aer of } A \text { setror }}{" A=1^{2} r^{2}}$
PKemathe $=$ ACClingurt +2 RADii

Created by T. Madas
Question 9 (**)

The triangle $A B C$ is such so that $A C$ is 12 m and the angle $C A B$ is 150°.
a) Given that the area of the triangle $A B C$ is $30 \mathrm{~m}^{2}$, show that the length of $A B$ is 10 m .
b) Find the length of $B C$, giving the answer in m , correct to 2 decimal places.
c) Calculate the smallest angle of the triangle $A B C$, giving the answer in degrees, correct to one decimal place.
\square
$21.26 \mathrm{~m}, 13.6^{\circ}$

Created by T. Madas

The figure above shows a right angled trapezium $A B C D$.
It is given that
$|A B|=15 \mathrm{~cm},|D C|=9 \mathrm{~cm},|A D|=10 \mathrm{~cm}$ and $\measuredangle A B C=\measuredangle B C D=90^{\circ}$.

Determine the length of the straight line $A C$.

Created by T. Madas

Question $11 \quad\left({ }^{* *}+\right.$)

The figure above shows a right angled triangle $A B C$, where the angle $B C A$ is 30°.

The point D lies on $A C$ so that the angle $B D A$ is 75°.

The length of $D C$ is 12 cm .

Calculate the length of $A B$.

Created by T. Madas

The figure above shows the right angled triangle $A B C$ where $A B$ is $10 \mathrm{~cm}, A C$ is 26 cm and the angle $A B C$ is 90°.

The point D lies on $B C$ so that the angle $A D B$ is 45°.

Find the area of the triangle $A C D$, shown shaded in the figure above.

Created by T. Madas

The figure above shows a badge in the shape of a circular sector $O A B$, centred at O.

The triangle $O A B$ is equilateral and its perpendicular height is $6 \sqrt{3} \mathrm{~cm}$.
a) Find the length of $O A$.
b) Determine in terms of $\pi \ldots$
i. ... the area of the badge.
ii. ... the perimeter of the badge.
$|O A|=12$, area $=24 \pi$, perimeter $=24+4 \pi$

Created by T. Madas

Created by T. Madas

Question $14 \quad(* *+)$

The figure above shows the triangle $A B C$, where $|A B|=4,|A C|=1$ and $|B C|=\sqrt{13}$.
a) Show that $\measuredangle B A C=\frac{\pi}{3}$.

A circular sector $A C D$, where D lies on $A B$, is drawn inside the triangle $A B C$.

The centre of the sector is at A and its radius is 1 .
b) Determine the area of the shaded region $B C D$.

Created by T. Madas

Question $15 \quad(* *+)$

The figure above shows a triangle $A B C$ where the lengths of $A C$ and $B C$ are 8 cm and 6 cm , respectively. The angle $B C A$ is 1.2 radians.
a) Find the length of $A B$.
b) Determine the area of the triangle $A B C$.

A circular arc with centre at C and radius 4 cm is drawn inside the triangle.
The arc intersects the triangle at the points D and E.
The shaded region R is bounded by the straight lines $E A, A B, B D$ and the arc $E D$.
c) Calculate the area of R.
d) Calculate the perimeter of R.

$$
2,|A B| \approx 8.08, \operatorname{area}_{A B C} \approx 22.4, \quad \operatorname{area}_{R} \approx 12.8 \text {, } \text { perimeter }_{R} \approx 18.9
$$

s

Created by T. Madas

The figure above shows a rectangle $F B C E$ with two identical circular sectors attached to its sides $F B$ and $E C$.

Each of these circular sectors has radius 5 cm and subtends an angle of θ radians at its respective centre, F and E.

The length of $F E$ is 10 cm .

Given that the perimeter of the entire shape $A B C D E F$ is 37.2 cm , show clearly that its area is $68 \mathrm{~cm}^{2}$.

Created by T. Madas

Question 17 (**+)
0

The figure above shows a triangle $A B C$ whose area is $20 \mathrm{~cm}^{2}$.

The lengths of $A B$ and $B C$ are $x \mathrm{~cm}$ and $(x+2) \mathrm{cm}$ respectively, and the size of the angle $A B C$ is 150°.
a) Find the value of x.
b) Determine the length of $A C$.

Created by T. Madas

Question 18 (***)

The figure above shows a triangle $O A C$ where $|O A|=6 \mathrm{~cm},|O C|=10 \mathrm{~cm}$.

The angle $A O C$ is 0.8 radians.
a) Calculate the area of the triangle $O A C$.

An arc centred at O with radius 6 cm is drawn inside the triangle, meeting $O C$ at B.

The shaded region R is bounded by $A C, O C$ and the arc $A B$.
b) Find the area of R.
c) Determine the perimeter of R.
\square , area of triangle $\approx 21.52 \mathrm{~cm}^{2}$ \square

Created by T. Madas

Question 19 (***)

The figure above shows an equilateral triangle $A B C$ of side length 2 cm .

The points O, D and E are the midpoints of $A C, A B$ and $B C$, respectively.
A circular arc, centred at O, having $O D$ and $O E$ as radii is drawn.

Determine the exact area of the shaded region.

Created by T. Madas

Question 20 (***)

The figure above shows a circle with centre at O and radius $r \mathrm{~cm}$.

The minor sector $A O B$ subtends an angle of θ radians at O.

The area of the minor sector $A O B$ is $48 \mathrm{~cm}^{2}$.

Created by T. Madas

Question 21 (***)

The figure above shows the cross section of a river dam modelled in a system of coordinate axes where all units are in metres.

The cross section of the dam consists of a circular sector $A D B$ and two isosceles triangles $O A D$ and $D B C$.

The coordinates of the points A, B, C and D are $(9,40),(27,40),(36,0)$ and $(18,0)$, respectively.
a) Find the length of $A D$.
b) Show that the angle $A D B$ is approximately 0.4426 radians.
c) Hence determine, to the nearest m^{2}, the cross sectional area of the dam.

Created by T. Madas

The figure above shows a rhombus $A B C D$ with side length 6 cm .

The angle $B C D$ is 0.75 radians.

A circular arc $B D$ is drawn inside the rhombus with centre at A and radius 6 cm .

The arc $B D$ divides the rhombus into two regions, the smaller of the two regions shown shaded in the figure, is denoted by R.

Find, to three significant figures, the area of R.

Created by T. Madas

The figure above shows two circular arcs $A B$ and $D C$, which are parts of circular sectors whose centre is at O. Both sectors subtend an angle θ radians at O.
$O A D$ is a straight line segment with $|O A|=6 \mathrm{~cm}$ and $|O B|=10 \mathrm{~cm}$.

Given that the area of the shaded region $A B C D$ is $24 \mathrm{~cm}^{2}$, calculate the perimeter of $A B C D$.

Created by T. Madas

Question 24 (***)

The figure above shows a circular sector $O A B$ whose centre is at O.

