
# GEORGESSON MENSURATION IN THE INCOMENSATION ALASINGUISCOM I.X.C.B. MARINESCOM I.X.C.B. MARINESCOM I.X.C.B. MARINESCOM I.X.C.B. MARINESCOM





The figure above shows a circular sector OAB, subtending an angle of  $\theta$  radians at its centre O.

The radius of the sector is 6 cm and the length of the **chord** AB is 8 cm.

a) Find the size of the angle  $\theta$  in radians, correct to two decimal places.

**b**) Determine the area of the circular **segment**, shown shaded in the figure.

area  $\approx 8.38$  to 8.39

 $\theta \approx 1.46^{\rm c}$ 

Question 2 (\*\*)

 $A \xrightarrow{O} 5 \text{ cm}$ 

The figure above shows a circle with centre at O and radius 5 cm.

The points A and B lie on the circle so that the angle AOB is 1.8 radians.

- a) Find the area of the sector OAB.
- **b**) Determine the length of the chord AB.
- c) Hence show that the perimeter of the minor segment, shown shaded in the figure, is approximately 16.8 cm.



 $||AB| \approx 7.83$ 

area = 22.5,

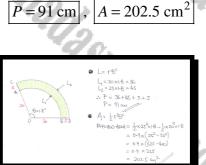
Question 3 (\*\*)

The figure above shows two concentric circular sectors OAB and OCD, where O is their common centre. Both sectors subtend an angle of 1.8 radians at O.

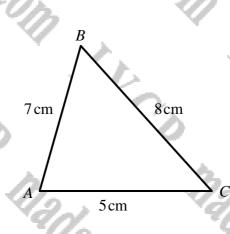
1.8

В

 $20 \text{ cm} \longrightarrow$  $-25 \text{ cm} \longrightarrow$ 


0

The point A lies on OC and similarly the point B lies on OD.


It is further given that |OA| = |OB| = 20 cm and |OC| = |OD| = 25 cm.

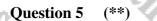
The finite region ACDB is shown shaded in the above figure.

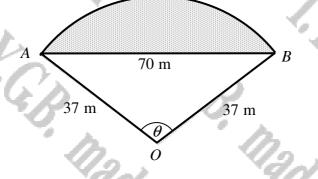
Determine the perimeter and the area of ACDB.



Question 4 (\*\*)




The figure above shows a triangle *ABC* where the following information is given.


|AB| = 7 cm, |BC| = 8 cm and |AC| = 5 cm.

Find the size of the angle  $\measuredangle ACB$  in degrees, and hence determine as an exact surd the area of the triangle ABC.

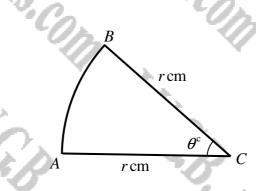
14612+1 BC12-24401 BC1005 -AREA = {|AC||BC|SMO teha = texsxex sambo ARHA= 20×3 ARIA = LONZ

 $\measuredangle ACB = 60^{\circ}$ , Area =  $10\sqrt{3}$  cm<sup>2</sup>





The figure above shows a circular sector OAB, subtending an angle of  $\theta$  radians at its centre O.


The radius of the sector is 37 m and the length of the chord AB is 70 m.

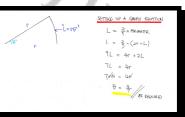
- a) Show that  $\theta$  is approximately 2.481 radians.
- **b**) Calculate to an appropriate degree of accuracy...
  - i. ... the length of the arc AB.
  - **ii.** ... the shortest distance from O to the **chord** AB.

**iii.** ... the area of the circular segment, shown shaded in the figure.

91.8 m area  $\approx 1278 \text{ m}^2$ 12 m <sup>2</sup> = 37<sup>2</sup> + 37<sup>2</sup> - 2 1369 + 1364 - 2738 u Q = - 2V- $\log = -\frac{\log_1}{\log_2}$ 0 = 2.481 (b) (I) 1= 10

Question 6 (\*\*)




The figure above shows a circular sector ABC of radius r cm subtending an angle  $\theta$  radians at C.

The length of the arc *AB* is  $\frac{2}{9}$  of the perimeter of the sector.

Show that  $\theta = \frac{4}{7}$  radians.

1.0.

I.F.G.B.



proof

i G.B.

12.50

7 cm

7 cm

 $\mathsf{T}\theta^{\mathrm{c}}$ 

С

В

A

Question 7 (\*\*)

The figure above shows a circular sector *ABC* of radius 7 cm subtending an angle  $\theta$  radians at *C*.

Given the perimeter of the sector is **numerically equal** to the area of the sector show that  $\theta$  is 0.8 radians.

proof

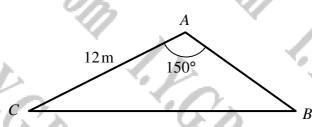
Question 8 (\*\*)

Î.P.

The figure above shows a circular sector ABC subtending an angle of 2.5 radians at the point A.

2.5

Given that the area of the sector is  $45 \text{ cm}^2$ , find its perimeter.


В

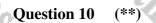
| A OF A SEERCH2                       | PERIMETHR = ARCLENTERN + 2 RADII |
|--------------------------------------|----------------------------------|
| $-4 = \frac{1}{2} \Gamma \Theta^{c}$ | P= "r0" + 2r                     |
| 45= ±12×25                           | P= 6×2-5 + 2×6                   |
| 90 = <u>₹</u> r²                     | P= 15+12                         |
| 1 <sup>2</sup> = 36                  | P= 27ay                          |
| t = +6 cm                            |                                  |

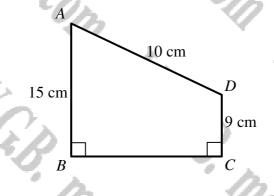
 $P = 27 \,\mathrm{cm}$ 

nasn.

Question 9 (\*\*)




The triangle ABC is such so that AC is 12 m and the angle CAB is  $150^{\circ}$ .


- a) Given that the area of the triangle ABC is 30 m<sup>2</sup>, show that the length of AB is 10 m.
- b) Find the length of BC, giving the answer in m, correct to 2 decimal places.
- c) Calculate the smallest angle of the triangle *ABC*, giving the answer in degrees, correct to one decimal place.

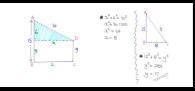
21.26 m, 13.6°

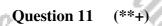
DEING PULF 2)ACIIA8  $\Rightarrow |8C|^2 = 12^2 + 10^2$ 

| 48 | BC( |               | $\frac{SHU}{10} = \frac{SHU}{21.26}$          |
|----|-----|---------------|-----------------------------------------------|
|    |     | $\Rightarrow$ | $\sin \theta = \frac{10 \sin 150}{2(-25667)}$ |
|    |     | $\rightarrow$ | SM0-= 0.23.02                                 |
|    |     |               | θ ≃ B.€°                                      |






The figure above shows a right angled trapezium ABCD.


It is given that

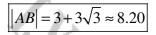
 $|AB| = 15 \text{ cm}, |DC| = 9 \text{ cm}, |AD| = 10 \text{ cm} \text{ and } \measuredangle ABC = \measuredangle BCD = 90^{\circ}.$ 

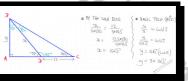
Determine the length of the straight line AC.

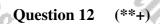


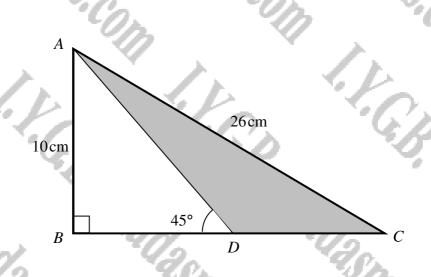








The figure above shows a right angled triangle ABC, where the angle BCA is 30°.


The point D lies on AC so that the angle BDA is  $75^{\circ}$ .

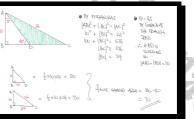

The length of DC is 12 cm.

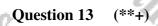
Calculate the length of *AB*.

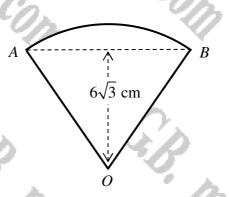










The figure above shows the right angled triangle ABC where AB is 10 cm, AC is 26 cm and the angle ABC is  $90^{\circ}$ .


The point D lies on BC so that the angle ADB is  $45^{\circ}$ .

Find the area of the triangle *ACD*, shown shaded in the figure above.

70



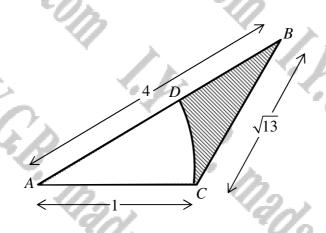




The figure above shows a badge in the shape of a circular sector OAB, centred at O.

The triangle *OAB* is equilateral and its perpendicular height is  $6\sqrt{3}$  cm.

- **a**) Find the length of *OA*.
- **b**) Determine in terms of  $\pi$  ...


i. ... the area of the badge.

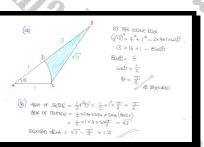
**ii.** ... the perimeter of the badge.

|OA| = 12, area  $= 24\pi$ ,

perimeter =  $24 + 4\pi$ 

**Question 14** (\*\*+)

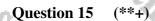


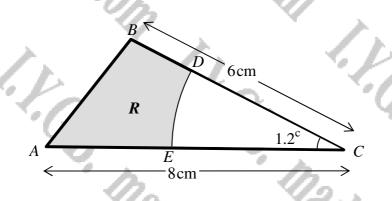

The figure above shows the triangle ABC, where |AB| = 4, |AC| = 1 and  $|BC| = \sqrt{13}$ .

**a**) Show that  $\measuredangle BAC = \frac{\pi}{3}$ .

A circular sector ACD, where D lies on AB, is drawn inside the triangle ABC.

The centre of the sector is at A and its radius is 1.


**b**) Determine the area of the shaded region *BCD* 




area ≈1.21

11<sub>21/2</sub>

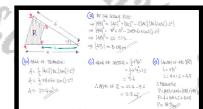
21/2.57

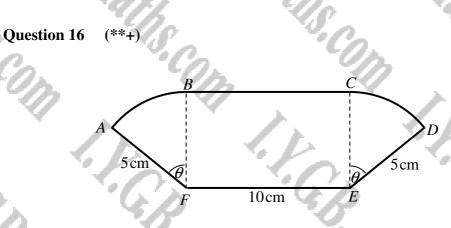




The figure above shows a triangle ABC where the lengths of AC and BC are 8 cm and 6 cm, respectively. The angle BCA is 1.2 radians.

- a) Find the length of AB.
- **b**) Determine the area of the triangle *ABC*.


A circular arc with centre at C and radius 4 cm is drawn inside the triangle.


The arc intersects the triangle at the points D and E.

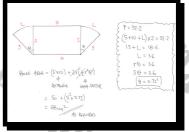
The shaded region R is bounded by the straight lines EA, AB, BD and the arc ED.

- c) Calculate the area of R.
- d) Calculate the perimeter of R.

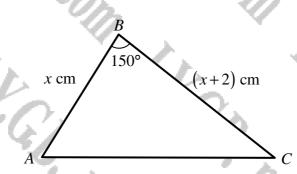
,  $|AB| \approx 8.08$ ,  $|\operatorname{area}_{ABC} \approx 22.4$ ,  $|\operatorname{area}_R \approx 12.8$ ,  $|\operatorname{perimeter}_R \approx 18.9$ 






The figure above shows a rectangle FBCE with two identical circular sectors attached to its sides FB and EC.

Each of these circular sectors has radius 5 cm and subtends an angle of  $\theta$  radians at its respective centre, F and E.


The length of FE is 10 cm.

Given that the perimeter of the **entire** shape *ABCDEF* is 37.2 cm, show clearly that its area is  $68 \text{ cm}^2$ .

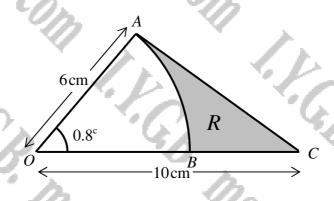
proof



**Question 17** (\*\*+)



The figure above shows a triangle ABC whose area is 20 cm<sup>2</sup>.


The lengths of AB and BC are x cm and (x+2) cm respectively, and the size of the angle ABC is 150°.

- a) Find the value of x.
- **b**) Determine the length of *AC*.



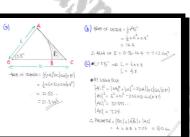
|                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8<br>9<br>9<br>9<br>C | (a) $4\mu_{R} = 20$<br>$\Rightarrow \frac{1}{2} 4\pi  \mathbf{R}  \mathbf{R}  \mathbf{S}   \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  \mathbf{S}  $ | (b) by THE COINE EVEL<br>$\begin{bmatrix} AA_{1}^{2} & hA_{1}^{2} + hA_{$ |

**Question 18** (\*\*\*)

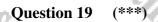


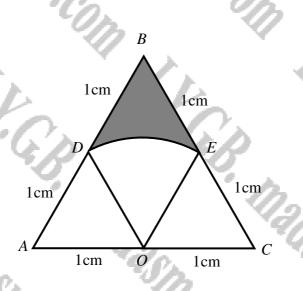
The figure above shows a triangle *OAC* where |OA| = 6 cm, |OC| = 10 cm.

The angle AOC is 0.8 radians.


a) Calculate the area of the triangle OAC.

An arc centred at O with radius 6 cm is drawn inside the triangle, meeting OC at B.


The shaded region R is bounded by AC, OC and the arc AB.

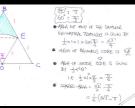

- **b**) Find the area of R.
- c) Determine the perimeter of R.

, area of triangle  $\approx 21.52 \text{ cm}^2$ , area of  $R \approx 7.12 \text{ cm}^2$ 

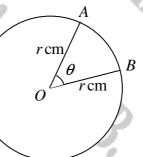


perimeter of  $R \approx 16.0$  cm






The figure above shows an equilateral triangle ABC of side length 2 cm.The points O, D and E are the midpoints of AC, AB and BC, respectively.A circular arc, centred at O, having OD and OE as radii is drawn.


Determine the exact area of the shaded region.

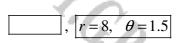


12.01



Question 20 (\*\*\*)

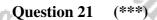


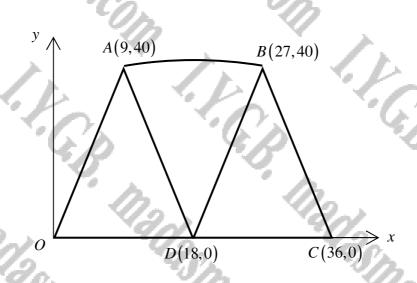

The figure above shows a circle with centre at O and radius r cm.

The **minor** sector *AOB* subtends an angle of  $\theta$  radians at *O*.

The area of the **minor sector** AOB is  $48 \text{ cm}^2$ .

The length of the **minor arc** AB is 12 cm.


Determine the value of r and the value of  $\theta$ .



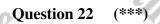

nadasm

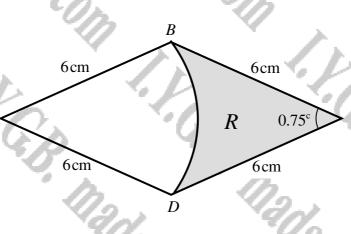
12/12

| "HEC LADER = 10""<br>"SECTOR AREA = ±1°80" | B                             |
|--------------------------------------------|-------------------------------|
| FORMINO TWO SPUATIONS                      | BARED ON THE ABOUT FORMULAE   |
| •r= 12                                     | • $\frac{1}{2}r^2\theta = 48$ |
|                                            | $\frac{1}{2}r(r\Theta) = 48$  |
|                                            | ±r×2 = 48                     |
|                                            | 6r = 48                       |
|                                            | r= 8                          |
|                                            | 5 - F - F                     |
|                                            | δ 19= 12<br>80 = 12           |
|                                            | 9=1.50                        |
|                                            |                               |






The figure above shows the cross section of a river dam modelled in a system of coordinate axes where all units are in metres.


The cross section of the dam consists of a circular sector ADB and two isosceles triangles OAD and DBC.

The coordinates of the points A, B, C and D are (9,40), (27,40), (36,0) and (18,0), respectively.

- **a**) Find the length of AD.
- **b**) Show that the angle *ADB* is approximately 0.4426 radians.
- c) Hence determine, to the nearest  $m^2$ , the cross sectional area of the dam.

, area  $\approx 1092$ |AD| = 41OF THE TRUMNELS L> 41×41× SW (04424 ADR - 040-38 20= 151°





The figure above shows a rhombus ABCD with side length 6 cm.

The angle BCD is 0.75 radians.

A circular arc BD is drawn inside the rhombus with centre at A and radius 6 cm.

The arc BD divides the rhombus into two regions, the smaller of the two regions shown shaded in the figure, is denoted by R.

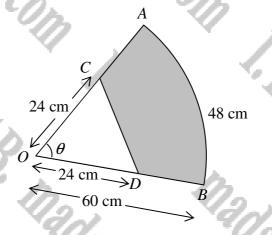
Find, to three significant figures, the area of R.

area  $\approx 11.0 \text{ cm}^2$ 

 $\begin{array}{c} \varepsilon & \bullet A GLE \stackrel{1}{\to} \stackrel{1}{\to} 0 \stackrel{1}{\to} 0 \stackrel{1}{\to} ( \stackrel{1}{\to} 0 \stackrel{1}{\to}$ 

Question 23 (\*\*\*)

The figure above shows two circular arcs AB and DC, which are parts of circular sectors whose centre is at O. Both sectors subtend an angle  $\theta$  radians at O.


*OAD* is a straight line segment with |OA| = 6 cm and |OB| = 10 cm.

