DISCRIMINANT

PRACTICE

26

BASIC

 QUESTIONS

 QUESTIONS}

Question 1 (**)
The quadratic equation

$$
x^{2}+10 x+k=0
$$

where k is a constant, has no real roots.

Find the range of the possible values of k.

Question 3 (**)
The quadratic equation

$$
m x^{2}+12 x+m=0
$$

where m is a constant, has repeated roots.

Find the possible values of m.

Created by T Madas

Question 5 (**)
The quadratic equation

$$
x^{2}+3 x+m=0
$$

where m is a constant, has no real roots.

Find the range of possible values of m.

Question 7 (**+)
The quadratic equation

$$
x^{2}+k x+4=0
$$

where k is a constant, has no real roots.

Find the range of possible values of k.

Question $8 \quad\left({ }^{* *}+\right.$)
Find the range of the possible values of the constant p, given that the equation

Created by T Madas

Question 9 (**+)

$$
f(x) \equiv 9 x^{2}-6 x+c
$$

where c is a non zero constant.

The equation $f(x)=0$ has equal roots.
a) Determine the value of c.
b) Solve the equation $f(x)=0$ for the value of c found in part (a).

Question 10 (**+)

where k is a constant.

The equation $f(x)=0$ has no real roots.

Determine the range of the possible values of k.

Created by T Madas

Question $11 \quad\left({ }^{* *}+\right.$)

The equation $3 x^{2}+5 x+c=0$, where c is a constant, has equal roots.
a) Determine the value of c.
b) Solve the equation

Question $12 \quad$ (**+)

It is given that

$$
f(x) \equiv x^{2}-2 m x+16
$$

where m is a constant.

The equation $f(x)=0$ has two distinct real roots.

Determine the range of values of m.

Created by T Madas

Question 13 (**+)

It is given that
where k is a constant.

The equation $f(x)=0$ has two distinct real roots.

Determine the range of the possible values of k.

Question 14 (**+)

The quadratic equation

$$
x^{2}+3 m x+m=0
$$

where m is a constant, has real roots.

Find the range of possible values of m.

Created by T Madas

Question 15 (***)
The quadratic equation

$$
x^{2}-8 x+k=0
$$

where k is a constant, has equal roots.

Solve the equation

$$
x=4
$$

\square

Question 16 (***)
Find the range of the values of the constant p, given that the quadratic equation

$$
x^{2}-p x+9=0
$$

has no real roots.

$$
-6<p<6
$$

4

Question 17 (***)
Find the range of values of the constant p so that the quadratic equation

$$
2 x^{2}-4 x-(2 p+1)=0
$$

has no real roots.

Question 18 (***)
Find the range of values of the constant k so that the quadratic equation

$$
x^{2}+6 k x-2 k=0
$$

has real roots.

Created by T Madas

Question 19 (***)
It is given that

$$
f(x)=x^{2}-k x+(k+3)
$$

where k is a non zero constant.

If the equation $f(x)=0$ has real roots find the range of the values of k.

Question 20
(***)
Find the range of values of the constant p so that the quadratic equation

$$
(3 p-2) x^{2}+8 x+p=0, p \neq \frac{2}{3}
$$

Created by T Madas

Question 21 (***)
The quadratic equation

$$
x^{2}+(k-1) x+(k+2)=0,
$$

where k is a constant, has no real roots.

Find the range of possible values of k.

$$
f(x)=x^{2}+(1-p) x+4,
$$

where p is a non zero constant.

The equation $f(x)=0$ has equal roots.
a) Determine the possible values of p.
b) Solve the equation $f(x)=0$ for each of the values of p found in part (a).

Created by T Madas

Question 23 (***)

$$
f(x)=(k-1) x-2-8 x^{2},
$$

where k is a non zero constant

The equation $f(x)=0$ has equal roots.

Determine the possible values of k.

Question 24 (***)
The quadratic equation
where k is a constant, has no real roots.
Find, as exact surds, the range of values of k.

Created by TMadas

Question 25 (***)
The quadratic equation

$$
2 x^{2}+(3 k-1) x+\left(3 k^{2}-1\right)=0
$$

where k is a constant, has two different real roots.
Find the range of values of k.

Question 26 (***)

Find the range of values of the constant m so that the quadratic equation

$$
x^{2}+(m+3) x+(3 m+4)=0
$$

has two distinct real roots.

STANDARD

QUESTIONS

Created by T Madas

Question $1 \quad(* * *+)$

Find the range of values of the constant k so that the quadratic equation

$$
x^{2}+(2 k+1) x+k^{2}=2
$$

has real roots.

Question $2 \quad(* * *+)$
Find the range of values of the constant p so that the quadratic equation

$$
x^{2}+2 p x+(2 p+8)=0
$$

Question 3 (***+)
The quadratic equation

$$
m x^{2}+2(m+1) x+4=0
$$

where m is a constant, has equal roots.

Find the possible value of m.

Question $4 \quad\left({ }^{* * *}+\right.$)
The quadratic equation

$$
(m+1) x^{2}+12 x+(m-4)=0
$$

where m is a constant, such that $m \neq-1$, has two distinct real roots.

Determine the range of possible values of m.

Question 5 (***+)
Find the possible range of the values of the non zero constant k, so that the quadratic equation

has distinct real roots.

$$
x^{2}+2 m x+3 m+4=0
$$

where m is a constant, has equal roots.

