CIRCLE CRCLE Madas CIRCLE COORDINATE TONS) ASIBILITS COM (E. I.Y.G.B. BARBARAN BARBARAN I.Y.G.B. BARBARAN I.Y.G.B. BARBARAN C.I. CORDINA. GEORETRY WAN QUESTIONS)

Question 1 (**)

A circle has equation

 $x^2 + y^2 = 2x + 8$

Determine the radius and the coordinates of the centre of the circle.

r=3, (1,0)

Question 2 (**)

A circle C has equation

 $x^2 + y^2 - 12x + 2y + 24 = 0.$

a) Find the coordinates of the centre of the circle and the length of its radius.

The straight line L has equation

x + y = 4

- **b**) Determine the coordinates of the points of intersection between C and L.
- c) Show that the distance between these points of intersection is $k\sqrt{2}$, where k is an integer.

 $(6,-1), r = \sqrt{13}, (8,-4), (3,1)$, |k=5|

⇒ $2^{2}-12x+y^{2}+2y+2$ ⇒ $(x-6)^{2}-36+(y+1)^{2}$

 $(y=4-x)^{2}$

 $d = \sqrt{(\eta_1 - \eta_1)^2 + (\eta_2 - \eta_1)^2} =$

Question 3 (**)

The figure above shows the points A(4,6) and B(-2,14), which both lie on the circumference of a circle.

Given that AB is a diameter of the circle, determine an equation for the circle.

 $(x-1)^2 + (y-10)^2$

Question 4 (**)

10,

The straight line segment joining the points A(-7,4) and B(1,-2) is a diameter of a circle with centre at the point C and radius r.

C(-3,1)

r=5,

a = -3, 5

a) Find the coordinates of C and the value of r.

The point (0, a) lies on the circumference of this circle.

b) Determine the possible values of *a*.

Question 5 (**)

The straight line joining the points A(6,-3) and B(14,9) is a diameter of a circle.

a) Determine an equation for the circle.

The point (16, k) lies on the circumference of the circle.

b) Find the possible values of k.

Question 6 (**)

A circle is centred at (5,6) and has radius 13.

a) Find an equation for this circle.

The straight line l with equation y = x - 6 intersects the circle at the points A and B.

b) Determine the coordinates of A and the coordinates of B.

 $(x-5)^2 + (y-6)^2 = 169$, (17,11), (0,-6)

(a) $(2-s)^{2}+(y-6)^{2}=13^{2}$ $(2-s)^{2}+(y-6)^{2}=16^{9}$	> 22-342 =0 → 22(2-17)=0
(b) $y = x - 6$ $(x - 5)^2 + (y - 6)^2 = 103$	a=<"17
$\Rightarrow (2-5) + (2-6-6) - 161$	$y = \langle -6 \\ q \rangle$
$\Rightarrow (2-2)^{2} + (2-12)^{2} = 169$ $\Rightarrow 2^{2} - 102 + 25 + 2^{2} - 242 + 144 = 169$	··· (01-6) q (17,11)

Question 7 (**+)

A circle has its centre at C(-1,2).

The points A(-4,3) and B(0,5) lie on this circle.

- a) Find an equation for the circle.
- b) Determine an equation of the straight line which passes through C and bisects the chord AB.

Question 8 (**+)

A circle has centre C(-3,5) and passes through the origin.

a) Find an equation for this circle.

The circle crosses the x axis at the origin and at the point A

b) Determine the coordinates of *A*.

$(x+3)^2 + (y-5)^2 = 34$, A(-6,0)

Question 9 (**+)

A circle has equation

 $x^{2} + y^{2} - 20x + 8y + 16 = 0$.

The centre of the circle is at C and its radius is r.

a) Determine ...

- i. ... the coordinates of C.
- **ii.** ... the length of r.

The point P(4,4), lies on this circle.

b) Find the gradient of *CP*.

c) Hence find an equation of the tangent to the circle at P.

2	$\begin{array}{l} (k) \alpha^{2} + \eta^{2} - 2 \alpha \lambda + k \eta + 1 \delta = 0 \\ \Rightarrow \alpha^{2} - 2 \alpha \lambda + \eta^{2} + \eta \eta + 1 \delta = 0 \\ \Rightarrow (2 - \eta) - 2 \alpha \lambda + (\eta + \eta^{2}) - \eta \delta + (\beta + \eta^{2})$

 $, [C(10,-4)], [r=10], [-\frac{4}{3}], [y=\frac{3}{4}x+1]$

 $\begin{array}{c} \varphi \left(\left. \varphi_{1} \right| \varphi \right) \\ \varphi \left(\left. \varphi_{1} \right) \\ \varphi \left(\left. \varphi \right) \right) \\ \varphi \left(\left. \varphi \right) \\ \varphi \left(\left. \varphi \right) \\ \varphi \left(\left. \varphi \right) \right) \\ \varphi \left(\left. \varphi \right) \\ \varphi \left(\left. \varphi \right) \right) \\ \varphi \left(\left. \varphi \right) \\ \varphi \left(\left. \varphi \right) \right)$

Question 10 (**+)

C.p

N.C.B.

A circle C has equation

 $x^2 + y^2 - 10x + 6y - 15 = 0$

a) Find the coordinates of the centre of C and determine the size of its radius.

The circle intersects the x axis at the points A and B.

b) Find, in exact surd form, the x coordinate of A and the x coordinate of B and hence state the distance AB.

 $[5,-3], [r=7], [x=5\pm 2\sqrt{10}], [AB|=4\sqrt{10}]$

_	THE SQUARE IN I AND IN G GUES $T^2+y^2-lox+6g-15 = 0$
	$a^2 - 102 + q^2 + 6q - 15 = 0$
=	$0 = 2I - P - \frac{s}{(E + Q)} + 2S - \frac{s}{(2 - S)} = 0$
-	$(x-s)^{2} + (y+s)^{2} = 49$
\$	CENTRE AT (S1-3), RADIUS OF JAY = 7
SETTING	y=0 AND SOWING THE REQUIRING EQUATION
-	$(2-5)^2 + (0+3)^2 = 49$
-	$(x-5)^{2} = 40$
_	3 - 5 - 140
	100 - 2 - 2 - 2 - 2
	~ S+ 2410
	2 = 5 - 2/10
⇒ Щылсе Ав) = 4NIO
⇒ Щылсе Ав) = 4/10
⇒ Щылсе Ав	
⇒ Щбысе АВ Snuct) = 4/10

i G.B.

Question 11 (**+)

A circle C has equation

 $x^2 + y^2 = 8x + 4y \,.$

a) Determine the coordinates of the centre of C and the size of its radius.

The circle meets the coordinate axes at the origin O and at two more points A and B.

- **b**) Find the coordinates of A and B.
- c) Sketch the graph of C.

C.t.

d) State with justification but without any further calculations the length of AB.

(4,2	$2), r = \sqrt{20} = 2\sqrt{20}$	5	, $(8,0),(0,4)$, $ AB = 4\sqrt{5}$
		2	· · · Co
h.		(q) 	$\alpha_{1}^{2}(\frac{1}{2})^{2} = \beta_{12} + \frac{4}{3}$ $\alpha_{1}^{2} - \beta_{21} + \alpha_{1}^{2} - \frac{1}{3} = 0$ $(2\alpha - \alpha_{1}^{2})^{2} - 4\beta + (\frac{1}{2} - 2)^{2} - 4\beta = 0$ $(2\alpha - \alpha_{1}^{2})^{2} - (\frac{1}{2} - 2)^{2} = 20$
	1	(b)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	1.1		$\begin{array}{c} y - z_{\circ} < \overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}$
	~G)	(C)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ $
2			$(99) \qquad $

C.P.

(***) **Question 12**

A circle whose centre is at (3,-5) has equation

 $x^2 + y^2 - 6x + ay = 15,$

where a is a constant.

N.C.B. Madasman

COM

I.V.G.B

- **a**) Find the value of *a*.
- **b**) Determine the radius of the circle.

Smaths.com

I.C.B.

G.B.

21/15

the com

. K.G.B.

1+

.

Madasma

2017

(q)	2+y2-62+ay =5	(b)	$\Gamma^{2} = 24 + \frac{1}{4}q^{2}$	
	$\lambda^2 - 6 + \gamma^2 + \alpha \gamma = 15$		r2= 24+1 x100	
	$(\chi - 3)^2 + (y + \frac{1}{2}q)^2 - 9 - \frac{1}{4}q^2 = 15$		r ² = 2(+≥5	
	$(x-3)^2 + (y+\frac{1}{2}a)^2 = 24 + \frac{1}{2}a^2$		1 ² = 49	
	4 F ²		Γ= 7	
	1-a = 5			
	a = 10			
	1			

20

Smarns,

I.C.B.

Created by T. Madas

COM

1.01

Question 13 (***)

The endpoints of a diameter of a circle are located at A(-7,4) and B(1,-2).

a) Find an equation for the circle.

The straight line with equation

4y + 3x = 20

is a tangent to the circle at the point D.

b) Find an equation for the straight line CD, where C is the centre of the circle.

 $(x+3)^2 + (y-1)^2 = 25$,

c) Determine the coordinates of D.

3y = 4x + 15

D(0,5)

Question 14 (***)

The straight line joining the points A(2,5) and B(-2,9) is a diameter of a circle.

- a) Find an equation for this circle.
- **b**) Determine by calculation whether the point P(1,5) lies inside or outside the above mentioned circle.

Question 15 (***)

A circle has its centre at the point C(-2,3) and passes through the point P(-3,8).

- **a**) Find an equation for this circle.
- **b**) Show that an equation of the tangent to the circle at P is

x-5y+43=0.

 $(x+2)^2 + (y-3)^2 = 26$

Question 16 (***)

A circle C has equation

 $x^2 + y^2 - 6x - 10y + k = 0,$

where k is a constant.

.G.B.

I.G.P.

a) Determine the coordinates of the centre of C.

The x axis is a tangent to C at the point P.

b) State the coordinates of P and find the value of k.

	<u> </u>
a) <u>computer the spunges in a trun</u>	D N Y
$\implies 2^{2} + y^{2} - 6z - 10y + k = 0$ $\implies 2^{2} - 6z + y^{2} - 10y = -k$	
\implies $(2-3)^2-9 + (9-9)^2-25 = -4$	
\rightarrow $(x-3)^{2}+(y-5)^{2}=34-4$	Q(3,5)
Demunic & DIAGRAM	/
<u>by inspection P(3,0) this the</u> Radius is s	Suprementation of the second s
$\Rightarrow \Gamma^2 = 34 - k$	9(3,5)
$ \Rightarrow 5^2 = 34 - k $ $ \Rightarrow 25 = 34 - k $	2
$\Rightarrow 23 = 34 - 2$ $\Rightarrow \frac{1}{2} = 9 \qquad \text{(3,0)}$	P(3,0) > 3 }
// //	

F.G.B.

(3,5), (3,0), k=9

Ś

è.

Question 17 (***)

Ċ.Ŗ

I.C.B.

 $x^2 + y^2 - 2x - 2y = 8$

The circle with the above equation has radius r and has its centre at the point C.

a) Determine the value of r and the coordinates of C.

The point P(4,2) lies on the circle.

b) Show that an equation of the tangent to the circle at P is

y = 14 - 3x

 $r = \sqrt{10}$, C(1,1)

C.P.

Question 18 (***)

?Ŀ

E.B.

 $x^2 + y^2 - 10x + 4y + 9 = 0$

The circle with the above equation has radius r and has its centre at the point C.

- a) Determine the value of r and the coordinates of C.
- **b**) Find the coordinates of the points where the circle intersects the x axis.

The point P(3,2) lies on the circle.

c) Show that an equation of the tangent to the circle at P is

x-2y+1=0.

. R.B.

 $r = \sqrt{20}$, C(5,-2), (1,0), (9,0)

Question 19 (***)

C.B. 11202811

i.C.B.

The points A and B have coordinates (3,-1) and (9,7), respectively.

a) Show that the equation of the circle whose diameter is AB can be written as

 $x^2 + y^2 - 12x - 6y + 20 = 0.$

The tangent to the circle at B meets the x axis at the point P.

b) Determine the exact coordinates of P.

i G.B.

mana

3

Question 20 (***) A circle has equation

 $x^2 + y^2 + ax + by = 0,$

where a and b are constants.

The straight lines with equations

 $y = x - 4 \qquad \text{and} \qquad x + y = 2$

are both diameters of this circle.

5

Determine the length of the radius of the circle.

 $r = \sqrt{10}$

Question 21 (***)

1

I.C.P.

A circle C has its centre at the point with coordinates (5,4) and its radius is $3\sqrt{2}$.

a) Find an equation for C.

The straight line L has equation

y = x + 1.

b) Determine, as exact surds, the coordinates of the points of intersection between C and L.

c) Show that the distance between these points of intersection is 8 units.