Given that the area of the shaded region ABCD is 24 cm<sup>2</sup>, calculate the perimeter of ABCD.

perimeter = 20 cm

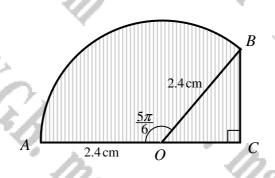


Question 24 (\*\*\*)



The figure above shows a circular sector OAB whose centre is at O.

The radius of the sector is 60 cm.

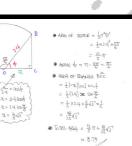

The points C and D lie on OA and OB respectively, so that |OC| = |OD| = 24 cm.

Given that the length of the arc AB is 48 cm, find the area of the shaded region ABDC, correct to the nearest cm<sup>2</sup>.



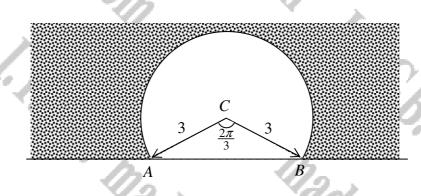
area = 1233

Question 25 (\*\*\*)




The figure above shows a composite shape.

The composite shape consists of a circular sector AOB centred at O, where it subtends an angle of  $\frac{5\pi}{6}$  radians.

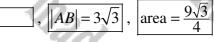

The straight sides of the sector have length of 2.4 cm. The triangle *OBC* is right angled at *C* and is attached to the sector so that *AOC* is a straight line.

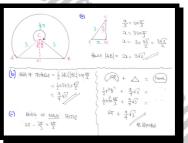
Find, to two decimal places, the area of the composite shape.



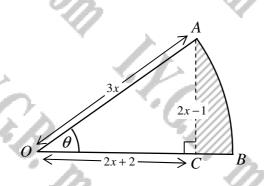
area  $\approx 8.79 \text{ cm}^2$ 







The figure above shows the cross section of a railway tunnel, modelled as the **major** segment of a circle, centre at C and radius of 3 m.

The angle ACB is  $\frac{2\pi}{3}$  radians.

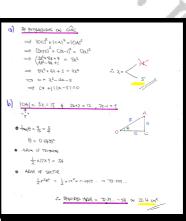

- a) Find the exact length of *AB*
- **b**) Determine the area of the triangle *ACB*.
- c) Show that the cross sectional area of the tunnel is

 $6\pi + \frac{9}{4}\sqrt{3} \ .$ 



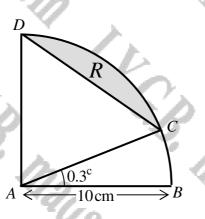


Question 27 (\*\*\*+)




The figure above shows a circular sector *OAB* of radius 3x cm, subtending an angle  $\theta$  radians at *O*.

The line AC is perpendicular to OB and has length (2x-1) cm.


The length of OC is (2x+2) cm.

- **a**) Show that x = 5.
- **b**) Find the area of the shaded region *ACB*.

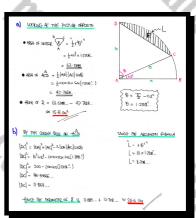


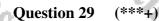
area ≈18.4

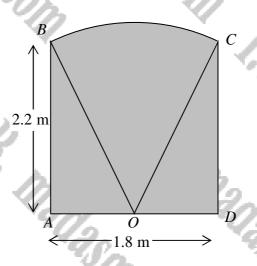
Question 28 (\*\*\*+)



The figure above shows a quarter circle ABD of radius 10 cm, whose centre is at A.


The point C lies on the arc BD so that the angle CAB is 0.3 radians.

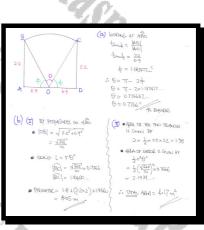

The segment bounded by the semicircle and the chord CD is denoted by R.


- a) Determine the area of R.
- **b**) Find the perimeter of R.

area  $\approx 15.8 \text{ cm}^2$ 

perimeter ≈ 24.6 cm








The figure above shows a design of a door.

The door design consists of two congruent right angled triangles ABO and DCO where  $\measuredangle BAO = \measuredangle CDO = 90^\circ$ , and a circular sector BOC centred at O, where O is the midpoint of AD.

- a) Show that the angle *BOC* is approximately 0.7766 radians.
- **b**) Hence determine ...
  - i. ... the perimeter of the door design.
  - **ii.** ... the area of the door design.



 $\overline{P} \approx 8.05 \text{ m}$ 

 $A \approx 4.17 \text{ m}^2$ 

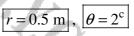
Question 30 (\*\*\*+)

С

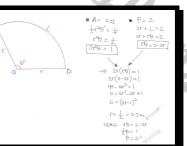
m

A circular sector OCD, subtending an angle  $\theta$  radians at its centre O, has a radius of

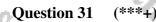
r m

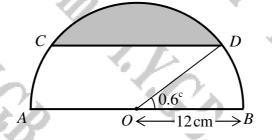

θ

0


The sector has an area of  $0.25 \text{ m}^2$  and a perimeter of 2 m.

Determine the values of r and  $\theta$ .


*r* m.




12



D



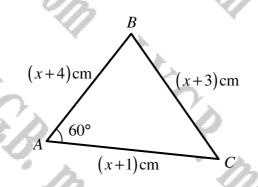


The figure above shows a semi circle with centre at O and radius 12 cm.

The diameter of the semicircle is AOB, the chord CD is parallel to AOB.

It is further given that the angle DOB is  $0.6^{\circ}$ .

a) Find the area of the shaded segment.


**b**) Find the perimeter of the shaded segment.

|              | , area ≈ 72.7                                                                                  | $7 \text{ cm}^2$ , perimeter $\approx 43.1 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>کہ ا</u>  | S.V.                                                                                           | N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | D D                                                                                            | $\frac{1}{2} = \frac{1}{2} + \frac{1}$ |
| A 120        |                                                                                                | LENTITH OF THE OLDED CD, BY THE LOOME RULE<br>(OR SMIRL TREMOUNTRY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| φ =<br>φ =   | ТНЕ ВЛАЧИЛ ЛОДУ<br>17—20 (СПСКАСИ СШС)<br>7—2206<br>(19659):                                   | $\begin{split}  CD ^{2} &=  \alpha q ^{2} +  \alpha q ^{2} - 2 \alpha q  \alpha b  \omega c \varphi \\  CD ^{2} &-  z^{2} +  z^{2} - 2xi z xi z \wedge \omega C(1453) \\  CD ^{2} &= 392.35 \varrho \\  CD  &= 19.868 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -AREA OF THE | $\frac{1}{2}\Gamma^{2}\varphi^{2} = \frac{1}{2}\times l_{2}^{2}\times l_{1}^{4}I_{5} = 139.74$ | $\therefore \underline{200000} + 460uttne = 23.295+ 15.608 = \frac{43.1 \text{ or}}{23.295+15.608}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $= \bigcirc - \bigtriangledown$ $= 139.75 67.106$ $= 72.7 cm^{2} (3.5 f)$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

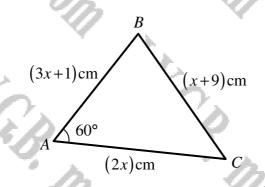
1+

12.01

Question 32 (\*\*\*+)



The figure above shows a triangle ABC whose side lengths are given in terms of x.


Given that the angle BAC is 60°, determine ...

- a) ... the value of x.
- **b**) ... the exact area of the triangle.

x = 4, area =  $10\sqrt{3}$ 

ng

Question 33 (\*\*\*+)



The figure above shows a triangle ABC whose side lengths are given in terms of x.

Given that the angle BAC is 60°, determine the exact area of the triangle.

|                                                                                                            | A DECEMBER OF |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <u> </u> ,                                                                                                 | area = $40\sqrt{3}$                                                                                             |
| 3                                                                                                          | -0                                                                                                              |
| $\begin{array}{l} \underbrace{\underline{B}(\ Th^{2}\ Earrow tox\ twy, twy, twy, twy, twy, twy, twy, twy,$ | A C                                                                                                             |
| ⇒ 2× ∕ ́                                                                                                   |                                                                                                                 |

na

12

| 2 | -munt = | 支 Intel1/101 SIM60                                |
|---|---------|---------------------------------------------------|
|   | AEGA =  | $\frac{1}{2}(32+1)(22) \times \frac{\sqrt{3}}{2}$ |

- $\Rightarrow + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$
- +864 = 40N3

Question 34 (\*\*\*+) In the triangle ABC

alasmaths.com

I.V.C.B. Madasm

COM

I.C.B

|AB| = 2 cm, |AC| = 4 cm and |BC| = 3 cm.

Madasn

The Com

area =  $\frac{3}{4}\sqrt{15}$ 

 $\frac{2+3+4}{2} = \frac{9}{2}$  $l = \sqrt{\frac{q}{2}(\frac{q}{2}-2)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2}-3)(\frac{q}{2$ 

I.V.C.B. Madasmatis.Com

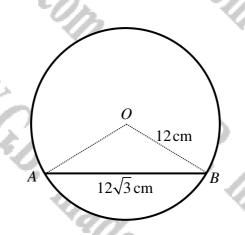
I.C.S.

18.CU

11+

11303SM31

Find the exact area of the triangle ABC.


madasmaths.com

I.V.G.B

Created by T. Madas

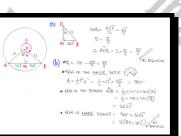
K.C.B. Madasman

Question 35 (\*\*\*+



The figure above shows a circle with centre at O and radius 12 cm.

The chord AB has a length of  $12\sqrt{3}$  cm.

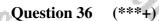

I.C.B.

- **a)** Show that the angle *AOB* is  $\frac{2\pi}{3}$  radians.
- **b**) Find, in exact form, the area of the **major** segment bounded by the chord AB.

area =  $12(3\sqrt{3}+8\pi)$ 

Y.G.B.

madasm



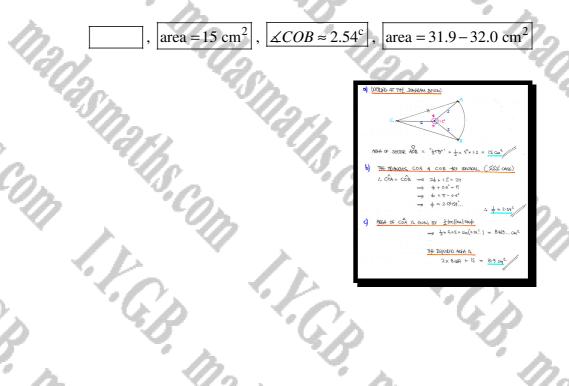

C.P.

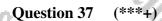
02

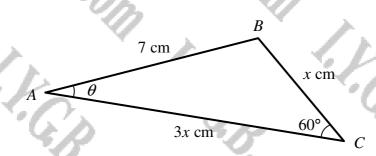
A

5cm




6 cm  $0 < 1.2^{\circ}$  5 cm


The figure above shows a template design CAB.


The curve AB is the arc of a circular sector OAB, subtending an angle of 1.2 radians at its centre O. The radius of the sector is 5 cm. The straight lines CA and CB are of equal length. The length of the straight line OC is 6 cm.

Find, to three significant figures where appropriate, ...

- **a**) ... the area of the circular sector *OAB*.
- **b**) ... the size of the angle *COB*, in radians.
- c) ... the total area of the template design.

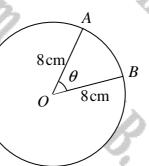






The figure above shows a triangle *ABC* with side lengths |AB| = 7 cm, |BC| = x cmand |AC| = 3x cm.

The sizes of the angles ACB and BAC are 60° and  $\theta^{\circ}$ , respectively.


By using the cosine rule first and the sine rule afterwards, show clearly that

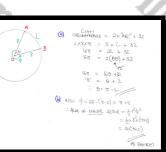
 $\sin\theta = \frac{\sqrt{21}}{14}$ 



proof

Question 38 (\*\*\*+)




The figure above shows a circle with centre at O with radius 8 cm and a **minor** sector AOB, subtending an angle of  $\theta$  radians at O.

It is further given that the length of the circumference of the circle is twice <u>plus</u> 32 cm as large as the minor arc AB.

a) Find the value of  $\theta$ , in terms of  $\pi$ .

**b**) Show that the area of the **major** sector *AOB* is

 $32(\pi+2)$  cm<sup>2</sup>.



 $\theta = \pi - 2$ 

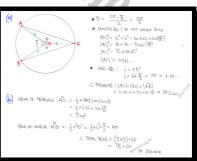
>0

С

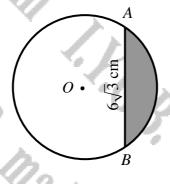
Question 39 (\*\*\*+)

The figure above shows the design template of a car logo.

The design consists of a circular ring of radius 6 cm enclosing a region ACB, which is symmetrical about the line OC.


The angle AOB is  $\frac{\pi}{2}$ .

a) Find, to three significant figures, the perimeter of the shaded region of the logo.


**b**) Show that the area of the shaded region is

 $(18+6\pi) \text{ cm}^2$ 

perimeter ≈ 29.5 cm



Question 40 (\*\*\*+)



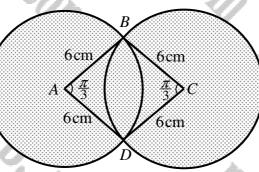
The figure above shows a circle with centre at O and radius 6 cm.

The chord *AB* has length  $6\sqrt{3}$ .

**a**) Show that the angle *AOB* is  $\frac{2\pi}{3}$  radians.

**b**) Show that the area of the **minor** segment, shown shaded in the figure above, is

 $3(4\pi-3\sqrt{3})$  cm<sup>2</sup>.

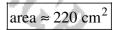

(R) BY TELEVUSING (a)  $C_{A}^{A}$ (R) BY TELEVUSING (a)  $C_{A}^{A}$   $C_{A}^{A}$  $C_{A}^{A}$ 

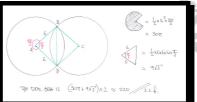
proof

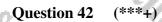
R.B.

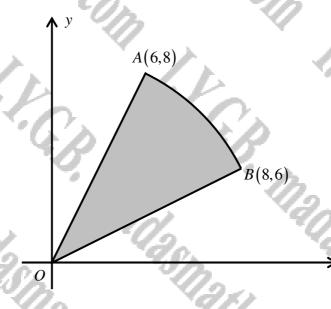
21/201

Question 41 (\*\*\*+)





The figure above shows two identical circles with centres at A and C, overlapping each other and meeting at the points B and D.

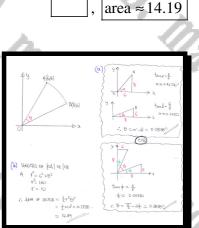

The radius of each circle is 6 cm. Each of the angles *BAD* and *BCD* is  $\frac{\pi}{3}$  radians.


The region, shown shaded in the figure above, enclosed by the two circles, including the overlap, is a car logo design.

Find the area of the logo design.



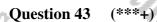


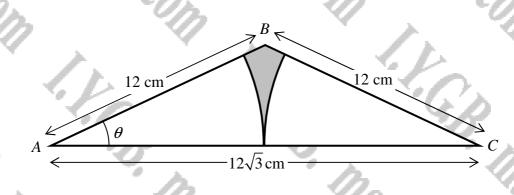





The figure above shows a circular sector OAB with centre at the origin O.

The points A and B have coordinates (6,8) and (8,6), respectively.


- a) Show that the angle AOB is approximately 0.2838 radians.
- **b**) Find, to 2 decimal places, the area of the sector *OAB*.




adasm

115

11202.SI





An isosceles triangle ABC has  $AC = 12\sqrt{3}$  cm and AB = BC = 12 cm.

The angle BAC is  $\theta$  radians.

Two identical arcs centred at A and C are drawn inside the triangle. These arcs meet at a point on AC, as shown in the figure above.

**a**) Show that  $\theta = \frac{1}{6}\pi$ .

**b**) Show that the area of the shaded region in the above figure is

 $18(2\sqrt{3}-\pi)\mathrm{cm}^2.$ 

LOOKING AT THE RIGHT AWARD TRIANCE ABM s0= 6V3 84511/06 6) AREA OF ABM 2 [AB] AM SIND = + × 12× 6V3× SINT = 18V3 ARIA OF SECTION, CHUTRE AT A & RADIUS GUE  $\frac{1}{2}\eta^2\theta^2 = \frac{1}{2}\times(6\sqrt{3})^2\times \overline{\xi} = 9\pi$ (BV3-97 WATHMAN VE BUBLIC I FULL AND WATER SHIT ARA= 2 × 9 (213-17) = 18 (213-17)

proof

 $R_5$ 

B

 $R_4$ 

*R*<sub>3</sub>

 $R_2$ 

Question 44 (\*\*\*+)

The figure above shows a circular sector OAB.

0

The sides of the sector are equally divided into five equal parts.

Using these divisions arcs are drawn inside the original sector, creating five distinct regions  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$ , as shown in the figure.

Show that the areas of the regions  $R_2$  and  $R_5$  are in the ratio 1:3.

 $=\frac{3}{2}a^2\Theta$  $\frac{1}{2}(5a)^2\Theta - \frac{1}{2}(4a)^2\Theta \sim \frac{25}{2}a^2\Theta - 8a^2\Theta \simeq \frac{9}{2}a^2\Theta$ HUA R2 = 3000 - 900

proof

С

x cm

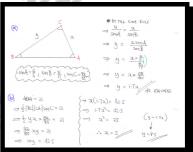
Question 45 (\*\*\*+)

The figure above shows a triangle ABC.

The lengths of BC and CA are x cm and y cm, respectively.

y cm

It is further given that


I.C.B.