The radius of the sector is 60 cm .

The points C and D lie on $O A$ and $O B$ respectively, so that $|O C|=|O D|=24 \mathrm{~cm}$.

Given that the length of the arc $A B$ is 48 cm , find the area of the shaded region $A B D C$, correct to the nearest cm^{2}.

Created by T. Madas

Created by T. Madas

The figure above shows a composite shape.

The composite shape consists of a circular sector $A O B$ centred at O, where it subtends an angle of $\frac{5 \pi}{6}$ radians.

The straight sides of the sector have length of 2.4 cm . The triangle $O B C$ is right angled at C and is attached to the sector so that $A O C$ is a straight line.

Find, to two decimal places, the area of the composite shape.

Created by T. Madas

The figure above shows the cross section of a railway tunnel, modelled as the major segment of a circle, centre at C and radius of 3 m .

The angle $A C B$ is $\frac{2 \pi}{3}$ radians.
a) Find the exact length of $A B$.
b) Determine the area of the triangle $A C B$.
c) Show that the cross sectional area of the tunnel is

$$
6 \pi+\frac{9}{4} \sqrt{3}
$$

, $|A B|=3 \sqrt{3}$, area $=\frac{9 \sqrt{3}}{4}$

Created by T. Madas

Created by T. Madas

Question 27 (***+)

The figure above shows a circular sector $O A B$ of radius $3 x \mathrm{~cm}$, subtending an angle θ radians at O.

The line $A C$ is perpendicular to $O B$ and has length $(2 x-1) \mathrm{cm}$.

The length of $O C$ is $(2 x+2) \mathrm{cm}$.
a) Show that $x=5$.
b) Find the area of the shaded region $A C B$.
\square , area ≈ 18.4

Created by T. Madas

Created by T. Madas

The figure above shows a quarter circle $A B D$ of radius 10 cm , whose centre is at A.

The point C lies on the arc $B D$ so that the angle $C A B$ is 0.3 radians.

The segment bounded by the semicircle and the chord $C D$ is denoted by R.
a) Determine the area of R.
b) Find the perimeter of R.
\square , area $\approx 15.8 \mathrm{~cm}^{2}$, perimeter $\approx 24.6 \mathrm{~cm}$ I $0 \rightarrow$
\qquad \& Nols)

Created by T. Madas

Question $29 \quad(* * *+)$

The figure above shows a design of a door.

The door design consists of two congruent right angled triangles $A B O$ and $D C O$ where $\measuredangle B A O=\measuredangle C D O=90^{\circ}$, and a circular sector $B O C$ centred at O, where O is the midpoint of $A D$.
a) Show that the angle $B O C$ is approximately 0.7766 radians.
b) Hence determine ...
i. ... the perimeter of the door design.
ii. ... the area of the door design.

Created by T. Madas

A circular sector $O C D$, subtending an angle θ radians at its centre O, has a radius of $r \mathrm{~m}$.

The sector has an area of $0.25 \mathrm{~m}^{2}$ and a perimeter of 2 m .

Determine the values of r and θ.

Created by T. Madas

Question $31 \quad(* * *+)$

The figure above shows a semi circle with centre at O and radius 12 cm .
The diameter of the semicircle is $A O B$, the chord $C D$ is parallel to $A O B$.

It is further given that the angle $D O B$ is 0.6^{c}.
a) Find the area of the shaded segment.
b) Find the perimeter of the shaded segment.

\square

Created by T. Madas

Question 32 (***+)

The figure above shows a triangle $A B C$ whose side lengths are given in terms of x.
Given that the angle $B A C$ is 60°, determine ...
a) \ldots the value of x.
b) ... the exact area of the triangle.

Created by T. Madas

The figure above shows a triangle $A B C$ whose side lengths are given in terms of x.

Given that the angle $B A C$ is 60°, determine the exact area of the triangle.

Created by T. Madas

Question 34 (***+)
In the triangle $A B C$

$$
|A B|=2 \mathrm{~cm},|A C|=4 \mathrm{~cm} \text { and }|B C|=3 \mathrm{~cm} .
$$

Find the exact area of the triangle $A B C$.

Created by T. Madas

The figure above shows a circle with centre at O and radius 12 cm .

The chord $A B$ has a length of $12 \sqrt{3} \mathrm{~cm}$.
a) Show that the angle $A O B$ is $\frac{2 \pi}{3}$ radians.
b) Find, in exact form, the area of the major segment bounded by the chord $A B$.

Created by T. Madas

Question 36 (***+)

The figure above shows a template design $C A B$.

The curve $A B$ is the arc of a circular sector $O A B$, subtending an angle of 1.2 radians at its centre O. The radius of the sector is 5 cm . The straight lines $C A$ and $C B$ are of equal length. The length of the straight line $O C$ is 6 cm .

Find, to three significant figures where appropriate
a) ... the area of the circular sector $O A B$.
b) ... the size of the angle $C O B$, in radians.
c) ... the total area of the template design.

Created by T. Madas

Question $37 \quad\left({ }^{* * *}+\right)$

The figure above shows a triangle $A B C$ with side lengths $|A B|=7 \mathrm{~cm},|B C|=x \mathrm{~cm}$ and $|A C|=3 x \mathrm{~cm}$.

The sizes of the angles $A C B$ and $B A C$ are 60° and θ°, respectively.

By using the cosine rule first and the sine rule afterwards, show clearly that

$$
\sin \theta=\frac{\sqrt{21}}{14}
$$

C 1 , proof

Created by T. Madas

Question 38 (***+)

The figure above shows a circle with centre at O with radius 8 cm and a minor sector $A O B$, subtending an angle of θ radians at O.

It is further given that the length of the circumference of the circle is twice plus 32 cm as large as the minor arc $A B$.
a) Find the value of θ, in terms of π.
b) Show that the area of the major sector $A O B$ is

$$
32(\pi+2) \mathrm{cm}^{2}
$$

Created by T. Madas

Question $39 \quad(* * *+)$
$+0$

The figure above shows the design template of a car logo.
The design consists of a circular ring of radius 6 cm enclosing a region $A C B$, which is symmetrical about the line $O C$.

The angle $A O B$ is $\frac{\pi}{3}$.
a) Find, to three significant figures, the perimeter of the shaded region of the logo.
b) Show that the area of the shaded region is

$$
(18+6 \pi) \mathrm{cm}^{2}
$$

Created by T. Madas

The figure above shows a circle with centre at O and radius 6 cm .

The chord $A B$ has length $6 \sqrt{3}$.
a) Show that the angle $A O B$ is $\frac{2 \pi}{3}$ radians.
b) Show that the area of the minor segment, shown shaded in the figure above, is

Created by T. Madas

Question 41 (***+)

The figure above shows two identical circles with centres at A and C, overlapping each other and meeting at the points B and D.

The radius of each circle is 6 cm . Each of the angles $B A D$ and $B C D$ is $\frac{\pi}{3}$ radians.