$(x-5)^{2} + (y-4)^{2} = 18, (4+2\sqrt{2},5+2\sqrt{2}), (4-2\sqrt{2},5-2\sqrt{2})$

C.B.

M2(12)

Question 22 (***+)

A circle has its centre at the point C(2,5) and its radius is $\sqrt{10}$.

a) Show that an equation for the circle is

 $x^2 + y^2 - 4x - 10y + 19 = 0.$

The straight line with equation

y = x + 5

meets the circle at the points P and Q.

- **b**) Determine the coordinates of P and the coordinates of Q.
- c) Show that the distance of the chord PQ from C is $\sqrt{2}$ units.

(3,B) g · Po 1= (8-4) + (-1-3)2

(3,8),

(-1,4)

Question 23 (***+)

A circle has its centre at the point C(-3,8) and the length of its diameter is $\sqrt{80}$.

a) State an equation for this circle.

The straight line with equation

y = 3x + 7

intersects the circle at the points A and B.

- b) Find the coordinates of A and the coordinates of B.
- c) Show that *ACB* is a right angle and hence determine the area of the triangle *ACB*.

 $(x+3)^2 + (y-8)^2 = 20, \ (-1,4), \ (1,10), \ area = 10$

Question 24 (***+)

The points P(-2,5) and Q(6,-1) lie on a circle so that the chord PQ is a diameter of this circle.

a) Find an equation for this circle.

The straight line with equation y = 6 intersects the circle at the points A and B.

b) Determine the shortest distance of AB from the centre of the circle and hence, or otherwise, find the distance AB.

 $(x-2)^2 + (y-2)$

- SA
a) LOCKING AT THE DUARDAM
• THE CNULLE C MULT BE THE MIDPORT OF PQ
• $C\left(\frac{2_1 + 2_2}{2}, \frac{3_2 + 2_3}{2}\right) \approx C\left(\frac{6_2 - 2}{2}, \frac{5-1}{2}\right)$ = $C\left(2, 2\right)$
• $RABAS = \{PC\} \text{ or } \{PQ\} \ \cdot \ PQ + \cdots + PC $
• $\frac{f_{2}AT(\alpha)}{(2-2)^{2} + (g-2)^{2} + 2g}$
LOCUNG AT THE DIMERTIM OPPOSITE
• M (2) THE WEDPOINT OF AB • M (2)(5) TO NOTIFIEND (CIECUL THEODER)
• $[UC] = 4$ (By NORREGIAN OF THE Y LO-CERS) BY PTHHEORE
$ \begin{aligned} & \left u B \right ^2_+ \left u \varepsilon \right ^2_z \left B C \right ^2 \\ & \left u B \right ^2_+ \psi^2 S^2 \end{aligned} $
\ue_ ² + 16 = 25 Me ² - 9
\MB) = 3
$\frac{1}{48} = 2 u_8 = \frac{6}{2}$

4

25

|AB| = 6

Question 25 (***+)

A circle has equation

 $x^2 + y^2 - 8x + 6y = 0$

- a) Find the coordinates of the centre of the circle.
- **b**) Determine the radius of the circle.

The points A, B and C lie on the circle so that |AB| = 10 and |BC| = 5.

c) Find the distance of AC, giving the answer in the form $k\sqrt{3}$, where k is a positive integer.

 $(4,-3), r=5, d=5\sqrt{3}$

(***+) **Question 26**

A circle has equation

I.Y.C.B. Madasmaths.Com

Smarns.com i v.c.p

0

 $x^2 + y^2 - 8x - 14y + 40 = 0$

maths.com

ISMATHS.COL

1.6.6

1.1.6

1

I.V.C.B. Madasn

Created by T. Madas

ic.p.

Question 27 (***+)

. C.B.

Y.G.B.

The points A, B and C have coordinates (-3,0), (-1,6) and (11,2), respectively.

a) Show clearly that

$\measuredangle ABC = 90^{\circ}.$

The points A, B and C lie on the circumference of a circle centred at the point D.

b) Find an equation for this circle in the form

 $x^2 + y^2 + ax + by + c = 0,$

where a, b and c, are constants to be found.

C.P.

 $\overline{x^2 + y^2 - 8x - 2y - 33} = 0$

Question 28 (***+)

The points A and B have coordinates (-1,2) and (1,8), respectively.

a) Show that the equation of the perpendicular bisector of AB is

3y + x = 15.

The points A and B lie on a circle whose centre is at C(3,k).

b) Determine an equation for the circle.

	3	22	
-	12 <u>01</u>		2.
	$(x-3)^2 + (y-4)^2$	$(-)^2 = 20$	U
	n.		X
	(a) LOCUNG AT THE DAMAGNAL • MARKING THE $(2p) = M(2p) = M(2p)$ • $(2p) = M(2p) = M(2p) = M(2p)$		
	• GRADIET AS = $\frac{3-2}{1-(c_1)} = \frac{5}{2} = 3$ • FERENDIAL PLADAT = $-\frac{1}{3}$	* * B(10)	
	• $q_{-} q_{-} = \pi (z - x_{+})$ $q_{-} s_{-} = -\frac{1}{3}(z - 0)$ $q_{-} s_{-} s_{-} -\frac{1}{3}x$ $z_{-} - z_{+}$ $z_{-} - z_{+}$ $z_{-} + z_{+} = z_{-}$	~ 0	>
	b) LOCKING AT THE 2 ND DIMREMY • IF CREWE THEORMS, THE PREMISSIONAL BISENES OF ANY OPEN NET PHES THEORY THE CREWE	really	
	(3,k) WB BARACE 3y+z = B 3k+3 = U 3k = 12 k=4	4(je)	1
1	• $\frac{645042}{ BC = AC \text{ or } BC }{ BC = \sqrt{(k-8)^{k} (3-1)^{2}}} = \sqrt{(4-8)^{k} + (3-1)^{2}} = \sqrt{(4-8)^{k} + (3-1)^{2}}$	<i>t</i> = 12	

1+

Question 29 (***+)

The figure above shows a circle whose centre is at C(8,k), where k is a constant.

The straight line with equation

·C.B.

$$y = 3x - 12$$

is a tangent to the circle at the point A(5,3).

- **a**) Find an equation of the normal to the circle at A.
- **b**) Determine an equation for the circle.

Question 30 (***+)

5

A circle C has equation

 $x^2 + y^2 - 14x - 14y + 49 = 0.$

a) Find the radius of the circle and the coordinates of its centre.

b) Sketch the circle, indicating clearly all the relevant details.

The point P has coordinates (15,8).

A tangent drawn from P touches the circle at the point Q.

c) Determine the distance PQ.

(7,7), r=7, PQ = 4

Question 31 (***+) A circle has equation

12

KR

 $x^2 + y^2 - 6x + 4y = 13.$

a) Find the coordinates of its centre and the length of its radius.

The point P(k,-1), k > 0, lies on the circle.

b) Determine an equation for the tangent to the circle at P.

X	e at <i>P</i> . (4,-2), $r = \sqrt{26}$, $y + 5$	$\overline{5x=39}$
,	(a) $(2^{4}+g^{2}-\zeta_{2}+4g=0)$ $\Rightarrow (2^{4}-\zeta_{3}+g^{2}+\xi_{4}) = 13$.* Charle AT $\Rightarrow (2_{4}-\zeta_{3})^{2}+(\zeta_{4}+\zeta_{3})^{2}+\xi = 13$.PADIA T $\Rightarrow (2_{4}-\zeta_{3})^{2}+(\zeta_{4}+\zeta_{3})^{2}= 2.6$	
2	$\begin{array}{c} (\mathbf{d}) \\ & (d$	

nanasn.

Question 32 (***+)

₽.J.

ic.p.

The point P(12,9) lies on the circle with equation

$$(x+3)^2 + (y-1)^2 = 289.$$

- **a**) Find an equation of the normal to the circle at P.
- b) Determine the coordinates of the point Q, where the normal to the circle at P intersects the circle again.

Ĉŀ.

Mada

(***+) **Question 33**

A circle has equation

 $+ y^2 - 10x - 8y + 21 = 0.$

- a) Find the coordinates of the centre and the radius of the circle.
- b) Determine mathematically, but without solving any equations, whether the circle crosses the coordinate axes.

y = 2x + 4

c) Show that the straight line with equation

is a tangent to the circle, and determine the coordinates of the point where the tangent meets the circle.

Question 34 (***+)

A circle C has equation

 $4x^2 + 4y^2 - 8x + 24y - 5 = 0$

- a) Find the coordinates of the centre of the circle.
- b) Determine the size of the radius of the circle, giving the answer in the form $k\sqrt{5}$, where k is a rational constant.

The point P has coordinates (8,11).

The straight line L passes through P and touches the circle at the point Q.

c) Calculate the distance PQ.

 $\frac{1}{2}$

 $[(1,-3)], r = \frac{3}{2}\sqrt{5}],$

√935 ≈15.29

The figure above shows a circle that passes through the points A(-1,10) and B(7,4).

a) Given that AB is a diameter of the circle show that an equation for this circle is given by

$$x^2 + y^2 - 6x - 14y + 33 = 0.$$

The tangent to the circle at B meets the y axis at the point D.

b) Show that the coordinates of D are $\left(0, -\frac{16}{3}\right)$.

Ĉ.Ŗ

F.C.P.

A circle passes through the points with coordinates P(-2,1), Q(14,13) and R(20,k), where k is a constant.

Given that $\measuredangle PQR = 90^\circ$, determine an equation for the circle.

$\left[(x-9)^2 + (y-3)^2 = 125 \right]$
· · ·
<u>ds Pope=90 , by Obole Theolous Pr. 13 4 Junutine - sinut by</u> Fullows THE VALLE OF K
$G_{Q,Q} = \frac{Q_{2}-q_{1}}{q_{2}-q_{1}} = \frac{ \underline{2}-1 }{p_{1+2}} = \frac{ \underline{2}-1 }{q_{2}} = \frac{1}{2}$
GEND $DR = \frac{U_{1-}U_{1}}{2(-x)} = \frac{L-13}{20-44} = \frac{L-U_{1}}{c}$ THEFF FERNINTS WITT WURKY TO -1
$\frac{k-i3}{6} \times \frac{3}{4} = -1 \qquad \Longrightarrow \qquad \frac{3(k-i3)}{24} = -1 \qquad \Longrightarrow \qquad 3(k-i3) = -1$ $\implies \qquad \qquad$
$\implies k-13 = -8$ $\implies k_{-2} :$ NOT THE LUDIANI OF $\Re(2a_{1}5) = \Re(-2a_{1})$ is C
$\mathbb{C}\left(\frac{2_{i}+J_{i}}{2},\frac{y_{i}+y_{i}}{2}\right) = \mathbb{C}\left(\frac{2_{i}+2}{2},\frac{y_{i}+y_{i}}{2}\right) = \mathbb{C}\left(\frac{q_{i}}{3}\right)$
$\begin{array}{rcl} & & & & & & & \\ \hline T & & & & & \\ \hline T & & & & & \\ \hline d = \sqrt{(q_{1-2})^{2}} & & & & & \\ \hline d = \sqrt{(q_{1-2})^{2}} & & & & & \\ \hline \end{array} \\ \end{array} \qquad \qquad$
Finally we take $(\chi - \alpha)^{k} + (\chi - b)^{2} = \Gamma^{2}$
$(x-y)^2 + (y-y)^2 = 12^2$

C.B.

1120250

The point R(4,10) lies on the curve C whose equation is

 $y = x^2 - 6x + 18, \ x \in \mathbb{R}.$

The tangent and the normal to C at R meet the y axis at the points Q and P, respectively, as shown in the figure above.

a) Find the coordinates of Q and the coordinates of P.

A circle passes through the points P, Q and R.

b) Determine an equation for the circle.

<i></i>	C & 12
P(0,12),Q(0,2),	$x^2 + (y - 7)^2 = 25$

a		e the quadratic-use it at Rifue
	$y = 3^2 - 60 + 16$	
	$\frac{du}{dx} = 2x4-6 = 2.$	
ę	EQUATION OF TANGENT AT R	SPUATION OF NORMAL AT R
	4-40 = m (2-20)	4-4= m (2-x)
	y-10 = 2(2-4)	y +0 = -1/2 (2-4)
V	HW 2=0	WHIN 2=0
	y-10 = -8	.4-10= 2
	y=2	y=12
	:·Q(0,2)	PG12
.)	AS THERE IS A PHONT ANOLE	AT R (NORMAL & TANOGUT),
	PQ NUT BE A DIAMATHE	
	: NILLAPOINT OF PQ IS (C LAVAT PQ IS 10,50 F=	
	: (2-0) ² + (9-7) ²	
	$a^2 + (4 - 7)^2 = 25$	1
	- 9 11 - 2	Harris and and harris and

Question 38 (***+)

A circle C_1 has equation

 $x^2 + y^2 - 4x + 12y + 4 = 0$

a) Determine the coordinates of the centre and the radius of C_1 .

