DISCRIMINANT PRACTICE
Question 1 (**)

The quadratic equation

\[x^2 + 10x + k = 0, \]

where \(k \) is a constant, has no real roots.

Find the range of the possible values of \(k \).

\[k > 25 \]

Question 2 (**)

It is given that

\[f(x) = 25x^2 + 20x + p, \]

where \(p \) is a non-zero constant.

The quadratic equation \(f(x) = 0 \) has equal roots.

Find the value of \(p \).

\[p = 4 \]
Question 3 (***)
The quadratic equation
\[mx^2 + 12x + m = 0, \]
where \(m \) is a constant, has repeated roots.
Find the possible values of \(m \).

\[m = \pm 6 \]

Question 4 (***)
The quadratic equation
\[3x^2 + 2x + p = 0, \]
where \(p \) is a constant, has two distinct real roots.
Find the range of possible values of \(p \).

\[p < \frac{1}{3} \]
Question 5 (**)

The quadratic equation

\[x^2 + 3x + m = 0, \]

where \(m \) is a constant, has no real roots.

Find the range of possible values of \(m \).

\[m > \frac{9}{4} \]

Question 6 (**)

Find the range of the possible values of the constant \(p \), given that the equation

\[px^2 - 5x + 5 = 0 \]

has real roots.

\[p \leq \frac{5}{4} \]
Created by T Madas

Question 7 ()**

The quadratic equation

\[x^2 + kx + 4 = 0, \]

where \(k \) is a constant, has no real roots.

Find the range of possible values of \(k \).

\[-4 < k < 4 \]

Question 8 ()**

Find the range of the possible values of the constant \(p \), given that the equation

\[x^2 + 5px + 2p = 0 \]

has real roots.

\[, p \leq 0 \text{ or } p \geq \frac{8}{25} \]
Question 9 (**+)

\[f(x) \equiv 9x^2 - 6x + c, \]

where \(c \) is a non-zero constant.

The equation \(f(x) = 0 \) has equal roots.

a) Determine the value of \(c \).

b) Solve the equation \(f(x) = 0 \) for the value of \(c \) found in part (a).

\[c = 1, \quad x = \frac{1}{3} \]

Question 10 (**+)

\[f(x) \equiv x^2 + kx + 1, \]

where \(k \) is a constant.

The equation \(f(x) = 0 \) has no real roots.

Determine the range of the possible values of \(k \).

\[-2 < k < 2 \]
Question 11 (**+)**

The equation $3x^2 + 5x + c = 0$, where c is a constant, has equal roots.

a) Determine the value of c.

b) Solve the equation

$$3x^2 + 5x + c = 0.$$

$$c = \frac{25}{12}, \quad x = -\frac{5}{6}$$

Question 12 (**+)**

It is given that $f(x) = x^2 - 2mx + 16$, where m is a constant.

The equation $f(x) = 0$ has two distinct real roots.

Determine the range of values of m.

$m < -4$ or $m > 4$
Question 13 (**+)
It is given that
\[f(x) = x^2 + kx + k , \]
where \(k \) is a constant.
The equation \(f(x) = 0 \) has two distinct real roots.
Determine the range of the possible values of \(k \).
\[k < 0 \text{ or } k > 4 \]

Question 14 (**+)
The quadratic equation
\[x^2 + 3mx + m = 0 , \]
where \(m \) is a constant, has real roots.
Find the range of possible values of \(m \).
\[m \leq 0 \text{ or } m \geq \frac{4}{9} \]
Question 15 (***)
The quadratic equation

\[x^2 - 8x + k = 0, \]

where \(k \) is a constant, has equal roots.

Solve the equation

\[x^2 - 8x + k = 0. \]

\[x = 4 \]

Question 16 (***)
Find the range of the values of the constant \(p \), given that the quadratic equation

\[x^2 - px + 9 = 0 \]

has no real roots.

\[-6 < p < 6 \]
Question 17 (***)
Find the range of values of the constant p so that the quadratic equation

$$2x^2 - 4x - (2p + 1) = 0$$

has no real roots.

$$p < -\frac{3}{2}$$

Question 18 (***)
Find the range of values of the constant k so that the quadratic equation

$$x^2 + 6kx - 2k = 0$$

has real roots.

$$k \leq \frac{-2}{3} \text{ or } k \geq 0$$
Question 19 (***)

It is given that

\[f(x) = x^2 - kx + (k + 3), \]

where \(k \) is a non-zero constant.