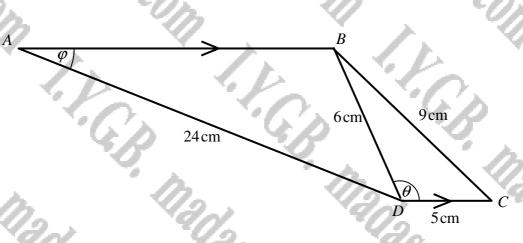
 $\sin A = \frac{4}{5}$ ,  $\sin B = \frac{8}{17}$  and  $\sin C = \frac{84}{85}$ .

**a**) Show clearly that y = 1.7x.

The area of the triangle ABC is  $21 \text{ cm}^2$ .

**b)** Find the value of x and the value of y.




x = 5, y = 8.5

adasm

1+

12

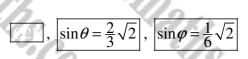




The figure above shows a trapezium ABCD, where AB is parallel to DC

The respective lengths of AD, BD, BC and DC are 24 cm, 6 cm, 9 cm and 5 cm.

 $\cos\theta$  =


The angle *BDC* is  $\theta$ .

a) Show clearly that

**b**) Hence show further that  $\sin \theta = k\sqrt{2}$ , where k is a fraction.

The angle *BAD* is  $\varphi$ .

c) Find the exact value of  $\sin \varphi$ .



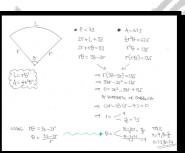
| A_ |                                                                                   | $\begin{array}{cccc} c_{2}^{2}S & c_{3}\pm 105 & status \rightarrow \mu \ M \\ \theta_{2,0} & status - \frac{1}{2}s + \frac{3}{2}s = \frac{5}{7}\\ \theta_{2,0} & status - \frac{1}{2}s + status = \theta \\ \sigma_{2,0} & \sigma_{2,0} & s_{2,0} \\ \hline & \frac{1}{2}s = -\theta_{2,0} \\ \sigma_{2,0} & \sigma_{2,0} & s_{2,0} \\ \end{array}$ |
|----|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6) | $  = \Theta_{fM2}^{c} + \Theta_{LO}^{c}$ $  = \Theta_{fM2}^{c} + \Theta_{LO}^{c}$ | (C) LOOKING AT BÀD                                                                                                                                                                                                                                                                                                                                   |
|    | $\frac{1}{q} + SW^2 = 1$                                                          | $\Rightarrow \frac{SmB}{24} = \frac{Sm\Phi}{6}$                                                                                                                                                                                                                                                                                                      |
|    | sin9= ₽<br>sin0= +√₽                                                              | $ \Rightarrow \operatorname{Sinder} \frac{1}{4} \operatorname{Sind} \theta \\ \Rightarrow \operatorname{Sinder} \frac{1}{4} \left( \frac{2}{3} \sqrt{2} \right) $                                                                                                                                                                                    |
|    | SMB = 3V2                                                                         | => Sund= 242                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |

Question 47 (\*\*\*+)

A

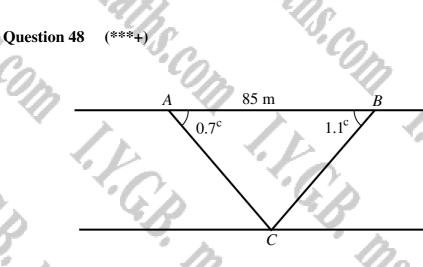
The figure above shows a circular sector OAB, centred at O.

r cm


The radius of the sector is r cm and subtends an angle of  $\theta$  radians at O.

0

The area of the sector is  $67.5 \text{ cm}^2$  and its perimeter is 33 cm.


By forming two suitable equations, or otherwise, determine the two possible pairs of values for r and  $\theta$ .

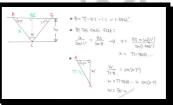
r cm



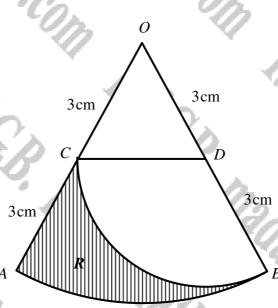
 $(r,\theta) = (7.5, 2.4)$ 

9




The figure above shows a river of constant width w metres with the points A and B located on one river bank and the point C located on the other river bank.

The distance AB is 85 metres.


The angles CAB and CBA are 0.7 radians and 1.1 radians, respectively.

Show that w is approximately 50 metres.

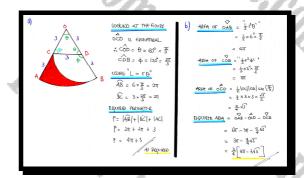
proof



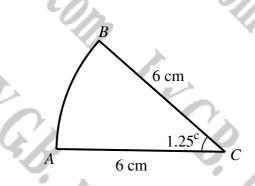




The figure above shows a circular sector OAB, of radius 6 cm, centred at O.


The points C and D are the midpoints of OA and OB, respectively.

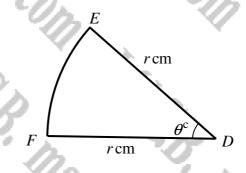
The triangle OCD is equilateral.


Another circular sector CDB, centred at D and of radius 3 cm, is drawn inside the circular sector OAB.

The finite region R bounded by the circular arcs AB and CB, and the straight line segment AC, is shown shaded in the figure above.

- a) Show that the perimeter of R is  $(3+4\pi)$  cm.
- **b**) Determine an exact value for the area of R




Question 50 (\*\*\*-



The figure above shows a circular sector ABC of radius 6 cm subtending an angle 1.25 radians at C.

a) Find the perimeter and the area of the sector.

A different sector *DEF* has radius r cm and subtends an angle of  $\theta$  radians at its centre D.



**b**) Given that the two sectors have equal area but the perimeter of the sector *DEF* is 1.5 cm larger than the perimeter of the sector *ABC*, determine the possible values of r and the corresponding values of  $\theta$ .

 $\left[\begin{array}{c} P = 19.5 \text{ cm}\right], \left[A = 22.5 \text{ cm}^2\right], \left[\left(r, \theta\right) = \left(7.5, 0.8^c\right) \text{ or } \left(r, \theta\right) = \left(3.5^c\right)\right]\right]$ 

#### Question 51 (\*\*\*+)

The triangle ABC has vertices at A(5,2), B(3,0) and C(-1,6).

The angle *BCA* is denoted by  $\theta$ .

**a**) Use the cosine rule to show that

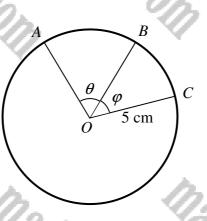
# $\cos\theta = \frac{12}{13}$ .

**b**) Hence, or otherwise, show that the area of the triangle *ABC* is exactly 10.

|     | do.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | proof                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|     | - Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| (a) | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= \sqrt{22}$<br>$= \sqrt{8}$ |
|     | $\begin{array}{c} \frac{18}{10} \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{100}$ |                               |
| (b) | - TO REPUTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $r = \frac{13}{12}$           |

24

#### (\*\*\*+) Question 52


A triangle has angles  $\theta$ ,  $\varphi$  and  $\psi$ , where  $\psi$  is an obtuse angle.

It is further given that  $\sin \psi = 0.9703$  and  $\tan(\theta - \varphi) = 0.2493$ .

Calculate, in degrees, the value of each of the angles  $\theta$ ,  $\varphi$  and  $\psi$ .

| ≈104°            |
|------------------|
| 20/35.           |
| On               |
|                  |
| 13.<br>Co.       |
| -11<br>3<br>1121 |
|                  |

Question 53 (\*\*\*+)

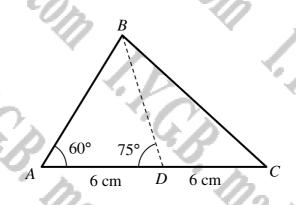


The figure above shows a circle of radius 5 cm, centred at O.

The points A, B and C lie on the circumference of the circle. The angles AOB and BOC are denoted by  $\theta$  and  $\varphi$ , respectively.

The sum of the areas of the sectors AOB and BOC is  $20 \text{ cm}^2$ .

The length of the arc AB is 3.5 cm greater than the length of the arc BC.


Determine the value of  $\theta$  and the value of  $\varphi$ .

| SETTING UP 2 OPUNTIONS, F=5, 45:11 | a -ARGA = 2820 & L= NDC |  |
|------------------------------------|-------------------------|--|
|                                    |                         |  |
| == == 2×52×B + =×52×+=20           | 4 -AB = BC + 3.5        |  |
| ⇒ 륫원 + 륫 + = So                    | 919 e Saf + 3.5         |  |
|                                    |                         |  |
| $\Rightarrow 50 + 2\phi = 8$       |                         |  |
|                                    |                         |  |
| SIMPLY SUNSTYTUTION                |                         |  |
| ● (2++3-2) + 2+=8                  | 🗧 50 + Sak = 8          |  |
| lodp = 4:5                         | 50 + 4 = L6             |  |
| d=0.45                             |                         |  |
| ~//                                | Q= 1.20                 |  |
|                                    |                         |  |

 $\theta = 1.15^{\circ}$ 

 $\varphi = 0.45^{c}$ 

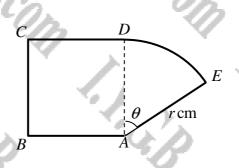
Question 54 (\*\*\*+)



The figure above shows a triangle ABC.

The straight line *BD* is such so that AD = DC = 6 cm.

The angles BAD and BDA are 60° and 75°, respectively.

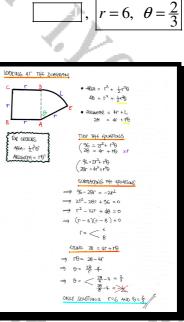

Find in appropriate degree of accuracy ...

- **a**) ... the length of BD.
- **b**) ... the area of the triangle of *ABD*.
- c) ... the shortest distance from the vertex B to the straight line AC.

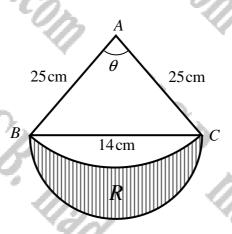
**d**) ... the length of BC.

 $\boxed{3\sqrt{6} \approx 7.348}, \ \boxed{\frac{9}{2}(3+\sqrt{3}) \approx 21.29}, \ \boxed{\frac{3}{2}(3+\sqrt{3}) \approx 7.098}, \ \boxed{\approx 10.6}$ 

Question 55 (\*\*\*+)




A minor sector ADE with radius r cm, subtends an angle of  $\theta$  radians at A.


The sector is attached to a square ABCD, forming a composite shape S, as shown in figure above.

The area and the perimeter of S are  $48 \text{ cm}^2$  and 28 cm, respectively.

By forming and solving two equations, find the value of r and the value of  $\theta$ .



Question 56 (\*\*\*+)



The figure above shows an isosceles triangle ABC attached to a semicircle with BC as its diameter.

It is further given that |AB| = |AC| = 25 cm, |BC| = 14 cm and the angle BAC is  $\theta$  radians.

A circular arc BC is drawn inside the semicircle, centred at A with radius 25 cm.

- a) Determine the area of the triangle *ABC*
- **b**) Show that  $\theta = 0.568$  radians, correct to three significant figures.

c) Find the area of the region R, shown shaded in the figure.

, area of triangle =  $168 \text{ cm}^2$ ,

area of  $R \approx 67.5 - 67.6 \text{ cm}^2$ 

 $\begin{array}{c}
A_7\\
A_6\\
\overline{A_5}\\
\overline{A_4}\\
\overline{A_3}\\
\overline{A_2}
\end{array}$ 

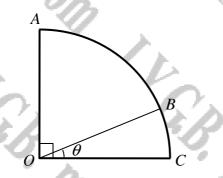
**Question 57** (\*\*\*\*)

The figure above shows a grid used to help spectators estimate the throwing distances of athletes in a shot put competition. The grid consists of circular sectors each with centre at O and the angle POQ is  $\theta$  radians.

 $A_1$ 

 $\overset{\theta}{\overset{}_{0}}$ 

The radius of the smaller sector is 10 metres and each of the other sectors has a radius 2 metres more than the previous one.


The perimeter of  $A_4$ , shown shaded in the figure, is 1.4 times larger than the perimeter of the sector  $A_1$ .

 $\theta = 1.5^{c}$ 

10 + 10 + 10B

Determine the value of  $\theta$ .

Question 58 (\*\*\*+)



The figure above shows a quarter circle OAC with centre at O. The point B lies on the curved part of the quarter circle so that the angle BOC is  $\theta$  radians.

Given that the length of the arc AB is four times as large as the length of the arc BC,

show that  $\theta = \frac{\pi}{10}$ .

proof



r = 10 cm,  $\theta = 0.3^{\circ}$ 

I.C.S.

1.4

madasma,

COM

I.V.C.B. Madasn

2017

#### (\*\*\*+) Question 59

A circular sector has radius r cm and subtend an angle  $\theta$  radians at its centre.

The perimeter of the sector is 23 cm and its area is  $15 \text{ cm}^2$ .

200

Find the value of r and the value of  $\theta$ .

anasma

FGB Madasm

COM

I.C.B.

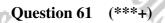
Created by T. Madas

0

Question 60 (\*\*\*+)

The figure above shows a circle with centre at O and radius 6 cm.

The chord AB has length  $6\sqrt{3}$  cm.


**a)** Show that the angle *AOB* is  $\frac{2\pi}{3}$  radians.

The tangents to the circle at A and B meet at the point P.

**b**) Show further that the area of the quadrilateral *OAPB* is  $36\sqrt{3}$  cm<sup>2</sup>.

c) Find the area of the shaded region bounded by the tangents and the circle.

, area =  $12(3\sqrt{3}-\pi)$ 



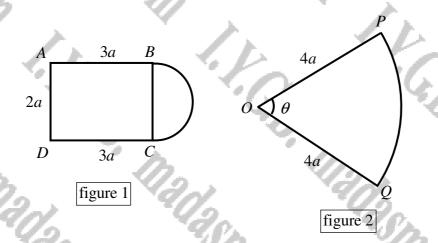
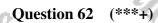
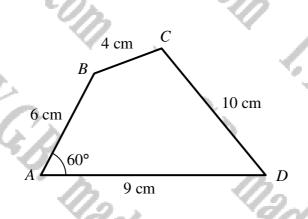



Figure 1, shows a rectangle ABCD where |AB| = |DC| = 3a and |AD| = |BC| = 2a.


A semicircle with diameter BC is attached to the rectangle. The rectangle and the semicircle are to be considered as a single composite shape X.


Figure 2, shows a circular sector OPQ where |OP| = |OQ| = 4a. The sector has its centre at O, and  $\measuredangle POQ = \theta$  radians. The sector is denoted as shape Y.

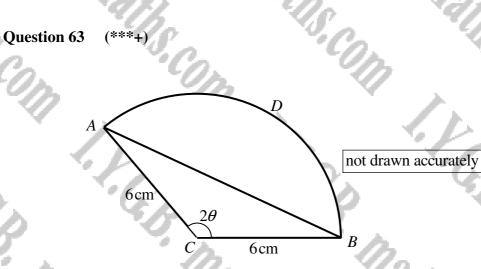
- a) Given that the area of X is equal to the area of Y, express  $\theta$  in terms of  $\pi$ .
- **b**) Given further that the perimeter Y is greater than the perimeter of X, show that the difference between the perimeter of X and Y is

 $\frac{3}{4}a(4-\pi).$ 

| ·Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\boxed{\qquad}, \ \theta = \frac{3}{4} + \frac{\pi}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{aligned} \hat{\mathbf{q}} & \underline{\mathbf{l}}(\mathbf{k}) \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{T} \cdot \mathbf{k} \cdot \underline{\mathbf{l}} \mathbf{k}' \mathbf{k} \mathbf{k} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} & \hat{\mathbf{q}} \\ & \hat{\mathbf{q}} & $ | b) PROMERCI OF Y - PROMENCE X<br>$= \begin{bmatrix} \delta_{11} + \delta_{12} + (\delta_{12}^{2} \beta_{1}] - \begin{bmatrix} \lambda_{11} + \lambda_{21} + \lambda_{21} + \frac{1}{2}(\beta m_{11}) \end{bmatrix}$ $= \begin{bmatrix} \delta_{11} + \delta_{12} - \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix}$ $= \begin{bmatrix} \delta_{12} + \delta_{12} - \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix}$ $= \begin{bmatrix} \delta_{12} + \delta_{12} - \frac{1}{2}\delta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \beta_{12} \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \\ \delta_{12} + \\ \delta_{12} + \end{bmatrix} - \begin{bmatrix} \delta_{12} + \\ $ |






The figure above shows a quadrilateral ABCD, with side lengths AB, BC, CD and DA are 6 cm, 4 cm, 10 cm and 9 cm, respectively.

The angle BAD is 60°.

- a) Show that BD is  $3\sqrt{7}$  cm.
- **b**) Find, to one decimal place, the size of the angle *BCD*.
- c) Determine, to one decimal place, the area of the quadrilateral *ABCD*.

Ø (BD)<sup>2</sup>: 36 + 8t - 2×6×3× ½ -> |BN2 = 63 => |BD = V63 = 307 . 21BC/ Calast 18C12+10012 48.9 THE ASSA OF the of the = +x6x1x WEA OF BOD = + x4x10 1.6)

 $48.5^{\circ}$ , area  $\approx 38.4$ 



The figure above shows a sector *CADB*, of radius 6 cm and angle  $2\theta$  radians.