The circle C_2 with equation

 $x^2 + y^2 = a^2, a > 0$

touches C_1 externally.

F.C.B.

5

b) Find the value of *a* as an exact surd.

L.C.B.

, (2,-6), r=6, $a=-6+2\sqrt{10}$

Question 39 (***+)

I.G.p.

I.G.p.

A circle has centre at the origin and radius R.

This circle fits wholly inside the circle with equation

 $x^2 + y^2 - 10x - 24y = 231.$

1.01

adasm

Determine the range of possible values of R.

2.
SPART BY ORIGINIUM THE PARTICIPAR OF THE FUTUR CIRCU
$ = 3 - 202 + y^2 - 24y = 221 = 3 - (2 - 5)^2 - 24 + (2 - n)^2 - 144 = 221 = 3 - (2 - 3)^2 + (2 - n)^2 = 400 $
(HUTHE AT (5,12) AND RADIUS 20
Ner workslover the buydden
HE HEDDIDAULOS & MOULDE HE MOST [OD] R ≪ [OD]
R < (CDI-loc)
$R \leq 2_0 - \sqrt{s^2 + b^2}$
$P_{1} \leq 2_{0} - \sqrt{169^{7}}$
R ≤ 20-13
$\frac{R}{2} \leq 7$

COM

 $R \le 7$

COM

madasn.

I.F.G.B.

1:0.

Created by T. Madas

2017

E.

A circle C passes through the points P(1,6) and Q(12,5).

a) Find the gradient of PQ.

The centre of C is the point R which lies on the x axis.

- **b**) Show that the coordinates of R are (6,0).
- c) Determine an equation for C.

I.C.P.

6

Question 41 (***+)

- The points A, B and C have coordinates (-1, -4), (0,3) and (14,1), respectively.
 - a) Find an equation of the straight line which passes through B and C, giving the answer in the form ax + by = c, where a, b and c are integers.
 - **b**) Show that AB is perpendicular to BC.

A circle is passing through the points A, B and C.

- c) Determine the coordinates of the centre of this circle.
- d) Show that the radius of this circle is $k\sqrt{10}$, where k is a rational number.

	1 1 Ca
a) FRADINT BC	
$m_{1} = \frac{4_{2} - 4_{1}}{3_{2} - 3_{1}} = \frac{1 - 3}{14 - D} = \frac{-2}{14} = -\frac{1}{7}$	
EQUATION OF UNE THORADON B' & C	
$\begin{array}{l} y - y_{a} = n (x - x_{b}) \\ y = -\frac{1}{7} x + 3 \qquad (u_{\text{UNA}} \ \text{B}) \end{array}$	
7y = -2 + 21 x + 7y = 21	
GRADINGT OF AB	
$M_{48} = \frac{Q_2 - Q_1}{Q_2 - Q_1} = \frac{3 - (-4)}{0 - (-1)} = \frac{7}{1} = 7$	
$\frac{1}{2}$ 7 d $\frac{1}{2}$ the nethtur examples AB	LBC
() Manue allar Theorems B (A3)
CINSTRE IS THE MISSIONT OF AC	(~~))
CASILY AT $\left(\frac{ n-1 }{2}, \frac{1-4}{2}\right)$ $ E = D\left(\frac{B}{2}, \frac{1-3}{2}\right)$ A(4c4)	`)
d) FINING THE EXELUS - FIND LAD OR LOD OR +1	AB
$\begin{aligned} & \sum_{i=1}^{2} \frac{1}{2} \int_{i=1}^{2} \frac{1}{2} $	1

7y + x = 21

 $k = \frac{5}{2}$

Question 42 (***+)

A circle C has equation

$$x^{2} + y^{2} - 6x + 14y + 33 = 0$$

- a) Determine the coordinates of the centre and the radius of C.
- **b**) Show that the circle lies entirely below the x axis.

The point P(6,k), where k is a constant, lies outside the circle.

c) By considering the distance of P from the centre of the circle, or otherwise, determine the range of the possible values of k.

Question 43 (***+)

12

5

The points A(1,0), B(8,7) and C(7,8) lie on the circumference of a circle.

- a) Show that AB is perpendicular to BC.
- **b**) Find the distance AC.
- c) Show that an equation of the circle is

 $(x-4)^2 + (y-4)^2 = 25.$

The tangent to the circle at the point C crosses the x axis and the y axis at the points P and Q, respectively.

d) Determine the exact coordinates of P and Q.

|AC| = 10

 $P\left(\frac{53}{3},0\right), Q\left(0,\frac{53}{4}\right)$

Question 44 (***+)

A circle with centre at the point C has equation

 $x^2 + y^2 - 10x - 6y + 14 = 0.$

The straight line with equation y = k, where k is a non zero constant, is a tangent to this circle

a) Find the possible values k, giving the answers as exact simplified surds.

The points A and B lie on the circumference of the circle and the point M is the midpoint of the chord AB.

b) Given the length of MC is 2, find the length of the chord AB

The straight line with equation

x - 2y - 9 = 0

is a tangent to the circle at the point D.

c) Determine the coordinates of D.

a)	RECORDER THE EQUATION OF THE CIRCLE IN THE "STITUDARD RORM"
	$3 \frac{1}{4} + \frac{\eta^2}{4} - b\chi - \hat{b}_{\parallel} + k = 0$ $3 \frac{1}{4} + b\chi + \hat{b}_{\parallel}^2 - \hat{b}_{\parallel} + k = 0$ $(3 - \eta^2)^2 - 23 + (3y - 3)^2 - \eta + k = 0$ $(3 - \eta^2)^2 - (3y - 3)^2 = 20$
	(6,906 AF ((s,3), 24005 = J20 = 215
	LOOKING AT THE DIAGONAL OPPOSITE
	$\frac{y}{z} = \frac{1}{2} \frac{1}{z} $
L)	LOCKING AT THE DINGRAM RECOND & NAME PYTHOGORY THEMEN
	$\rightarrow UB ^2 + uc ^2 = cB ^2$
	$\begin{array}{c} \rightarrow \log ^{2} + 2^{2} - (2\pi)^{2} \\ \Rightarrow \log ^{2} + 4 = \infty \\ \Rightarrow \log ^{2} + 4 = 0 \end{array}$
c)	YOLOGUMATIONS SMOTHUR DOUT HAT JANDOR
	$\begin{array}{c} 2-\underline{\partial}_{j}-\underline{\partial}_{j}\pm 0\\ (\underline{a}\cdot\underline{a}^{2}+(\underline{b}\cdot\underline{a})^{2}=\underline{a}, \end{array} \begin{array}{c} \underline{b} \rightarrow x=\underline{\partial}_{j}+9\\ \longrightarrow \begin{bmatrix} (\underline{a}^{2}+\underline{a})^{-1} \end{bmatrix}^{2}+(\underline{b}^{-1}\underline{a})^{2} \equiv 20 \end{array}$

->	$(2y+4)^2 + (y-3)^2 = 20$
	$4y^3 + 16y + 16 + y^2 - 6y + 9 = 20$
	$S_{\mu}^{2} + IO_{\mu} + S = 0$
-	(1 ² +2y +1 = 0
	······································
	(y+1) ² co (Griptonia A REPIETRA ROOT)
	y=-1
· · · · ·	3.11
-	4 USING 2= 24+9
	a= 7
1.4.4.4	
	÷ D(7,-1) //
	·· •()
· · · · · · ·	

 $|k = 3 \pm 2\sqrt{5}|, ||AB| = 8|,$

D(7,-1)

Question 45 (***+)

The figure above shows a circle with centre at C with equation

 $x^2 + y^2 - 10x - 12y + 56 = 0.$

The tangent to the circle at the point A(6,4) meets the y axis at the point B.

a) Find an equation of the tangent to the circle at A.

b) Determine the area of the triangle ABC

	17 18 h	1.1
a)	Equilibrium the opution of 91	
	$x^{2} + y^{2} - x c_{1} - x c_{1} - x c_{1} - x c_{2} - x c_{1} $	(G.4)
	$(\alpha - 5)^2 + (y - 6)^2 = 5$	>,
	C(S,6) & r= JST FIND THE FRADING F AC, WHERE C(G,6) & A(6	, к)
	$W_1 = \frac{y_2 - y_1}{y_2 - x_1} = \frac{4 - 6}{4 - 5} = \frac{-2}{1} = -2$	
	$\begin{array}{c} \text{CDMS} \mbox{ fiths decays for } q = \frac{1}{2} \mbox{ we below The } \\ q = q_{a} = m(x-x_{a}) \\ q = 4 = \frac{1}{2} (x-c) \\ 2q = 8 = x-c \\ 2q = \infty + 2 \\ q_{a} = \frac{1}{2} x+1 \end{array}$	ThWEN ¹¹
)	FIND THE CO-ORDINATES OF B	
	ωητη 2=0 2y = 2 .g=1	
	: B(0,1)	

FIND THE DUTANCE AB, WHERE AGA & B(O1)	
$\Rightarrow d = \sqrt{(y_2 - y_1)^{\frac{1}{2}} + (x_2 - x_1)^{\frac{1}{2}}}$	
$\Rightarrow AB = \sqrt{(-4)^2 + (\circ - 6)^2}$	
$\Rightarrow (AB) = \sqrt{9+36}$	
\Rightarrow $ AB = \sqrt{45} = 3\sqrt{5}$	
HAVE THE ELEVIDED AREA IS GUIN BY	
→ 48fA ~ ± (+B) (+C)	
$\rightarrow +24A = \frac{1}{2} \times 3\sqrt{5} \times \sqrt{5}$	
-tan = 12 - Abt-e	

 $\frac{15}{2}$

Question 46 (***+)

A circle C has equation

 $x^{2} + y^{2} - 12x - 2y + 33 = 0.$

a) Find the radius of the circle and the coordinates of its centre.

The straight line with equation y = x - 3 intersects the circle at the points P and Q, dividing the circle into two segments.

b) Determine the coordinates of P and Q.

c) Show that the area of the minor segment is $\pi - 2$.

		-
a)	OMPLETING THE SQUARE IN J. & Y S. J. AND SHE BHT ON THE SAND	c) START BY DRAWING A DIAGRAM
	$\implies \lambda^2 + y^2 - 12x - 2y + 33 = 0$	· DIWALKE POP
	$\Rightarrow x^2 - 12x + y^2 - 2y + 33 = 0$	$[Pq] = \sqrt{(1-3)^2 (4-6)^2}$
	\Rightarrow $(3-6)^2 - 6^2 + (y-1)^2 - 1^2 + 33 = 0$	= \(\(4+4\)
	= (2-6)2-36 + (y-1)2-1 +33 = 0	= (B' = 2J2
	$\longrightarrow (x-6)^2 + (y-1)^2 = 4$	BY THE CASINE RULE OR SMALL TRIGONOMMENT
	- CFUTRE AT (61) & RABITLAD -:-	sing = Impl
6)	SOUNDE SINULIANOUSLY WE OBTAIN	$sin\theta = \frac{\sqrt{2}}{2}$ $\theta = 4s^{\circ} = \frac{\pi}{2}$
	$\Rightarrow (\alpha - 6)^2 + (9 - 1)^2 = 4$	AltA OF SHOOP IS \$10000
	- (x-6)2+ (x-3-1)2=4 (y=x-3)	$\frac{1}{2} \times 2^2 \times \overline{\underline{w}} = \overline{\underline{w}}$
	$\implies (x-e)^2 + (x-4)^2 = 4$	2 2
	$\Rightarrow 3^2 - 12x + 36 + 3^2 - 8x + 16 = 4$	
	$\Rightarrow 2x^2 - 20x + 48 = 0$	 Alth of TRIANGLE IN YOUGH
	$\Rightarrow x^2 - 10x + 24 = 0$	$\frac{1}{2} \times 2 \times 2 \times \sin(2\theta) = 2 \sin \frac{\pi}{2} = 2$
	⇒ (x-6)(x-4)=0	 Etsmetic Acia = Aria of sectore - Aria or
	$\Rightarrow x \sim < \frac{c}{h} \qquad \hat{a} = < \frac{3}{r}$	= π - 2
	$\therefore P(4,1) q q(\epsilon,3)$	-48 8660/60

r = 2, (6,1), (4,1), (6,3)

TRANSOLE

2

Question 47 (***+)

- The points A, B and C have coordinates (2,1), (4,0) and (6,4) respectively.
 - a) Determine an equation of the straight line L which passes through C and is parallel to AB.
 - **b**) Show that the angle ABC is 90°.
 - c) Calculate the distance AC.

