Created by T Madas DISCRIMINANT • CTUCE AGSIRARISCOM I.Y.C.B. MARASRANISCOM I.Y.C.B. MARASRANISCOM I.Y.C.B. MARASRANISCOM I.Y.C.B. MARASRANISCOM I.Y.C.B. MARASRANISCOM

BASIN BASIN QUESTION.

Question 1 (**) The quadratic equation

 $x^2 + 10x + k = 0,$

where k is a constant, has no real roots.

Find the range of the possible values of k.

0 0 -	
22+102+k=0)	
min	
REAL ROOTS => b2-4ac<0	
\implies (0 ² \pm xixk <0	
-> 100 -4K <0	
\Rightarrow -4k <-100	
=> K>25	

> 25

Question 2 (**) It is given that

 $f(x) \equiv 25x^2 + 20x + p,$

where p is a non zero constant.

The quadratic equation f(x) = 0 has equal roots.

Find the value of p

20	p = 4
13	<i>></i>
· .	5.

Question 3 (**) The quadratic equation

 $mx^2 + 12x + m = 0,$

where m is a constant, has repeated roots.

Find the possible values of m.

 $\begin{array}{c} \mu_{\mathcal{R}}^{+} \mid \underline{\lambda}_{1} + u_{1} = 0 \\ \\ \text{Refere basis} \\ \text{Refere basis} \\ \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} - \lambda_{1} = 0 \\ \end{array} \\ \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} - \lambda_{1} = 0 \\ \end{array} \\ \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} - \lambda_{1} = 0 \\ \end{array} \\ \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} - \lambda_{1} = 0 \\ \end{array} \\ \xrightarrow{ \begin{array}{c} \mu_{1}^{+} - \lambda_{1} = 0 \\ \end{array} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \\ \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \\ \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \\ \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \mu_{1}^{+} = \lambda_{1}^{+} \\ \end{array} \end{array}$

 $m = \pm 6$

 $p < \frac{1}{3}$

Question 4 (**) The quadratic equation

 $3x^2 + 2x + p = 0,$

where p is a constant, has two distinct real roots.

Find the range of possible values of p.

Question 5 (**) The quadratic equation

 $x^2 + 3x + m = 0,$

where m is a constant, has no real roots.

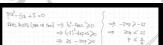
Find the range of possible values of m.

Question 6 (**)

Find the range of the possible values of the constant p, given that the equation

 $px^2 - 5x + 5 = 0$

has real roots.



 $p \leq \frac{1}{2}$

m >

Question 7 (**+) The quadratic equation

 $x^2 + kx + 4 = 0,$

where k is a constant, has no real roots.

Find the range of possible values of k.

-4 < k < 4

Question 8 (**+)

Find the range of the possible values of the constant p, given that the equation

 $x^2 + 5px + 2p = 0$

has real roots.

$x^2 + 5px + 2p = 0$, p contribution
$\stackrel{\text{\tiny The left loss}}{\longrightarrow} 2 \text{ issues the loss } (b^{-4}ac>c)$ $\implies 1 \text{ leftered line loss } (b^{2}-4ac>c)$
THUS WE HAVE
b2- the >0
$(5p)^2 - 4 \times 1 \times 2p \gg 0$
25p² - 8p ≥0
P (25p-B) ≥0
CUTICAL WHILL APE <
÷ p≤o of p≥ b

 $p \le 0$ or $p \ge \frac{8}{25}$

Question 9 (**+)

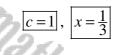
 $f(x) \equiv 9x^2 - 6x + c,$

where c is a non zero constant.

The equation f(x) = 0 has equal roots.

a) Determine the value of c.

b) Solve the equation f(x) = 0 for the value of c found in part (a).



3	92°-62+C=0	3	92-62+1=0
	Epone ROOTS => 15-44c=0	G	(32-1) (32-1)
	=) (-G) ² -4x9xC=0		$2 = \frac{1}{3}$
			3
	7, 6-1		

Question 10 (**+

$$f(x) \equiv x^2 + kx + 1,$$

where k is a constant.