Given that the area of the triangle ABC and the area of segment ABD are in the ratio 4:1, show that

 $8\theta - 5\sin 2\theta = 0.$ 

\_\_\_\_\_, proof



| ooline- | AΤ | THE ISOS | etts TRIA | ione ACB                              |
|---------|----|----------|-----------|---------------------------------------|
|         |    |          | there =   | 走 tc  c8 2M2D<br>生x6x6×2M2D<br>182M2D |
|         |    |          |           |                                       |

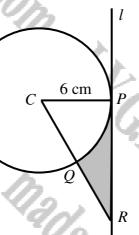
 $\frac{A2iA}{A2iA} \circ f \cdot \underbrace{secose}_{i} \underbrace{usub}_{i} \cdot \underbrace{"\frac{1}{2}r^2 e^{i\cdot x}}_{A2iA} = \underbrace{\frac{1}{2} \times e^{\frac{1}{2} \times}_{i}}_{A2iA} (20)$   $\frac{A2iA}{A2iA} = \underbrace{360}_{i}$ 

 $\begin{array}{rcl} 360 - & 1820429 \\ 100_{5} & THE & ELEPOILED & DATIO <math>\Rightarrow & ACLAP & of & TLIPAUE & = & 4.400A & of & SEGMAT \\ 105_{5012}D & = & 4.(360 - 1030429) \\ 105_{5012}D & = & 1046 - 72, sin29 \\ 0 & = & 1046 - 72, sin29 \\ 0 & = & 1046 - 75, sin29 \\ 0 & = & 1046 - 5sin29 = 0 \\ \hline & H & ElepoileD \\ \hline & H & H \\ \hline & H \\ \hline & H & H \\ \hline \hline & H \\ \hline &$ 

19

Question 64 (\*\*\*+)

The figure above shows a circular sector *OAB*. The sector has radius r cm and subtends an angle of  $\frac{\pi}{6}$  at *O*.


The straight line through M and N is such so that OM = ON = a cm.

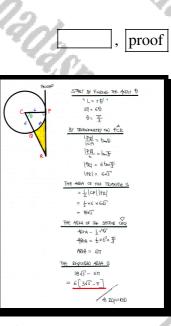
Given that the straight line through M and N divides the sector into two regions of equal area, show that

 $a = \sqrt{\frac{\pi}{6}} r$ 

| Z  | , proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ×U | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | prod<br>$\begin{split} & \varphi_{12} = \frac{1}{2} \alpha_{2}^{2} \Theta_{1} \\ & \varphi_{2} = \left[ \frac{1}{2} (\alpha_{2}^{2} \underline{\Omega}_{2}) - \frac{1}{2} \alpha_{2} + \frac{1}{2} \alpha_{3} \\ & \varphi_{12} = \frac{1}{2} \alpha_{2}^{2} \Theta_{1} \\ & \varphi_{13} = \frac{1}{2} \alpha_{3} \\ & \varphi_{13} = \frac{1}{2} \alpha_{13} \\ & \varphi_{13} = \frac{1}{2} \alpha_{13} \\ & \varphi_{13} = \frac{1}{2} \alpha_$ |
|    | BUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Question 65 (\*\*\*+)




The figure above shows a circle of radius 6 cm, centre at point C, and the straight line l which is a tangent to the circle at the point P.

The point R lies on l.

The straight line segment CR meets the circle at the point Q.

Given that the length of the arc QP is  $2\pi$  cm, show that the area of the finite region bounded by PR, RQ and QP, shown shaded in the figure, is

 $6(3\sqrt{3}-\pi).$ 



The Com

#### (\*\*\*+) **Question 66**

The triangle ABC has AB = 13 cm and BC = 15 cm.

Given that  $\measuredangle BCA = 60^\circ$ , determine the possible values of AC.

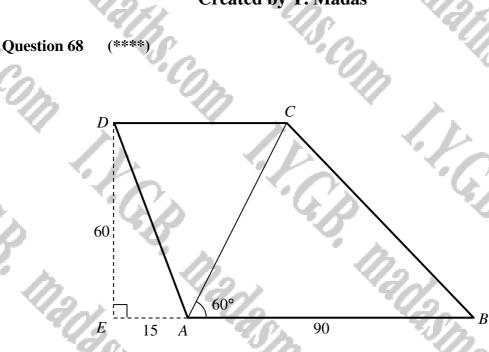


#### Question 67 (\*\*\*+)

Linda is walking on a long straight horizontal road in a Northern direction.

When Linda reaches a point A on this road, a tree T is observed on a bearing of  $30^{\circ}$ .

When Linda walks a further distance of 200 m from the point A to the point B on this road, T is now observed on a bearing of  $60^{\circ}$ .


**a**) Determine the shortest distance of T from the road.

Linda walks further North to some point D, so that the distance DT is 180 m.

**b**) Calculate the two possible values for the distance AD.

| a) | STRATING WON' & DIRECTIN - FUL IN' ALL<br>THE MISSING-ANDERS<br>GIBARTY AR ABT IS ISOSCENS, INT'-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>THEN BY PYTHAGORAS, WOCKING AT THE ORMOR/200 TEUMOO</u><br>IN GRAF CASE<br> COV <sup>16</sup> + (CT  <sup>2</sup> = (271) <sup>2</sup>                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ► M SUPLE TERMINIETY OU BUT       ICTI     SNA0*       B     B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c}  C0  +  CT  \approx (DT) \\  C0 ^2 + (\cos T)^2 = (\cos^2 \\ (C1)^2 + 3\cos c = 32400 \\  C1 ^2 = 2400 \end{array} $                                                                                              |
|    | $ CT  =  aT  \sin 60^{\circ}$ $ CT  = 200 \times \frac{12}{2}$ $ CT  = 100.6^{\circ} \approx 173$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $l = z_0 \sqrt{\varepsilon} \approx 4\varepsilon \cdot 3\varepsilon$<br>$\frac{1}{10} \sqrt{\varepsilon} = \frac{1}{2} \sqrt{\varepsilon} \sqrt{\varepsilon} = \frac{1}{2} \sqrt{\varepsilon} \sqrt{\varepsilon} \sqrt{\varepsilon}$ |
| 6) | THRY the two opens to consuder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ AD  = \underbrace{ AB  +  Bc  -  CB }_{ AB  +  Bc  +  CB } = 200 + 100 - 206$                                                                                                                                                      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $[AD] = \frac{300 - 20\overline{6} \times 2S}{300 + 20\sqrt{6} \times 349}$                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
|    | $\label{eq:linearized_states} \begin{split} \bullet  In the classes shown in the cl$ |                                                                                                                                                                                                                                      |
|    | BCL = LOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |

 $|100\sqrt{3} \approx 173|$ ,  $||AD| = 300 \pm 20\sqrt{6}|$ 



ABCD is a trapezium where AB is parallel to DC.

The angle *CAB* is 60° and |AB| = 90. The side *AB* is extended from *A* to *E* so that  $\angle AED = 90^\circ$ , as shown in the figure above.

It is further given that |EA| = 15 and |ED| = 60.

a) Find, correct to 1 decimal place, the value of |BC| and the value of |CD|.

**b**) Calculate, correct to 1 decimal place, the angle *DAC*.

| $ BC  \approx 81.6$ , $ CD  \approx 4$      | $49.6,  \measuredangle DAC \approx 44.0$               |
|---------------------------------------------|--------------------------------------------------------|
| 12.                                         | 9.0                                                    |
| a) LOCOLD: AT THE DUA                       | RPM ON ACG                                             |
| <u>liceil</u> = ξωνίο°                      | <u> </u>                                               |
| <u>60</u> = 43                              |                                                        |
| ₩6)= <u>60</u>                              |                                                        |
| 461= 20137                                  | 6 5 A 6 8                                              |
| BY PYTHAGARAS ON C                          | 4<br>58                                                |
| (CB)2 = (CG)2+ 10812                        |                                                        |
| (CB) <sup>2</sup> = 60 <sup>2</sup> + (90-4 |                                                        |
| $ CR ^2 = Go^2 + (20 - 20)$                 |                                                        |
| (CB) <sup>2</sup> = 6664-617093             |                                                        |
| 2.18 ~ [23]                                 | [cp]≈ 49.6                                             |
|                                             | · · · · · · · · · · · · · · · · · · ·                  |
| b) Festivy First that                       | <p diaboutm<="" in="" td="" the=""></p>                |
| twige LDEL                                  |                                                        |
|                                             |                                                        |
|                                             |                                                        |
| Ψ= T5.4637.                                 |                                                        |
| · · · · · · · · · · · · · · · · · · ·       |                                                        |
|                                             | $\therefore  D\widehat{A}C = \Theta = 1BO - fO - \Psi$ |
|                                             | = 180-60-75-1437*<br>= 44-0*                           |
|                                             | - TTU                                                  |

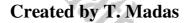
Question 69 (\*\*\*\*)

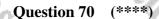
7 cmO  $1.8^{\circ}$ 7 cm

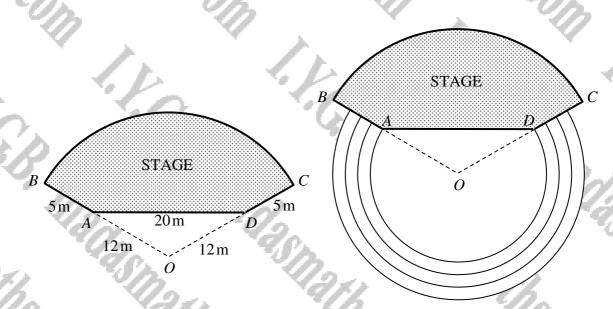
The figure above shows a circle with centre at O and radius 7 cm.

В

The points A and B lie on the circle so that the angle AOB is 1.8 radians.


The tangents to the circle at the points A and B meet at the point C.


The region shown shaded in the figure above, is enclosed by the two tangents AC and BC, and the circle.

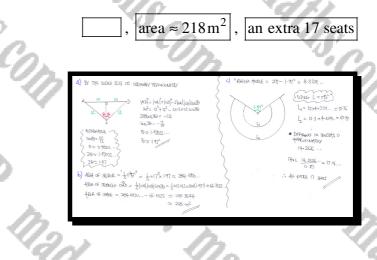

Determine the area of this region.

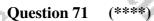
14CI 61-74775 ... (

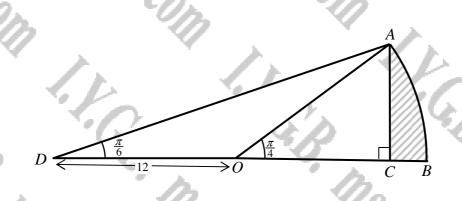
area  $\approx 17.6 \text{ cm}^2$ 









The two diagrams above show an orchestral stage *ABCD* which is part of a circular sector *OBC*, centred at *O* and of radius 17 m. The points *A* and *D* lie on *OB* and *OC* respectively so that |OA| = |OD| = 12 m and |AD| = 20 m.


- **a**) Show that  $\measuredangle BOC = 1.97$ , correct to three significant figures.
- **b**) Calculate the area of the stage.

There are 4 rows of seats with their backs arranged in concentric circles, centred at O. The radii of these circles are 12 m, 13.1 m, 14.2 m and 15.3 m.

c) Given further that each seat requires a length of 83 cm along the arc, find approximately how many more seats are in the back row than in the front row.







The figure above shows a triangle *OAC* with  $\angle ACO = \frac{1}{2}\pi$  and  $\angle AOC = \frac{1}{4}\pi$ .

Another triangle AOD is drawn next to the triangle OAC, so that DOC is a straight line, |DO| = 12 units and  $\measuredangle ADO = \frac{1}{6}\pi$ .

Finally a circular sector OAB is drawn, centred at O, with radius OA, so that DOCB is a straight line.

- a) Find the area of the sector OAB.
- **b**) Hence show that the area of the shaded region *ACB* is approximately 77 square units.

, 211.0 STOCKA TWORE NEXT LOOUNC- A (23-1822...)× VI 31230480 THE AREA OF THE TRANSDUS LOC IL GIVEN BY 24A = floallocismI + (23-1822 ... ) (16-3873... ) × VE 134-3538291 SETTING - AREA OF TRIAN = 76.0 2 77 AS Elevitero

R

Question 72 (\*\*\*\*)

The figure above shows a circular sector OAB of radius r, centred at O, with **perimeter** of 60 units. The area of the sector is denoted by A.

a) Show clearly that

#### $A=30r-r^2.$

The value of r can vary but the perimeter of the sector is fixed.

0

**b**) By completing the square, or otherwise, find the maximum value of A and the value of r which produces this maximum value for A.

 $A_{\text{max}} = 225$ |r=15|

 $r\theta = 60 - 2r$  $\theta = \frac{69}{7} - 2$ 

36

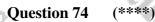
θ

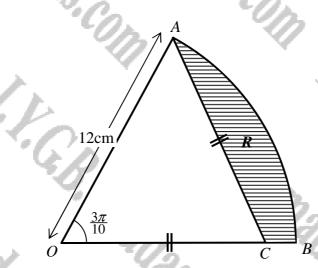
Question 73 (\*\*\*\*)

The figure above shows a model of the region used by shot putters in to throw the shot. The throwing region consists of a **minor** circular sector *OAB* of radius  $12\sqrt{3}$  metres subtending an angle  $\theta$  radians at *O*. The chord *AB* is 36 metres.

12

The shot putter's region *COD* is a **major** circular sector of radius  $3\sqrt{3}$  metres, where *C* and *D* lie on *OA* and *OB*, respectively.


- **a**) Show that  $\theta = \frac{2}{3}\pi$ .
- **b**) Find, in terms of  $\pi$ , the total area of throwing region and shot putter's region.
- c) Show further that the total perimeter of the throwing region and the shot putter's region, shown shaded in the figure above, is


 $, |162\pi$ 

 $+ 4\sqrt{3\pi} + 2(12\sqrt{3} - 3\sqrt{3}) = 12\sqrt{3\pi}$ 

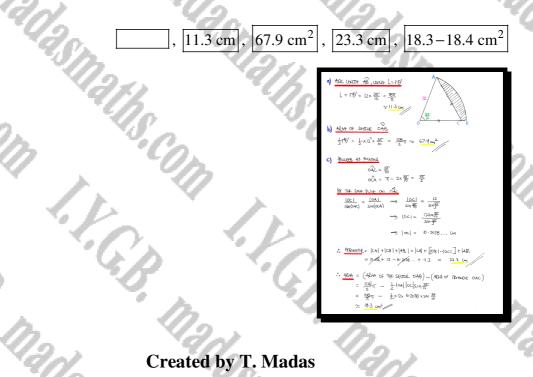
613(2

 $6(2\pi+3)\sqrt{3}.$ 





The figure above shows a circular arc *OAB* of radius 12 cm, subtending an angle of  $\frac{3}{10}\pi$  radians at *O*.


Find to three significant figures ...

1

- **a**) ... the length of the arc AB.
- **b**) ... the area of the sector OAB.

The point C lies on OB so that OC = AC. The region R, shown shaded in the figure, is bounded by the arc AB and the straight lines AC and BC.

c) Determine, to three significant figures, the perimeter and area of R.






Figure 1 shows the triangle ABC, where |AC| = 12 cm, |BC| = 10 cm and  $\measuredangle BAC = \theta$ so that  $\cos \theta = \frac{5}{9}$ .

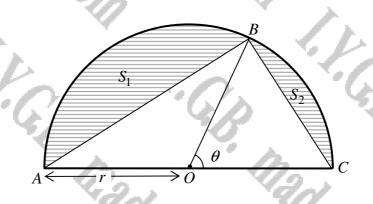

a) Use the cosine rule to form a suitable quadratic, and hence show that one of the **two** possible values for the length of *AB* is 6 cm and find the other.

Figure 2 shows a different triangle PQR, where |PQ| = 9.8 cm, |PR| = 5.7 cm and  $\angle PQR = 20^{\circ}$ .

**b**) Use the sine rule to find, to the nearest degree, the **two** possible values of  $\angle QPR$ .

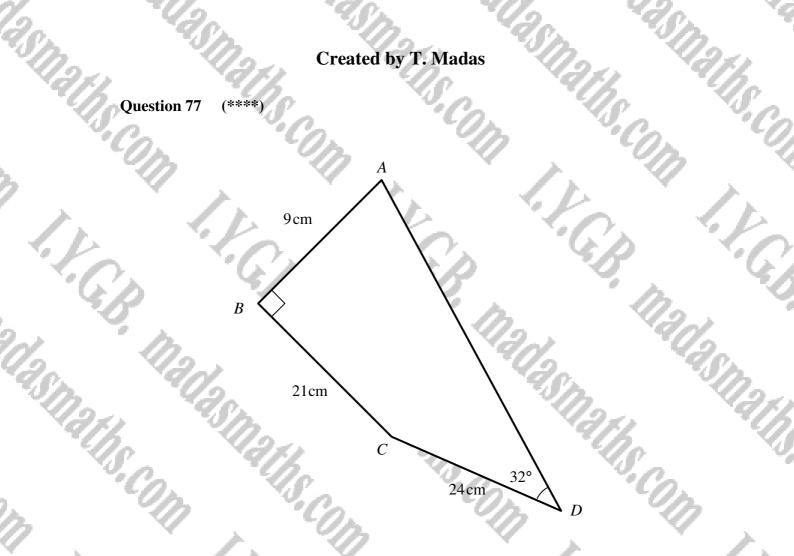
 $|AB| = \frac{22}{3} \approx 7.33 \text{ cm}$ ,  $\angle QPR = 16^{\circ} \text{ or } 124^{\circ}$ 

Question 76 (\*\*\*\*)



The figure above shows a semicircle of radius r cm, where AOC is a diameter with point O the centre of the semicircle.

The point *B* lies on the circular part of the semicircle so that the angle *BOC* is  $\theta$  radians.

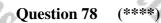

The chords AB and BC define two segments  $S_1$  and  $S_2$ , respectively.