If the equation \(f(x) = 0 \) has real roots find the range of the values of \(k \).

\[k \leq -2, \quad k \geq 6 \]

Question 20 (***)

Find the range of values of the constant \(p \) so that the quadratic equation

\[(3p - 2)x^2 + 8x + p = 0, \quad p \neq \frac{2}{3} \]

has no real roots.

\[p < -2 \text{ or } p > \frac{8}{3} \]
Question 21 (***)
The quadratic equation
\[x^2 + (k - 1)x + (k + 2) = 0, \]
where \(k \) is a constant, has no real roots.

Find the range of possible values of \(k \).

\[-1 < k < 7 \]

Question 22 (***)
\[f(x) = x^2 + (1 - p)x + 4, \]
where \(p \) is a non zero constant.

The equation \(f(x) = 0 \) has equal roots.

a) Determine the possible values of \(p \).

b) Solve the equation \(f(x) = 0 \) for each of the values of \(p \) found in part (a).

\[p = -3, 5, x = \pm 2 \]
Question 23 (***)

\[f(x) = (k-1)x - 2 - 8x^2, \]

where \(k \) is a non zero constant

The equation \(f(x) = 0 \) has equal roots.

Determine the possible values of \(k \).

\[k = -7, 9 \]

Question 24 (***)

The quadratic equation

\[x^2 + kx + 2 = 0, \]

where \(k \) is a constant, has no real roots.

Find, as exact surds, the range of values of \(k \).

\[-\sqrt{8} < k < \sqrt{8} \]
Question 25 (*)**

The quadratic equation

\[2x^2 + (3k - 1)x + (3k^2 - 1) = 0, \]

where \(k \) is a constant, has two different real roots.

Find the range of values of \(k \).

\[-1 < k < 3 \]

Question 26 (*)**

Find the range of values of the constant \(m \) so that the quadratic equation

\[x^2 + (m+3)x + (3m+4) = 0 \]

has two distinct real roots.

\[m < -1 \text{ or } m > 7 \]
Question 27 (***)
Find the range of values of the constant k so that the quadratic equation
\[x^2 + (2k + 1)x + k^2 = 2 \]
has real roots.

\[k \geq -\frac{9}{4} \]

Question 28 (***)
Find the range of values of the constant p so that the quadratic equation
\[x^2 + 2px + (2p + 8) = 0 \]
has real roots.

\[p \leq -2 \text{ or } p \geq 4 \]
Question 29 (***)

The quadratic equation

\[mx^2 + 2(m+1)x + 4 = 0, \]

where \(m \) is a constant, has equal roots.

Find the possible value of \(m \).

Question 30 (***)

The quadratic equation

\[(m+1)x^2 + 12x + (m-4) = 0, \]

where \(m \) is a constant, such that \(m \neq -1 \), has two distinct real roots.

Determine the range of possible values of \(m \).
Question 31 (***)
Find the possible range of the values of the non zero constant \(k \), so that the quadratic equation

\[kx^2 - x + (3k - 1) = 0 \]

has distinct real roots.

\[-\frac{1}{6} < k < \frac{1}{2}, \quad k \neq 0 \]

Question 32 (***)
The quadratic equation

\[x^2 + 2mx + 3m + 4 = 0, \]

where \(m \) is a constant, has equal roots.

Find the possible values of \(m \).

\[m = -1, 4 \]
Question 33 (***)

The quadratic equation

\[mx^2 - 4x + m - 3 = 0, \]

where \(m \) is a non-zero constant, has repeated roots.

a) Find the possible values of \(m \).

b) Hence solve the equation for each value of \(m \) found in part (a).

\[m = -1, 4, \quad x = -2, \frac{1}{2} \]

Question 34 (***)

Find the range of the possible values of the constant \(m \), given that the equation

\[4x^2 + 4x(m - 1) + 9 = 0 \]

has real roots.

\[m \leq -2 \quad \text{or} \quad m \geq 4 \]
Question 35 (***)
Find the range of values of the non zero constant k, given that the quadratic equation
$$2kx^2 + (k-1)x + k = 1$$
has distinct real roots.

$$\frac{-1}{7} < k < 1, \ k \neq 0$$

Question 36 (***)
Find the range of values of the constant m so that the quadratic equation
$$mx^2 - x + m = 0$$
has real roots.

$$-\frac{1}{2} \leq m \leq \frac{1}{2}$$
Question 37 (***)
Find the range of the possible values of the constant k, $k \neq -2$, so that the quadratic equation

$$2(k+2)x^2 + (k+1)x + (k+1) = 0$$

has no real roots.

\[k < -\frac{15}{7} \text{ or } k > -1 \]

Question 38 (****)

$$f(x) = x^2 + 2(2p-1)x + 7p + 4,$$

where p is a constant.