A circle passes through the points A, B and C.

d) Show that the equation of this circle is given by

 $x^2 + y^2 - 8x - 5y + 16 = 0.$

e) Find the coordinates of the point other than the point C where L intersects the circle.

a) STARF WITH THE GRADINSI OF H	B , 4(2,1) a \$(4,0)	1
$W = \frac{y_2 - y_1}{x_2 - x_4} = \frac{b - 1}{4 - 2} = \frac{-1}{2}$	<u>L</u>	
CRUATION OF A LINE PARALLEL	TO AB , THEOWOH CGG	.u)
$\frac{y_1 - y_2}{y_1 - x_0} = m(x_2 - x_0)$ $\frac{y_1 - 4}{y_1 - x_0} = -\frac{1}{2}(x_2 - 6)$ $\frac{y_1 - 8}{y_2} = -x_1 + 6$ $\frac{y_2}{y_2} + x_1 = 1 + 1$		
b) FIND THE GRADINE OF BC		
$W_{kc} = \frac{4-0}{6-4} = \frac{4}{2} = 2$	4 (81)	*C(6,8)
45 THE GRADINUTS OF BC & AS	\sim	
ARE NEGATIVE 2FORPLOCALL OF ONE	Š	(40)
- NURHER ABC = 90"		
C) OSING-THE DISTRICE FORMULA		
d= v ((42-41)2+ (24-21)2	7	
HACI = JQ-1)2+(C2)2		
AC1 = V 9+ 16		
APL - S		

x+2y=14, ||AC||=5, |(4,5)|

Question 48 (***+)

EB. Mai

I.C.B.

- The straight line l passes through the points P(7,10) and Q(17,3).
 - a) Find an equation of l.
 - **b**) Show that OP is perpendicular to PQ, where O is the origin.

A circle passes through O, P and Q.

c) Find an equation for this circle.

F.G.B.

(a) GRADING $P_{ij} = \frac{q_{1} - q_{1j}}{x_{2} - x_{1}} = \frac{3 - l_{0}}{r_{1} - r_{1}} = \frac{-7}{l_{0}}$	C IS THE MIDRON)
$\begin{cases} & \underline{y} - \underline{y}_0 = u_1(x, -x_0) \\ & \underline{y} - v_0 = -\frac{1}{w}(x, -x) \end{cases}$	$\begin{pmatrix} & C \\ & & \\ & \\ & & $
104-100 = -72+49 Tar+10 4 = 149	P (oc) = √ (E) ² +(E) ² = √ 28 ²
(b) GRAPHING OP = $\frac{3_2-3_1}{3_2-3_1} = \frac{10-0}{7-0} = \frac{10}{7}$: GUATION OF CIEDE
As reported after OP L PQ	$\begin{pmatrix} (\chi - \frac{17}{2})^2 + (y - \frac{\chi}{2})^2 = (\sqrt[4]{\frac{286}{4}})^2 \\ (\chi - \frac{17}{2})^2 + (y - \frac{\chi}{2})^2 = \frac{286}{4} \end{pmatrix}$

F.G.B.

Mada

3

Question 49 (***+)

C.

A circle C with centre at the point P and radius r, has equation

 $x^2 - 8x + y^2 - 2y = 0.$

a) Find the value of r and the coordinates of P.

b) Determine the coordinates of the points where C meets the coordinate axes.

The points A, B and Q(8,2) lie on C.

The straight line AB is diameter of the circle so that PQ is perpendicular to AB.

c) Calculate the coordinates of A and B.

$r = \sqrt{17}$,	P(4,1),	(8,0),(0,0),(0,2),	$\overline{A(3,5)}$,	B(5,-3)
10				50.

- 1			e 187 - 1	F. 36.				
a)	$\begin{array}{c} 32^{2} + 82 + (y^{2} - 2y = 0) \\ \hline \underline{\text{countrive. The same}} \\ (\dot{a} - 4)^{2} - (b + (y - 1)^{2} - (c + (y - 1)^{2} - (c + y)^{2} + (y - 1)^{2} - (c + y)^{2} + (y - 1)^{2} - (c + y)^{2} + (2y - 1)^{2} - (c + y)^{2} \\ \hline \vdots \\ \hline \frac{P(4_{1})}{2} + (2y - 1)^{2} - (c + y)^{2} + (c + y)^{2} - (c + y)^{2} \\ \hline \end{array}$. j = 0		1111	1722 22 (2-	8x + 16 + -136x + -8x + -8x + -3)(x - 3 - 5)) = 225	= 0
6)	<u>malina)</u> α=0 y²-2y=0 y(y-2)=0 ∴ (0,0) a (0,2)	<u>wet}, y=0</u> x ² -81=0 2(2-8)=0 ∴ (00) 4 (80)			4	A(3,5)	6	8(
0	COOLING AT THE DIAGON	• GRADIAT PQ = $\frac{2-1}{9-4} = \frac{1}{4}$						
	0 (4) 0 8	 € (particu) or une mbous An y -1 = -4 (2, -4) y -1 = -4x + 4(y = 17 - 4x Sociality Statements 	ξ					
		$(x-4)^{2} + (y-1)^{2} = 17$ $(x-4)^{2} + (17-4x-1)^{2} = 17$ $(x-4)^{2} + (16-4x-1)^{2} = 17$						

2

Question 50 (***+)

The points A(1,2), B(3,8) and C(13,8) are shown in the figure below.

The straight lines l_1 and l_2 are the perpendicular bisectors of straight line segments *AB* and *BC*, respectively.

a) Find an equation for l_1 .

Give the answer in the form ax + by = c, where a, b and c are integers.

The point D is the intersection of l_1 and l_2 .

b) Show that the coordinates of D are (8,3)

A circle passes through the points A, B and C.

c) Find an equation for this circle.

x+3y=17	$(x-8)^2$	$+(y-3)^2=50$)
18		dry	
664.067 oF 1 % ft876.000 - y y- =	$\begin{array}{c} (2,5) \\ (2,5) \\ HB (u) \frac{(3,2)}{2u-2l} = \frac{5-2}{2u-2} = 3 \\ HC (2u-2u) \\ -\frac{1}{2}(2u-2) \\ -\frac{1}{2}(2u$	C) SP ORE TREEMAN	
: le :	of BC IS 2540 UNIT {	$\begin{cases} c_{1}^{1} k_{2}^{2} D_{1}^{2} (M_{1}^{2})^{2} + C_{2}^{2} C_{2}^{2} D_{1}^{2} (M_{1}^{2})^{2} + C_{2}^{2} D_{1}^{2} + C_{2}^{2} + C_$	
	$ \begin{array}{c} 17\\ 3y = 9\\ y = 3\\ y = 3\\ z = 0\\ z =$	$= 4^{16}$ $(x-e)^2 + (y-3)^2 = 20$	

The figure above shows a circle with centre at P and radius of 6 units.

The y axis is a tangent to the circle at the point S(0,3).

a) Find an equation for the circle.

A tangent to the circle is drawn from the point Q(12,10) and meets the circle at the point R.

b) Determine the length of *QR*

Question 52 (****)

The points A, B and C have coordinates (3,5), (15,11) and (17,7), respectively.

a) Show that $\measuredangle ABC = 90^{\circ}$.

All three points A, B and C lie on the circumference of a circle.

b) Find an equation for this circle in the form

 $x^2 + y^2 + ax + by + c = 0,$

where a, b and c, are integers to be found.

The point P also lies on this circle so that BP is a diameter of the circle.

c) Determine the coordinates of P.

P(5,1)

 $x^2 + y^2 - 20x - 12y + 86 = 0 |,$

Question 53 (****)

i.C.B.

I.C.B.

The circle C_1 has centre at (8,4) and **touches** the y axis.

The circle C_2 has centre at (16,4) and **touches** the x axis.

a) Find the equation of C_1 and the equation of C_2 . Give the answers in the form $(x-a)^2 + (y-b)^2 = c$, where a, b and c are constants to be found.

The two circles intersect at the points A and B.

b) Determine, in exact surd form where appropriate, the coordinates of A and the coordinates of B.

i C.B.

12

 $(x-8)^2 + (y-4)^2 = 64$, $(x-16)^2 + (y-4)^2 = 16$,

Question 54 (****)

5

- The points P(-4,1) and Q(5,10) lie on a circle C.
 - a) Find an equation of the perpendicular bisector of PQ.
 - **b**) Given that one of the diameters of C has equation x + 2y = 17, show that an equation of C is

 $x^2 + y^2 + 10x - 22y + 45 = 0.$

c) Determine whether the origin O lies inside the circle.

x + y = 6

Question 55 (****)

A circle C has equation

 $x^{2} + y^{2} + ax + by + 43 = 0$,

where a and b are constants.

a) Given that the points (-4,7) and (-2,5) lie on C, determine the coordinates of the centre of C and the size of its radius.

 $-3,6), r = \sqrt{2}$

A straight line passes through the point P(4,5) and is a tangent to C at the point Q.

b) Show that the length of PQ is $4\sqrt{3}$.

		<u> </u>
a) USING GADH OF THE POINTS IN TOZU, F	d & a M ZLOTTANZO GUT MISS	FINALLY
$ \begin{array}{c} (-\psi_i) \implies (+\psi_i)^2 + \gamma^2 + \alpha(-\psi_i) + bx\gamma + \psi \\ (-2_i f) \implies (-2)^2 + 2^2 + \alpha(-2_i) + bxS + \psi \\ \end{array} $		$\rightarrow PG$ $\rightarrow PG$
16 + 49 - 44 + 7b + 43 = 4 + 25 - 28 + 5b + 43 =	o}=	⇒ (Pi ⇒ (Pi
$\times (-1) \Rightarrow -4a + 2b = -108$ $\times 2 = -2a + 5b = -72$		⇒ (Pq ⇒ (Pq
4a-7b = 108.Z => -4a+10b = -144.J	HODINJC- 3b = -36 b = -12	~ [.4
	$ \begin{cases} 4a - 7b = 108 \\ 4a + 84 = 108 \\ 4a = 24 \\ 4 = 6 \end{cases} $	
$\frac{48\pi cc}{3^2 + 6_2} + \frac{1}{9^2} - \frac{1}{12} + \frac{1}{9} = 0$ $(2\pi + 3^2 - 1 + (y - 6)^2 - 3c + 43 = 0$ $(2\pi + 3)^2 + (y - 6)^2 = 2$	0	
	CERTRE (3,6) RADIUS = J2	
b) LOOKUNG AT THE DIAGRAM BELOW		
READ A	$\begin{array}{l} \mathcal{P}(I_{1}\varsigma) = \mathcal{R}(-s_{1}, \varepsilon) \\ \mathcal{P}(I_{1} = \sqrt{(-s_{1}-s_{1})^{2} + (-s_{-}-s_{1})^{2}} \\ \mathcal{P}(I_{2} = \sqrt{(-s_{1}-s_{-})^{2} + (-s_{-}-s_{1})^{2}} \\ \mathcal{P}(I_{2} = \sqrt{(-s_{1}-s_{-})^{2} + (-s_{-}-s_{1})^{2}} \\ \mathcal{P}(I_{2} = \sqrt{(-s_{1}-s_{-})^{2} + (-s_{-}-s_{1})^{2}} \\ \end{array}$	
alarah sang Calabaja baran kalandar pa		

Question 56 (****)

C.B.

in C.P.

A circle C_1 has equation

$${}^{2} + y^{2} - 10x - 10y + 41 = 0.$$

a) Determine the coordinates of the centre of C_1 and the size of its radius.

Another circle C_2 is such so that C_2 is **touching both** C_1 and the y axis.

b) Find the two possible equations of C_2 , given further that the centres of both C_1 and C_2 , have the same y coordinate.

i C.B.

(****) **Question 57**

A circle C has equation

 $+ y^2 - 4x - 12y + 15 = 0.$

ths.com

1:0.

1+

112d2s112

CD TO

The Com

proof

Ĉ\$.

21/18

a) Show that C does not cross the x axis.

nadasmaths.com

I.G.B.

N.C.B. Madasman

21/1s.Com

I.F.G.B

b) Show further that the straight line with equation 3x + 4y = 5 is a tangent to C.

Y.C.B. Madasn

20m

Smarns,

nadasn

Created by T. Madas

COM

1.01

Question 58 (****)

The figure above shows a circle with centre at C(7,2).

The circle meets the x axis at the points P and R, and the y axis at the points Q and S.

- **a**) Given that R(17,0), find an equation of this circle.
- **b**) Show that

$$|QS| = 2\sqrt{55} .$$

c) Determine the area of the quadrilateral PQRS.