The region, shown shaded in the figure above, enclosed by the two circles, including the overlap, is a car logo design.

Find the area of the logo design.

Question 42 (***+)

The figure above shows a circular sector $O A B$ with centre at the origin O.

The points A and B have coordinates $(6,8)$ and $(8,6)$, respectively.
a) Show that the angle $A O B$ is approximately 0.2838 radians.
b) Find, to 2 decimal places, the area of the sector $O A B$.

Created by T. Madas

Question 43 (***+)

An isosceles triangle $A B C$ has $A C=12 \sqrt{3} \mathrm{~cm}$ and $A B=B C=12 \mathrm{~cm}$.

The angle $B A C$ is θ radians.

Two identical arcs centred at A and C are drawn inside the triangle. These arcs meet at a point on $A C$, as shown in the figure above.
a) Show that $\theta=\frac{1}{6} \pi$.
b) Show that the area of the shaded region in the above figure is

$$
18(2 \sqrt{3}-\pi) \mathrm{cm}^{2}
$$

\square , proof

Created by T. Madas

Created by T. Madas

Question $44 \quad(* * *+)$

The figure above shows a circular sector $O A B$.

The sides of the sector are equally divided into five equal parts.

Using these divisions arcs are drawn inside the original sector, creating five distinct regions $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5}, as shown in the figure.

Show that the areas of the regions R_{2} and R_{5} are in the ratio 1:3.

Created by T. Madas

Question $45 \quad(* * *+)$

The figure above shows a triangle $A B C$.
The lengths of $B C$ and $C A$ are $x \mathrm{~cm}$ and $y \mathrm{~cm}$, respectively.

It is further given that

$$
\sin A=\frac{4}{5}, \quad \sin B=\frac{8}{17} \quad \text { and } \quad \sin C=\frac{84}{85} .
$$

a) Show clearly that $y=1.7 x$.

The area of the triangle $A B C$ is $21 \mathrm{~cm}^{2}$.
b) Find the value of x and the value of y.

$$
\square, x=5, y=8.5
$$

Created by T. Madas

Created by T. Madas

Question $46 \quad(* * *+)$

The figure above shows a trapezium $A B C D$, where $A B$ is parallel to $D C$.

The respective lengths of $A D, B D, B C$ and $D C$ are $24 \mathrm{~cm}, 6 \mathrm{~cm}, 9 \mathrm{~cm}$ and 5 cm . The angle $B D C$ is θ.
a) Show clearly that

$$
\cos \theta=-\frac{1}{3}
$$

b) Hence show further that $\sin \theta=k \sqrt{2}$, where k is a fraction.

The angle $B A D$ is φ.
c) Find the exact value of $\sin \varphi$.

Created by T. Madas

The figure above shows a circular sector $O A B$, centred at O.

The radius of the sector is $r \mathrm{~cm}$ and subtends an angle of θ radians at O.

The area of the sector is $67.5 \mathrm{~cm}^{2}$ and its perimeter is 33 cm .

By forming two suitable equations, or otherwise, determine the two possible pairs of values for r and θ.

Created by T. Madas

Question 48
$(* * *+)$

The figure above shows a river of constant width w metres with the points A and B located on one river bank and the point C located on the other river bank.

The distance $A B$ is 85 metres.

The angles $C A B$ and $C B A$ are 0.7 radians and 1.1 radians, respectively.

Show that w is approximately 50 metres.

Created by T. Madas

Question 49 (***+)

The figure above shows a circular sector $O A B$, of radius 6 cm , centred at O.
The points C and D are the midpoints of $O A$ and $O B$, respectively.
The triangle $O C D$ is equilateral.

Another circular sector $C D B$, centred at D and of radius 3 cm , is drawn inside the circular sector $O A B$.

The finite region R bounded by the circular arcs $A B$ and $C B$, and the straight line segment $A C$, is shown shaded in the figure above.
a) Show that the perimeter of R is $(3+4 \pi) \mathrm{cm}$.
b) Determine an exact value for the area of R.

Created by T. Madas

Question $50 \quad(* * *+)$

The figure above shows a circular sector $A B C$ of radius 6 cm subtending an angle 1.25 radians at C.
a) Find the perimeter and the area of the sector.

A different sector $D E F$ has radius $r \mathrm{~cm}$ and subtends an angle of θ radians at its centre D.

b) Given that the two sectors have equal area but the perimeter of the sector $D E F$ is 1.5 cm larger than the perimeter of the sector $A B C$, determine the possible values of r and the corresponding values of θ.
\square ,$P=19.5 \mathrm{~cm}$, \square $(r, \theta)=\left(7.5,0.8^{\mathrm{c}}\right) \quad$ or $\quad(r, \theta)=\left(3.5^{\mathrm{c}}\right)$

Created by T. Madas

Question $51 \quad(* * *+)$
The triangle $A B C$ has vertices at $A(5,2), B(3,0)$ and $C(-1,6)$.

The angle $B C A$ is denoted by θ.
a) Use the cosine rule to show that

$$
\cos \theta=\frac{12}{13}
$$

proof
b) Hence, or otherwise, show that the area of the triangle $A B C$ is exactly 10 .

Question 52 (***+)
A triangle has angles θ, φ and ψ, where ψ is an obtuse angle.

It is further given that $\sin \psi=0.9703$ and $\tan (\theta-\varphi)=0.2493$.

Calculate, in degrees, the value of each of the angles θ, φ and ψ.

Created by T. Madas

Question $53(* * *+)$

The figure above shows a circle of radius 5 cm , centred at O.

The points A, B and C lie on the circumference of the circle. The angles $A O B$ and $B O C$ are denoted by θ and φ, respectively.

The sum of the areas of the sectors $A O B$ and $B O C$ is $20 \mathrm{~cm}^{2}$.

The length of the arc $A B$ is 3.5 cm greater than the length of the arc $B C$.

Determine the value of θ and the value of φ.

Question 54 (***+)

The figure above shows a triangle $A B C$.

The straight line $B D$ is such so that $A D=D C=6 \mathrm{~cm}$.

The angles $B A D$ and $B D A$ are 60° and 75°, respectively.

Find in appropriate degree of accuracy ...
a) \ldots the length of $B D$.
b) ... the area of the triangle of $A B D$.
c) ... the shortest distance from the vertex B to the straight line $A C$.
d) \ldots the length of $B C$.

Created by T. Madas

A minor sector $A D E$ with radius $r \mathrm{~cm}$, subtends an angle of θ radians at A.

The sector is attached to a square $A B C D$, forming a composite shape S, as shown in figure above.

The area and the perimeter of S are $48 \mathrm{~cm}^{2}$ and 28 cm , respectively.

By forming and solving two equations, find the value of r and the value of θ.

Created by T. Madas

Question 56 (***+)

The figure above shows an isosceles triangle $A B C$ attached to a semicircle with $B C$ as its diameter.

