55

DISCRIMINANT

EXAM
 QUESTIONS

Created by T. Madas

Question 1 (**)
Show by using the discriminant that the graph of the curve with equation

$$
y=x^{2}-4 x+10
$$

does not cross the x axis.

Question 2 (**)
Show that the quadratic equation

$$
x^{2}+(2 k+3) x+k^{2}+3 k+1=0
$$

has two distinct real roots in x, for all values of the constant k.

Question 3 (**+)
Find the range of values of the constant k so that the equation

$$
x^{2}+k x+16=0
$$

has no real roots.
,

Question 4 (**+)
Find the range of values of the constant k so that the graph of the curve with equation

$$
y=x^{2}+5 x+k
$$

does not cross the x axis.

Question 5 (**+)
Use an algebraic method to show that the graphs

$$
y=1-x \text { and } y=x^{2}-6 x+10
$$

do not intersect.

Question 6 (***)
\square
\square , proof

Find the range of values of the constant m so that the graph of the curve with equation

$$
y=2 x^{2}+m x+2,
$$

does not cross the x axis.

Created by T. Madas

Question 7 (***)
The following quadratic equation, where m is a constant, has two distinct real roots.

$$
x^{2}+(m+2) x+4 m-7=0, x \in \mathbb{R} .
$$

Determine the range of the possible values of m.

STANDARD QUESTIONS

Question 1 (***+)
Show that the quadratic equation

$$
(k+1) x^{2}+2 k x+k=1
$$

has two distinct real roots for all real values of the constant k, except for one value which must be stated.

Question 3 (***+)
The straight line L and the curve C have respective equations

$$
L: 2 y=7 x+10
$$

$C: y=x(6-x)$.
a) Show that L and C do not intersect.

b) Find the coordinates of the maximum point of C.
c) Sketch on the same diagram the graph of L and the graph of C, showing clearly the coordinates of any points where each of the graphs meet the coordinate axes.

Question 4 (***+)
The quadratic curves with equations

$$
y=x^{2}-4 x+5 \text { and } y=m+2 x-x^{2}
$$

where m is a constant, touch each other at the point P.

Determine the coordinates of P.
\square , $P\left(\frac{3}{2}, \frac{5}{4}\right)$
\square

Question 5 (***+)
Use the discriminant of a suitable quadratic equation to show that the graphs of the curves with equations

$$
y=2-\frac{1}{x} \quad \text { and } \quad y=\frac{1}{2-x}
$$

touch each other.

Created by T. Madas

Question 6 (***+)
A quadratic curve has equation

$$
f(x) \equiv 12 x^{2}+4 x-161, x \in \mathbb{R} .
$$

Express the above equation as the product of two linear factors.

A detailed method must be shown in this question.

0
\qquad
10
\square

Question 7 (***+)
Find the possible solutions of the quadratic equation

$$
x^{2}+(k-1) x+k+2=0
$$

where k is a constant, given that the equation has repeated roots.
\square , $x=1 \cup x=-3$

Question 8 (****)
The quadratic curves with equations

$$
y=k\left(2 x^{2}+1\right) \quad \text { and } \quad y=x^{2}-2 x
$$

-
where k is a constant, touch each other.

Determine the possible values of k.

Question 9 (****)
Find the range of values that the constant k can take so that

$$
2 x^{2}+(k+2) x+k=0
$$

has two distinct real roots.
\square , $k \in \mathbb{R}, k \neq 2$

Find the possible solutions of the quadratic equation

$$
x^{2}+(3-m) x+5=m^{2}
$$

where m is a constant, given that the equation has repeated roots.
$x, x=-2 \cup x=-\frac{2}{5}$

Created by T. Madas

Created by T. Madas

Question 11 (****)

$$
f(x)=p x^{2}+4 x(p+3)+5 p
$$

where p is a non zero constant.

The equation $f(x)=-19$ has two distinct real roots.

Find the range of the possible values of p.

Created by T. Madas

Question 12 (****)

$$
x^{2}-4 a x+2 b+1=0
$$

The above quadratic equation, where a and b are constants, has no real solutions.

Show clearly that

Created by T. Madas

Question 13 (****)
The curve C has equation

$$
y=4 x^{2}-7 x+11
$$

The straight line L has equation

$$
y=5 x+k
$$

where k is a constant.

Given that C and L intersect at two distinct points, show that $k>2$.

Created by T. Madas

Question 14 (****)
The straight line L has equation
where k is a constant.

The curve C has equation

$$
y=k x-9
$$

$$
4
$$

Ther

$$
y=3(x+1)^{2}
$$

It is further given that L is a tangent to C at the point P.
Determine the possible coordinates of P.