Question 59 (****)

2

A circle is given parametrically by the equations

 $x = 4 + 3\cos\theta, \ y = 3 + 3\sin\theta, \ 0 \le \theta < 2\pi$

- **a**) Find a Cartesian equation for the circle.
- **b**) Find the equations of each of the two tangents to the circle, which pass through the origin *O*.

The figure above shows a circle meeting the x axis at P(-5,0) and Q(13,0), and the y axis at R(0,-4) and S(0,16).

a) Show that an equation of the circle is

$$x^2 + y^2 + ax + by = c$$

where a, b and c are constants to be found.

The point A has coordinates (20,12).

A tangent drawn through A meets the circle at the point B.

b) Show that the distance AB is $k\sqrt{7}$, where k is an integer.

(****) **Question 61**

Relative to a fixed origin O, the points A and B have coordinates (0,1) and (6,5), respectively.

a) Find an equation of the perpendicular bisector of AB.

A circle passes through the points O, A and B.

b) Determine the coordinates of the centre of this circle.

$3x + 2y = 15$, $\left(\frac{14}{3}, \frac{1}{2}\right)$
20
a) Proceed the Privaces
• Gerality AB = $\frac{g_{2r}-g_1}{x_2-x_1} = \frac{5-1}{6-0} = \frac{4}{5} = \frac{2}{5}$
 OVE UNE (PREPRODUCIAL BUSITION) = - 3/3
• THOMA THE NIDRANT OF $AB : \left(\frac{2}{2}, \frac{1+5}{2}\right) = (3,3)$
 Exputero line 1445 Equation)
$ \begin{array}{l} (y - y_0 = \gamma_1(y - z_0) \\ y - 3 = -\frac{3}{2}(x - 3) \end{array} \end{array} $
2y-6 = - 32 + 9
$\frac{2y+3x}{1} = 15$
b) LOOKING AT & DIAGROMY - NOT DRAWN TO SCALE
GRADING OA = $\frac{(4c+3)}{2a_2-a_1} = \frac{1-0}{0-0} = \frac{1}{0}$
LE INFINITA CONDINCT VIEW
LE LINE IS DEPENDEL.
×(0,0) ×(0,0)
: PREPAIDINGUNE BISECTOR HAS EXPANSION $y = \frac{1}{2}$
WING 24+3a=15 WITH y=2
2×2 +32 = 15
$3\alpha = \frac{14}{3} \qquad \qquad$

Question 62

The figure above shows the circle C and the straight line L with respective equations

 $x^{2} + y^{2} - 6x - 8y + 21 = 0$ and x + 2y = 2.

a) Find an equation of the line which passes through the centre of C and is perpendicular to L.

b) Hence determine, in exact surd form, the shortest distance between C and L.

42-	and and a second
() Find that check the Revision of the set	$\begin{aligned} d_{1} &= 23 - 2 = 2\left(\frac{5}{2}\right) - 2 = \frac{12}{4} - 2 = 3\frac{1}{4} \\ & \therefore \underline{3}\left(\frac{5}{2}, \frac{5}{2}\right) \\ & \therefore \underline{3}\left(\frac{5}{2}, \frac{5}{2}\right) \\ & \therefore \underline{3}\left(\frac{5}{2}, \frac{5}{2}\right) \\ & A(3,4) B\left(\frac{5}{2}, \frac{5}{2}\right) \\ & \Rightarrow A = \sqrt{\left(\frac{5}{2}, \frac{5}{2}\right)^{2}} + \left(4, \frac{3}{2}\right)^{2} \\ & \Rightarrow A = \sqrt{\frac{5}{2}} + \frac{23}{22} \\ & \Rightarrow A = \sqrt{\frac{5}{2}} + \frac{3}{22} \\ & \Rightarrow A = \sqrt{\frac{5}{2}} + \frac{3}{2} \\ & \Rightarrow A = \sqrt{\frac{5}{2}} + \frac{3}{2} + \frac{3}{2} \\ & \Rightarrow A = \frac{3}{2} + \sqrt{\frac{5}{2}} \\ & \Rightarrow A = \frac{3}{2} + \sqrt{\frac{5}{2}} \\ & \therefore \text{ Equilib Dut Table 5} \frac{9}{2} + \sqrt{\frac{5}{2}} - 2 \end{aligned}$
b) Stand Structure to the interaction of the inter	

 $, y = 2x - 2, \frac{9}{5}\sqrt{5} - 2$

Question 63 (****)

A circle has centre at C(4,4) and passes through the point P(6,8).

The straight line l_1 is a tangent to the circle at P.

a) Show that an equation of l_1 is

x + 2y = 22.

The straight line l_2 has equation y = 2x - 14 and meets l_1 at the point Q.

- **b**) Find the coordinates of Q.
- c) Show that l_2 is also a tangent to this circle at the point R, and determine the coordinates of R.

|Q(10,6)|, |R(8,2)|

Question 64 (****)

10,

A circle C_1 has equation

 $x^2 + y^2 + 20x - 2y + 52 = 0.$

a) Determine the coordinates of the centre of C_1 and the size of its radius.

A different circle C_2 has its centre at (14,8) and the size of its radius is 10.

The point P lies on C_1 and the point Q lies on C_2 .

b) Determine the minimum distance of PQ.

 $(-10,1), r=7, ||PQ|_{\min} = 8$

è.

Question 65 (****)

The figure above shows a square *PQRS* with vertices at the points P(1,1), Q(3,5), R(7,3) and S(5,-1).

The square is circumscribed by the circle C_1 .

a) Determine the coordinates of the centre of C_1 and the size of its radius.

 $r = \sqrt{10}$, (4,2)

A circle C_2 is inscribed in the square *PQRS*.

b) Find an equation of the circle C_2 .

(3) • Heaver of FR (so (sp) is the coase of C, $P_{ij}^{(1)}(1) = Q_{ij}^{(2)}(2) = M_{ij}^{(2)}(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}) = (4, 2)$ • Brands of C, as the Xamouck (spa, (4p)) = $P_{ij}(a)$ $d = A_{ij}^{(1)}(2a, a_{ij})^{k} = \sqrt{(4-a_{ij})^{k}}(2a-2i_{ij})^{k} = \sqrt{(4-a_{ij})^{k}}(2a-2i_{ij})^{k}$ • Colore $A_{ij}^{(1)}(A_{ij})^{k}A_{ij}(A_{ij$

 $(x-4)^2 + (y-2)^2 = 5$

b) C_2 the time Shut (Solid AS C_1 , if $(A_2)_2$ Instruce (RR = $\sqrt{(2+5)^2(C_2-5)^2} = \sqrt{4+16^2} = \sqrt{12} = 245^2$ \therefore Phones of C_2 is the for (RR_1) is $\sqrt{4}$ $\therefore (2+4)_2^2 + (42^2)_2^2 = (42^2)^2$

Question 66 (****) A circle has equation

£Ŀ,

K.C.

 $x^{2} + y^{2} - 4x - 4y + 6 = 0$.

a) Determine the coordinates of the centre and the radius of the circle.

The point A(9,1) lies outside the circle.

b) Find the shortest distance from A to the circle, giving the answer as a surd.

A tangent is drawn from the point A to the circle, touching the circle at the point B.

c) Determine, as an exact surd, the distance AB.

 $(2,2), r = \sqrt{2}, \ 4\sqrt{2}, \ |AB| = 4\sqrt{3}$

Question 67 (****)

A circle has equation

$$(x-2)^{2} + (y+2)^{2} = 20.$$

- a) Write down the coordinates of its centre the size of its radius.
- **b**) Sketch the circle.

The sketch must include the coordinates of any points where the graph meets the coordinate axes.

The straight line with equation y = 2x + k, where k is a constant, meets the circle.

c) Show that the coordinates of any points of intersection between the line and the circle satisfies the equation

$$5x^{2} + 4(k+1)x + k^{2} + 4k - 12 = 0.$$

d) Hence, find the two values of k for which the line y = 2x + k is a tangent to the circle.

k = 4

 $(2,-2), r = 2\sqrt{5}, k = -16 \cup$

Question 68 (****)

A circle has centre at C(2,3) and radius 6.

a) Show that an equation of the circle is

 $x^2 + y^2 - 4x - 6y = 23.$

The circle crosses the y axis at the points P and Q, where the y coordinate of P is positive.

b) Find the distance PQ, giving the answer as an exact simplified surd.

The vertical straight line with equation x=1 intersects the radii *CP* and *CQ* at the points *R* and *S*, respectively.

c) Determine the exact area of the trapezium PQSR.

 $||PQ| = 8\sqrt{2}|,$

area = $6\sqrt{}$

Question 69 (****)

СĿ,

P.C.B.

The points $A\left(\frac{96}{13}, \frac{40}{13}\right)$ and $B\left(\frac{216}{13}, \frac{90}{13}\right)$ are the endpoints of the diameter of circle.

a) Show that an equation of the circle is

 $(x-12)^2 + (y-5)^2 = 25.$

b) Sketch the circle, indicating clearly all the relevant details.

c) Show that a normal to the circle at B passes through the origin.

C.P.

	F utility.		the second se
a)	MIDPONT OF $AB = \left(\frac{96}{2} + \frac{25}{2}, \frac{48}{3}, \frac{48}{3}, \frac{90}{2}\right)$ - $\left(12, 5\right)$	225	c) (c ₀₁ y)
	$D(STRUCE (PADULL) BATHAN (1212) 4 (\frac{9}{12}, \frac{13}{13})\Gamma = \sqrt{(12 - \frac{46}{12})^2 + (5 - \frac{43}{12})^2},$	2	B(200 PAL NOBWAL TPNGGGT
	$L = \sqrt{\frac{455}{(60)} + \frac{31}{(21)^2}} = \sqrt{\frac{3600 + 627}{169}}$	2	$\mathcal{Q}P-2\partial_{i}=\frac{\frac{\partial_{i}}{\partial z}-2}{\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}-\frac{\partial_{i}}{\partial z}$
6)	$(3-15]_{5} + (3-2)_{5} = 22$ is shown 0	222	$= \frac{-eo}{-eo} - \frac{12}{12}$ $e60H(104) OE NORWAR7 RINKe (1512)$
(0)	A.Y	3	$\hat{n}_{-1} = \frac{1}{2} x - 2$ $\hat{n}_{-2} = \frac{1}{2} (x - 12)$ $\hat{n}_{-2} = \frac{1}{2} (x - 12)$
	x ((4,0) x (0,2) (0,2)	222	$\begin{split} \mathcal{G} &= \mathcal{G} \\ \mathcal{G} &= \frac{\mathcal{G}}{2} \\ \mathcal{G} &= \frac{\mathcal{G}}{2} \\ & If Phases Housel The second is constrained in the second in th$

Question 70 (****)

A circle C_1 has equation

$$^2 + y^2 - 10x + 4y = 71.$$

a) Find the coordinates of the centre of C_1 and the size of its radius.

Another circle C_2 is centred at the point with coordinates (-4,10) and has radius 5.

b) Show that C_1 and C_2 touch each other.

The two circles touch each other at the point P and the straight line L is the **common** tangent of C_1 and C_2 .

- c) Determine the coordinates of P.
- **d**) Show that an equation of L is

4y = 3x + 27.

(5,-2),

(-1,6)

|r=10|,

(****) Question 71

F.C.A

I.G.B

The figure above shows a circle that crosses the x axis at the points A(-1,0) and B(7,0), while it passes through the point C(3,8).

Determine the coordinates of the centre of the circle and the length of its radius.

0 (7.0)

9 + 64 -18

Y.G.B.

21/2.50

Madası

5.

The figure above shows the circle C with equation

 $x^2 + y^2 - 14x + 33 = 0.$

a) Determine the coordinates of the centre of C and the size of its radius.

The tangents to C from the point R(7,8) meet C at the points P and Q.

b) Show that the area of the finite region bounded by *C* and the two tangents, shown shaded in figure, is

 $\frac{16}{3} \left[3\sqrt{3} - \pi \right].$

(7,0), r=4

Question 73 (****)

- A circle passes through the points A(1,2), B(3,-4) and C(15,0).
 - a) Show that AB is perpendicular to BC.
 - **b**) Hence find the exact length of the diameter of the circle.
 - c) Show that an equation of the circle is

 $x^2 + y^2 - 16x - 2y + 15 = 0.$

d) Determine the coordinates of the point which lies on the circle and is furthest away from the point B.

diameter = $10\sqrt{2}$, (13,6)

Question 74 (****)

A circle has equation

 $x^2 + y^2 = 8y.$

- a) Find the coordinates of the centre of the circle and the size of its radius.
- **b**) Sketch the circle.

£

i C.B.

The line with equation x + y = k, where k is a constant, is a tangent to this circle.

c) Determine, as exact surds, the possible values of k.

mana.

(0,4), r=4, $k=4\pm 4\sqrt{2}$

naths.col

1+

(****) **Question 75**

A circle passes through the points (0,0), (8,0) and (0,6).