It is further given that $|A B|=|A C|=25 \mathrm{~cm},|B C|=14 \mathrm{~cm}$ and the angle $B A C$ is θ radians.

A circular arc $B C$ is drawn inside the semicircle, centred at A with radius 25 cm .
a) Determine the area of the triangle $A B C$.
b) Show that $\theta=0.568$ radians, correct to three significant figures.
c) Find the area of the region R, shown shaded in the figure.
\square area of triangle $=168 \mathrm{~cm}^{2}$ area of $R \approx 67.5-67.6 \mathrm{~cm}^{2}$

Created by T. Madas

Created by T. Madas

Question 57

Created by T. Madas

The figure above shows a quarter circle $O A C$ with centre at O. The point B lies on the curved part of the quarter circle so that the angle $B O C$ is θ radians.

Given that the length of the arc $A B$ is four times as large as the length of the arc $B C$, show that $\theta=\frac{\pi}{10}$.

Created by T. Madas

Question 59 (***+)
A circular sector has radius $r \mathrm{~cm}$ and subtend an angle θ radians at its centre. The perimeter of the sector is 23 cm and its area is $15 \mathrm{~cm}^{2}$.

Find the value of r and the value of θ.

Question $60 \quad(* * *+)$

The figure above shows a circle with centre at O and radius 6 cm .

The chord $A B$ has length $6 \sqrt{3} \mathrm{~cm}$.
a) Show that the angle $A O B$ is $\frac{2 \pi}{3}$ radians.

The tangents to the circle at A and B meet at the point P.
b) Show further that the area of the quadrilateral $O A P B$ is $36 \sqrt{3} \mathrm{~cm}^{2}$.
c) Find the area of the shaded region bounded by the tangents and the circle.

Created by T. Madas

Question 61 (***+)

figure 1

Figure 1, shows a rectangle $A B C D$ where $|A B|=|D C|=3 a$ and $|A D|=|B C|=2 a$.

A semicircle with diameter $B C$ is attached to the rectangle. The rectangle and the semicircle are to be considered as a single composite shape X.

Figure 2, shows a circular sector $O P Q$ where $|O P|=|O Q|=4 a$. The sector has its centre at O, and $\measuredangle P O Q=\theta$ radians. The sector is denoted as shape Y.
a) Given that the area of X is equal to the area of Y, express θ in terms of π.
b) Given further that the perimeter Y is greater than the perimeter of X, show that the difference between the perimeter of X and Y is

a) Lodang at THE DIAFEAMS	b) Регенте of y - ненитв x * UFORER

Question 62 (***+)

The figure above shows a quadrilateral $A B C D$, with side lengths $A B, B C, C D$ and $D A$ are $6 \mathrm{~cm}, 4 \mathrm{~cm}, 10 \mathrm{~cm}$ and 9 cm , respectively.

The angle $B A D$ is 60°
a) Show that $B D$ is $3 \sqrt{7} \mathrm{~cm}$.
b) Find, to one decimal place, the size of the angle $B C D$.
c) Determine, to one decimal place, the area of the quadrilateral $A B C D$

Created by T. Madas

The figure above shows a sector $C A D B$, of radius 6 cm and angle 2θ radians.
Given that the area of the triangle $A B C$ and the area of segment $A B D$ are in the ratio $4: 1$, show that

Created by T. Madas

Question 64 (***+)

The figure above shows a circular sector $O A B$. The sector has radius $r \mathrm{~cm}$ and subtends an angle of $\frac{\pi}{6}$ at O.

The straight line through M and N is such so that $O M=O N=a \mathrm{~cm}$.

Given that the straight line through M and N divides the sector into two regions of equal area, show that
$a=\sqrt{\frac{\pi}{6}} r$

Question 65 (***+)

The figure above shows a circle of radius 6 cm , centre at point C, and the straight line l which is a tangent to the circle at the point P.

The point R lies on l.
The straight line segment $C R$ meets the circle at the point Q.

Given that the length of the arc $Q P$ is $2 \pi \mathrm{~cm}$, show that the area of the finite region bounded by $P R, R Q$ and $Q P$, shown shaded in the figure, is

Created by T. Madas

Question $66 \quad(* * *+)$
The triangle $A B C$ has $A B=13 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$.
Given that $\measuredangle B C A=60^{\circ}$, determine the possible values of $A C$.

Created by T. Madas

Question 67 (***+)
Linda is walking on a long straight horizontal road in a Northern direction.

When Linda reaches a point A on this road, a tree T is observed on a bearing of 30°.

When Linda walks a further distance of 200 m from the point A to the point B on this road, T is now observed on a bearing of 60°.
a) Determine the shortest distance of T from the road.

Linda walks further North to some point D, so that the distance $D T$ is 180 m .
b) Calculate the two possible values for the distance $A D$.

Created by T. Madas

Question 68 (****)

$A B C D$ is a trapezium where $A B$ is parallel to $D C$.

The angle $C A B$ is 60° and $|A B|=90$. The side $A B$ is extended from A to E so that $\measuredangle A E D=90^{\circ}$, as shown in the figure above.

It is further given that $|E A|=15$ and $|E D|=60$.
a) Find, correct to 1 decimal place, the value of $|B C|$ and the value of $|C D|$.
b) Calculate, correct to 1 decimal place, the angle $D A C$.
\square

Created by T. Madas

Created by T. Madas

Question 69 (****)

The figure above shows a circle with centre at O and radius 7 cm .

The points A and B lie on the circle so that the angle $A O B$ is 1.8 radians.

The tangents to the circle at the points A and B meet at the point C.

The region shown shaded in the figure above, is enclosed by the two tangents $A C$ and $B C$, and the circle.

Determine the area of this region.

The two diagrams above show an orchestral stage $A B C D$ which is part of a circular sector $O B C$, centred at O and of radius 17 m . The points A and D lie on $O B$ and $O C$ respectively so that $|O A|=|O D|=12 \mathrm{~m}$ and $|A D|=20 \mathrm{~m}$.
a) Show that $\measuredangle B O C=1.97$, correct to three significant figures.
b) Calculate the area of the stage.

There are 4 rows of seats with their backs arranged in concentric circles, centred at O. The radii of these circles are $12 \mathrm{~m}, 13.1 \mathrm{~m}, 14.2 \mathrm{~m}$ and 15.3 m .
c) Given further that each seat requires a length of 83 cm along the arc, find approximately how many more seats are in the back row than in the front row.

Created by T. Madas

Question 71 (****)

The figure above shows a triangle $O A C$ with $\measuredangle A C O=\frac{1}{2} \pi$ and $\measuredangle A O C=\frac{1}{4} \pi$.

Another triangle $A O D$ is drawn next to the triangle $O A C$, so that $D O C$ is a straight line, $|D O|=12$ units and $\measuredangle A D O=\frac{1}{6} \pi$.