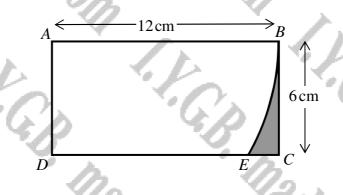
Given that the area of  $S_1$  is four times as large as the area of  $S_2$ , show that

 $\pi + 3\sin\theta = 5\theta.$ 

| $\frac{1}{2}\frac{1}{r^{2}w\theta} = \frac{1}{2}\frac{1}{r^{2}w\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H(\alpha S) = \frac{1}{2}r^2 - \frac{1}{2}r^2 S = \frac{1}{2}r^2 S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}$ |
| $\frac{A \circ r \operatorname{Phin}_{A}}{F} = \frac{1}{2} \operatorname{P}^{2} \operatorname{Sm}(r - \theta) = \frac{1}{2} \operatorname{P}^{2} \operatorname{Sm}(r - \theta) = \operatorname{Sm}(r - \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{\partial \phi}{\partial r} = \frac{1}{2} r^2 (r - \theta) - \frac{1}{2} r^2 \partial \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c} \frac{\partial RU}{\partial t} & UE \ A Et \ GNAb \ TPAT \\ & \begin{array}{c} \frac{\partial LU}{\partial t} & UE \ A Et \ A Et \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ A & \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

proof



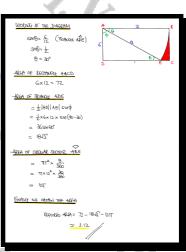


The figure below shows the quadrilateral ABCD where AB is 9 cm, BC is 21 cm and CD is 24 cm.

The angle ABC is 90° and the angle CDA is 32°.

Find, to three significant figures, the area of the quadrilateral ABCD

| , ≈ 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c}   \underline{\operatorname{COUD}} & \underline{\operatorname{AT}} \ \operatorname{He} \ \underline{\operatorname{Der}} \ \operatorname{He}^{1/2} \\ \Rightarrow   \underline{\operatorname{AI}}^{1/2}   \underline{\operatorname{AI}}^{1/2}   \underline{\operatorname{AI}}^{1/2} \\ \Rightarrow   \underline{\operatorname{AI}}^{1/2} + \underline{\operatorname{AI}}^{1/2} + \underline{\operatorname{AI}}^{1/2} \\ \Rightarrow   \underline{\operatorname{AI}}^{1/$ |
| $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{1007}{464} = \frac{1}{2}  46   80  = \frac{1}{2} \times 1 \times 21 = \frac{11}{45} + \frac{1}{2} \times 1 \times 1 \times 1 \times 1 = \frac{1}{45} + \frac{1}{2} \times 1 \times 1 \times 1 \times 1 = \frac{1}{45} + \frac{1}{2} \times 1 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| : Biguido $x_{EA} = 250, 122 + 94.5$<br>= 344, 622<br>$\approx \frac{345}{2} \frac{0.2^3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |






The figure above shows the rectangle ABCD where AB is 12 cm and BC is 6 cm.

An arc of a circle with centre at A and radius 12 cm is drawn inside the quadrilateral, meeting the side DC at the point E.

Find the area of the shaded region BEC.

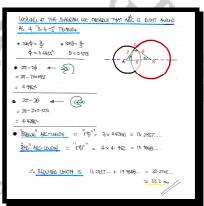
area =  $72 - 12\pi - 18\sqrt{3} \approx 3.12$ 



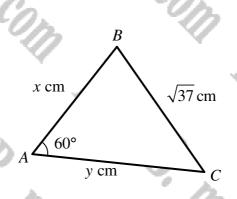
Question 79 (\*\*\*\*)

The figure above shows the design for an earring.

The design consists of a part of a circle of radius 3 cm centred at A and another part of a circle of radius 4 cm centred at B.


The circles overlap in such a way so that the distance AB is 5 cm.

Find, to three significant figures, the perimeter of the design.


Α

5cm

perimeter  $\approx 33.3$ 




Question 80 (\*\*\*\*)



The figure above shows a triangle *ABC* where *AB* is x cm, *AC* is y cm and *BC* is  $\sqrt{37} \text{ cm}$ . The angle *BAC* is 60°.

Given further that the area of the triangle ABC is  $7\sqrt{3}$  cm<sup>2</sup>, determine by solving two simultaneous equations the value of x and the value of y.



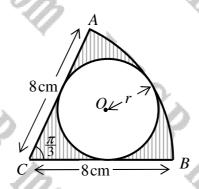
| $\begin{array}{c} \beta & \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} (57) \ \mbox{TH}(\ \mbox{Gause}\ \ \mbox{Sut}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Provide the approximate provide the provided pr |
| $\alpha = \overbrace{-4}^{4} y = \overbrace{-7}^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

В

Question 81 (\*\*\*\*)

The figure above shows a "curved triangle", known as a Reuleaux triangle, which is constructed as follows.

Starting with an equilateral triangle ABC of side length 2 cm, a circular arc BC is drawn with centre at A. Two more circular arcs AB and AC are drawn with respective centres at C and B.

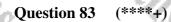

Show that the area of this Reuleaux triangle is

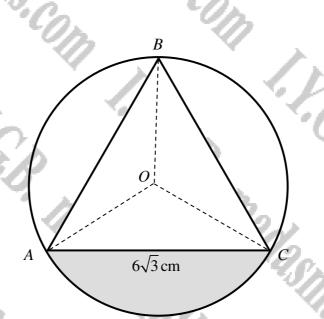
A

 $2(\pi-\sqrt{3})$  cm<sup>2</sup>.

| 99 m                                               | · ,                                                                                                                                                                               | proof |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                    | 2                                                                                                                                                                                 | -     |
| WORDE AT THE DUGGENUE D                            | tow                                                                                                                                                                               |       |
| 4 - T - T - T - C                                  | AREA IN THE TELANZE AR                                                                                                                                                            | 2     |
| NEXT WORLING AT THE SECOND                         |                                                                                                                                                                                   |       |
| •+1864 V = "±1°6" = ±<br>• 4969 of The Seconds = 3 | <u>व</u> – ि                                                                                                                                                                      |       |
| · ARA OF REVISION TEAGON                           | $t^{\dagger} = \frac{3}{3} \operatorname{SecuriST} + \frac{3}{12} \operatorname{TerAnc}$<br>= $\Im \left( \frac{2\pi}{3} - i \overline{t}^{\dagger} \right) + i \overline{t}^{2}$ | £     |
|                                                    | $= 2\Pi - 3\sqrt{2} + \sqrt{3}$<br>$= 2(\Pi - \sqrt{3})$                                                                                                                          |       |
|                                                    | -ts equers                                                                                                                                                                        | 1     |
|                                                    |                                                                                                                                                                                   |       |

Question 82 (\*\*\*\*+)





The figure above shows a sector CAB of radius 8 cm, centred at C and subtending an angle of  $\frac{\pi}{3}$  radians at C.

A circle centred at O and of radius r cm is inscribed inside the sector.

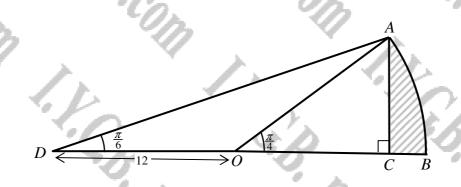
Find in terms of  $\pi$ , the area of the shaded region, shown in the figure above.

area =  $\frac{32}{9}$ π





The figure above shows an equilateral triangle ABC circumscribed by a circle of radius 6, with centre at O.


The circular segment, shown shaded region in the figure above, is bounded by the straight line AC.

Show that the area of the segment is

 $3(4\pi-3\sqrt{3})$  cm<sup>2</sup>

proof

Question 84 (\*\*\*\*+)



The figure above shows a triangle *OAC* with  $\measuredangle ACO = \frac{1}{2}\pi$  and  $\measuredangle AOC = \frac{1}{2}\pi$ .

Another triangle AOD is drawn next to the triangle OAC, so that DOC is a straight line, |DO| = 12 units and  $\measuredangle ADO = \frac{1}{6}\pi$ .

Finally a circular sector OAB is drawn, centred at O, with radius OA, so that DOCB is a straight line.

a) Show that the length of *OA* is

 $6\left(\sqrt{6}+\sqrt{2}\right).$ 

**b**) Find the exact area of the sector OAB.

c) Hence show that the area of the shaded region ACB is

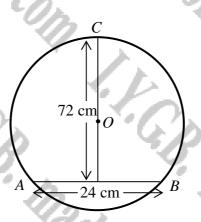
 $18(2+\sqrt{3})(\pi-2).$ 

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a)<br>$\frac{3 \operatorname{ADTAG}(USH 4 2 \operatorname{Aradeber})}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{$ | $\begin{array}{c} (\mathbf{j}) = (\mathbf{j}$ | Frequency THE<br>$4444 = \frac{1}{2}$ !<br>$= \frac{1}{2}\sqrt{2}$<br>$= \frac{1}{2}\sqrt{2}$<br>$= 8(\sqrt{2})$<br>$= 88(\sqrt{2})$<br>$= 88(\sqrt{2})$<br>$= 88(\sqrt{2})$<br>$= 88(\sqrt{2})$<br>$= 88(\sqrt{2})$ |

#### INALLY THE AREA OF THE TRIANGLE OAC

 $4\mathcal{L}\mathcal{H} = \frac{1}{2} \left| o \mathcal{A} \right| \left| o \mathcal{L} \right| \sin \frac{\pi}{4} = \frac{1}{2} \frac{\partial \mathcal{H}}{\partial \mathcal{L}} \times \frac{\mathcal{L}}{2} = \frac{1}{4} \sqrt{2} \frac{\partial \mathcal{H}}{\partial \mathcal{H}}$ 

- $=\frac{1}{4}\sqrt{2}^{2} \left(66^{2}+6\sqrt{2}\right)\left(6+6\sqrt{2}\right)$  $=\frac{1}{4}\sqrt{2}^{2} \times \left(\sqrt{6}+\sqrt{2}\right) \times \left((1+\sqrt{3})\right) = 9\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)\left(1+\sqrt{3}\right)$
- $= 9\sqrt{2} \left( 2\sqrt{6} + 9\sqrt{2} \right) = 9\sqrt{2} \times 2 \left( \sqrt{6} + 2\sqrt{2} \right)$

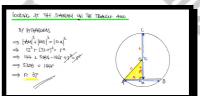

 $18(2+\sqrt{3})\pi$ 

 $= 18(\sqrt{12} + 4) = 18(2\sqrt{5} + 4) = -36(\sqrt{5} + 2)$ 

#### E SHADED AREA IS GUN BY

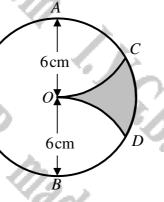
- -REFA OF SECTOR ARMA OF TRIAN 1817 (2+157) - 36(2+157)
- 18(2+12)[T-2]

Question 85 (\*\*\*\*+)




The figure above shows a circle with centre at O and radius r.

The straight line AB is a chord to the circle.


The perpendicular bisector of AB passes through O and meets the circle at the point C, as shown in the figure.

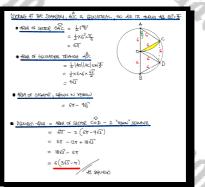
Given that |AB| = 24 cm and the length of the perpendicular bisector is 72 cm, determine the value of r.



r = 37

Question 86 (\*\*\*\*+)




The figure above shows a circle of radius 6 cm, centred at O.

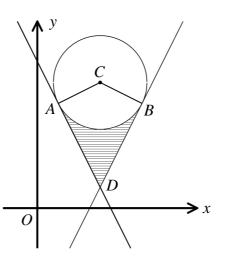
An arc OC with centre at A and radius 6 cm is drawn inside the circle.

A second arc OD is drawn with centre at B and radius 6 cm.

Show clearly that the area of the shaded region OCD is

 $6(3\sqrt{3}-\pi)\,\mathrm{cm}^2\,.$ 




proof

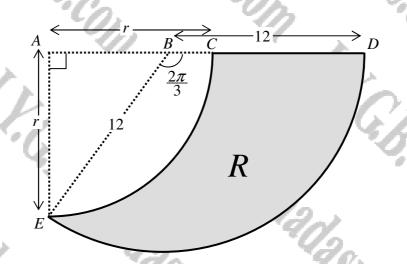
1212

nadasn

1+






The figure above shows a circle with centre at C(3,6). The points A(1,5) and B(p,q) lie on the circle. The straight lines AD and BD are tangents to the circle. The kite CADB is symmetrical about the straight line with equation x = 3.

- a) Calculate the radius of the circle.
- **b**) State the value of p and the value of q.
- c) Find an equation of the tangent to the circle at A.
- **d**) Show that the angle *ACB* is approximately 2.214 radians.
- e) Hence determine, to three significant figures, the area of the shaded region bounded by the circle and its tangents at A and B.

a)  $r = |A_{c}| = \sqrt{e_{v}^{2} \sqrt{e_{v}^{2} \sqrt{e_{v}^{2} \sqrt{e_{v}^{2}}}}}$   $r = \sqrt{1+i}$   $r = \sqrt{1+i$ 

 $r = \sqrt{5}$ , p = q = 5, y = 7 - 2x, area  $\approx 4.46$ 

### Question 88 (\*\*\*\*+)



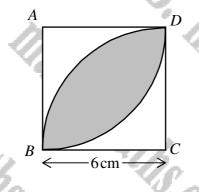
The figure above is constructed as follows.

- *EBD* is a circular sector with centre at *B* and radius 12 units, subtending an angle of  $\frac{2\pi}{3}$  radians at *B*.
- *EAC* is a quarter circle with centre at *A* and radius *r* units, so that *ABCD* is a straight line and *CAE* is a right angle.

The shaded region R is bounded by the arcs ED and EC, and the straight line CD.

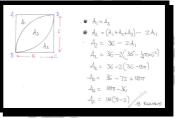
Show that the area of R is

 $3(7\pi+6\sqrt{3})$  square units.


, proof

### Question 89 (\*\*\*\*+)

The figure below shows a square ABCD with side length of 6 cm.


A circular arc BD is drawn inside the square with centre at C and radius of 6 cm.

Another circular arc BD is drawn inside the square with centre at A and radius of 6 cm also, so that the two arcs bound a finite area, shown shaded in the figure above.



Show that area of the shaded region is  $18(\pi - 2)$  cm<sup>2</sup>.

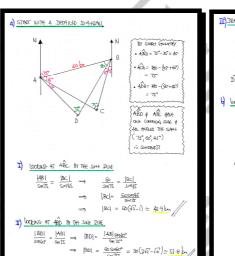


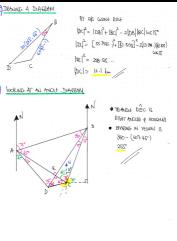


#### Question 90 (\*\*\*\*+)

The distance between the town of Arundel (A) and the town of Berry (B) is 60 km.

Berry is on bearing of 75° from Arundel.


The village of Crake (C) is on a bearing of 120° from Arundel and on a bearing of 195° from Berry. The village of Dorking (D) is on a bearing of 135° from Arundel and on a bearing of 210° from Berry.


a) Find, to three significant figures where appropriate, the distance between .

43.9 km

53.8 km

- i. ... Berry and Crake.
- ii. ... Berry and Dorking.
- iii. ... Crake and Dorking.
- **b**) State the bearing of Dorking from Crake.





16.1 km

, 255°

#### Question 91 (\*\*\*\*+)

The figure below shows a circle with centre at O and radius r. The points A and B lie on the circle so that the angle AOB is  $\theta$  radians.

The chord AB divides the circle into a major segment and a minor segment.

0

Given that the area of the **major segment** is 4 times as large as the area of the **minor** segment, show clearly that

B

 $5\theta - 5\sin\theta = 2\pi$ .

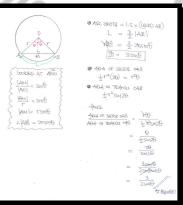


$$\begin{split} \bullet & \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) - \frac{1}{2} \left( \frac$$

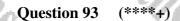
proof

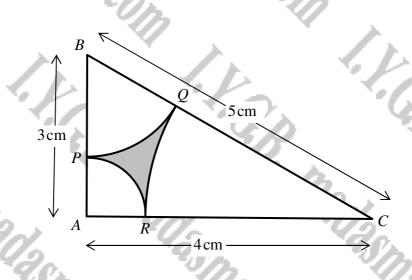
#### Question 92 (\*\*\*\*+)

The figure below shows a circle with centre at O and radius r. The points A and B lie on the circle so that the angle AOB is  $2\theta$  radians.


0

Given that the length of the arc AB is 1.5 times as large as the chord AB, show clearly that


B


 $\frac{\text{area of the sector } OAB}{\text{area of the triangle } OAB} = \frac{3}{2\cos\theta}$ 

You may use the fact that  $\sin 2\theta \equiv 2\sin\theta\cos\theta$ .

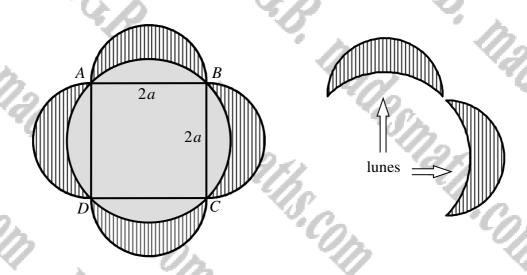


proof





The figure above shows a triangle *ABC* where  $\measuredangle BAC = 90^{\circ}$ . The lengths of *AB*, *AC* and *BC* are 3 cm, 4 cm and 5 cm, respectively. Three arcs are drawn inside the triangle with centres the three vertices of the triangle. The arcs so that they touch each other in pairs at the points *P*, *Q* and *R*.


Find the area of the shaded region, correct to three significant figures.

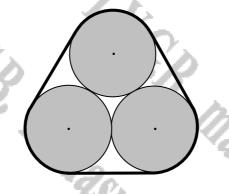
area =  $0.464 \text{ cm}^2$ z²x亭 + ±q²θ

### Question 94 (\*\*\*\*+)

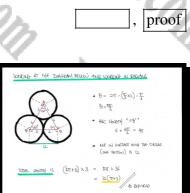
The figure below shows a square ABCD of side length 2a cm, circumscribed by a circle.