Determine the coordinates of the centre of the circle and the size of its radius.

Question 76 (****)

The figure above shows the circle with equation

$$x^2 + y^2 - 4x = 12.$$

The circle has centre at C and radius r

a) Find the coordinates of C and the value of r

The circle crosses the coordinate axes at the points P, Q, R and S, as shown in the figure above.

- **b**) Show that ...
 - i. ... $\measuredangle PCQ = \frac{2\pi}{3}$.

ii. ... the area of the shaded region bounded by the circle and the **positive** sections of the coordinate axes is

 $\frac{2}{3}\left(8\pi+3\sqrt{3}\right)$

	ALC: NOT THE				
(a)	$(2^2+y^2-1)x = 12$ $(2^2-2)^2-14+y^2=12$	(ټ(م)	¢ .	$\sqrt{ast} = \frac{ ac }{ Pc } = \frac{1}{2}$	
	$(2i-2)^2 + y^2 = 16$:. $C(2i0)$		0 2 C	Co-F	
0.5	r = 4		* PCQ = T	- II = 21 3 Atroness	
(b)	4 +	P 4 285	76		
	(<u>1</u> x2x4xSW]]	$\left[+ \left(\frac{1}{2} \times 4^2 \right) \right]$	$\left(\frac{2\pi}{3}\right) = 2\sqrt{3}$	$\frac{1}{2} + \frac{16}{3} \frac{1}{11} = \frac{2}{3} \left[81 + 3\sqrt{3} \right]$	

(2,0)

Question 77 (****)

C.b.

. F.G.B.

A circle has centre at C(3,-8) and radius of 10 units.

The tangent to the circle at the point A has gradient -1.

Determine, as exact surds, the possible x coordinates of A.

2012

You may not use a calculus method in this question

n.

COM

 $x = 3 \pm 5\sqrt{2}$

S,

11303SM31

Com

nadasn.

Ĉ.

Question 78 (****)

A circle C has equation

 $x^2 + y^2 + 4x - 10y + 9 = 0.$

a) Find the coordinates of the centre of C and the size of its radius.

A tangent to the circle T, passes through the point with coordinates (0,-1) and has gradient m, where m < 0.

b) Show that m is a solution of the equation

 $2m^2 - 3m - 2 = 0.$

The tangent T meets C at the point P.

c) Determine the coordinates of P.

 $-2,5), r = \sqrt{20}$

P(-4,1)

Question 79 (****) A circle has equation

 $x^2 + y^2 - 8x + cy = 33,$

where c is a positive constant.

The straight line L, with equation y = 2x-12, intersects the circle at the point with coordinates (9,k).

Find, as an exact surd, the perpendicular distance of L from the centre of the circle.

	- 019
USING THE POINT (9,12) WITH THH U	Ńt
y = 22-12 K = 2x4-12 K=6	
THES POINT (9,6) FUSO LIES ON THE	Cleat
$\Rightarrow 2^{2} + y^{2} - 8x + cy = 33$ $\Rightarrow 6t + 36 - tz + 6x = 33$ $\Rightarrow 45 + 6c = 33$	
⇒ 6c = -12 ⇒ c = -2	
$\begin{array}{l} & M(2) = \frac{1}{2} M(2) + \frac{1}{$	<u>(4,1),</u> r≈√50
$\Longrightarrow (2z = \sqrt{2} + (2z - 12 - 1)^2 = 20$	
$\implies (x - \frac{1}{2} + (2x - 13)^2 = 50$ $\implies \frac{3^2 - 9x + 16}{4^2 - 52x + 164} = 50$	
$\Rightarrow 5x^{2} - 60x + 135 = 0$ $\Rightarrow x^{2} - 12x + 27 = 0$	
-> (2-3)(2-9)=0	
2= 3 9 <- 1(21404 GUH)	y=6

 $D = \sqrt{5}$

Question 80 (****)

The figure above shows the circle with equation

$9x^2 + (3y - 25)^2 = 225$

whose centre is at C and its radius is r.

a) Determine the coordinates of C and the value of r

The points $A\left(4,\frac{16}{3}\right)$ and $B\left(-4,\frac{16}{3}\right)$ lie on the circle. The straight lines l_1 and l_2 are tangents to the circle at A and B, respectively.

b) Show that l_1 passes through the origin O.

c) Show further that the angle *BCA* is approximately 1.8546 radians.

d) Calculate the area of the shaded region, bounded by the circle, l_1 and l_2 .

 $C\left(0,\frac{25}{3}\right)$, r = 5, area $\approx 10.15...$

Question 81 (****)

1.

I.C.P.

The circles C_1 and C_2 have respective equations

$$x^2 + y^2 - 6x - 2y = 15$$

-18x + 14y = 95.

a) By considering the coordinates of the centres and the lengths of the radii of C_1

- a) By considering the coordinates of the centres and the lengths of the radii and C_2 , show that C_1 and C_2 touch internally at some point P.
- **b**) Determine the coordinates of P.
- c) Show that the equation of the common tangent to the circles at P is given by

3x - 4y + 20 = 0.

6) BY INSPECTION WE HAVE GUADINE OF COMMON PRADUL, USING (9,-7) & (3,1) $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-7)}{3 - 9} = \frac{8}{-6} = -\frac{4}{3}$ SCADINT OF THE COMMON TANOFUT, LOOKING AT A PRIVICES er a) M = +3 (THURDI) inauly we have using P(0,5) $y - y_o = m(x - x_o)$ = y = mx + c => 4= 3x+5 32+20 32-44+20 45 REPUIDED

P(0,5)

Question 82 (****) A circle has equation

 $x^{2} + y^{2} - 4x - 6y + 8 = 0$.

The straight line T_1 is a tangent to the circle at the point P(4,4).

a) Find an equation of T_1 .

The tangent T_1 passes through the point Q(2,8).

The straight line T_2 is a tangent to the circle at the point R and it also passes through the point Q.

- **b**) Determine in any order
 - i. ... the coordinates of R.
 - ii. ... an equation of T_2 .

1	
a	OBITIN THE PHENOVALS OF
	THE CIRCLE
-	$\Rightarrow a^2 + a_1^2 - 4x - 6y + 8 = 0$
	→ x ² -4x+y ² -6y+8=0 +64+ E
	$0 = 8 + (\varepsilon_{-\lambda})^{2} + (\psi_{-\lambda})^{2} + (\varepsilon_{-\lambda}) + (\varepsilon_{$
	(1-5) +(3-2) =2
	: CONTRE C (2, 3) , r= NS
	FRADING CP
	$W_{0p} = \frac{4J_2 - 4J_1}{3J_2 - 3J_1} = \frac{3 - 4}{2 - 4} = \frac{-1}{-2} = \frac{1}{2}$
	-equation of T_i , with conduct -2 passing thereased $P(4; \mu)$
	$\Rightarrow 4 - 4 = m(a - x_{*})$
	$\implies y - 4 = -2(x - 4)$ $\implies y - 4 = -2x + 8$
	$\Rightarrow g = -2\lambda + 12$
	*

) I) WERAL THE DIAGRAM (I L
MIPOLITIKA OT TO HOTILOG THAT C
ls "vertilited Beach" of XQ(28)
$ \Rightarrow QC \perp QP (RP (6020)AL) $ $ A \qquad M is the widdow of RP \qquad M (24) $ $ \Rightarrow BY indextical M(24) $ $ C(26) $
$\Rightarrow \text{ by indection } \underbrace{\mathbb{F}_{(2,4)}}_{\left[\begin{pmatrix}4\\4\end{pmatrix}\xrightarrow{-1}{\rightarrow 0}\begin{pmatrix}2\\4\end{pmatrix}\xrightarrow{-1}{\rightarrow 0}\begin{pmatrix}0\\4\end{pmatrix}\right]}$
I) USING R(0,4) & Q(2,8)
$W_1 = \frac{\Psi_2 - \Psi_1}{2I_2 - 4I_1} = \frac{8 - \Psi}{2 - 6} = \frac{4}{8} = 2$
Equation of T2 is $g = 2x + 4 \leftarrow Resm (0,4)$
$\begin{array}{l} 0\ell \ 4 - \eta_{o} = *_{0} \left(x - x_{o} \right) \\ \eta_{o} - \eta_{o} = 2 \left(x - c \right) \\ \eta_{o} - \eta_{o} = 2x \end{array}$
g = 2x + 4

R(0,4)

y = -2x + 12

y = 2x + 4

Question 83 (****+)

The figure above shows a circle C centred at the point with coordinates (5,6), and the straight line L which passes though the points A(1,8) and B(10,11).

Given that L is a tangent to C, determine the radius of C.

[You may not use a standard formula which finds the shortest distance of a point from a line]

	40
● GRUDNI 45 = $\frac{9_{12}-9_{11}}{3_{22}-3_{1}}$ = $\frac{1}{0-1}$ = $\frac{1}{2}$ = $\frac{1}{3}$ ● GRUDNI 45 F REFINITUAR TO 45 fit = 3 ● GRUTCO 67 $\begin{cases} y = 0, y = w(x-3_{1}) \\ \frac{1}{3}-\frac{1}{3}+\frac{1}{3}\end{cases}$ ● GRUTCO 67 $\begin{cases} y = 0, z = 1 \\ \frac{1}{3}-\frac{1}{3}+\frac{1}{3}-2t \end{cases}$	l, <u>K(17)</u> Q (60)
$\begin{array}{c} \frac{4}{2(q-1+2,3)}\\ \hline \\ \bullet \text{ INTRECION OF } \left\{ q \in \left\{ Q_{1} \text{ by SERTICION } \right. \\ \left. q_{2}(-2q,1,q) = 2A+23 \\ -92+(3q-2q,1+2) \\ -92+(3q-2q,1+2) \\ q_{2}(-1q,1) \\ q_{3}(-1q,1) \\ q_{4}(-1q,1) \\ q_{4$	$\begin{cases} \bullet \ \text{introde} \ \left Pq \right = \sqrt{\frac{1}{2}} \\ = \sqrt{\frac{1}{2}} + \frac{1}{2} \\ = \sqrt{\frac{1}{2}} \\ \therefore \ R^{2} \text{Disc} \ S \ \sqrt{n^{2}} \end{cases}$

 $r = \sqrt{10}$

Question 84 (****+)

Determine the exact coordinates of the points of intersection between the circles with equations

 $(x+1)^{2} + (y-2)^{2} = 4$ $(x+3)^{2} + (y+1)^{2} = 9$ I.V.C.B. . G.S. i C.B. $(\frac{3}{13}, \frac{2}{13})$ -3,2), Mada $\begin{array}{c} \lambda^{2} + 2\lambda + 1 + y^{2} - \frac{14y}{2y} + \frac{14}{2} = \frac{14}{2} \\ \chi^{2} + (\lambda + y^{2} + y^{2} + 2y + 1) = y^{2} \end{array} = \end{array}$ $(x+1) + (y-2)^{2} = 4$ $(x+3)^{2} + (y+1)^{2} = 9$ SUBTRACT $a^{2} + y^{2} + 6a + 2y$ -4ac-6y=0 CONTROL OF -3-2= 9 (-3,2) $(-\frac{3}{13},\frac{2}{13})$ I.C.B. Y.C.P. 6 ŀ.G.p. I.C.B. 1.01 1720257 Created by T. Madas

Question 85 (****+)

E.

The points A, B and C have coordinates (6,6), (0,8) and (-2,2), respectively.

a) Find an equation of the perpendicular bisector of AB.

The points A, B and C lie on the circumference of a circle whose centre is located at the point D.

b) Determine the coordinates of *D*.

y = 3x - 2D(2,4) $\frac{\Delta_{y}}{\Delta_{x}} = \frac{8-6}{0-6} = \frac{2}{-6} = -\frac{1}{3}$ $\left(\underline{C}_{10},\underline{C}_{10},\underline{C}_{10}\right) = M(3,7)$

= +3 (2-3)

STAT THE PROCESS FOR <u>B</u> $M_{bc} = \frac{\Delta q}{\Delta x} = \frac{2-\theta}{-2-\phi} = \frac{-\zeta}{-2} = 3$ $M_{bc} \left(\frac{\theta-2}{2}, \frac{\theta+2}{2}\right) = M(-l_1S)$

(2+1)

 $\begin{array}{c} =14 \\ -2 \\ -2 \\ \longrightarrow \end{array} \begin{array}{c} 3(31-2)+x=14 \\ 9x-6+x=14 \\ 0x=20 \\ x=2 \\ x=2 \\ x=2 \\ x=4 \\ y=4 \end{array}$

: D(2.4

M21/2

+ 2 = 14

The figure above shows three circles C_1 , C_2 and C_3 .

The coordinates of the centres of all three circles are positive.