Finally a circular sector $O A B$ is drawn, centred at O, with radius $O A$, so that $D O C B$ is a straight line.
a) Find the area of the sector $O A B$.
b) Hence show that the area of the shaded region $A C B$ is approximately 77 square units.

Created by T. Madas

Created by T. Madas

Question 72 (****)

The figure above shows a circular sector $O A B$ of radius r, centred at O, with perimeter of 60 units. The area of the sector is denoted by A.
a) Show clearly that

$$
A=30 r-r^{2} .
$$

The value of r can vary but the perimeter of the sector is fixed.
b) By completing the square, or otherwise, find the maximum value of A and the value of r which produces this maximum value for A.

Created by T. Madas

Question 73 (****)

The figure above shows a model of the region used by shot putters in to throw the shot. The throwing region consists of a minor circular sector $O A B$ of radius $12 \sqrt{3}$ metres subtending an angle θ radians at O. The chord $A B$ is 36 metres.

The shot putter's region $C O D$ is a major circular sector of radius $3 \sqrt{3}$ metres, where C and D lie on $O A$ and $O B$, respectively.
a) Show that $\theta=\frac{2}{3} \pi$.
b) Find, in terms of π, the total area of throwing region and shot putter's region.
c) Show further that the total perimeter of the throwing region and the shot putter's region, shown shaded in the figure above, is

$$
6(2 \pi+3) \sqrt{3} .
$$

Created by T. Madas

Question 74 (****)

The figure above shows a circular arc $O A B$ of radius 12 cm , subtending an angle of $\frac{3}{10} \pi$ radians at O.

Find to three significant figures ...
a) \ldots the length of the $\operatorname{arc} A B$
b) ... the area of the sector $O A B$.

The point C lies on $O B$ so that $O C=A C$. The region R, shown shaded in the figure, is bounded by the arc $A B$ and the straight lines $A C$ and $B C$.
c) Determine, to three significant figures, the perimeter and area of R.
\square $, 11.3 \mathrm{~cm}, 67.9 \mathrm{~cm}^{2}$
$23.3 \mathrm{~cm}, 18.3-18.4 \mathrm{~cm}^{2}$

Created by T. Madas

Created by T. Madas

Question 75 (****)

figure 1

figure 2

Figure 1 shows the triangle $A B C$, where $|A C|=12 \mathrm{~cm},|B C|=10 \mathrm{~cm}$ and $\measuredangle B A C=\theta$ so that $\cos \theta=\frac{5}{9}$.
a) Use the cosine rule to form a suitable quadratic, and hence show that one of the two possible values for the length of $A B$ is 6 cm and find the other.

Figure 2 shows a different triangle $P Q R$, where $|P Q|=9.8 \mathrm{~cm},|P R|=5.7 \mathrm{~cm}$ and $\measuredangle P Q R=20^{\circ}$.
b) Use the sine rule to find, to the nearest degree, the two possible values of $\measuredangle Q P R$.

ㄴ. $, ~|A B|=\frac{22}{3} \approx 7.33 \mathrm{~cm}, \measuredangle Q P R=16^{\circ}$ or 124°

Created by T. Madas

Created by T. Madas

Question 76 (****)

The figure above shows a semicircle of radius $r \mathrm{~cm}$, where $A O C$ is a diameter with point O the centre of the semicircle.

The point B lies on the circular part of the semicircle so that the angle $B O C$ is θ radians.

The chords $A B$ and $B C$ define two segments S_{1} and S_{2}, respectively.

Given that the area of S_{1} is four times as large as the area of S_{2}, show that

$$
\pi+3 \sin \theta=5 \theta
$$

\square
, proof
$\stackrel{+}{6}$

Created by T. Madas

The figure above shows the rectangle $A B C D$ where $A B$ is 12 cm and $B C$ is 6 cm .

An arc of a circle with centre at A and radius 12 cm is drawn inside the quadrilateral, meeting the side $D C$ at the point E.

Find the area of the shaded region $B E C$.

Created by T. Madas

The figure above shows the design for an earring.

The design consists of a part of a circle of radius 3 cm centred at A and another part of a circle of radius 4 cm centred at B.

The circles overlap in such a way so that the distance $A B$ is 5 cm .

Find, to three significant figures, the perimeter of the design.

\square perimeter ≈ 33.3
 AS + "3-4-5" Tempat
$\begin{aligned}-\sin \phi & =\frac{2}{5} \\ \phi & =0.6435^{\mathrm{c}}\end{aligned} \quad \begin{aligned} & \theta=0.9273\end{aligned}$ $=2 \pi-2 \phi \leftarrow 5)$
$=2 \pi-2 \times 0.635$ $=4.996 \mathrm{x}$

- $2 \pi-20$ $=4.4286$
- Brown" R RC-LANOL $=" r \theta "=3 \times 44286=13.2857 \ldots$ Res" HeC lanart $=\Gamma \theta^{\prime \prime}=4 \times 4.962=19.9848 \mathrm{~N}$

Created by T. Madas

(****)

The figure above shows a triangle $A B C$ where $A B$ is $x \mathrm{~cm}, A C$ is $y \mathrm{~cm}$ and $B C$ is $\sqrt{37} \mathrm{~cm}$. The angle $B A C$ is 60°.

Given further that the area of the triangle $A B C$ is $7 \sqrt{3} \mathrm{~cm}^{2}$, determine by solving two simultaneous equations the value of x and the value of y.

$$
Q,[x, y]=[4,7] \cup[7,4]
$$

Created by T. Madas

Question 81 (****)

Created by T. Madas

Question 82 (****+)

The figure above shows a sector $C A B$ of radius 8 cm , centred at C and subtending an angle of $\frac{\pi}{3}$ radians at C.

A circle centred at O and of radius $r \mathrm{~cm}$ is inscribed inside the sector.

Find in terms of π, the area of the shaded region, shown in the figure above.

\square area $=\frac{32}{9} \pi$

Question $83 \quad(* * * *+)$

The figure above shows an equilateral triangle $A B C$ circumscribed by a circle of radius 6 , with centre at O.

The circular segment, shown shaded region in the figure above, is bounded by the straight line $A C$.

Show that the area of the segment is

$$
3(4 \pi-3 \sqrt{3}) \mathrm{cm}^{2}
$$

Created by T. Madas
Question $84 \quad(* * * *+)$

The figure above shows a triangle $O A C$ with $\measuredangle A C O=\frac{1}{2} \pi$ and $\measuredangle A O C=\frac{1}{2} \pi$.

Another triangle $A O D$ is drawn next to the triangle $O A C$, so that $D O C$ is a straight line, $|D O|=12$ units and $\measuredangle A D O=\frac{1}{6} \pi$.

Finally a circular sector $O A B$ is drawn, centred at O, with radius $O A$, so that $D O C B$ is a straight line.
a) Show that the length of $O A$ is

$$
6(\sqrt{6}+\sqrt{2})
$$

b) Find the exact area of the sector $O A B$.
c) Hence show that the area of the shaded region $A C B$ is

$$
18(2+\sqrt{3})(\pi-2)
$$

\square , $18(2+\sqrt{3}) \pi$

Created by T. Madas

The figure above shows a circle with centre at O and radius r.