The equation f(x) = 0 has no real roots.

Determine the range of the possible values of k.

1000			
2° + ba + 1 No life par	$ = 0 $ $ I \Rightarrow b^{2} - tac < 0 $ $ \Rightarrow k^{2} - tx(k) < 0 $ $ \Rightarrow k^{2} - 4 < 0 $ $ \Rightarrow (k - 2)(k + 2) < 0 $ $ c. v = \sqrt{k} $	-2 -2 -2	< k < 2.
	-2	<u> </u>	//

2 < k < 2

Question 11 (**+)

The equation $3x^2 + 5x + c = 0$, where c is a constant, has equal roots.

a) Determine the value of c.

b) Solve the equation

 $3x^2 + 5x + c = 0.$

	6			
)	322+52+C=0		(6)	$3x^2 + 5x + \frac{25}{10} = 0$
	6punz 20575 ⇒ ⇒	b2-421=0. S2-4x3C=0	<i>e</i> /	$36a^2 + 6ca + 25 = 0$
	9	25 - 12c = 0 25 = 12c		$(6\alpha+5)(6\alpha+5)=0$

 $c = \frac{25}{12}$

Question 12(**+)It is given that

 $f(x) \equiv x^2 - 2mx + 16,$

where m is a constant.

The equation f(x) = 0 has two distinct real roots.

Determine the range of values of m.

	Ċ	5	3	
-27142+16=0 1642. 2005= b2-4ac>0	Ş	×.	(Z	

m < -4 or m > 4

	$\alpha^2 - 2102 + 16 = 0$
	2 ROAL POOLS => b2-4ac>o { 1/2
1	=> (-2m) - 4×1×16>0 { -4 / 4 0
	=> 4 km² - 64 > 0
	= W2-16>.0 { 4<-4 or 4>4
	=> (m-4)(m+4)>0
	C.V= 4
	C.V= (

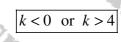
Question 13 (**+) It is given that

 $f(x) \equiv x^2 + kx + k \,,$

where k is a constant.

The equation f(x) = 0 has two distinct real roots.

Determine the range of the possible values of k.

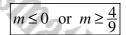


Question 14 (**+) The quadratic equation

 $x^2 + 3mx + m = 0,$

where m is a constant, has real roots.

Find the range of possible values of m.



22+3W2+W=0 {	-04 1
Rink Roll (autor mo) = b24qc >0	C.V= 4
=> (3m)2-4x1x420 2	
⇒ 9m²-4m ≥0	m≤o or m≥g
⇒ m(9m-4)>>>	

Question 15 (***) The quadratic equation

 $x^2 - 8x + k = 0,$

where k is a constant, has equal roots.

Solve the equation

 $x^2 - 8x + k = 0.$

Question 16 (***)

Find the range of the values of the constant p, given that the quadratic equation

 $x^2 - px + 9 = 0$

has no real roots.

١ø

-6

x = 4

 $\begin{array}{c|c} y_{a}^{-}p_{2}+q_{\pm 0} \\ & & \\ &$

Question 17 (***)

Find the range of values of the constant p so that the quadratic equation

$$2x^2 - 4x - (2p + 1) = 0$$

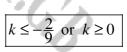
has no real roots.

Question 18 (***)

Find the range of values of the constant k so that the quadratic equation

 $x^2 + 6kx - 2k = 0$

has real roots.



 $p < -\frac{3}{2}$

+0a-2k=0		
AL BOUTS (OUR O	$(\operatorname{TWO}) \Longrightarrow b^2 - 4_{\operatorname{CLE}} \ge 0$ $\Rightarrow (\operatorname{CL})^2 - 4_{\times 1 \times (\operatorname{CL})} \ge 0$ $\Rightarrow 3\operatorname{CL}^2 + 8\operatorname{L} \ge 0$	
	$\Rightarrow 4k(9k+2) \ge 0$ $C \cdot V = \underbrace{-\frac{2}{9}}_{-\frac{2}{9}}$	k ≤-2 or k≥0

Question 19 (***) It is given that

 $f(x) = x^2 - kx + (k+3),$

where k is a non zero constant.