- The circle C_1 has centre at (6,6) and **touches** both the x axis and the y axis.
- The circle C_2 has the same size radius as C_1 and touches the x axis.
- The circle C_3 touches the x axis and both C_1 and C_2 .

Determine an equation of C_3 .

 $(x-12)^2 + (y-12)^2 + (y-12)^2$ $\frac{3}{2}$

5

Question 87 (****+)

s'

K.C.

The circles C_1 and C_2 have respective equations

$$x^2 + y^2 - 6x = 16$$

 $x^2 + y^2 - 18x + 16y = 80.$

- a) By solving these equations simultaneously show that C_1 and C_2 touch at a point P and determine its coordinates.
- **b**) Determine further whether C_1 and C_2 touch internally or externally.

$2^{2}+y^{2}-6x=16$ 2 sugrester	122-164 = -64
23+y2-182+164-00 J SUBTRACT	16q - 12x = 64
	4y - 3x = 16
	3a = 4y-16
	92= 169= 1284+256
NOW MUTRYING THE FIRST FROMMON.	8Y 9
$9x^2 + 9y^2 - 54x = 144$	
92°+94°-18(32)=144	
1642-1284+256 +942-18(49-16) =	144
1602-1284+256+942-724+288 e	
25y2 = 200y +400 = 0	
y2- 84 +16 =0	3x = 44-14
(4-4) ² =0	1
9=4 REPHATED, INDOGED THEY	TUGH AT (0,4)
) FRITLY WE NEED THE CIRCLE P	PETICULAES
) FRITLY WE NEED THE CIRCLE P	9871CULARS ty ² -182 + 16g = 80

	(3,D) & (9,E)	,-8)	
· · · · · · · · · · · · · · · · · · ·			
d= (3-9)2+ (0+8)	e		
$d = \sqrt{36 + 64}$			
d= 100			
d = 10			
TOUGHNG EXTREMALLY 2(pu)	ets d=15+	5 = 20	
ToughNG INTHENALLY REPUT	24 d= 15-	$o_1 = 2$	
0 · 1671	WALLY //		
	1.		

R,

P(0,4)

1

Question 88 (****+)

Two circles have equations

 $x^{2} + y^{2} - 8x - 2y + 13 = 0,$

 $x^2 + y^2 - 2x - 2y + 1 = k,$

where k is a constant.

- a) Find the values of k, for which the two circles touch each other.
- **b**) Hence state the range of values of k, for which the two circles intersect each other at exactly two points.

a) -thereal .	THE PROBLEM GEOMETRICAWY	A READ R DIS AN ADDRESS OF A DISCOMPANY ADDRESS ADDRESS OF A DISCOMPANY ADDRESS ADDRES
(2-4) ² -1	$y^2 - 2y + 13 = 0$ $6 + (y-1)^2 - 1 + 13 = 0$ $(y-1)^2 = 4$	$a^{2}-2x+q^{2}-2y+l=k$ $(y-1)^{2}-1+(y-1)^{2}-1+l=k$
	(9-1) = 4 (4,1), RADIUS 2	$(x-1)^2 + (y-1)^2 = 2+1$ OKITRE $(1,1)$, RADIUL JEHT
TENCE HIT	nace serviced There Course	нз (4,1) <u>6</u> (1,1) <u>4</u> 3 aur <u>a</u>
<u>ÓRTHURUU</u>	2	• \[k+1 = 1 k+1 = 1 <u>k=0</u>
ารไห้นังคนรุ		• $\sqrt{k+1} = 5$ k+1 = 25 $k_{\pm} = 24$
	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	

 $k = 0, \ k = 24$, 0 < k < 24

Question 89 (****+)

GA

A circle has centre at C(6,2) and radius of 4 units.

The point $P(6+2\sqrt{2},k)$ lies on this circle, where k is a positive constant.

a) Determine the exact value of k.

The straight line T_1 is the tangent to the circle at the point P.

The straight line T_2 is another tangent to the circle so that T_2 is parallel to T_1 .

b) Determine the equations of T_1 and T_2 .

HAVE WE HAVE THE EQUATION OF 7 40 = m (2-20) $(x-6)^2 + (y-2)^2 = 4$ CMARE (6,2), EADOLS 4 $(2+2\sqrt{2}) = -1(2-(6+2\sqrt{2}))$ -2V2 = - (x-6 - 212) + (4-2)2 -2-212 = -2+6+25 ⇒ (25) + (y = 8 + 4/2 (4-2) k= 2+VR k= 2+212 , K> LOOKING AT THE DIAGRAM 4+6+212 = 6 b+2+212 =2 b+2+212=4 Q(6-212, 1 P(6+213 2+212) $=\frac{\Delta y}{\Delta a}=\frac{2+2\sqrt{2}-2}{6+2\sqrt{2}'-6}=\frac{2\sqrt{2}}{2\sqrt{2}'}=$ OF T IS

 $k = 2 + 2\sqrt{2}$, $T_1: x + y = 8 + 4\sqrt{2}$, $T_2: x + y = 8 - 4\sqrt{2}$

Created by T. Madas

na

Question 90 (****+) A circle has equation

 $x^2 + y^2 - 4x - 2y = 13.$

a) Find the coordinates of the centre of the circle and the size of its radius.

The points A and B lie on the circle such that the length of AB is 6 units.

b) Show that $\measuredangle ACB = 90^\circ$, where C is the centre of the circle.

A tangent to the circle has equation y = k - x, where k is a constant.

c) Show clearly that

14

$$2x^2 - 2(k+1)x + k^2 - 2k - 13 = 0$$

d) Determine the possible values of k.

 a) <u>connective</u> title spunder a²+y²-42-1 ⇒ a²-42+y²- 	कु = 13		d)
⇒ (a-2) ² -4+			
⇒ (२-२) ² + (५-1			
, c.q.G.		÷ C(2,1), 12401US=√18	
b) (0000100 of the DM	serry serous		
	sv10= <u>3</u>	1/1/2+[wc]= 1/4c]=	
1	SMB = 30 = 1	$\delta_{+}^{2} \mid M_{C} ^{2} = (\sqrt{e})^{2}$	-
(A B C(W)	⊖= 45°	9 + IMC ~ 18	
		(MC) ² = ?	
8	AG8 = 90"	[MC] = 3	
	4 BANBO	A M C & DONT ANOLED AND ISOSCILLS	-
		if ACM = 45°	
		4 ACB = 90°	
() sanne similarinen	s.cy the quantous of the	OUDLE & THE UNIT	-
2+y2-42-2y=12	3-1	and the second se	
y= k-2	$\begin{cases} \Rightarrow 3^2 + (k-1)^2 - 41 \\ \Rightarrow 3^2 + k^2 - 2k + 3^2 \end{cases}$		
	$= 2a^2 - 2a - 2a + a$		
	$\Rightarrow 2i^2 + 2i(k+i) + ($		
	$\Rightarrow 2a^2 - 2(k+)a + (k+)a + (k$		
	= 21-2(KH) 3 + (L - 2 - 15) = 0	

|k = -3, k = 9

 $(2,1), r = \sqrt{18}$,

Question 91 (****+)

The straight line passing through the points P(1,9) and Q(5,5) is a tangent to a circle with centre at C(6,8).

Determine, in exact surd form, the radius of the circle.

In this question you may **not** use

- ... a standard formula which determines the shortest distance of a point from a straight line.
- ... any form of calculus.

Question 92 (****+)

The straight line with equation y = 2x - 3 is a tangent to a circle with centre at the point C(2,-3).

Determine, in exact surd form, the radius of the circle.

In this question you may **not** use ...

... a standard formula which determines the shortest distance of a point from a straight line.

 $r = \frac{4}{5}$

1

M2112

... any form of calculus.

The figure above shows a circle with centre at C(3,6). The points A(1,5) and B(p,q) lie on the circle. The straight lines AD and BD are tangents to the circle. The kite CADB is symmetrical about the straight line with equation x = 3.

- a) Calculate the radius of the circle.
- **b**) State the value of p and the value of q.
- c) Find an equation of the tangent to the circle at A.
- d) Show that the angle ACB is approximately 2.214 radians.
- e) Hence determine, to three significant figures, the area of the shaded region bounded by the circle and its tangents at *A* and *B*.

= q = 5

y = 7 - 2x, area ≈ 4.46

(****+) **Question 94**

A circle C has equation

 $+y^{2}+2x-4y+1=0$

The straight line L with equation y = mx is a tangent to C.

Find the possible values of m and hence determine the possible coordinates at which L meets C.

<i>m</i> =	$=0, m=\frac{4}{3}$],	$(-1,0), \ \left(\frac{3}{5},\frac{4}{5}\right)$
_	- NG	P	
	SOLUE THE TWO EPUAN	r 2405.	ZHOTTHERMAN "ONTHE
	y=mx 2249722-844100		$\begin{array}{l} & 2_{1}^{2}+\left(M\chi\right)^{2}+2\chi-4(M\chi)+1=0\\ & 2_{1}^{2}+\kappa_{1}^{2}\chi^{2}+2\lambda-4M\chi+1=0\\ & (1+\kappa_{1}^{2}\chi^{2}+(2-4M)\chi+1=0)\end{array}$
	NOW IF THE WINE IS A REPEATED CITOOHING. ?		N THIS QUASDEATIC WUST -HAVE
9	62- 4ac =0	-	$(2-4u_1)^2 - 4(1+u_1^2) \times 1 = 0$ $4(1-2u_1)^2 - 4(2(1+u_1^2)) = 0$ $(1-2u_1)^2 - (2(1+u_1^2)) = 0$
			$1 - 4y_1 + 4y_1^2 - 1 - 4y_1^2 = 0$ $3y_1^2 - 4y_1 = 0$
		1	m(2x - +) = 0 $m = \begin{pmatrix} 0 \\ \frac{4}{3} \end{pmatrix}$
	$\frac{ F _{M=0}}{3^2+2x+1=0}$		$\frac{11^{-1}m - \frac{4}{3}}{(1 + (\frac{4}{3})^2)^2} \frac{1}{3^2} + [2 - \frac{4}{3}\frac{3}{3}] \frac{1}{3} + 1 = 0$
	(x+1)2=0	-	$\frac{25}{9}\chi^2 - \frac{10}{3}\chi + 1 = 0$
	0=−! & y=0		$2x_1^2 - 3x_2 + 9 = 0$ $(x_1 - 3)^2 = 0$
١.	(-1 ₁₀)		2=3 1 3=4 : (3:4)

Question 95 (*****)

The figure above shows a circle whose centre is located at the point C(k,h), where k and h are constants such that 2 < h < 5.

The points A(3,2) and B(7,8) lie on this circle.

The straight line l passes through C and the midpoint of AB.

Given that the radius of the circle is $\sqrt{26}$, find an equation for l, the value of k and the value of h.

Question 96 (*****)

I.C.

The figure below shows the circle with centre at C(5,10) and radius 5.

The straight lines with equations, x = 0 and $y = \frac{3}{4}x$ are tangents to the circle at the points *P* and *Q* respectively.

Show that the area of the triangle PCQ is 10 square units.

, proof

1

Question 97(*****)The circle C_1 has equation

 $x^2 + y^2 - 4x - 4y + 6 = 0.$

The circle C_2 has equation

 $x^2 + y^2 - 10x - 10y + k = 0,$

where k is a constant.

Given that C_1 and C_2 have exactly two common tangents, determine the range of possible values of k.

18 < k < 42

2

Question 98 (*****)

A circle passes through the points $A(x_1, y_1)$ and $A(x_2, y_2)$.

Given that AB is a diameter of the circle, show that the equation of the circle is

 $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.$

Question 99 (*****)

A circle passes through the points P(18,0) and Q(32,0). A tangent to this circle passes through the point S(0,199) and touches the circle at the point T.

Given that the y axis is a tangent to this circle, determine the coordinates of T

], (49,31)

The figure above shows the circle with equation

 $x^2 + y^2 - 4x - 8y = 205,$

with centre at the point C and radius r.

The straight line AB is parallel to the y axis and has length 24 units.

The tangents to the circle at A and B meet at the point D.

Find the length of AD and hence deduce the area of the kite CADB.

Question 101 (*****)

The figure above shows a circle C_1 with equation

 $x^2 + y^2 - 18x + ky + 90 = 0,$

where k is a positive constant.

a) Determine, in terms of k, the coordinates of the centre of C_1 and the size of its radius.

Another circle C_2 has equation

 $x^2 + y^2 - 2x - 2y = 34.$

b) Given that C_1 and C_2 are **touching externally** at the point P, find ...

 \dots the value of k.

ii. ... the coordinates of P

BUT THE $b + \sqrt{\frac{k^2}{4}} - 9 = \sqrt{\frac{k^2}{4}}$

k = 10,

 $\sqrt{\frac{k^2}{4}}$

-9

 $-\frac{1}{2}k$, r =

 $P\left(\frac{29}{5}, -\frac{13}{5}\right)$

(*****) **Question 102** The curve C has equation

Ĉ,

i.C.p.