Find the possible values of m.
\square , $m=-1,4$ 0

\square

Created by T Madas

Question 7 (***+)
The quadratic equation

$$
m x^{2}-4 x+m-3=0
$$

where m is a non zero constant, has repeated roots.
a) Find the possible values of m.
b) Hence solve the equation for each value of m found in part (a).

$$
m=-1,4, x=-2, \frac{1}{2}
$$

Question 8 (***+)
Find the range of the possible values of the constant m, given that the equation

$$
4 x^{2}+4 x(m-1)+9=0
$$

has real roots.

Question 9 (***+)
Find the range of values of the non zero constant k, given that the quadratic equation

$$
2 k x^{2}+(k-1) x+k=1
$$

has distinct real roots.

$$
-\frac{1}{7}<k<1, k \neq 0
$$

Question 10 (***+)
Find the range of values of the constant m so that the quadratic equation

$$
m x^{2}-x+m=0
$$

has real roots.

$-\frac{1}{2} \leq m \leq \frac{1}{2}$
4

Created by T Madas

Question $11 \quad(* * *+)$

Find the range of the possible values of the constant $k, k \neq-2$, so that the quadratic equation

$$
2(k+2) x^{2}+(k+1) x+(k+1)=0
$$

has no real roots.

Question 12

$$
f(x)=x^{2}+2(2 p-1) x+7 p+4
$$

where p is a constant

The equation $f(x)=0$ has no real roots.

Determine the range of the possible values of p.

Question 13 (****)
Find the range of values of the non zero constant k so that the quadratic equation

$$
2 k x^{2}+4 x+k-1=0
$$

has two distinct real roots.

$$
-1<k<2, k \neq 0
$$

Question 14 (****)
Find the range of values of the constant $p, p \neq-2$, so that the quadratic equation
has no real roots.

Question 15 (****)
Find the range of values of the non zero constant m so that the quadratic equation

$$
m x^{2}+(2 m-3) x+2 m+1=0
$$

has two distinct real roots.

$$
-\frac{9}{2}<m<\frac{1}{2}, m \neq 0
$$

Question 16

$$
f(x)=x^{2}+(3-k) x+5-k^{2}, \text { where } k \text { is a constant. }
$$

a) Given that the equation $f(x)=0$ has equal roots, find the possible values of k.
b) Solve the equation $f(x)=0$, for each value of k found in part (a)

$$
k=-1, \frac{11}{5}, k=-2, \frac{2}{5}
$$

Created by T Madas

Question 17 (****)
$f(x)=x^{2}-2 m x-5$, where m is a constant.
a) Without attempting a solution, show that the equation $f(x)=0$ has two distinct real roots for all possible values of the constant m.
b) Find, in terms of m and in fully simplified form, the roots of the equation

$$
\begin{gathered}
f(x)=0 \text {. } \\
0, x=m \pm \sqrt{m^{2}+5}
\end{gathered}
$$

Question 18 (****)
The quadratic equation

$$
k x^{2}-4 x+k-3=0,
$$

where k is a non zero constant, has equal roots.
a) Determine the possible values of k.
b) Solve the equation for each value of k found in part (a).

$$
k=-1,4, x=-2, \frac{1}{2}
$$

\square

Created by T Madas

Question 19 (****)
The quadratic equation
where p is a constant, has equal roots.
a) Determine the possible values of p.

b) Solve the equation for each of the values of p found in part (a).
\qquad

$$
p=4,12, x=-\frac{3}{2},-\frac{1}{2}
$$

\square

Question 20 (****)
The quadratic equation

$$
3(k+2) x^{2}-(5 k+7) x+3 k+1=0
$$

where k is a constant, $k \neq-2$, has two distinct real roots.
Show clearly that
\square , proof

Question 21 (****)
$f(x)=m(1-x)-x^{2}$, where m is a constant.

The equation $f(x)=0$ has no real roots.

Determine the range of the possible values of m.

Created by T Madas

Question 22 (****)
A curve C has equation

$$
y=x^{2}+2 m x+(3 m+4),
$$

where m is a real constant.

The graph of C touches the x axis.
a) Determine the possible values of m.
b) For each value of m found in part in part (a), find the x coordinate of the point where the graph of C touches the x axis.

Created by T Madas

Question 23 (****)
The quadratic equation

$$
3(p+2) x^{2}+(p+5) x+p=0
$$

where p is a constant, $p \neq-2$, has repeated roots.

Find the possible roots of the equation.

Question 24 (****)
The quadratic equation, where m is a constant,

$$
x^{2}+2 m x+3 x+m^{2}=0,
$$

has equal roots.
Find the value of m.

Question 25 (****)
The quadratic equation

$$
k\left(x^{2}+1\right)-3 x+4=0
$$

where k is a non zero constant, has real roots.

Find the range of possible values of k.
2) $\square,-\frac{9}{2} \leq k \leq \frac{1}{2}$

Created by T Madas

Created by T Madas

Question 1 (****+)
Find the range of values of the non zero constant k, given that the quadratic equation

$$
3 k x^{2}-2 k x-4 x+3=0
$$

has two different real roots.

Created by T Madas

Question 2 (****+)
It is given that
where m is a constant such that $m \neq 1$.

The equation $f(x)=0$ has distinct real roots.

Determine the range of values of m.