If the equation f(x) = 0 has real roots find the range of the values of k.

Find the range of values of the constant p so that the quadratic equation

 $(3p-2)x^2+8x+p=0, p\neq \frac{2}{3}$

has no real roots.

 $p < -2 \text{ or } p > \frac{8}{3}$

 $k \le -2$, $k \ge 6$

Question 21 (***) The quadratic equation

 $x^{2} + (k-1)x + (k+2) = 0,$

where k is a constant, has no real roots.

Find the range of possible values of k.

$\begin{array}{cccc} \dot{c}^{\dagger} \in (k-1)\alpha_{+} \in (k+2) = 0 \\ \Rightarrow & b^{-} = h_{k-1} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ \Rightarrow & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ \Rightarrow & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ \Rightarrow & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ \Rightarrow & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ \Rightarrow & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ & b^{-} \otimes b^{-} = h_{k-1} \otimes b^{-} \\ & b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \otimes b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \otimes b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \otimes b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \otimes b^{-} \otimes b^{-} \\ & b^{-} \otimes b^{-} \otimes b^{-} \\ & b^{-} $	2		
$ \begin{array}{c} \Rightarrow (k+1)^{-4} + 4k(k+2) < 0 \\ \Rightarrow (k^{-}-2) + (-1)^{-4} + 6 \\ \Rightarrow (k^{-}-7 < 0) \\ \Rightarrow (k+1)(1-7) < 0 \end{array} $	it+ (k-1)a + (k+	2)=0	
$\Rightarrow t^{1}-2k+1,-4k-10<0 \qquad -1.5 \text{ for } t^{2}$ $\Rightarrow t^{2}-6k-7<0 \qquad -1< k<7$ $\Rightarrow (k+1)(k-7)<0$	VO EFAL RUTS ->	b2-4ac <0	
⇒ (k+1)(2-7) <0	\rightarrow	22-22-1-44-00 <0	-134333300344
			-1 < k < 7

-1 < k < 7

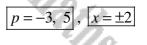
Question 22 (***)

$$f(x) = x^2 + (1-p)x + 4,$$

where p is a non zero constant.

The equation f(x) = 0 has equal roots.

- **a**) Determine the possible values of p.
- **b**) Solve the equation f(x) = 0 for each of the values of p found in part (a).



$x^{2} + (1-p)x + 4 = 0$	(b) . 1 p= -3
fquar ports => b2-yac = 0	$\mathcal{X} + (1-(-b))x + b = 0$
⇒ CI-P) ² -4×1×4=0	$J_{2}^{2} + 4J_{2} + 4 = 0$
== 1-2p+p2-16=0	(2+2)(2+2)=0
⇒ \$ ² -2p-15=0	2=-2
$\Rightarrow (p-s)(p+3) = 0$	• 18 P=5
> P= < 3	$2^{4} + (1-5)\chi + 4 = 0$
	22- 4a+4=0
11	(2-2)(2-2) 20
	2=2

Question 23 (***)

 $f(x) = (k-1)x - 2 - 8x^2$,

where k is a non zero constant

The equation f(x) = 0 has equal roots.

Determine the possible values of k.

20.	[k-7, 2]
$\begin{split} \hat{h} &= (k-1)\lambda - 2 - 8\lambda^2 \\ \hat{h} &= (k-1)\lambda - 2 - k\lambda^2 = 0 \\ 8\lambda^2 + (k-1)\lambda - 2 = 0 \\ 8\lambda^2 - (k-1)\lambda + 2 = 0 \end{split}$	$\begin{cases} 52440.0005 \implies 6^{2}-4400 = 0 \\ \implies [-(k-1)^{2}-44802 = 0 \\ \implies (k+1)^{2}-64=0 \\ \implies (k-1)^{2}=64 \\ \implies (k-1)^{2}=64 \end{cases}$

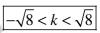
ŀ

Question 24 (***) The quadratic equation

 $x^2 + kx + 2 = 0,$

where k is a constant, has no real roots.