Created by T. Madas

Question 15 (****)
The curve C has equation

$$
y=3 x^{2}-4 x+7
$$

The straight line L has equation

$$
y=2 x+k
$$

where k is a constant.

Given that C and L do not intersect, show that $k<4$

Created by T. Madas

Question 16 (****)
The straight line with equation

$$
y=2 x+c
$$

is a tangent to the curve with equation

$$
y=x^{2}+6 x+7
$$

By using the discriminant of a suitable quadratic, determine the value of the constant c and find the point of contact between the tangent and the curve.

Question 17 (****)
A circle has equation

$$
x^{2}+y^{2}=8 y
$$

a) Find the coordinates of the centre of the circle and the size of its radius.
b) Sketch the circle.

The line with equation $x+y=k$, where k is a constant, is a tangent to this circle.
c) Determine, as exact surds, the possible values of k.

Created by T. Madas

Question 18 (****)

$$
f(n)=n^{2}-2 k n+k+12, n \in \mathbb{N},
$$

where k is a constant.

Given that $f(n)=n^{2}-2 k n+k+12$ is a square number for all values of n, determine the possible values of the constant k.
$\square, k=-3 \cup k=4$

Created by T. Madas

Created by T. Madas

Question 19 (****)
The straight line with equation

$$
y=2 x+k
$$

where k is constant, is a tangent to the curve with equation

$$
y=x^{2}-8 x+1
$$

By using the discriminant of a suitable quadratic, determine the value of the constant k and hence find the point of contact between the tangent and the curve.
\square
$\square, k=-24,(5,-14)$
40

Question 20 (****)
Find, in surd form, the range of values of m for which the quadratic equation

$$
x^{2}+(3-m) x+10=3
$$

\square
has no real roots.

$$
3-2 \sqrt{7}<m<3+2 \sqrt{7}
$$

Question 21 (****)
Find the possible roots of the following quadratic equation

$$
m x^{2}-4 x+m=3
$$

where m is a non zero constant, given that it has repeated roots.

Created by T. Madas

Created by T. Madas

Question 22 (****)
The cubic curve with equation

$$
y=a x^{3}+b x^{2}+c x+d
$$

where a, b, c are non zero constants and d is a constant, has one local maximum and one local minimum.

Show clearly that
\square , proof $-$

Created by T. Dadas

Question 23 (****)
The straight line with equation

$$
y=k(4 x-17)
$$

does not intersect with the quadratic with equation

$$
y=13-8 x-x^{2} .
$$

Find the range of possible values of k.
-
\square

Question 24 (****)
A straight line crosses the y axis at $(0,-5)$ and does not cross the curve $y=3 x^{2}-2$.

Find the range of the possible values of the gradient of the line.

$$
-6<\text { gradient }<6
$$

Created by T. Madas

Created by T. Madas

Question 25 (****)
The straight line with equation

$$
\begin{aligned}
& y=3(2 x+1) \\
& y=k\left(x^{2}+2\right)
\end{aligned}
$$

meets the curve with equation

By using the discriminant of a suitable quadratic, determine the range of the possible values of the constant k.

Created by T. Madas

Question 27 (****)

$$
(x-a)(x-b)=m^{2}
$$

where a, b and m are constants.

By using discriminant considerations, show that the above quadratic equation will always have real solutions.

\square , proof

Question 28 (****)
The curve C and the straight line L have respective equations

Show that C and L, intersect for all values of c.

Created by T. Madas

Question 29 (****)
A curve C has equation

$$
y=\frac{1}{x-1}, x \neq 1
$$

a) Sketch the graph of C, clearly labelling its asymptotes and the coordinates of any point where C meets the coordinate axes.

The line with equation $y=a-2 x$, where a is a constant, does not meet C.
b) Show clearly that

$$
2-2 \sqrt{2}<a<2+2 \sqrt{2}
$$

\square asymptotes $x=1, y=0,(0,-1)$
\square
\square

Created by T. Madas

Question 30 (****)
A circle C has equation

$$
x^{2}+y^{2}+2 x-4 y+1=0
$$

The straight line L with equation $y=m x$ is a tangent to C.

Find the possible values of m and hence determine the possible coordinates at which L meets C.

9 HARD QUESTIONS

Created by T. Madas

Question 1 (*****)
The straight line L crosses the y axis at $(0,-1)$.

The curve with equation

$$
y=x^{2}+2 x
$$

has no intersections with L.

Determine the range of the possible values of the gradient of L.

Question 2 (****+)
The equation of a quadratic curve C is

$$
y=k\left(2 x^{2}-x+1\right)-5 x^{2}+x-2
$$

where k is a constant.