The straight line $A B$ is a chord to the circle.

The perpendicular bisector of $A B$ passes through O and meets the circle at the point C, as shown in the figure.

Given that $|A B|=24 \mathrm{~cm}$ and the length of the perpendicular bisector is 72 cm , determine the value of r.

Question 86 (****+)

The figure above shows a circle of radius 6 cm , centred at O.

An arc $O C$ with centre at A and radius 6 cm is drawn inside the circle.

A second arc $O D$ is drawn with centre at B and radius 6 cm .

Show clearly that the area of the shaded region $O C D$ is

$$
6(3 \sqrt{3}-\pi) \mathrm{cm}^{2}
$$

Created by T. Madas

Question 87 (*****)

The figure above shows a circle with centre at $C(3,6)$. The points $A(1,5)$ and $B(p, q)$ lie on the circle. The straight lines $A D$ and $B D$ are tangents to the circle.

The kite $C A D B$ is symmetrical about the straight line with equation $x=3$.
a) Calculate the radius of the circle.
b) State the value of p and the value of q.
c) Find an equation of the tangent to the circle at A.
d) Show that the angle $A C B$ is approximately 2.214 radians.
e) Hence determine, to three significant figures, the area of the shaded region bounded by the circle and its tangents at A and B.
\square,
$r=\sqrt{5}, p=q=5, y=7-2 x$,
, area ~ 4.46

Created by T. Madas

Question 88 (****+)

The figure above is constructed as follows.

- $E B D$ is a circular sector with centre at B and radius 12 units, subtending an angle of $\frac{2 \pi}{3}$ radians at B.
- $E A C$ is a quarter circle with centre at A and radius r units, so that $A B C D$ is a straight line and CAE is a right angle.

The shaded region R is bounded by the arcs $E D$ and $E C$, and the straight line $C D$.
Show that the area of R is

$$
3(7 \pi+6 \sqrt{3}) \text { square units. }
$$

Created by T. Madas

Question 89 (****+)
The figure below shows a square $A B C D$ with side length of 6 cm .

A circular arc $B D$ is drawn inside the square with centre at C and radius of 6 cm .

Another circular arc $B D$ is drawn inside the square with centre at A and radius of 6 cm also, so that the two arcs bound a finite area, shown shaded in the figure above.

Question 90 (****+)
The distance between the town of Arundel (A) and the town of $\operatorname{Berry}(B)$ is 60 km . Berry is on bearing of 75° from Arundel.

The village of Crake (C) is on a bearing of 120° from Arundel and on a bearing of 195° from Berry. The village of Dorking (D) is on a bearing of 135° from Arundel and on a bearing of 210° from Berry.
a) Find, to three significant figures where appropriate, the distance between ...
i. ... Berry and Crake.
ii. ... Berry and Dorking.
iii. ... Crake and Dorking.
b) State the bearing of Dorking from Crake.
\square , $43.9 \mathrm{~km}, 53.8 \mathrm{~km}$ \square 16.1 km 255°

a) STAET WTTH 4 DerAllio dianany	

Created by T. Madas

Created by T. Madas

Question $91 \quad(* * * *+)$
The figure below shows a circle with centre at O and radius r. The points A and B lie on the circle so that the angle $A O B$ is θ radians.

The chord $A B$ divides the circle into a major segment and a minor segment.
Given that the area of the major segment is 4 times as large as the area of the minor segment, show clearly that

Created by T. Madas

Question 92 (${ }^{(* * * *+) ~}$
The figure below shows a circle with centre at O and radius r. The points A and B lie on the circle so that the angle $A O B$ is 2θ radians.

Given that the length of the arc $A B$ is 1.5 times as large as the chord $A B$, show clearly that
$\frac{\text { area of the sector } O A B}{\text { area of the triangle } O A B}=\frac{3}{2 \cos \theta}$.

You may use the fact that $\sin 2 \theta \equiv 2 \sin \theta \cos \theta$.

Question 93 (****+)

The figure above shows a triangle $A B C$ where $\measuredangle B A C=90^{\circ}$.

The lengths of $A B, A C$ and $B C$ are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm , respectively.

Three arcs are drawn inside the triangle with centres the three vertices of the triangle.
The arcs so that they touch each other in pairs at the points P, Q and R.

Find the area of the shaded region, correct to three significant figures.

Created by T. Madas

Question 94 (****+)
The figure below shows a square $A B C D$ of side length $2 a \mathrm{~cm}$, circumscribed by a circle.

Four semicircles are then drawn outside the square having each of the sides of the square as a diameter.

Created by T. Madas

Question 95 (****+)
The figure below shows the plan of three identical circular cylinders of radius 6 cm , held together by an elastic band.

Created by T. Madas

Question 96 (****+)
The figure below shows the plan of three identical circular cylinders of radius 6 cm , that fit snugly inside a larger cylinder.

Show that the radius of the larger cylinder is $6+4 \sqrt{3} \mathrm{~cm}$.

Question 97 (****+)

The figure above shows the triangle $A B C$.

The point D lies on $A C$ so that the straight line $B D$ meets $A C$ at right angles.

The point E lies on $A C$ and the point F lies on $B C$, so that the straight line $D F$ is parallel to $A B$ and the straight line $E F$ is parallel to $B D$.

It is further given that the lengths, in cm , of $C E, C F, D E, B F$ and $A D$ are 10,15 , $x, x+3$ and y, respectively.
a) Determine the value of x.
b) Show clearly that $y=9.6$.
c) Find, correct to three significant figures, the area of the triangle $A B C$.

Created by T. Madas

Question $98 \quad(* * * *+)$
The following information is known about 4 coplanar points.

1. B is north east of A.
2. C is on a bearing of 075° from A.
3. B is on a bearing of 285° from C.
4. D is south west of C.
5. $|A C|=9$.
6. $|C D|=36$.

Determine, correct to 2 decimal places, the bearing of B from D.
\square , $\approx 37.33^{\circ}$
${ }^{2}$

$1 B$ IS NOETH-GAST of A 2 CISON A RARMNG OT 5° FOM A 3 B is on A penemg 295° from C $4 D$ is sart-wes of C $5\|A C\|=9$ $6(-D)=36$
 $\|A B\|=\|A C\|$ $\begin{aligned} \therefore\|A B\|=\|B C\| & \Rightarrow \frac{\frac{1}{2}\|A C\|}{\|B C\|}=\cos 30 \\ & \Rightarrow \frac{\frac{1}{2} \times 9}{\|B C\|}=\frac{\sqrt{3}}{2} \\ & \Rightarrow 9=\sqrt{3}\|B C\| \\ & \Rightarrow 9 \sqrt{3}=3\|B C\| \\ & \Rightarrow\|B C\|=3 \sqrt{3} \end{aligned}$
NEA DRAN IN A New Taftertm THe Powns B,C a D smerting or He cosic Ruce $\begin{aligned} & \|B D\|^{2}=36^{2}+(3 \sqrt{3})^{2}-2 \times 36 \times 3 \sqrt[3]{3} \times \cos 50^{\circ} \\ & \|B D\|^{2}=\mid 296+27-108 \sqrt{3} \\ & \|B D\|^{2}=1135.938513 \ldots \\ & \|B D\|=33.70366693 \ldots \end{aligned}$

\square

Question 99 (****+)
The island state of Trigland has declared an exclusive economic zone into the sea, which is within 6 miles from every point of its coastline.