Four semicircles are then drawn outside the square having each of the sides of the square as a diameter.




Each of the four regions bounded by a semicircle and the circumscribing circle is known by the mathematical name of a "lune", i.e. moon shaped.

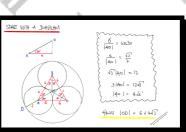
Show that the area of the four lunes is equal to the area of the square ABCD.


|                                                                                                                                                                                                                                                                                                                                                 | proof  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| da                                                                                                                                                                                                                                                                                                                                              |        |
| 1/0                                                                                                                                                                                                                                                                                                                                             |        |
| EUIDADAY THE flags OF THE SqUARS ARCD IS daz                                                                                                                                                                                                                                                                                                    |        |
| Z 21 3-19D AMBUDGAULOSIC 3477 70 21/10MS 3477                                                                                                                                                                                                                                                                                                   |        |
| $\frac{1}{2\pi\sqrt{\left[2a_{1}^{p_{1}}\left(\zeta_{2a_{1}}\right)^{2}\right]^{2}}} = \frac{1}{2}\sqrt{\frac{2}{2}}\zeta_{2a_{1}}}$ $= \frac{1}{2}\times2\zeta_{2a}$ $= \sqrt{2}z_{a}$                                                                                                                                                         | $\geq$ |
| THE AREA BETWEN THE SUC OF THE SQUARE AND A LUNCE U                                                                                                                                                                                                                                                                                             |        |
| $ \begin{array}{l} \frac{1}{4^{*}} \left[ \begin{array}{c} \mathbb{T} \left( \sqrt[4]{2} \lambda \right)^{2}_{-} & 4a^{2}_{-} \right] = & \frac{1}{4} \left[ \mathbb{E} \left( 2a^{2} - 4a^{2}_{-} \right] = & \frac{1}{2} \left[ \mathbb{T} ba^{2}_{-} & 2a^{2}_{-} \right] \\ & = & \frac{1}{2} \left( \mathbb{T} - 2)a^{2}_{-} \end{array} $ |        |
| THE AREA OF GOOD WHE IS                                                                                                                                                                                                                                                                                                                         | 1      |
| $\frac{\frac{1}{2}Tq^2}{\phi} - \frac{1}{2}(T-2)q^2 = \frac{1}{2}Tq^2 - \frac{1}{2}Tq^2 + q^2 = q^2$ $\frac{\phi}{2}$ Shoth                                                                                                                                                                                                                     |        |
| : here of a lines is 4a2 which a the same here as                                                                                                                                                                                                                                                                                               | mlan   |
| of the sound                                                                                                                                                                                                                                                                                                                                    |        |

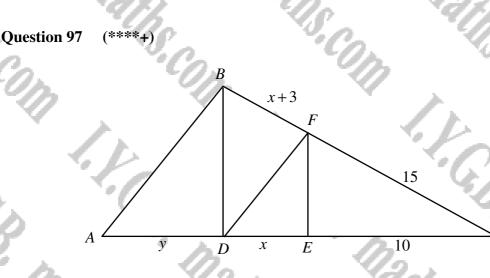
#### Question 95 (\*\*\*\*+)

The figure below shows the plan of three identical circular cylinders of radius 6 cm, held together by an elastic band.




Show that the exact length of the stretched elastic band is  $12(\pi+3)$  cm.




#### Question 96 (\*\*\*\*+)

The figure below shows the plan of three identical circular cylinders of radius 6 cm, that fit snugly inside a larger cylinder.

Show that the radius of the larger cylinder is  $6+4\sqrt{3}$  cm.



proof



The figure above shows the triangle ABC.

The point D lies on AC so that the straight line BD meets AC at right angles.

The point E lies on AC and the point F lies on BC, so that the straight line DF is parallel to AB and the straight line EF is parallel to BD.

It is further given that the lengths, in cm, of CE, CF, DE, BF and AD are 10, 15, x, x+3 and y, respectively.

- **a**) Determine the value of x.
- **b**) Show clearly that y = 9.6.

c) Find, correct to three significant figures, the area of the triangle ABC.

x = 6, area = 229

<u>|BD|</u> = |BD|=

FNAUS THE AREA

$$\begin{split} & dlick= \frac{1}{2} |AC(|BD|) \\ &= \frac{1}{2} (g_{+\infty}+io) (BVC^{-}) \\ &= \frac{1}{2} (q_{6+6+io}) (BVB^{-}) \end{split}$$

= ± × 25.6 × 815

= 51515 x 22) (3 sf)

BY RATIO IBFI = DE IJ BY RATIOS ADI cFRESTLY BY PYTHA

Created by T. Madas

### Question 98 (\*\*\*\*+)

The following information is known about 4 coplanar points.

- **1.** B is north east of A.
- **2.** C is on a bearing of  $075^{\circ}$  from A.
- 3. B is on a bearing of  $285^{\circ}$  from C.
- 4. D is south west of C.
- **5.** |AC| = 9.
- **6.** |CD| = 36.

Determine, correct to 2 decimal places, the bearing of B from D.

| START WITH A GOOD DIAGRAM PUTTING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1213 8 5 IN                                                                                                                                                                       | By TALL S              | ING DUCT ON ACD                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B IS KORTH-ART OF A</li> <li>C IS KORTH-ART OF A</li> <li>B IS KOH A MARKE OTS<sup>6</sup> PRM A</li> <li>B IS KONTH-WEST OF C</li> <li>C I/CL<sup>6</sup> 9</li> <li>C I/CL<sup>6</sup> 9</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B<br>Trans Jac C<br>An An A                                                                                                                      | <u>99[</u><br>51<br>52 | $\begin{aligned} \int_{\partial B} \frac{\partial B}{\partial A} &= \frac{3\sqrt{3}}{B} \\ \int_{\partial B} \frac{\partial B}{\partial A} &= \frac{3\sqrt{3} S_{MB} B_{0}}{ BD } \\ \partial B &= \frac{3\sqrt{3} S_{MB} B_{0}}{ BD } \\ \partial B &= \frac{3\sqrt{3} S_{MB} B_{0}}{ BD } \end{aligned}$ |
| $\begin{array}{rcl} & (ABRE PUTTA E THE AUTHOR WITH A VALUE (more from the first of the first $ | 2  = 00.30<br>-  = <u>12</u><br>- <u>22</u><br>15 8c <br>= 8 8c                                                                                                                   |                        | B & 7-6728"<br>10 3490W6 U 45° - 7-6724° ≈ 37                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 B <sub>1</sub> C A D<br><u>B</u> 1 <sup>C</sup> A D<br>36 <sup>2</sup> +(317) <sup>2</sup> -2X6x M5x000 <sup>2</sup><br>18%+27 - 108/3 <sup>3</sup><br>1135-98513<br>33-7036818 |                        |                                                                                                                                                                                                                                                                                                            |

21/2.5m

≈ 37.33°

F.G.B.

#### **Question 99** (\*\*\*\*+)

The island state of Trigland has declared an exclusive economic zone into the sea, which is within 6 miles from every point of its coastline.

The island of Trigland is a rectilinear triangle of sides 13, 14 and 15 miles.

Determine, in exact form, the total economic zone of Trigland, which consists of land and sea.

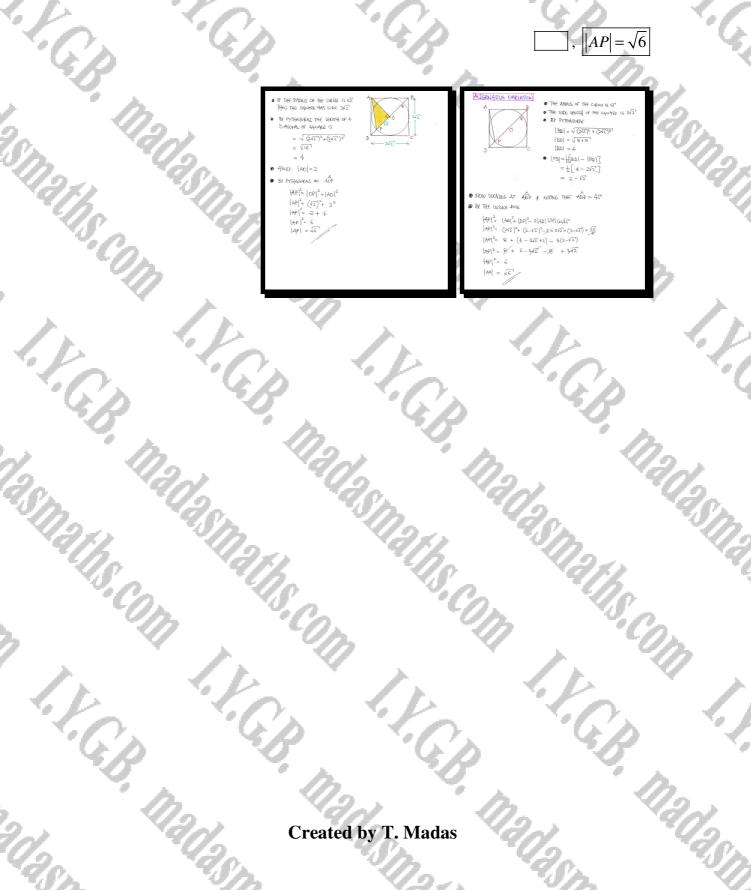
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 336+36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3- ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Q_{2}$ , $\gamma_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| U B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>fruity we take the 3 theory was a writing a writing a function of writing a function of writing a state of a</li></ul> |
| $ \begin{aligned} & \widehat{\sigma}_{\text{ELTAY}} & x + g + z = \pi^{-} \\ & \text{sur} & \times \pi^{-} z \\ & X = \pi^{-} z \\ & Z = \pi^{-} z \end{aligned} $                                                                                                                                                                                                                                                                                                                                                          | 404 + 04 + 361 = 356 + 3617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{ll} = 2^{\rm ult}\\ = 3^{\rm ult} - (2^{\rm ult} \partial^{\rm ult})\\ = g_{\rm ult} - (2^{\rm ult} \partial^{\rm ult})\\ = f_{\rm ult} - (2^{\rm ult} \partial^{\rm ult}) + (z^{\rm ult} \partial^{\rm ult})\\ + f_{\rm unter}\end{array}$                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| & <u>A File area</u> + <del>C</del> <del>Rhous G</del><br>This Tix6 <sup>2</sup> = <u>307</u><br>● 24 Hears Belluica                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{l} \text{Semifficultife} & \varsigma^{i} = \frac{1}{2} \left( \left( 5 \times 4k + 5 \right) = \frac{1}{2} \times 4^{2} = 21 \\ \text{AllA} = \sqrt{\frac{1}{2} \left( \varsigma^{i} - 3 \left( \zeta^{i} + \frac{1}{2} \right) \left( \varsigma^{i} - 1 \right) \right)} \\ = \sqrt{21 \times \left( 21 - 5 \right) \left( \gamma \times 8 \right)} = \sqrt{\frac{3}{2} \times 7 \times 8^{3}} \times 7 \times 8^{3}} = \sqrt{3} \times 7 \times 8^{3} \\ = 3 \times 7 \times 4 = \frac{84}{4} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Question 100 (\*\*\*\*+) Non Calculator

A triangle, ABC has |BC| = 4 cm, |AC| = 8 cm and  $\measuredangle ACB = 60^{\circ}$ .

| Artifulgie, Abe has be                |                                |                                                                                                                                |        |
|---------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|
| Determine, in degrees, the            | size of $\measuredangle BAC$ . | l i s                                                                                                                          | · . ·  |
| In the                                | ·                              | $\angle BAC = 30^{\circ}$                                                                                                      | 1.Ko   |
| Go Gb                                 | IAB/ <sup>2</sup>              | 00594 BULE<br>= 4 <sup>2</sup> +8 <sup>2</sup> - 244X8×6066 <sup>4</sup>                                                       |        |
|                                       | AB.I <sup>2</sup>              | $= 16+64 - 64(aacc^{0})$ $= 80 - acc + \frac{1}{2}$ $= 80 - 32c$ $= 48$ $= \sqrt{48^{1}} + 4\sqrt{2^{1}}$                      | 12     |
| asp ado                               |                                | $\frac{SMK}{4} = \frac{SMK0^*}{ AB } \implies SMB = \frac{4SMC0^*}{4\sqrt{3}}$ $\implies SMB = \frac{SMC0}{4\sqrt{3}}$         | SID    |
| 121h 8102-                            | 12/2                           | $\implies Sn\theta = \frac{1}{40^{\circ}} \wedge \frac{\left( \frac{1}{12^{\circ}} \right)}{2}$ $\implies \theta = 30^{\circ}$ |        |
| · · · · · · · · · · · · · · · · · · · |                                | · · Co                                                                                                                         | - ~~   |
|                                       |                                |                                                                                                                                | 7      |
| I.L. Ko                               | 1 to                           | 1.1                                                                                                                            | · k    |
| Gp G                                  | 9 · C >                        | 6.3                                                                                                                            | - 'Q   |
| an in                                 | Man D                          | . 1                                                                                                                            | 72 .   |
| asp ada                               | and as a star                  | 202                                                                                                                            | 1938 - |
| Math Asing                            | 1. 1. A.                       | aspar.                                                                                                                         | 12     |
|                                       | S.C. S.C.                      | Sills.                                                                                                                         |        |
|                                       | Con VI                         |                                                                                                                                | 200    |
| 1. V. 1. V.                           | 2. 1.1.                        | 1.Ko                                                                                                                           | 1 In   |
| Gp 4                                  | B. Sp                          | C.P.                                                                                                                           |        |
| m. m.                                 | Man "                          |                                                                                                                                | nan    |
| 1202 14020.                           | Created by T. Madas            | da.                                                                                                                            | asm.   |
| Ton Von                               | V.2.                           | · · · · ·                                                                                                                      |        |

### Question 101 (\*\*\*\*+)


9

2

The four sides of a square, ABCD, are tangents to a circle of radius  $\sqrt{2}$ .

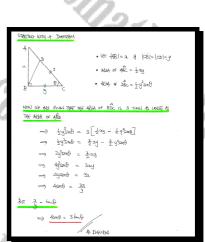
The diagonal BD intersects the circle at the points P and Q.

Determine in exact simplified form the length of AP.

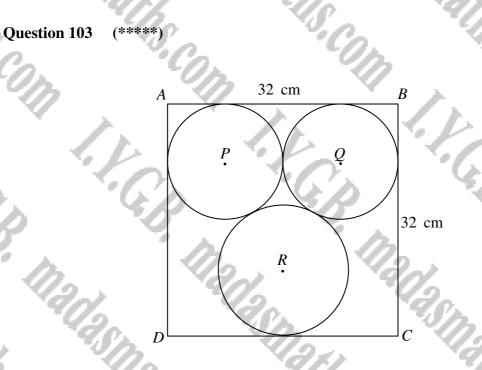


1+

### Question 102 (\*\*\*\*+)


The triangle ABC is right angled at the vertex B.

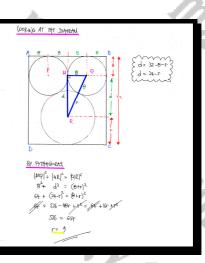
The point D lies on AC so that |BD| = |BC|.


Given that the area of the triangle BDC is 3 times as large as the area of the triangle ABD, show that

 $4\sin\theta = 3\tan\theta,$ 

where  $\theta$  denotes the angle *BCA*.




proof

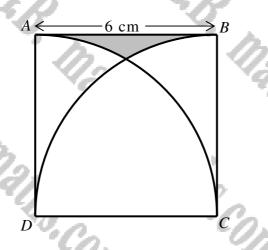


The figure above shows, two identical circles, centred at P and Q, and a third circle, centred at R, are touching each other externally.

The three circles fit snugly inside a square ABCD, of side length 32 cm, so that PQ is parallel to AB.

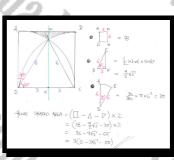
Determine the size of radius of the circle centred at R.




=9 cm

### Question 104 (\*\*\*\*\*)

The figure below was constructed as follows.

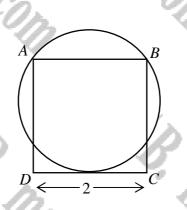

 $\overrightarrow{ABCD}$  is a square with side length 6 cm.

Two quarter circles, with centres at the points C and D, each of radius 6 cm, are drawn inside the square.



Show that the area of the shaded region is

$$3(12-3\sqrt{3}-2\pi)$$
 cm<sup>2</sup>.




proof

1+

19

Question 105 (\*\*\*\*\*)



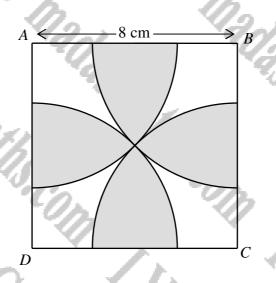
The figure above shows a square *ABCD* of side length 2 units.

The vertices A and B lie on the circumference of a circle while the side DC is a tangent to the same circle.

Determine the radius of this circle.

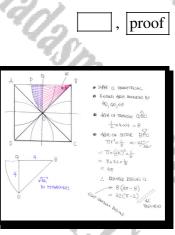
 $r = \frac{5}{4} = 1.25$ 

| bocking at the Diagram Carboute                                                  |       |
|----------------------------------------------------------------------------------|-------|
| BY PYTHAGORAS on NOB                                                             |       |
| (MO)2+ (MB)2 /08/2                                                               | 2-7   |
| $(2r)^2 + 1^2 = r^2$                                                             |       |
| 4-45 tht+1 = 12                                                                  |       |
| S = 4r                                                                           | D 2 c |
| r= 5/4 = 1.25                                                                    |       |
| 10000                                                                            |       |
| AURENATWE                                                                        |       |
| BY SIMULAR TRIANCLES                                                             |       |
| $\frac{ MB }{ ME } = \frac{ MN }{ MB }$                                          | A 2 B |
| $\frac{1}{2} = \frac{2}{1}$                                                      |       |
| 2 = ₹                                                                            |       |
| of THE RADIUS IS GUIN BY                                                         |       |
| $\Gamma = \frac{1}{2} \left( EN \right) = \frac{1}{2} \left( \alpha + 2 \right)$ |       |
| $= \frac{1}{2}(\frac{1}{2}+2)$                                                   |       |
| $=\frac{1}{2}\times\frac{s}{2}$                                                  |       |
| = 2 =                                                                            |       |


### Question 106 (\*\*\*\*\*)

The figure below was constructed as follows.