Find, as exact surds, the range of values of k.



2+ k2+2=0	
NO 2642 2005 === b2-40c <0	
=> k2-4x1x2<0	- 18 5 - 15
$\Rightarrow k^2 - 8 < 0$ $\Rightarrow k^2 - (ke)^2 < 0$	-15 <k<n8 <="" td=""></k<n8>
-> (k-x8)(k+x8)<0	
6	

Question 25 (***) The quadratic equation

 $2x^{2} + (3k-1)x + (3k^{2}-1) = 0,$

where k is a constant, has two different real roots.

Find the range of values of k.

Question 26 (***)

Find the range of values of the constant m so that the quadratic equation

 $x^2 + (m+3)x + (3m+4) = 0$

has two distinct real roots.

m < -1 or m > 7

$$\begin{split} \tilde{\mathbf{x}}^{2} & (\mathbf{y}_{1}, \mathbf{x}_{2}), \mathbf{x}_{1} \in [\mathbf{y}_{1}, \mathbf{x}_{2}] = 0 \\ \text{Two Details Treas} & \Rightarrow | \tilde{\mathbf{b}}^{-1}(\mathbf{u}_{n}, \mathbf{x}_{n}) = 0 \\ & = \mathcal{Y}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{1})^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n})_{2} = 0 \\ & \Rightarrow \mathbf{u}_{1}^{2} = (\mathbf{u}_{n}, \mathbf{u}_{n}) = (\mathbf{u}_{n}, \mathbf{u}_{n$$

CONTRACTORS STANDAS QUESTIONS IN THE INTERNET

Question 1 (***+)

Find the range of values of the constant k so that the quadratic equation

$$x^2 + (2k+1)x + k^2 = 2$$

has real roots.

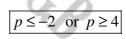
Question 2 (***+)

Find the range of values of the constant p so that the quadratic equation

20201

 $x^2 + 2px + (2p + 8) = 0$

has real roots.



 $k \ge -\frac{9}{4}$

+ 2pac + (2p+8)=0		
AC 2007. (OUL OR TWO	$) \Longrightarrow b^{2} - 4uc \ge 0$ $\Longrightarrow (2p)^{2} - 4k x (2p+8) \ge 0$	
	$\Rightarrow 4p^2 - 4(2p+R) \ge 0$	
	$\Rightarrow p^2 (2p+8) \ge p$ $\Rightarrow p^2 - 2p - R \ge p$	
	$\Rightarrow (P-4)(p+2) \ge 0$	5-6-
	C.N= <4	PS-2 OR P>4

Question 3 (***+) The quadratic equation

 $mx^2 + 2(m+1)x + 4 = 0,$

where m is a constant, has equal roots.

Find the possible value of m.

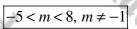
m = 1

Question 4 (***+) The quadratic equation

 $(m+1)x^2+12x+(m-4)=0$,

where *m* is a constant, such that $m \neq -1$, has two distinct real roots.

Determine the range of possible values of m.



20	0.	
$(+1) \mathcal{J}_{\mathcal{J}} + 153 + Q^{4-d}$		
ाग्यत १९४५, २०४९ - २०४७ २०४४	6-4400 >0 12-+(m+1)(m-4) >0	
	$144 - 4(\mu_1^2 - 3m - 4)>0$ $34 - (\mu_1^2 - 3m - 4)>0$	
-9	36-472+329+4 >0	-S < M < 8
	-42 + 34 +40>0 42-34 -40<0	/
	0 > (8 - M)(2 + M)	
	civa C	

Question 5 (***+)

Find the possible range of the values of the non zero constant k, so that the quadratic equation

 $kx^2 - x + (3k - 1) = 0$

has distinct real roots.