The island of Trigland is a rectilinear triangle of sides 13,14 and 15 miles.

Determine, in exact form, the total economic zone of Trigland, which consists of land and sea.

Created by T. Madas

Question 100 ($* * * *+$) Non Calculator
A triangle, $A B C$ has $|B C|=4 \mathrm{~cm},|A C|=8 \mathrm{~cm}$ and $\measuredangle A C B=60^{\circ}$.

Determine, in degrees, the size of $\measuredangle B A C$.

Created by T. Madas

Question 101 (****+)
The four sides of a square, $A B C D$, are tangents to a circle of radius $\sqrt{2}$

The diagonal $B D$ intersects the circle at the points P and Q.

Determine in exact simplified form the length of $A P$.

The triangle $A B C$ is right angled at the vertex B.

The point D lies on $A C$ so that $|B D|=|B C|$.

Given that the area of the triangle $B D C$ is 3 times as large as the area of the triangle $A B D$, show that

$$
4 \sin \theta=3 \tan \theta
$$

where θ denotes the angle $B C A$.

Created by T. Madas

The figure above shows, two identical circles, centred at P and Q, and a third circle, centred at R, are touching each other externally.

The three circles fit snugly inside a square $A B C D$, of side length 32 cm , so that $P Q$ is parallel to $A B$.

Determine the size of radius of the circle centred at R.
looking AT Tife DAAretul

By PyTithooras
$|\mu Q|^{2}+|u R|^{2}=|Q R|^{2}$
$B^{2}+d^{2}=(B+r)^{2}$
$64+(24-r)^{2}=(8+r)^{2}$
$64+526-48 r+y^{2}=84+16 r+x^{2}$
$S 26=64 r$

Created by T. Madas

Question 104 (*****)
The figure below was constructed as follows. $A B C D$ is a square with side length 6 cm .

Two quarter circles, with centres at the points C and D, each of radius 6 cm , are drawn inside the square.

Show that the area of the shaded region is
Cos)

$$
3(12-3 \sqrt{3}-2 \pi) \mathrm{cm}^{2}
$$

\square , proof

Created by T. Madas

The figure above shows a square $A B C D$ of side length 2 units.

The vertices A and B lie on the circumference of a circle while the side $D C$ is a tangent to the same circle.

Determine the radius of this circle.
\square
\square

Created by T. Madas

Question 106 (*****)
The figure below was constructed as follows.
$A B C D$ is a square with side length 8 cm .

Four identical quarter circles, whose centres are located at each of the four corners of the square, are drawn inside the square.

The radii of the quarter circles are such so that the four quarter circles meet at the centre of the square.

Show that the area of the shaded region is

$$
32(\pi-2) \mathrm{cm}^{2} .
$$

Created by T. Madas

The straight line segment $A B$ is a tangent to the circle at A, so that the angle $A O B$ is $\frac{1}{3} \pi$ radians.

Determine the radius of the circle given further that the area of the shaded region in the figure is $(6 \sqrt{3}-2 \pi) \mathrm{cm}^{2}$.

Created by T. Madas

The figure above shows the triangle $A B C$ where $A B$ is $7 \mathrm{~cm}, A C$ is 5 cm and $B C$ is 8 cm .

Show that the exact area of this triangle is $10 \sqrt{3} \mathrm{~cm}^{2}$.

The figure above shows a triangle $A B C$.

The length of $A C$ is 1 m .

The angles $B A C$ and $B C A$ are 75° and 60°, respectively.
The height of the triangle from the vertex B to the side $A C$ is $h \mathrm{~cm}$.

Show that

$$
h=\frac{\tan 75^{\circ} \tan 60^{\circ}}{\tan 75^{\circ}+\tan 60^{\circ}} .
$$

Created by T. Madas

Created by T. Madas

Question 110 (*****) (non calculator)

The figure above shows a right angled triangle $A B C$, where the angle $B C A$ is 30°.

The point D lies on $A C$ so that the angle $B D A$ is 75°.
The length of $A D$ is $x \mathrm{~cm}$ and he length of $D C$ is $x+10 \mathrm{~cm}$.

Show that the length of $A B$ is

$$
\frac{10}{11}(4+3 \sqrt{3})
$$

[you may assume that $\tan 75^{\circ}=2+\sqrt{3}$]

Created by T. Madas

Question 111 (*****) (non calculator)

The figure above is constructed as follows.

A semicircle with diameter $A B$ of 4 cm is first drawn.

Then another semicircle is drawn, with its diameter $C D$ parallel to $A B$.
The semicircle with $C D$ as its diameter is circumscribed by the semicircle with $A B$ as its diameter, as shown in the figure.

Show that the area of the shaded region is $(2 \pi-2) \mathrm{cm}^{2}$.

Created by T. Madas

Question 112 (*****) (non calculator)

The figure above shows a circular arc $O A B$ of radius 6 cm , subtending an angle of 0.9 radians at O.

The point C lies on $O B$ so that $O C=A C$.

The region R, shown shaded in the figure, is bounded by the arc $A B$ and the straight lines $A C$ and $B C$.

Determine the perimeter of R.

Question 113 (*****) (non calculator)

The figure above shows a triangle $A B C$.
The line $B D$ is such so that $A D=D C=6 \mathrm{~cm}$ and the angles $B A D$ and $B D A$ are 60° and 75°, respectively.

Show that

a) The shortest distance from the vertex B to the side $A C$ is
b) The length $B C$ squared is

$$
144-18 \sqrt{3} .
$$

Created by T. Madas

Question 114 (*****)

The figure above shows a straight line intersecting a circle at the points A and B so that $|A B|=8$ units.

Another straight line intersects the same circle at the points C and D so that $|C D|=12$ units.

The two straight lines intersect each other at right angles at the point R.

Given further that $|A R|=4$ units, determine the length of the radius of the circle.

Created by T. Madas

Question 115 (*****)
A convex quadrilateral has perpendicular diagonals and three of its sides have lengths of $\sqrt{20}, \sqrt{80}$ and $\sqrt{96}$, measured in suitable units.

Determine possible lengths of the fourth side.

Created by T. Madas

The point D lies inside the triangle $A B C$, so that $|D B|=|D C|$ and $\measuredangle D C A=\frac{1}{2} \pi$.