 $y = x^2$ -4x+7.

 $\frac{5+\sqrt{21}}{2}, \frac{17+\sqrt{21}}{2}$

The points P(-1,12) and Q(4,7) lie on C.

The point R also lies on C so that $\measuredangle PRQ = 90^\circ$.

Determine, as exact surds, the possible coordinates of R.

 $\sqrt{21}$ 17-

5-

or

 $\frac{-\sqrt{21}}{2}$

2

nadasn.

- (x+1) (x(x-4)-5x(x-4)+ (x $(3+1)[(3-4)(3^2-52+1)]=0$
- 1A 2 = 5 ± NO12-4x1x1 = 5±NZ1
 - $\sum \left(\frac{\overline{(2)} \pm 2}{2}\right) \#_{-}^{2} \left(\frac{\overline{(2)} \pm 2}{2}\right) = \frac{0}{2}$ 2 = St 121
 - 24

 $\stackrel{<}{\sim} \mathbb{E} \Pi_{1}^{1} \mathbb{E} \left(\frac{S + \overline{k_{2} 1}^{2}}{2}, \frac{17 + \overline{k_{2}}^{2}}{2} \right) = O \mathbb{E} = \left(\frac{S - \overline{k_{2}}^{2}}{2}, \frac{17 - \overline{k_{2}}^{2}}{2} \right)$

Question 103 (*****)

A circle C is centred at (a,a) and has radius a, where a is a positive constant.

The straight line L has equation

4x - 3y + 4 = 0.

Given that L is tangent to C at the point P, determine ...

a) ... an equation of C.

b) ... the coordinates of P.

You may **not** use a standard formula which determines the shortest distance of a point from a straight line in this question.

Question 104 (*****)

Y.C.B. Madasm

COM

I.C.B.

The circles C_1 and C_2 have respective equations

 $(x+1)^{2} + (y+2)^{2} = \frac{9}{4}$ and $(x-5)^{2} + (y-6)^{2} = 36$.

The point P lies on C_2 so that the distance of P from C_1 is least.

1202SM

Determine the exact coordinates of P.

200

2010

Inadası

I.F.G.B.

Com

i Ces

Created by T. Madas

COM

N.C.

Question 105 (*****)

F.C.B.

I.G.B.

A curve in the x-y plane has equation

 $x^2 + y^2 + 6x\cos\theta - 18y\sin\theta + 45 = 0,$

where θ is a parameter such that $0 \le \theta < 2\pi$

Given that curve represents a circle determine the range of possible values of θ .

F.G.B.

na

3

Question 106 (*****)

Two circles, C_1 and C_2 , have respective radii of 4 units and 1 unit and are touching each other externally at the point A.

The coordinates axes are tangents to C_1 , whose centre P lies in the first quadrant.

The x axis is a tangent to C_2 , whose centre Q also lies in the first quadrant.

The straight line l_1 , passes through P and Q, and meets the x axis at the point R.

The straight line l_2 has negative gradient, passes through R and is a common tangent to C_1 and C_2 .

Determine, in any order and in exact form where appropriate, the coordinates of A, the length of PR and an equation of l_2 .

 $\left(\frac{36}{5},\frac{8}{5}\right)$

|PR| =

 $4 \frac{1}{B} \frac{1}{D} \frac{1}{D} \frac{1}{C} \frac{$

EquAtion of (> y-4 = - = (2-4) 1770) of BC => y-0 = 4 (x-4) WELL TO AND THE COORDS OF M 14 = \$ (x-4) + 3 (x-4)

24x + 7y = 224

Question 107 (*****)

A family of circles is passing through the points with coordinates (2,1) and (4,5)

Show that the equation of every such circle has equation

 $x^{2} + y^{2} + 2x(2k - 9) + 2ky = 6k - 41,$

where k is a parameter.

·C.B.

LET THE GOUATION OF THE CIRCLE BE $(\alpha - A)^2 + (y - B)^2 = R^2$ $(2_1 I) \Rightarrow (2-A)^2 \leftarrow (I-B)^2 = R^2$ $A^2 - 4A + 4 + 8^2 - 28 + 1 = R^2$ $A^2 + B^2 - 4A - 2B = R^2 - S$ $(4-4)^2 + (s-8)^2 = 8^2$ $A^2 - 8A + 16 + 8^2 - 108 + 25 = 8^2$ -42+B2-B4-10B = R2-41 e2017NG 44+8B = 36 $\frac{1}{4} + \frac{1}{28} = 9$ $\frac{1}{4} = 9 - \frac{1}{28}$ THUS WE HAVE $(9-2B)^2 + B^2 - 8(9-2B) - 10B = R^2 - 44$ $\begin{pmatrix} 4B^2 - 368 + 81 \\ B^2 + 16B - 72 \\ - 10B \end{pmatrix} = R^2 - 41$ $5B^2 - 30B + 50 = R^2$

 $\begin{array}{rcl} & 480 & -86 & -$

proof

mada

Question 108 (*****)

The straight line with equation

 $y=t\left(x-2\right) ,$

where t is a parameter, crosses the circle with equation

 $x^2 + y^2 = 1$

at two distinct points A and B.

F.C.B.

I.C.B.

a) Show that the coordinates of the midpoint of AB are given by

 $M\left(\frac{2t^2}{1+t^2}, -\frac{2t}{1+t^2}\right).$

b) Hence show that the locus of M as t varies is a circle, stating its radius and the coordinates of its centre.

 $\mathcal{X}^2 + g^2 = 1$ $\mathcal{Y} = \mathcal{C}(\mathbf{x} - \mathbf{z})$ 2= +2 ⇒ 2° + t262. - <u>24+22</u> $\frac{\underline{y_1}}{2} = -\frac{2t}{1+t^2}$ $= \frac{2t^2}{1+t^2}$ M (2+2) -2t) 45 RIPUEHD $\Rightarrow \begin{bmatrix} \times & -t \\ \end{pmatrix} \circ_2 \begin{bmatrix} t_{-} & \times \\ & \times \end{bmatrix}$ $\frac{-2\left(-\frac{\lambda}{2}\right)}{\left(+\left(-\frac{\lambda}{2}\right)^{2}} = \frac{\frac{\lambda}{2}}{1+\frac{\lambda}{2}}$ $= \frac{2\chi\gamma}{\gamma^2 + \chi^2}$ " INDEED A CREAT OWARE AT (1,0) $\Rightarrow \chi^2 - 2\chi + \chi^2 = 1$ RADIN

 $= \frac{1}{2} (X - 1)^2 + V^2 - 1$

 $(-1)^2 + y^2 = 1$

20120

Question 109 (*****)

Ċ,

The straight line L and the circle C, have respective equations

L: $y = \lambda(x-a) + a \sqrt{\lambda^2 + 1}$ and C: $x^2 + y^2 = 2ax$,

where a is a positive constant and λ is a parameter.

Show that for all values of λ , L is a tangent to C.

$L: y = \lambda(a-a) + a\sqrt{\lambda^{2}+1} C: a^{2}+y^{2} = 2aa$	
START BY REWARTING THE EQUATION OF THE ORDER	
$\begin{array}{c} (\hat{u}^{2} + y^{2} = 24), \\ (\hat{u}^{2} - 24), + y^{3} = 0, \\ (\hat{u} - a)^{2} - a^{2}, + y^{3} = a^{2}, \\ (\hat{u} - a)^{2} + y^{2} = a^{2}, \\ (\hat{u} - b)^{2} + y^{2} = a^{2}, \\$	2
THE EARCHET OF L IN $A = PEOPLEDEURE TO L PARENIC TH THE POLIT P(a_0) is Given byg - o = -\frac{1}{4}(x-a)-yA = a - ax = a - yA$	8006+
SOUND SMUTHNOULY THE TWO WHE TO AND THE GOODLOF	9
$\begin{array}{rcl} \underline{a} & & & \\ \underline{a} & & $	

	E JL CO-OBDINATE
з= а-ул =	$a = \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{2} \left(a - \frac{\sqrt{2}}{\sqrt{2}} \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
নিঁত্ৰ নিৰ্দ তাল	ICF PQ WHEER P(a,o)
$ P\varphi = \sqrt{\left[\left(\alpha - \frac{1}{2}\right)\right]}$	$\frac{\lambda_{i}}{\lambda_{ij}} = \alpha_{ij}^{2} + \left[\circ \frac{\alpha_{ij}}{\sqrt{\lambda_{ij}}} \right]^{2}$
$PQ = \sqrt{\left(-\frac{a\lambda}{\sqrt{\lambda^2+}}\right)}$	$\left(-\frac{a}{\sqrt{\lambda^2 t_1}}\right)^{2}$
$\left \frac{\partial^{n}\lambda^{2}}{\partial x^{2}+1}\right = \sqrt{\frac{\partial^{n}\lambda^{2}}{\partial x^{2}+1}}$	$+\frac{a^2}{\lambda^2+1}$
$PQ = \sqrt{\frac{\alpha^2 \lambda^2}{\lambda^2}}$	$\frac{+q^2}{+1} = \sqrt{\frac{q^2(\lambda^2+1)}{\lambda^2+1}} = \sqrt{q^2}$
PQ = q	
: [PQ] =	a - RADIUS OF THE ORDA 400 K INDUKEDAT OF D
	THE UNE IS AWAYS & TRAGAT
	DONULA WHICH FINDS THE DISTRIVE OF A WIF

F.C.P.

proof

Question 110 (*****)

Two parallel straight lines, L_1 and L_2 , have respective equations

$$y = 2x + 5$$
 and $y = 2x - 1$.

 L_1 and L_2 , are tangents to a circle centred at the point C.

A third line L_3 is perpendicular to L_1 and L_2 , and meets the circle in two distinct points, A and B.

Given that L_3 passes through the point (9,0), find, in exact simplified surd form, the coordinates of C.

 $C\left[\frac{1}{10}\left(5+\sqrt{61}\right),\frac{1}{5}\left(15+\sqrt{61}\right)\right]$

Question 111 (*****)

Three circles, C_1 , C_2 and C_3 , have their centres at A, B and C, respectively, so that |AB|=5, |AC|=4 and |BC|=3.

The positive x and y axis are tangents to C_1 .

The positive x axis is a tangent to C_2 .

 C_1 and C_2 touch each other externally at the point M.

Given further that C_3 touches externally both C_1 and C_2 , find, in exact simplified form, an equation of the straight line which passes through M and C.

STRETUG WATH THE DIABONAL RELOW - Let the costee or the Hilds (regar be at C) $\int \int $				- Y/F
	• Let The EADLI of The TREE OLDLE BE all a \mathbb{Z} , the share of the tree of	• Let <i>M</i> be the Point of inhibition Between the two space contains at $A \in L - \text{ from } had A \in B^{V}$ $A (x, z) \Rightarrow A (x, z)$ $g(x_0, y) \Rightarrow B (b_1 z)$ $(A_2) = z$ $(b_1 z)^2 + (z z)^2 = zz$ $(b_1 z)^2 = 24$ $(b_2 - 3)^2 = 242$ $(b_1 - 3)^2 = 242$ $(b_2 - 3) = 4\sqrt{3}^2$	$ \begin{array}{c} \mathcal{M}\left(\frac{3\times3+2\sqrt{4}\sqrt{6}}{2},\frac{3\times2+2\sqrt{4}}{2}\right) = \mathcal{M}\left(15\right) \\ & = \mathcal{M}\left(\frac{1}{2},\frac{2}{2},\frac{3}{2},\frac{2}{2},\frac{1}{2},\frac{2}{2},\frac{1}{2}\right) \\ & = \mathcal{M}\left(\frac{1}{2},\frac{2}{2},\frac{3}{2},\frac{2}{2},\frac{1}{2},1$	+ U(C, 12) (C, 2) (C, 2) (C

 $5y - 10\sqrt{6}x + 36 + 30\sqrt{6} = 0$

2

(*****) **Question 112**

Ĉ.B.

I.C.B.

Two circles, C_1 and C_2 , are touching each other **externally**, and have respective radii of 9 and 4 units.

A third circle C_3 , of radius r, touches C_1 and C_2 externally.

Given further that all three circles have a common tangent, determine the value of r.

36

i G.B.

2

1

Madasn

Question 113 (*****)

The point A(6,-1) lies on the circle with equation

 $x^2 + y^2 - 4x + 6y = 7.$

The tangent to the circle at A passes through the point P, so that the distance of P from the centre of the circle is $\sqrt{65}$.

Another tangent to the circle, at some point B, also passes through P.

Determine in any order the two sets of the possible coordinates of P and B.