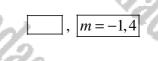
	$-\frac{1}{6} < k$	$k < \frac{1}{2}, k \neq 0$
TP V T		$\frac{1}{16} \leq k \leq \frac{1}{12}$

Question 6 (***+) The quadratic equation

 $x^2 + 2mx + 3m + 4 = 0,$

where m is a constant, has equal roots.

Find the possible values of m.



$z^2 + 2m_2 + (3m_2)$	n+4)=0	
GRUAL ROOTS -	$b^2-4ac = 0$ $(2m)^2-4\chi(x(3m+q)=0$	
	$4W_{1}^{2} - 4(3n+4) = 0$	
	M2- (3m+H =0 M2-3m-4=0	
P P	(m +1 (m-4)=0	: M= -1

Question 7 (***+)

The quadratic equation

 $mx^2 - 4x + m - 3 = 0,$

where m is a non zero constant, has repeated roots.

- **a**) Find the possible values of m.
- **b**) Hence solve the equation for each value of m found in part (**a**).

m	=-1,4	4,	x = -	$-2,\frac{1}{2}$
J	5			
(a)	4a2-4a4	m-3)=	0	
	REPRATED EDCT	≤ ⇒ ⇒	$b^{2} - 4ac = 0$ $(-4)^{2} - 4 \times M \times (M - 1)$	
		-	16 - 4m(m-3) 4 - m(m-3)) = 0
		\Rightarrow	$\begin{array}{l} 4-\mathfrak{M}^2+\mathfrak{Z}_m\\ 0=\mathfrak{M}^2-\mathfrak{Z}_m-1\end{array}$	- O -
		\Rightarrow	0 = (m+1)(m.	
0.5		=	m= <-1 4	//
(6)	@ IF W1 = -1	2	· IF m=4	

Question 8 (***+)

Find the range of the possible values of the constant m, given that the equation

 $4x^2 + 4x(m-1) + 9 = 0$

has real roots.

$m \leq -2$	or	$m \ge 4$
	V 1	

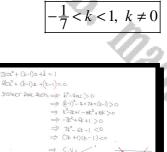
$4x^2 + 4x(m-1) + 9 = 0$	
REAL ROOTS => b2-44c >0	
$\Rightarrow [4(w_{-1})]^{2} + 4_{\times} + 1_{\times} + 0$	
\Rightarrow $ 6(m-1)^2 - (6 \times 9 \ge 0$	
= (m-1)2- 9 >0	
⇒ (M-1-3)(M-1+3)≥0	
=> (M-4)(M+2)>0	
C-V = 4	-2 4
	~s-2 or m≥4
	/

Question 9 (***+)

Find the range of values of the non zero constant k, given that the quadratic equation

$$2kx^{2} + (k-1)x + k = 1$$

has distinct real roots.



Question 10 (***+)

Find the range of values of the constant m so that the quadratic equation

24

 $mx^2 - x + m = 0$

has real roots.

14.2-2+14=03 2641. 2005 (out or Tw	o) → b2-yer≥0		
	$\Rightarrow (-4)^{2} - 4x u_{1} \times u_{1} \ge 0$ $\Rightarrow (-4)u^{2} \ge 0$		
	$\Rightarrow (\underline{i} {\sim} 2 \underline{k} \underline{i}) (\underline{i} {+} 2 \underline{k} \underline{i}) \geqslant 0$	$-\frac{1}{2} \leq M \leq \frac{1}{2}$	
	CV.= Ct		

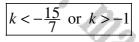
 $\leq m \leq$

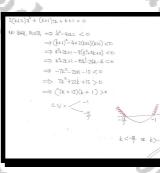
Question 11 (***+)

Find the range of the possible values of the constant k, $k \neq -2$, so that the quadratic equation

 $2(k+2)x^{2} + (k+1)x + (k+1) = 0$

has no real roots.