Let $\theta=\measuredangle D A C, \varphi=\measuredangle B A D$ and $\psi=\measuredangle A B D$.

Show that

Created by T. Madas

Question 117 (*****)
Two coplanar circles, with respective radii $\sqrt{2}$ and $\sqrt{6}$, intersect each other at the points A and B.

The tangent to one of the circles at A, intersects the tangent to the other circle at A at right angles.

Show that the total area enclosed by the two circles is

$$
\frac{1}{2}(19 \pi+6 \sqrt{3})
$$

Created by T. Madas

Question 118 (*****)
A hiker on a mountain walk has injured himself.

He rings the rescue station which is located at the point with coordinates $(2,1)$.

He reports that he is lying injured by a river bank where he can see a ruined tower, which his compass indicates that it is located South-West from his position.

It is known to the rescue station that the only river in the area has equation $x=8$ and the ruined tower is located at the point with coordinates $(2,3)$ on the coordinate axes.

The rescuers set off immediately from the Rescue Station and travel directly towards the hiker. When the rescuers are half-way into their journey, the hiker rings again.

He says that he made a mistake in reading his compass and the ruined tower is in fact located North-West from his position.

The rescuers turn and head directly towards the true location of the hiker.

Calculate the angle, as a bearing, at which the rescuers are heading after the hikers second phone call.

Give the answer in the form $\mu \pi+\arctan \lambda$, where μ and λ are constants to be found.

Created by T. Madas

Question 119 (*****)

Two circles of different radii are touching each other externally.

The two circles are enclosed by a square so that all 4 sides of the squares are tangents to the circles, as shown in the figure above.

Given that the radius of the smaller circle is r and the radius of the larger circle is $2 r$, determine the exact area of the square in terms of r.
\square, area $=\frac{9}{2} r^{2}(3+2 \sqrt{2})$

Created by T. Madas

Created by T. Madas

The figure above shows an isosceles triangle $A B C$, where $A B=A C$.

The side $B C$ has length a and the angle $A B C$ is θ.

Show that the area of the triangle is

$$
\frac{1}{4} a^{2} \tan \theta
$$

Created by T. Madas
Question 121 (*****)

The figure above shows the triangle $A B C$, where $|A B|=10 \mathrm{~cm},|A C|=12 \mathrm{~cm}$ and $|A B|=8 \mathrm{~cm}$. The point D lies on $B C$ so that $|A D|=6 \mathrm{~cm},|D C|=2 \mathrm{~cm}$ and $|A D|=x \mathrm{~cm}$. The angle $B D A$ is denoted by θ and the angle $C D A$ is denoted by φ.
a) Express $\cos \theta$ and $\cos \varphi$ in terms of x.
b) Use part (a) to find the length of $A D$.
c) Hence show that the area of the triangle $A B D$ is exactly $\frac{45}{4} \sqrt{7} \mathrm{~cm}^{2}$.
\square , proof

\square

Created by T. Madas

Question 122 (*****)
The triangle $A B C$ is such so that $\angle A B C=90^{\circ}$ and $|A C|=6 \mathrm{~cm}$.

The point P lies on $A C$ and the point Q lies on $A B$ in such a way so that

$$
\measuredangle A P Q=90^{\circ} \text { and }|A P|=|Q B|=1 \mathrm{~cm} .
$$

Show that the straight line segment $P B$ is exactly $\sqrt{7} \mathrm{~cm}$.

Created by T. Madas

The triangle $A B C$ has a right angle at B, with $|A B|=21 \mathrm{~cm}$ and $|B C|=20 \mathrm{~cm}$.

A circle is drawn inside the triangle so that the three sides of the triangle are tangents to the circle.

The points P, Q and R are the respective points of tangency with $A B, B C$ and $A C$.

Show that the area of the finite region bounded by $A P, A R$ and the circular arc $P R$, shown shaded in the figure above, is

2 $18\left[5-\pi+\arctan \left(\frac{20}{21}\right)\right]$.

Question 124 (*****)
Heron's method for determining the area of any triangle asserts that, if a triangle has side lengths a, b and c, then its area is given by

$$
\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=\frac{1}{2}(a+b+c)$, the semi-perimeter of the triangle.
[you may find the cosine rule and the trigonometric form for the area of a triangle useful in this question]
\square , proof

Pehreanve the cosint formuct fore $\cos \theta$
$\Longrightarrow \cos \theta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \sin \theta=+\sqrt{1-\cos ^{2} \theta}=+\sqrt{1-\left(\frac{u^{2}+b^{2}-c^{2}}{2 a b}\right)^{2}}$
$\Rightarrow \sin \theta=\sqrt{1-\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 a^{2} b^{2}}}$
$\rightarrow \sin \theta-\sqrt{\frac{4 a^{2} b^{2}-\left(a^{2}+h^{2}-r^{2}\right)^{2}}{4 a^{2} b^{2}}}<$ Narcors, ac or eannes
$\rightarrow \quad \sin \theta=\frac{1}{2 a b} \sqrt{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)}$
$\Rightarrow a b \sin \theta=\frac{1}{2} \sqrt{\left(a^{2}+2 a b+b^{2}-c^{2}\right)\left(c^{2}-a^{2}+2 a b-b^{2}\right)}$
$\Rightarrow \frac{1}{2} a b \sin \theta=\frac{1}{4} \sqrt{\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-\left(a^{2}-2 a b+b^{2}\right)\right]}$
$\Rightarrow A C A A=\frac{1}{4} \sqrt{\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right]}$
Nove diftenes a squancey
$\Rightarrow A R+A=\frac{1}{4} \sqrt{(a+b-c)(a+b+c)(c+a-b)(c-a+b)}$ \Rightarrow AREA $=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$

Created by T. Madas

Question 125 (*****)
Two circles, C_{1} and C_{2}, are touching each other externally, and have respective radii of 9 and 4 units.

A third circle C_{3}, of radius r, touches C_{1} and C_{2} externally.

Given further that all three circles have a common tangent, determine the value of r.

Created by T. Madas

Question 126 (*****)

A quarter circular arc $A C$ is inscribed inside a square $O A B C$.

The centre of the arc is located at O and the radius of the arc is the same as the side length of the square.

A circle is drawn inside the square so that it touches the quarter circle $A C$ internally, and the sides of the square, $O A$ and $O C$, are tangents to this circle, as shown in the figure above.

If the straight line $A D$ is a tangent to this circle, show that $\measuredangle A B D=15^{\circ}$

Created by T. Madas

Question 127 (*****) non calculator

The figure above shows 4 identical circles touching each other so that their centres form a square.

A smaller circle is touching all 4 of the identical circles externally, and all 4 of the identical circles are touching internally a larger circle.

Determine, correct to 1 decimal place, the fraction of the larger circle not occupied, by the other 5 circles, shown shaded in the figure.

You may assume that $\sqrt{2} \approx 1.4142$.

Created by T. Madas