ABCD is a square with side length 8 cm.


Four identical quarter circles, whose centres are located at each of the four corners of the square, are drawn inside the square.

The radii of the quarter circles are such so that the four quarter circles meet at the centre of the square.



Show that the area of the shaded region is

 $32(\pi-2) \text{ cm}^2$ 



С

 $6\sqrt{3}-2\pi$ 

0

A

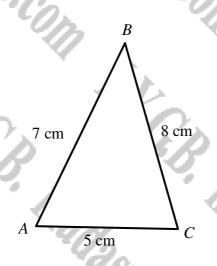
 $\frac{\pi}{3}$ 



The figure above shows a circle with centre at O.

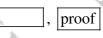
The straight line segment *AB* is a tangent to the circle at *A*, so that the angle *AOB* is  $\frac{1}{3}\pi$  radians.

Determine the radius of the circle given further that the area of the shaded region in the figure is  $(6\sqrt{3}-2\pi)$  cm<sup>2</sup>.


主lo4||48| シャインイン3 Alth of second of of a = 1 12×5  $\frac{1}{2}r^2\sqrt{3}^1 - \frac{1}{2}r^2\frac{\pi}{3} = 6\sqrt{3}^2 - 2\pi$ 312/3 - 121 = 36/3-121 12(315-TT) = 12(315-TT)

В

r = 2


| 211         |                            |
|-------------|----------------------------|
| Question 10 | 8 (*****) (non calculator) |
|             | Sec.                       |

9



The figure above shows the triangle ABC where AB is 7 cm, AC is 5 cm and BC is 8 cm.

Show that the exact area of this triangle is  $10\sqrt{3}$  cm<sup>2</sup>.



6

| Mapa A                                                       |
|--------------------------------------------------------------|
| IN THE COSINE 2006                                           |
| (BC)2 = 148/+14C12-21481/4C1000 7                            |
| θ <sup>2</sup> = 7 <sup>2</sup> + 2 <sup>2</sup> - 2×7×2 = 8 |
| $64 = 49 + 25 - 70 \cos \theta$                              |
| 70 658 = 10 A 10                                             |
| C120=                                                        |
| NOW IF COST = + + + + + + + + + + + + + + + + + +            |
| SNB= + VI- #1                                                |
| Sm0 = 1 49                                                   |
| $SM\Theta = \frac{\sqrt{16'}\sqrt{3'}}{7}$                   |
| $Sm \theta = \frac{4\sqrt{s}}{2}$                            |
|                                                              |
| HAVE THE ARM IS GUN BY                                       |
| = 10 v3                                                      |
|                                                              |

#### MERGE B

- 1 (1.12) (2.12) = 12 (2.12) (2.12) = 2 (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) = (2.12) (2.12) (2.12) = (2.12) (2.12) (2.12) = (2.12) (2.12) (2.12) = (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12) (2.12

| Method C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • $3^{2}_{x} + l^{2}_{y} = l^{2}_{y}$<br>• $(2^{-2})^{2}_{x} + l^{2}_{y} = 6^{2}_{y}$ SURFACT. 7<br>$l_{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| $\frac{\partial^2 - (z - x)^2}{\partial z} = -\frac{2}{2} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| $2^{2}-25+102-3^{2}=15$<br>$2^{2}-25+102-3^{2}=15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 10x = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| T = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| $\therefore \underline{\alpha^2 + y^2 = \psi_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| $1 + \sqrt{2} = 49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| k <sup>2</sup> = 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $h = + \sqrt{48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| = 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J |
| $h = \psi \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| FINARULY OUE HAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\frac{1}{2\sqrt{01}} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times$ |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |

Question 109 (\*\*\*\*\*)

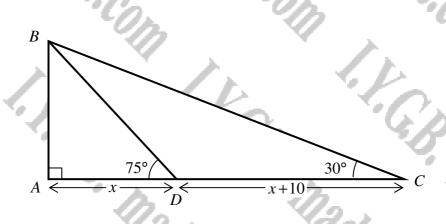
> 75° 60° 1 m

The figure above shows a triangle ABC.

The length of AC is 1 m.

The angles BAC and BCA are  $75^{\circ}$  and  $60^{\circ}$ , respectively.

The height of the triangle from the vertex B to the side AC is h cm.


Show that

tan 75° tan 60° h = $\tan 75^\circ + \tan 60^\circ$ 

| $\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \end{array} \\ \\ & \end{array} \\ \end{array} \\$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Southous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| puAthan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| t boost fration by tay 75"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n tan 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| h tan 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Seamas<br>Seamas<br>Luntas<br>toute feation by by Ts"<br>with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

proof

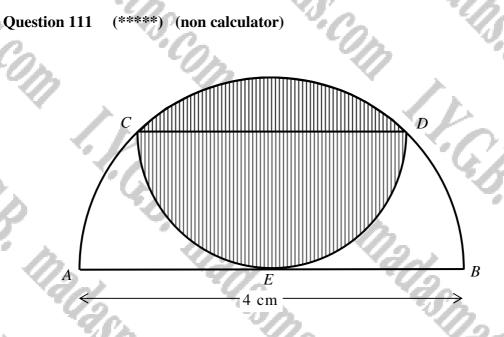




The figure above shows a right angled triangle ABC, where the angle BCA is 30°.

The point D lies on AC so that the angle BDA is  $75^{\circ}$ .

The length of AD is x cm and he length of DC is x+10 cm.


Show that the length of *AB* is

 $\frac{10}{11} \left(4 + 3\sqrt{3}\right).$ 

[you may assume that  $\tan 75^\circ = 2 + \sqrt{3}$ ]

proof

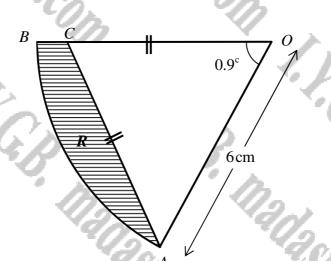
- => 20x bay 30 + 10 tay 30° = 2 tay 75
- $\implies 10 \tan 30^\circ = 3 \tan 75 2 \tan 30$   $\implies 10 \times \frac{\sqrt{5}}{3} = 2 (2 \tan 3^\circ) 2 (\frac{\sqrt{3}}{3}) a^\circ$
- $\Rightarrow 10\sqrt{3} = \pi(6+36) 2\sqrt{3}\pi$
- $= 10\sqrt{3} = 4(6+3)(3) 20$
- $\rightarrow 10\sqrt{3} = 6x + \sqrt{3}$
- = 10NJ = 2(64
  - $\int \frac{10\sqrt{3}}{6+\sqrt{2}} = \infty$
  - $x = \frac{\left( \log^2 \left( 6 \sqrt{3} \right) \right)}{\left( 6 + \sqrt{3} \right) \left( 6 \sqrt{3} \right)} = \frac{\left( \log \sqrt{3} \left( 6 \sqrt{3} \right) \right)}{33} = \frac{\left( \log \sqrt{3} 30 \right)}{33} = \frac{-\log \log \sqrt{3}}{11}$ 
    - $J = 2 + \frac{1}{6} + \frac{1}{\sqrt{3}} \times (2 + \sqrt{3}) = \frac{2 + \sqrt{3}}{6 + \sqrt{3}} = \frac{10 + \sqrt{3}}{6 + \sqrt{3}} = \frac{10 + \sqrt{3}}{6 + \sqrt{3}}$
  - $=\frac{\log\left(2\sqrt{3}+3\right)\left(6-\sqrt{3}\right)}{\left(6+\sqrt{3}\right)\left(6-\sqrt{3}\right)}=\frac{\log\left(12\sqrt{3}-6+18-3\sqrt{3}\right)}{36-3}=\frac{\log\left(4\sqrt{3}+12\right)}{33}$
  - $=\frac{10}{11}(4+3\sqrt{3})$



The figure above is constructed as follows.

A semicircle with diameter AB of 4 cm is first drawn.

Then another semicircle is drawn, with its diameter CD parallel to AB.


The semicircle with CD as its diameter is circumscribed by the semicircle with AB as its diameter, as shown in the figure.

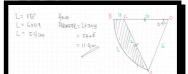
Show that the area of the shaded region is  $(2\pi - 2)$  cm<sup>2</sup>.

locting. πk CRAM TRANOLE CED IS ISOSCELE ND RIGHT TROSED BY PYTHAGORAS +Tr' 5TX3 TRANCE CDE  $(\sqrt{2})^2 = 2$ 1/ CD | ME | = + (22) x =  $\frac{1}{2}r^2\Theta^c = \frac{1}{2}\times|ce|\times \hat{ce} = \frac{1}{2}\times 2^2\times \frac{\pi}{2} = \pi$ abut" "Stetoe - Teranine"

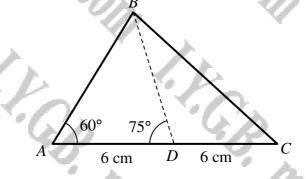
proof

(\*\*\*\*\*) (non calculator) Question 112




The figure above shows a circular arc OAB of radius 6 cm, subtending an angle of 0.9 radians at O.

The point C lies on OB so that OC = AC.


The region R, shown shaded in the figure, is bounded by the arc AB and the straight lines AC and BC.

Determine the perimeter of R.

11.4 cm







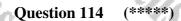
The figure above shows a triangle ABC.

The line *BD* is such so that AD = DC = 6 cm and the angles *BAD* and *BDA* are 60° and 75°, respectively.

Show that

**a**) The shortest distance from the vertex B to the side AC is

 $\frac{3}{2}(3+\sqrt{3}).$ 


**b**) The length *BC* squared is

 $144 - 18\sqrt{3}$ .

| 4 6 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MITLED A                             | $\left\{ \begin{array}{c} \cos \log z = - \cos 3 \zeta \\ z = - \left( \frac{4 \zeta^2 - \zeta^2}{4} \right) \end{array} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | (3442)<br>(3442)<br>(3442)<br>(3442) | (b) By the locate but on EDC<br>$\ k\ _{2}^{2} = d^{2} + (c^{2} - 2x \log x \log k)g^{2}$<br>$d^{2} = (5k)_{1}^{2} + g^{2} - 2x \log x \log k)g^{2} - (2k)_{1}^{2} + (2k)_{1}^{2} + (2k)_{2}^{2} - (k)_{1}^{2} + (k)_{2}^{2} - (k)_{1}^{2} - (k)_{2}^{2} - (k)_{1}^{2} - (k)_{1$ |

| $(\bullet) \begin{array}{c} \left( \left( \begin{array}{c} \left( $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | The second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} c \\ c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 🧍 (σ) Μετιφο Β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \begin{array}{c} x = \frac{1}{2} \left\{ x = 0  c  c  c  c  c  c  c  c  c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{cases} x_{1}^{2} = \frac{1}{2} \frac{1}{(x_{1}, x_{1})}, \qquad (\Rightarrow 1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4     | Garea D 6 C 6- 4 = tax60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c} \begin{array}{c} x_{1} & \frac{2}{3}(x_{1},y_{1}^{2},z_{2}^{2},z_{1}^{2}) & (x_{1}^{2},y_{1}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{2},z_{2}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2     | $x_{0} \stackrel{\leq}{=} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} = h \tan(3 + h \tan(3 - h \tan($ |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | 2 = 3(3+18)(2-13) (=> h(to=75+tauto)= 6to=75to=60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} \begin{array}{c} & = 6\left(66^{-1}(2+6+6)^{2} + 66^{-1}\right) \\ & = 6\left(66^{-1}(2+6+6)^{2} + 66^{-1}\right) \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} + 676^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^{-1} \\ & = 76^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5     | $\begin{array}{c} 2 + 3 \\ 2 \\ 2 \\ 5 \\ 6 \\ - 3 \\ 6 \\ - 3 \\ 6 \\ - 3 \\ 6 \\ - 3 \\ - 3 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 6(413-12+6-613) 6(-6-213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (b) $(collars, 4r, 325)$<br>$g^{2} = 1^{2}r^{2} + (2rcG)^{2}$<br>$g^{3} = \frac{1}{2}r^{2} + (2rcG)^{2}$<br>$g^{4} = \frac{1}{2}(2rcG)^{2} + (\frac{1}{2}r^{2}-\frac{1}{2}G)^{2}$<br>$g^{2} = \frac{1}{2}(2rcG)^{2} + \frac{1}{2}(2rcG)^{2}$<br>$g^{3} = \frac{1}{2}[(2rcG)^{2} + \frac{1}{2}(2rcG)^{2} + \frac{1}(2rcG$                                                                                                                                                                                                                                                                                              |       | A − 12. −8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $g_{\mu}^{\mu} \neq \frac{1}{2} [g_{\mu} - 8G_{\mu}^{\mu}]$<br>$g_{\mu}^{\mu} = \frac{1}{2} [g_{\mu} + 6G_{\mu}^{\mu}] + \frac{1}{2} (g_{\mu} - G_{\mu}^{\mu}) + \frac{1}{2}$ |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $g_{\mu}^{\mu} \neq \frac{1}{2} [g_{\mu} - 8G_{\mu}^{\mu}]$<br>$g_{\mu}^{\mu} = \frac{1}{2} [g_{\mu} + 6G_{\mu}^{\mu}] + \frac{1}{2} (g_{\mu} - G_{\mu}^{\mu}) + \frac{1}{2}$ | (L)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $g_{1}^{+} = \frac{4}{3} (9 + 6G_{1} 2) + (\frac{1}{2} + \frac{2}{3} 6T_{1}^{+})$<br>$g_{2}^{+} = \frac{4}{3} (D + 6G_{1}^{+} + \frac{4}{3} (T - 6T_{1}^{+})$<br>$g_{1}^{+} = \frac{4}{3} [(\underline{9} + 6G_{1}^{-}) + (\underline{9} - 16G_{1} + 3)]$<br>$g_{2}^{+} = \frac{4}{3} [4\theta - 8G_{1}^{-}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $g_{1}^{+} = \frac{4}{3} (9 + 6G_{1} 2) + (\frac{1}{2} + \frac{2}{3} 6T_{1}^{+})$<br>$g_{2}^{+} = \frac{4}{3} (D + 6G_{1}^{+} + \frac{4}{3} (T - 6T_{1}^{+})$<br>$g_{1}^{+} = \frac{4}{3} [(\underline{9} + 6G_{1}^{-}) + (\underline{9} - 16G_{1} + 3)]$<br>$g_{2}^{+} = \frac{4}{3} [4\theta - 8G_{1}^{-}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | $Q^{2} = \frac{Q}{4} \left( 2 + G^{2} + (\frac{3}{2} (2 - G^{2}) + G^{2}) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\hat{\partial}_{g}^{-} = \frac{1}{4} \begin{bmatrix} 0 + \Theta(2_{g}) \\ 0 \end{bmatrix}$<br>$\hat{\partial}_{g}^{-} = \frac{1}{4} \begin{bmatrix} 0 + \Theta(2_{g}) \\ 0 \end{bmatrix}$<br>$\hat{\partial}_{g}^{-} = \frac{1}{4} \begin{bmatrix} 0 + \Theta(2_{g}) \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $y^{\pm} = \frac{9}{4} \left[ (y_{\pm} + 6)G' + (49 - 144G + 3) \right]$<br>$y^{\pm} = \frac{9}{4} \left[ (44 - 8)G' \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $y^2 = \frac{9}{4} [64 - 8k_3^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | la la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $y^2 = 1044 - 18x_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | y = 144 - 18x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

proof

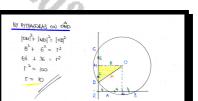


С

D

R

A


The figure above shows a straight line intersecting a circle at the points A and B so that |AB| = 8 units.

В

Another straight line intersects the same circle at the points C and D so that |CD| = 12 units.

The two straight lines intersect each other at right angles at the point R.

Given further that |AR| = 4 units, determine the length of the radius of the circle.



r = 10

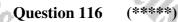
### Question 115 (\*\*\*\*\*)

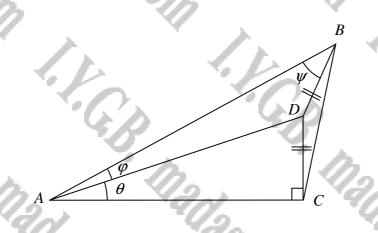
A convex quadrilateral has perpendicular diagonals and three of its sides have lengths of  $\sqrt{20}$ ,  $\sqrt{80}$  and  $\sqrt{96}$ , measured in suitable units.

nadasn.