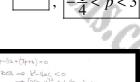
Question 12 (****)

$$f(x) = x^{2} + 2(2p-1)x + 7p + 4,$$

where p is a constant

The equation f(x) = 0 has no real roots.

Determine the range of the possible values of p



=> [2(2p-1)]=-4×1×(2p+4) <0	
=> A(2p-1)2-A(7p+4) <0	
$\implies 4p^{2} + p + 1 - 7p - 4 < 0$	
⇒ 4p2-11p -3 <0	
⇒ (4p +1)(p'-3)<0	
$C.V = < -\frac{1}{4}$	
	+<9 <3

Question 13 (****)

Find the range of values of the non zero constant k so that the quadratic equation

$$2kx^2 + 4x + k - 1 = 0$$

has two distinct real roots.

-1 < k <	2, $k \neq 0$
	D.

Question 14 (****)

Find the range of values of the constant p, $p \neq -2$, so that the quadratic equation

$$(p+2)x^2+4x+p+5=0$$

has no real roots.

p < -6 or p > -

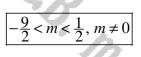
(p+2) a2 + 4a	+(P+S)=0	
NO 8642 80075	$\implies b^2 - 4ac < 0$ $\implies 4^2 - 4x(Pt2)(Pt5) < 0$	
	$ \Rightarrow 16 - 4(P+2)(P+5) < 0 \Rightarrow 4 - (P+2)(P+5) < 0 \Rightarrow 4 - (P^2+7_{p+10}) < 0 $	
	$\Rightarrow 4 - p^2 - 7p - 10 < 0$ $\Rightarrow -p^2 - 7p - 6 < 0$	
	$\implies p^2 + 7x + 6 > 0$ $\implies (p+1)(p+6) > 0$	-
	C.V =6	p<-6 02

Question 15 (****)

Find the range of values of the non zero constant m so that the quadratic equation

 $mx^2 + (2m - 3)x + 2m + 1 = 0$

has two distinct real roots.



$W_{12}^{2} + (2m-3)\alpha + (2m+1) = 0$
Two JUSTINGT BAR DOUTS => b2-4ac>0
\Rightarrow $(2n+3)^2 + 4n(2n+1) > 0$
=> 44-12m+9-84-44>0
=>-4412-1641+9>0
$\Rightarrow 4m^{2} + 16m - 9 < 0$
$\rightarrow (2m-1)(m+q) < 0$
C.V= -9
-9< W

Question 16 (****)

 $f(x) = x^2 + (3-k)x + 5 - k^2$, where k is a constant.

a) Given that the equation f(x) = 0 has equal roots, find the possible values of k.

b) Solve the equation f(x) = 0, for each value of k found in part (a)

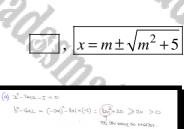
 $k = -1, \frac{11}{5}$, $k = -2, \frac{2}{5}$

=> 9-6k+k	$\begin{array}{c} \alpha \zeta = 0 \\ + 4 \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \zeta^{-} - \frac{4}{3} \langle x \langle 5 - k^2 \rangle = 0 \\ \zeta^{-} - \zeta^{$
	ac-11 = 0 /
(b) • F $k=-1$ $2^{2}+42+4=0$	• $\mathcal{T}_{x} + \left(\frac{3}{2} - \frac{2}{10}\right) x + \left(2 - \frac{1}{10}\right) = 0$
(342)=0	$T_{5}^{2} + \frac{2}{16} \Sigma + \frac{32}{122} - \frac{52}{121} = 0$
2=-2	$\mathcal{J}_{x}^{2} \neq \frac{1}{2}\mathcal{J}_{x} + \frac{1}{2}\mathcal{I}_{x} = 0$
PIPMIND	$25x^2 + 203 + 4 = 0$
	$(2^{3\times 4} \Sigma)^2 = 0$
	DL= - Z REAMED

Question 17 (****)

- $f(x) = x^2 2mx 5$, where *m* is a constant.
- a) Without attempting a solution, show that the equation f(x) = 0 has two distinct real roots for all possible values of the constant m.
- **b**) Find, in terms of m and in fully simplified form, the roots of the equation

f(x) = 0.