The equation $f(x) = 0$ has no real roots.

Determine the range of the possible values of p.

\[-\frac{1}{4} < p < 3 \]
Question 39 (****)
Find the range of values of the non zero constant k so that the quadratic equation

$$2kx^2 + 4x + k - 1 = 0$$

has two distinct real roots.

$$-1 < k < 2, k \neq 0$$

Question 40 (****)
Find the range of values of the constant p, $p \neq -2$, so that the quadratic equation

$$(p + 2)x^2 + 4x + p + 5 = 0$$

has no real roots.

$$p < -6 \text{ or } p > -1$$
Question 41 (****)

Find the range of values of the non zero constant m so that the quadratic equation

$$mx^2 + (2m - 3)x + 2m + 1 = 0$$

has two distinct real roots.

$$-\frac{9}{2} < m \leq \frac{1}{2}, \ m \neq 0$$

Question 42 (****)

$$f(x) = x^2 + (3 - k)x + 5 - k^2$$

where k is a constant.

a) Given that the equation $f(x) = 0$ has equal roots, find the possible values of k.

b) Solve the equation $f(x) = 0$, for each value of k found in part (a)

$$k = -1, -\frac{14}{5}, \ k = -2, -\frac{3}{5}$$
Question 43 (****)

\[f(x) = x^2 - 2mx - 5, \] where \(m \) is a constant.

a) Without attempting a solution, show that the equation \(f(x) = 0 \) has two distinct real roots for all possible values of the constant \(m \).

b) Find, in terms of \(m \) and in fully simplified form, the roots of the equation

\[f(x) = 0. \]

\[x = m \pm \sqrt{m^2 + 5} \]
Question 44 (***)

The quadratic equation

$$kx^2 - 4x + k - 3 = 0,$$

where k is a non-zero constant, has equal roots.

a) Determine the possible values of k.

b) Solve the equation for each value of k found in part (a).

$$k = -1, 4, \quad x = -2, \frac{1}{2}$$
Question 45 (****)

The quadratic equation

$$4x^2 + (16 - p)x + 13 = p,$$

where p is a constant, has equal roots.

a) Determine the possible values of p.

b) Solve the equation for each of the values of p found in part (a).

$$p = 4, 12, \quad x = -\frac{3}{2}, -\frac{1}{2}$$
Question 46 (***)

The quadratic equation

\[3(k+2)x^2-(5k+7)x+3k+1=0, \]

where \(k \) is a constant, \(k \neq -2 \), has two distinct real roots.

Show clearly that

\[\frac{25}{11} < k < 1. \]

Question 47 (***)

\[f(x) = m(1-x)-x^2, \] where \(m \) is a constant.

The equation \(f(x) = 0 \) has no real roots.

Determine the range of the possible values of \(m \).

\[-4 < m < 0 \]
A curve C has equation

$$y = x^2 + 2mx + (3m + 4),$$

where m is a real constant.

The graph of C touches the x axis.

a) Determine the possible values of m.

b) For each value of m found in part (a), find the x coordinate of the point where the graph of C touches the x axis.

$\therefore, m = -1, 4 \quad \therefore x = -2, 1$
Question 49 (****)
The quadratic equation
\[3(p+2)x^2 + (p+5)x + p = 0, \]
where \(p \) is a constant, \(p \neq -2 \), has repeated roots.
Find the possible roots of the equation.

\[x = -\frac{1}{3}, \ x = \frac{5}{3} \]

Question 50 (****)
The quadratic equation, where \(m \) is a constant,
\[x^2 + 2mx + 3x + m^2 = 0, \]
has equal roots.
Find the value of \(m \).

\[m = -\frac{3}{4} \]
Question 51 (****)
The quadratic equation

\[k(x^2 + 1) - 3x + 4 = 0, \]

where \(k \) is a non zero constant, has real roots.

Find the range of possible values of \(k \).

\[-\frac{9}{2} \leq k \leq \frac{1}{2} \]
Question 52 (****+)

Find the range of values of the non zero constant k, given that the quadratic equation

$$3kx^2 - 2kx - 4x + 3 = 0$$

has two different real roots.

$k < 1$ or $k > 4, \quad k \neq 0$
Question 53 (**4+)**

It is given that

\[f(x) = x^2 + 2x - m(x^2 - 2x + 2) - 2, \]

where \(m \) is a constant such that \(m \neq 1 \).

The equation \(f(x) = 0 \) has distinct real roots.

Determine the range of values of \(m \).

\[-1 < m < 3, \ m \neq 1 \]