Determine possible lengths of the fourth side.

|                                                                                                                                             | 10 h                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOOKING AT THE DHARRAN                                                                                                                      |                                                                                                                                                                                                      |
| P<br>Q<br>Q<br>Q                                                                                                                            | • a <sup>2</sup> +1 <sup>2</sup> = P <sup>2</sup><br>• c <sup>4</sup> +1 <sup>2</sup> = Q <sup>2</sup><br>• c <sup>4</sup> +1 <sup>2</sup> = P <sup>2</sup><br><u>or a<sup>2</sup>+d<sup>2</sup></u> |
| Thus me there                                                                                                                               |                                                                                                                                                                                                      |
| $ \Rightarrow \left(a^{2}+b^{2}\right)+\left(c^{3}+d^{2}\right)-\left(b^{2}+c^{2}\right) = \\ \Rightarrow a^{2}+d^{2} = p^{2}+p^{2}-q^{2} $ | $b^2 + b^2 - b^2$                                                                                                                                                                                    |
| NOW THERE HERE 3 "Grave CHEEL" TO                                                                                                           | CONSIDER (AND 401/2 AND SUBBART<br>THE THAD)                                                                                                                                                         |
| • P= 120 Q= 180 P= 196'                                                                                                                     | $a^2 + d^2 = 20 + 96 = 80$<br>$a^2 + d^2 = 36$<br>$\sqrt{a^2 + a^2} = 6$                                                                                                                             |
| ● P= √20 Q= 496 R= 185                                                                                                                      | $a^2 + b^2 = 20 + 80 - \%$<br>$a^2 + b^2 = 4$                                                                                                                                                        |
|                                                                                                                                             | √t+8 = 2                                                                                                                                                                                             |
| + P-170 Q-150 2-180 .                                                                                                                       | $a^2 + b^2 = 96 + 80 - 80$<br>$a^2 + b^2 = 156$                                                                                                                                                      |
|                                                                                                                                             |                                                                                                                                                                                                      |


 $2 \cup 6 \cup \sqrt{156}$ 


1+

21/2.Sm

M2(12)

F.G.B.





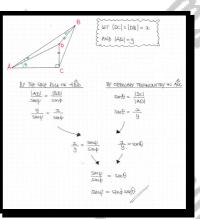
The point *D* lies inside the triangle *ABC*, so that |DB| = |DC| and  $\measuredangle DCA = \frac{1}{2}\pi$ .

Let  $\theta = \measuredangle DAC$ ,  $\varphi = \measuredangle BAD$  and  $\psi = \measuredangle ABD$ .

Show that

I.C.B.

 $\sin\psi=\sin\theta\,\sin\varphi\,.$ 


, proof

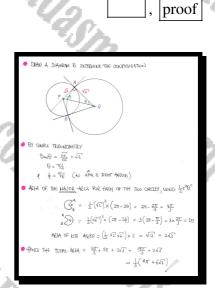
COM

madasm.

6

11<sub>20281</sub>




### Question 117 (\*\*\*\*\*)

Two coplanar circles, with respective radii  $\sqrt{2}$  and  $\sqrt{6}$ , intersect each other at the points A and B.

The tangent to one of the circles at A, intersects the tangent to the other circle at A at right angles.

Show that the total area enclosed by the two circles is

 $\frac{1}{2}\left(19\pi+6\sqrt{3}\right).$ 



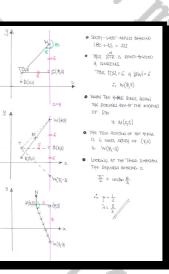
### Question 118 (\*\*\*\*\*)

A hiker on a mountain walk has injured himself.

He rings the rescue station which is located at the point with coordinates (2,1).

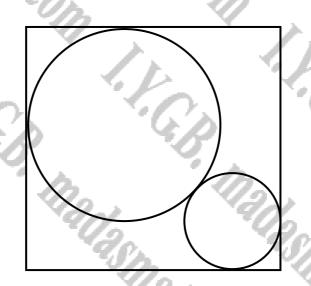
He reports that he is lying injured by a river bank where he can see a ruined tower, which his compass indicates that it is located South-West from his position.

It is known to the rescue station that the only river in the area has equation x = 8 and the ruined tower is located at the point with coordinates (2,3) on the coordinate axes.


The rescuers set off immediately from the Rescue Station and travel directly towards the hiker. When the rescuers are half-way into their journey, the hiker rings again.

He says that he made a mistake in reading his compass and the ruined tower is in fact located North-West from his position.

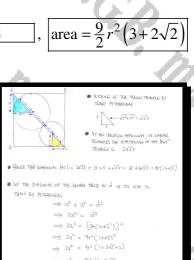
The rescuers turn and head directly towards the true location of the hiker.


Calculate the angle, as a bearing, at which the rescuers are heading after the hikers second phone call.

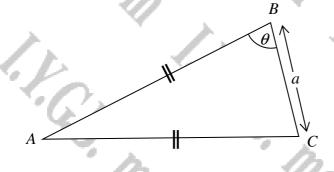
Give the answer in the form  $\mu \pi + \arctan \lambda$ , where  $\mu$  and  $\lambda$  are constants to be found.



 $\pi$  + arctan  $\frac{\delta}{2}$ 


Question 119 (\*\*\*\*\*)




Two circles of different radii are touching each other externally.

The two circles are enclosed by a square so that all 4 sides of the squares are tangents to the circles, as shown in the figure above.

Given that the radius of the smaller circle is r and the radius of the larger circle is 2r, determine the exact area of the square in terms of r.



Question 120 (\*\*\*\*\*)



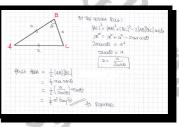
The figure above shows an isosceles triangle ABC, where AB = AC.

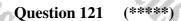
The side *BC* has length *a* and the angle *ABC* is  $\theta$ .

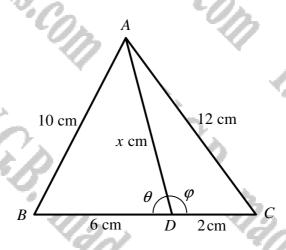
Show that the area of the triangle is

F.C.S.

ŀ.C.B.


 $\frac{1}{4}a^2 \tan \theta$ .


, proof


Ĉ,

Madasn

nadasm







The figure above shows the triangle ABC, where |AB| = 10 cm, |AC| = 12 cm and |AB| = 8 cm. The point D lies on BC so that |AD| = 6 cm, |DC| = 2 cm and |AD| = x cm. The angle *BDA* is denoted by  $\theta$  and the angle *CDA* is denoted by  $\varphi$ .

a) Express  $\cos\theta$  and  $\cos\varphi$  in terms of x.

- **b**) Use part (**a**) to find the length of *AD*.
- c) Hence show that the area of the triangle *ABD* is exactly  $\frac{45}{4}\sqrt{7}$  cm<sup>2</sup>.

2+2- 2x2x2 BDA = 0 ADC = d HUTO-ENATINE 806  $\frac{x^2-64}{12x} = -\frac{x^2-140}{4x}$ \$ 240 32-64 - 22-140  $-64 = -3a^2 + 42c$  $\frac{45}{4}\sqrt{7}$ => 40<sup>2</sup> = 484 2= 121

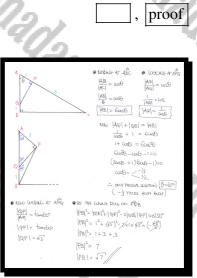
HERON FORMULA DUBLETLY ON ABI  $VPFEIMETHE = \frac{1}{\Sigma} (10 + 11 + C) = \frac{27}{\Sigma}$  $ARFA = \sqrt{\frac{1}{2}(\frac{1}{2}-a)(\frac{1}{2}-b)(\frac{1}{2}-c)}$  $= \sqrt{\frac{27}{2} \left(\frac{27}{2} - 10\right) \left(\frac{27}{2} - 11\right) \left(\frac{27}{2} - 6\right)}$  $= \sqrt{\frac{27}{2}} \times \frac{7}{2} \times \frac{5}{2} \times \frac{15}{2}^{7} = \sqrt{\frac{(9\times3)}{(2\times3)} \times (5\times3)^{7}}$ 

 $= \sqrt{\frac{91 \times 25 \times 7}{16}} = \frac{9 \times 5}{4} \sqrt{7} = \frac{45}{4} \sqrt{7}$ 

, proof

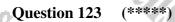
 $\frac{1}{144} = \frac{9}{11\times41} = \frac{72}{11\times21} = \frac{10-121}{11\times21} = 0.200$  $SM\theta = \sqrt{1 - (\frac{19}{44})^2} = \sqrt{\frac{44^2 - 19^2}{44^2}} = \sqrt{\frac{44 - 19}{44^2}}$  $=\frac{\sqrt{25\times63}}{44}=\frac{5\sqrt{63}}{44}=\frac{5\times3\sqrt{7}}{44}=\frac{15}{44}\sqrt{7}$  $ABA ABD = \frac{1}{2} (AD) |BD| SmB$ 

 $= \frac{1}{2} \times 1 \times 6 \times \frac{15}{44} \sqrt{7}$ 


### Question 122 (\*\*\*\*\*)

The triangle ABC is such so that  $\measuredangle ABC = 90^{\circ}$  and |AC| = 6 cm.

The point P lies on AC and the point Q lies on AB in such a way so that


 $\measuredangle APQ = 90^{\circ} \text{ and } |AP| = |QB| = 1 \text{ cm}.$ 

Show that the straight line segment *PB* is exactly  $\sqrt{7}$  cm.



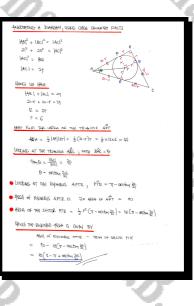
24

maq<sub>2</sub>



The triangle ABC has a right angle at B, with |AB| = 21 cm and |BC| = 20 cm.

R


В

A circle is drawn inside the triangle so that the three sides of the triangle are tangents to the circle.

The points P, Q and R are the respective points of tangency with AB, BC and AC.

Show that the area of the finite region bounded by AP, AR and the circular arc PR, shown shaded in the figure above, is

18  $5-\pi + \arctan\left(\frac{20}{21}\right)$ .



proof

### Question 124 (\*\*\*\*\*)

Heron's method for determining the area of any triangle asserts that, if a triangle has side lengths a, b and c, then its area is given by

$$\sqrt{s(s-a)(s-b)(s-c)},$$

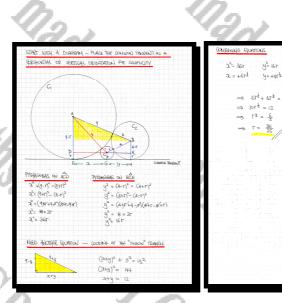
where  $s = \frac{1}{2}(a+b+c)$ , the semi-perimeter of the triangle.

[you may find the cosine rule and the trigonometric form for the area of a triangle useful in this question]

THE & TOOS BANDE THE SQUARE BOOT AS It ) THE DIAFEAN  $\sqrt{464} = \sqrt{\frac{1}{16}(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$ •  $c^2 = a^2 + b^2 - 2ab cost$  $A & A & A & = \sqrt{\frac{1}{16}(a+b+c)\left[(a+b+c)-2c\right]\left[(a+b+c)-2b\right]\left[(a+b+c)-2b\right]}'$  $\Rightarrow \exists ACFA = \sqrt{\frac{a+b+c}{2} \times \frac{(a+b+c)-2c}{2} \times \frac{(a+b+c)-2b}{2} \times \frac{(a+b+d-2a)}{2}}$ a2+62-0  $\Rightarrow \neg \psi_{2} \mathcal{H} = \sqrt{\frac{a_{+}b_{+}c_{-}}{2}} \times \left[\frac{a_{+}b_{+}c_{-}}{2} - c_{-}\right] \times \left[\frac{a_{+}b_{+}c_{-}}{2} - b_{-}\right] \times \left[\frac{a_{+}b_{+}c_{-}}{2} - a_{-}\right]$  $= +\sqrt{1-\omega \zeta^2 \Theta} = +\sqrt{1-(\frac{q^2+b^2-C^2}{2ab})^2}$ =) +tera = N \$(\$-c)(\$-b)(\$-a)  $\sqrt{1 - \frac{(a^2+b^2-c^2)^2}{4a^2b^2}}$  $\sqrt{\frac{4a^{2}b^{2}-(a^{2}+b^{2}-c^{2})^{2}}{4a^{2}b^{2}}} \leftarrow$  $\frac{1}{2ab}\sqrt{\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)}$  $n\theta = \frac{1}{2} \sqrt{(a^2 + 2ab + b^2 - c^2)(c^2 - a^2 + 2ab - b^2)^2}$  $\frac{1}{2}\alpha b \leq h \vartheta = \frac{1}{4} \sqrt{\left[ \left( \alpha + b \right)^2 - c^2 \right] \left[ c^2 - \left( \alpha^2 - 2\alpha b + b^2 \right) \right]}$  $AllA = \frac{1}{4} \sqrt{\left[(a+b)^2 - c^2\right] \left[c^2 - (a-b)^2\right]}$  $APPA = \frac{1}{4} \sqrt{(a+b-c)(a+b+c)(c+a-b)(c-a+b)}$  $AREA = \frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$ 

V

proof


### Question 125 (\*\*\*\*\*)

I.C.B.

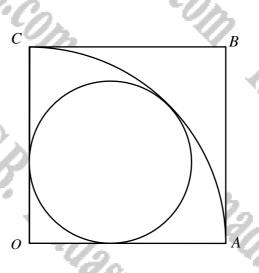
Two circles,  $C_1$  and  $C_2$ , are touching each other **externally**, and have respective radii of 9 and 4 units.

A third circle  $C_3$ , of radius r, touches  $C_1$  and  $C_2$  externally.

Given further that all three circles have a common tangent, determine the value of r.



36


25

É.G.P.

M21/2

=1.44

Question 126 (\*\*\*\*\*)



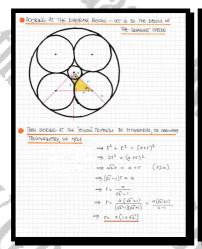
A quarter circular arc AC is inscribed inside a square OABC.

The centre of the arc is located at O and the radius of the arc is the same as the side length of the square.

A circle is drawn inside the square so that it touches the quarter circle AC internally, and the sides of the square, OA and OC, are tangents to this circle, as shown in the figure above.

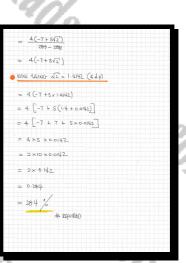
If the straight line AD is a tangent to this circle, show that  $\measuredangle ABD = 15^{\circ}$ .

|                                                                                               |                                                                                                                                                                                                                 | ,                                                                    | proof                                |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|
| <u></u>                                                                                       |                                                                                                                                                                                                                 |                                                                      |                                      |
|                                                                                               | THE CROE, CATERO<br>CLOCKING AT THE X<br>$ OQ ^2 = t^3 + \frac{ OQ  = \sqrt{5^3}t}{\sqrt{5^2}}$<br>SUMICARLY WITH TO<br>$ OR ^2 =  OC ^2 + \frac{ OR ^2}{\sqrt{5^2}} + \frac{ OR  = \sqrt{12^3}a}{\sqrt{5^2}a}$ | 47 Q, 49<br>Elwoni TE<br>12<br>14 (Miria<br>14 (Miria)<br>14 (Miria) | 7 211043 44<br>9.50049<br>24 5960424 |
| NOU WE HAVE                                                                                   |                                                                                                                                                                                                                 | $\overline{\sqrt{2^{2}+1}} \sim 0$                                   |                                      |
| $ QB  =  QB  -  QQ  = \sqrt{2}$ $ QB  = \alpha \left[ \sqrt{2} - \frac{C}{(2^{2}+1)} \right]$ | $= \left[ \frac{\sqrt{2} \sqrt{2} \sqrt{42+1}}{\sqrt{2}+1} - \sqrt{2} \right] q$                                                                                                                                | 2.+1                                                                 | <u>z-16</u> a,<br>+1                 |
|                                                                                               | 2<br>5500+18/)<br>45°-30° = 15°<br>41°-30°                                                                                                                                                                      |                                                                      |                                      |
| NOTE THERE ARE TWO POS                                                                        | arear intervention (20) 1801. 1946                                                                                                                                                                              | - NCAGEM                                                             | is symmetricical,                    |


Question 127 (\*\*\*\*\*) non calculator

The figure above shows 4 identical circles touching each other so that their centres form a square.

A smaller circle is touching all 4 of the identical circles externally, and all 4 of the identical circles are touching internally a larger circle.


Determine, correct to 1 decimal place, the fraction of the larger circle not occupied, by the other 5 circles, shown shaded in the figure.

You may assume that  $\sqrt{2} \approx 1.4142$ .



| <b>.</b> N | CAN CATTON AREAS                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Alter of summar area = Ta<sup>2</sup></li> </ul>                                                                             |
|            | • test of the 4 ibnotical ciecular                                                                                                    |
|            | $4 \times \pi t^2 = 4\pi \left[ \alpha \left( 1 + \sqrt{2} \right) \right]^2 = 4\pi \alpha^2 \left( 1 + 2\sqrt{2} + 2 \right)$        |
|            | ● AREA OF THE LARGEST A BAG                                                                                                           |
|            | $\overline{\eta}\left(a+2f\right)^{2} = \pi \left[a+2\left[a\left(1+f_{2}\right)\right]\right]^{2} = \pi \left[3a+2f_{2}a\right]^{2}$ |
|            | $= \Pi \overline{A}^2 \left[ 3 + 2\sqrt{2} \right]^2 = \Pi \overline{A}^2 \left[ 9 + 12\sqrt{2} + 8 \right]$                          |
|            | $=\overline{11}\alpha^{2}\left(17+12\sqrt{2}\right)$                                                                                  |
| • +        | INCE THE PROPORTION OF THE URGEST areat, shaded                                                                                       |
|            | 777(17+12 /2) - 4787(3+2/2)-787<br>7797(17+12/2)<br>7797(17+12/2)                                                                     |
| -          | $\frac{17 + 12\sqrt{2} - 12 - 8\sqrt{2}^{2} - 1}{17 + 12\sqrt{2}^{2}} = \frac{4 + 4\sqrt{2}^{2}}{17 + 12\sqrt{2}^{2}}$                |
| -          | $\frac{4(1+\sqrt{2})(7-12\sqrt{2})}{(17+12\sqrt{2})(17-12\sqrt{2})}$                                                                  |

12/2 + 17/2 - 24)



0.284 ≈ 28.4