	THE OWN NEWAR GO WE	6470V€.
	- AWAYS TWO DETINOT	2001
3-5MX-2=0		
(a-m)2-m2-3=0	MATTER B.	
$(\hat{u} - w_1)^2 = w_1^2 + 5$ $\hat{u} - w_1 = \pm \sqrt{w_1^2 + 5}$	$Q = \frac{1}{2} \frac{2n}{2}$	
2 = M ± NH2+SI	a= 2m ± N4(m2+5) =	2m ± 2/ m2+5
1 5	$\chi = M \pm \sqrt{M^2 + S^2}$	

Question 18 (****)

The quadratic equation

 $kx^2 - 4x + k - 3 = 0,$

where k is a non zero constant, has equal roots.

- **a**) Determine the possible values of k.
- **b**) Solve the equation for each value of k found in part (a).

(a) $|k_1^{-}|k_1+\langle k_2\rangle = 0$ $c_{p_1q_1} a_{p_2q_1} = |k_1^{-}|k_2| \leq 0$ $\Rightarrow (c_1^{-}k_1k_2(k_1)) = 0$ $\Rightarrow (b_1^{-}k_1k_2) = 0$ $\Rightarrow (b_1^{-}k_2k_2) = 0$ $\Rightarrow (b_1^{-}k_2$

 $x = -2, \frac{1}{2}$

k = -1, 4

Question 19 (****)

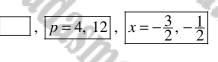
N.

The quadratic equation

 $4x^2 + (16 - p)x + 13 = p,$

where p is a constant, has equal roots.

- **a**) Determine the possible values of p.
- **b**) Solve the equation for each of the values of p found in part (a).



$4x_{+}^{2}(16-p)x + 13 = p$	() olf part
42"+ (16-p)x+ (13-p) =0	402+1202+9=0
Equal BOOL => b2-4ac =0	$(2\alpha+3)^2 = 0$
⇒ (16-p)2- 4×4 (13-p)=0	22-3
\Rightarrow $356-32p+p^2-16(13-p)=0$	· IF p=12
> 256 -329 + p ² - 208 + l6p = 0 > p ² - 16p + 48 = 0	41 + 42 + 1
=> (p-4)(p-12)=0	(22+1) ² =0
$p = <_{12}^{4}$	2
1 12	9

Question 20 (****)

The quadratic equation

$$3(k+2)x^2 - (5k+7)x + 3k + 1 = 0,$$

 $-\frac{25}{11} < k < 1.$

where k is a constant, $k \neq -2$, has two distinct real roots.

Show clearly that

, proof $x_{1}^{2}-(5k\gamma)_{1}+(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}+(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{2})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{2})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{1})=0$ $x^{2}-(5k\gamma)_{1}-(k_{2}k_{1})=0$

Question 21 (****)

 $f(x) = m(1-x) - x^2$, where *m* is a constant.

The equation f(x) = 0 has no real roots.

Determine the range of the possible values of m.

,	-4 < m < 0

Receive		
$f(x) = m(1-\chi) - \chi^2$	5	NO RIAL BOUTS => 62-44C <0
=90 = m(1-2)-22	5	$\implies w_1^2 - \psi_X(-\omega_1) < 0$
$= 0 = M - MX - X_{S}$)	$\implies W_1^{-} + 4W_1 < 0$
$\Rightarrow \mathcal{I}_{5} + M \mathcal{Y} - M = 0$		- m(m+4)<0
	1	=> CN= C* -4

Question 22 (****)

A curve C has equation

 $y = x^2 + 2mx + (3m+4),$

where m is a real constant.

The graph of C touches the x axis.