Given that the graph of C lies below the x axis, determine the range of the possible values of k.

Created by T. Madas

Question 3 (****+)
A quadratic equation has two real roots differing by k, where k is a positive constant.

Determine, in terms of k, an exact simplified expression for the discriminant of this quadratic.

You may assume that the coefficient of the quadratic term of the equation is one.
\square $b^{2}-4 a c=k^{2}$

Question 4 (****+)

$$
f(x)=k+12 x-4 x^{2}
$$

where k is a constant.

It is further given that $f(x)>5$ for some values of x.

Show by suitable discriminant calculations, or otherwise, that
\square , proof

METBD C - By Gometinc Tite sporart

- $f(x)=k+12 x-4 x^{2}$
$\begin{aligned} f(x)-k & =12 x-4 x^{2} \\ -f(a)+k & =4 x^{2}-12 x\end{aligned}$
$\begin{aligned}-f(x)+k & =4 x^{2}-122 \\ -f(x)+k & =4\left[x^{2}-3 x\right]\end{aligned}$
$-f(x)+r=4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]$
$\begin{aligned}-f(a)+k & =4\left(x-\frac{3}{2}\right)^{2}-9 \\ -f(x)-k & =9-4\left(x-\frac{3}{2}\right)^{2}\end{aligned}$
$\begin{aligned} f(x)-1 & =9-4\left(x-\frac{3}{2}\right)^{2} \\ f(x) & =9+x-4\left(x-\frac{3}{2}\right)^{2}\end{aligned}$
- lodana at + steret
$\left(\frac{3}{2}, 9+k\right)$

Created by T. Madas

Question 5 (****+)

The figure above shows the graph of the curve C with equation

$$
y=\sqrt{2 x-4}, x \geq 2
$$

The point P lies on C, so that the tangent to C at P passes through the origin O.

Determine the coordinates of P.

You may not use calculus in this question

Created by T. Madas

Question 6 (****+)
A curve C has equation

$$
y=2 x^{2}+4(p+2) x+8 p+q+8
$$

where p and q are constants.

The curve meets the y axis at $y=18$.
Given further that C has no x intercepts, show that

$$
2<q<50
$$

\square proof

	$\begin{aligned} & \Rightarrow p^{2}+4 p-5<0 \\ & \Rightarrow(p+5)(p-1)<0 \\ & c N=<_{-5}^{1} \quad \therefore-5<p<1 \end{aligned}$ Now $\begin{aligned} & -s<p<1 \\ & -8<-8 p<40 \\ & 2<10-8 p<50 \\ & z<d<50 \end{aligned}$ $+2+p u$ eio

Question 7 (****+)
The curve C has equation

$$
y=\frac{x+1}{x^{2}+3}, x \in \mathbb{R}
$$

By considering the discriminant of a suitable quadratic equation, determine the range of the possible values of y.

Question 8 (*****)
The curve C has equation

$$
y=1-\frac{3 x}{x^{2}-2 x+4}, x \in \mathbb{R}
$$

Use a non differentiation method to find the coordinates of the stationary points of C.
\square
$\left(-2, \frac{3}{2}\right),\left(2,-\frac{1}{2}\right)$

$$
\begin{aligned}
& \Rightarrow(2 k-3)(2 k+1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { - finately lookina AT tite fquaftion }(1-k) x^{2}+(2 k-s) a+(4-4 k)=0 \\
& \begin{array}{l}
\text { If } k=-\frac{1}{2} \\
\Rightarrow \frac{3}{2} x^{2}-6 x+6=0
\end{array} \\
& \begin{aligned}
& \text { ir } k-\frac{3}{2} \\
\Rightarrow & -\frac{1}{2} x^{2}-2 x-2=0
\end{aligned} \\
& \Rightarrow 3 x^{2}-12 x+12=0 \\
& \begin{array}{l}
\Rightarrow \frac{1}{2} x^{2}+2 x+2=0 \\
\Rightarrow x^{2}+4 x+4=0
\end{array} \\
& \Rightarrow x^{2}-4 x+4=0 \\
& \Rightarrow(x-2)^{2}=0 \\
& \Rightarrow \quad a=2 \\
& \therefore\left(2,-\frac{1}{2}\right)
\end{aligned}
$$

$+\cos ^{2+5}$

Question 9 (****+)
A quadratic curve has equation

$$
f(x) \equiv 2 x^{2}+(4 k+3) x+(2 k-1)(k+2), x \in \mathbb{R}
$$

where k is a constant.
a) Evaluate the discriminant of $f(x)$.
b) Express $f(x)$ as the product of two linear factors.

$$
\text { , } b^{2}-4 a c=25, f(x) \equiv(2 x+2 k-1)(x+k+2)
$$

ENRICHMENT

QUESTIONS

Created by T. Madas

Question 1 (*****)

$$
x^{2}+2 x+1+k=0, x \in \mathbb{R}
$$

where k is a real constant.