- **a**) Determine the possible values of m.
- b) For each value of m found in part in part (a), find the x coordinate of the point where the graph of C touches the x axis.

 m = -1, 4	, x = -2, 1
1	2
 	10

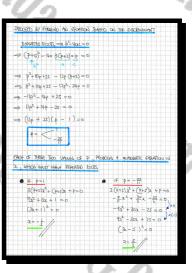
 (4) • y = x²+2mx + (3m+4) • (2006 2.445, 16 y=0 • 3²+3mx + (3m+4)=0 • 500 2001 2001 	(b) • (F wi=4 $\lambda^{x} + 8\alpha + 16 = 0$ $(\alpha + 4)^{x} = 0$ $\therefore \alpha = -4$	14 (~4,0)
$b^{2}-l(\underline{\lambda}\underline{c}\underline{c}\underline{c})$ $\Rightarrow (2u_{1})^{2}-l(\underline{\lambda}\underline{c}\underline{c})$ $\Rightarrow 4u_{1}^{L}-l(\underline{\lambda}\underline{m}+\underline{u})c_{0}$ $\Rightarrow u_{1}^{L}-\underline{\lambda}\underline{m}-\underline{u}\underline{c}$ $\Rightarrow (u_{1}^{L}-\underline{\lambda}\underline{m}-\underline{u})c_{0}$	• If $M = -1$ $\chi^2 - 2\chi + 1 = 0$ $(\chi - 1)_{c}^{k} = 0$ $\chi - \chi = 0$	(1,0)
⇒ m= <4		

Question 23 (****) The quadratic equation

 $3(p+2)x^{2}+(p+5)x+p=0$,

where p is a constant, $p \neq -2$, has repeated roots.

Find the possible roots of the equation.



Question 24 (****) The quadratic equation, where *m* is a constant,

 $x^2 + 2mx + 3x + m^2 = 0,$

has equal roots.

Find the value of m.

 $\begin{array}{c} x_{1}^{2}+2mx_{1}+3x_{1}+w_{1}^{2}=0\\ x_{1}^{2}+2mx_{2}+3x_{1}+w_{2}^{2}=0\\ 4unx_{1}&2unt_{2}\\ 4unx_{2}&zoti\\ (2mx_{2})x_{1}+w_{1}^{2}x_{2}=0\\ (2mx_{2})x_{2}-4x_{1}/4x_{2}=0\\ (2mx_{2})x_{2}-4x_{2}/4x_{2}=0\\ (2mx_{2})x_{2}-4x_$

m =

Question 25 (****) The quadratic equation

20

I.C.B.

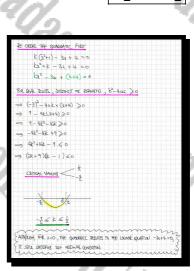
i.G.p.

 $k(x^2+1) - 3x + 4 = 0,$

202.01

where k is a non zero constant, has real roots.

Find the range of possible values of k.



200

F.C.B.

COM

 $\leq k \leq$

112.50

nadas,

HARL QUESTION:

Question 1 (****+)

Find the range of values of the non zero constant k, given that the quadratic equation

nadasn.

2017

,G.B.

20

I.C.p

$$3kx^2 - 2kx - 4x + 3 = 0$$

has two different real roots.

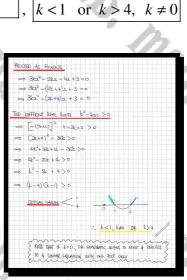
20

ISMaths,

I.C.B.

COM

I.G.p.



nadasn.

1720/251

2

Question 2 (****+) It is given that

¥G.B.

ろ

Ĉ.

 $f(x) = x^{2} + 2x - m(x^{2} - 2x + 2) - 2,$

20

where *m* is a constant such that $m \neq 1$.

The equation f(x) = 0 has distinct real roots.

Determine the range of values of m.

-1 < m < 3 M≠1 OR {-1 < m < 1} U{1<m<3}

F.G.B.

Mana

27

hs.com

Created	by T	Madas
---------	------	-------