Given that the above equation has distinct real roots, determine the nature of the roots of the following equation

$$
(k+2)\left(x^{2}+2 x+1+k\right)=2 k\left(x^{2}+1\right) .
$$

\square CP, no real solutions

Created by T. Madas
Question 2 (*****)

${ }^{(* * * * *)}$

The figure above shows the graph of the curve C and the straight line L with respective equations

$$
\frac{x^{2}}{5}+\frac{y^{2}}{4}=1 \quad \text { and } \quad y=x-5
$$

When C is translated in the positive x direction, L becomes a tangent to C, at some point P.

Determine the exact coordinates of P.

$$
\text { D } P\left(\frac{11}{3},-\frac{4}{3}\right) \quad \text { or } \quad P\left(\frac{19}{3}, \frac{4}{3}\right)
$$

Created by T. Madas

Question 3 (*****)

$$
a x^{3}+a x^{2}+a x+b=0
$$

where a and b are non zero real constants.

Given that $x=b$ is a root of the above equation, determine the range of the possible values of a.

Created by T. Madas

Question 4 (*****)

$$
\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\sqrt{x+2+\ldots}}}}}
$$

It is given that the above nested radical converges to a limit $L, L \in \mathbb{R}$.

Determine the range of possible values of x.
\square , $x \geq-\frac{9}{4}$

Question 5 (*****)

The straight line L is a tangent at the point P to the curve with equation

$$
y^{2}=8 x .
$$

The straight line L is also a tangent at the point Q to the curve with equation

$$
y=-64 x^{2} .
$$

Determine the exact area of the triangle $P O Q$, where O is the origin.
\square area $=\frac{3}{256}$

Created by T. Madas

Question 6 (******)
Find in exact form the equations of the common tangents to the curves with equations

$$
(x-2)^{2}+(y+1)^{2}=4 \quad \text { and } \quad y=x^{2}-4 x+11 .
$$

(A), $y=2 \sqrt{2}(x-2)+5, y=-2 \sqrt{2}(x-2)+5, y=2 \sqrt{30}(x-2)-23$,

$$
y=-2 \sqrt{30}(x-2)-23
$$

Question 7 (*****)
The following quadratic in x is given below

$$
x^{2}+3 k x+k^{2}=7 x+3 k
$$

where k is a constant.

Show that the above quadratic has real solutions whose difference is at least 2 .
\square , proof
$\xi x^{2}+3 k x+k^{2}=7 x+3 k$

- Regloup the thems as a quaratic in x
$\Rightarrow x^{2}+3 k x-7 x+k^{2}-3 k=0$
$\Rightarrow x^{2}+(3 k-7) x+\left(k^{2}-3 k\right)=0$
$-x^{2}+(3 k-7) x+(k-3 k)=0$
- chullate the discrumant in thems of k
$\Rightarrow \Delta=b^{2}-4 a c=(3 k-7)^{2}-4 \times 1 \times\left(k^{2}-3 k\right)$
$=9 k^{2}-42 k+49-4 k^{2}+12 k$
$=5 k^{2}-30 k+49$
6k) +49
$=5\left[(k-3)^{2}-9\right]+49$
$=5(k-3)^{2}-45+49$
$\begin{aligned}=5(k-3)^{2}+4 & \geqslant 4>0 \\ & \therefore \text { thmazs Resal bort }\end{aligned}$
- finaluy The diffregnce of The ports is gund by
$x_{2}-x_{1}=\frac{-b+\sqrt{\Delta}}{2 a}-\frac{-b-\sqrt{\Delta}}{2 a}=\frac{-b+\sqrt{\Delta}+b+\sqrt{\Delta}}{2 a}$

Created by T. Madas

Question 8 (*****)
θ

Two tangents to the circle are drawn so both are passing though the point $(0,3)$.

Determine in exact simplified form the value of the finite region between the circle and the two tangents, shown shaded in the figure above.

\square area $=\frac{1}{3}(3 \sqrt{3}-\pi)$

Question 9 (*****)
The points P and Q are the points of tangency of the common tangent to each of the curyes with equations

$$
y^{2}=4 a x \quad \text { and } \quad a y=2 x^{2},
$$

where a is a positive constant.

Show that $|P Q|$ is $7 \frac{1}{2}$ times the distance of the common tangent from the origin O.

