CIRCEE
 COORDINATE GEOMETRY (EXAM QUESTIONS)

Created by T. Madas

Question 1 (**)
A circle has equation

$$
x^{2}+y^{2}=2 x+8
$$

Determine the radius and the coordinates of the centre of the circle.

Question 2 (**)
A circle C has equation

$$
x^{2}+y^{2}-12 x+2 y+24=0
$$

a) Find the coordinates of the centre of the circle and the length of its radius.

The straight line L has equation

$$
x+y=4 .
$$

b) Determine the coordinates of the points of intersection between C and L.
c) Show that the distance between these points of intersection is $k \sqrt{2}$, where k is an integer.

$$
(6,-1), r=\sqrt{13},(8,-4),(3,1), k=5
$$

Created by T. Madas

Question 3 (**)

The figure above shows the points $A(4,6)$ and $B(-2,14)$, which both lie on the circumference of a circle.

Given that $A B$ is a diameter of the circle, determine an equation for the circle.
(2), $(x-1)^{2}+(y-10)^{2}=25$

Created by T. Madas

Created by T. Madas

Question $4 \quad{ }^{(* *)}$
The straight line segment joining the points $A(-7,4)$ and $B(1,-2)$ is a diameter of a circle with centre at the point C and radius r.
a) Find the coordinates of C and the value of r.

The point $(0, a)$ lies on the circumference of this circle.
b) Determine the possible values of a.

Created by T. Madas

Question 5 (**)
The straight line joining the points $A(6,-3)$ and $B(14,9)$ is a diameter of a circle.
a) Determine an equation for the circle.

The point $(16, k)$ lies on the circumference of the circle.
b) Find the possible values of k.
$(x-10)^{2}+(y-3)^{2}=52, k=-1 \cup k=7$

Question 6 (**)
A circle is centred at $(5,6)$ and has radius 13 .
a) Find an equation for this circle.

The straight line l with equation $y=x-6$ intersects the circle at the points A and B.
b) Determine the coordinates of A and the coordinates of B.

$$
(x-5)^{2}+(y-6)^{2}=169,(17,11),(0,-6)
$$

Question 7 (**+)
A circle has its centre at $C(-1,2)$.

The points $A(-4,3)$ and $B(0,5)$ lie on this circle.
a) Find an equation for the circle.
b) Determine an equation of the straight line which passes through C and bisects the chord $A B$.
\square $,(x+1)^{2}+(y-2)^{2}=10, y=-2 x$

Question $8 \quad(* *+)$
A circle has centre $C(-3,5)$ and passes through the origin.
a) Find an equation for this circle.

The circle crosses the x axis at the origin and at the point A.
b) Determine the coordinates of A.

$$
(x+3)^{2}+(y-5)^{2}=34, A(-6,0)
$$

Created by T. Madas

Question $9 \quad(* *+)$
A circle has equation

$$
x^{2}+y^{2}-20 x+8 y+16=0
$$

The centre of the circle is at C and its radius is r.
a) Determine ...
i. ... the coordinates of C.
ii. ... the length of r.

The point $P(4,4)$, lies on this circle.
b) Find the gradient of $C P$.
c) Hence find an equation of the tangent to the circle at P.

Created by T. Madas

Question $10 \quad\left({ }^{* *}+\right.$)
A circle C has equation

$$
x^{2}+y^{2}-10 x+6 y-15=0
$$

a) Find the coordinates of the centre of C and determine the size of its radius.

The circle intersects the x axis at the points A and B.
b) Find, in exact surd form, the x coordinate of A and the x coordinate of B and hence state the distance $A B$.

Question $11 \quad{ }^{(* *+)}$
A circle C has equation

$$
x^{2}+y^{2}=8 x+4 y
$$

a) Determine the coordinates of the centre of C and the size of its radius.

The circle meets the coordinate axes at the origin O and at two more points A and B.
b) Find the coordinates of A and B.
c) Sketch the graph of C.
d) State with justification but without any further calculations the length of $A B$.

Question 12 (***)
A circle whose centre is at $(3,-5)$ has equation
where a is a constant.
a) Find the value of a.
b) Determine the radius of the circle.

Created by T. Madas

Question 13 (***)
The endpoints of a diameter of a circle are located at $A(-7,4)$ and $B(1,-2)$.
a) Find an equation for the circle.

The straight line with equation

$$
4 y+3 x=20
$$

is a tangent to the circle at the point D.
b) Find an equation for the straight line $C D$, where C is the centre of the circle.
c) Determine the coordinates of D.

Created by T. Madas

Question 14 (***)
The straight line joining the points $A(2,5)$ and $B(-2,9)$ is a diameter of a circle.
a) Find an equation for this circle.
b) Determine by calculation whether the point $P(1,5)$ lies inside or outside the above mentioned circle.
$\square, x^{2}+(y-7)^{2}=8$

Question 15 (***)
A circle has its centre at the point $C(-2,3)$ and passes through the point $P(-3,8)$.
a) Find an equation for this circle.
b) Show that an equation of the tangent to the circle at P is

$$
x-5 y+43=0 \text {. }
$$

$$
C_{4},(x+2)^{2}+(y-3)^{2}=26
$$

\square

Created by T. Madas

Question 16 (***)
A circle C has equation

$$
x^{2}+y^{2}-6 x-10 y+k=0
$$

where k is a constant.
a) Determine the coordinates of the centre of C.

The x axis is a tangent to C at the point P.
b) State the coordinates of P and find the value of k.
\square $,(3,5),(3,0), k=9$

Created by T. Madas

Question 17 (***)

$$
x^{2}+y^{2}-2 x-2 y=8
$$

The circle with the above equation has radius r and has its centre at the point C.
a) Determine the value of r and the coordinates of C.

The point $P(4,2)$ lies on the circle.
b) Show that an equation of the tangent to the circle at P is

$$
y=14-3 x
$$

\square $r=\sqrt{10}, C(1,1)$

Created by T. Madas

Question 18 (***)

$$
x^{2}+y^{2}-10 x+4 y+9=0
$$

The circle with the above equation has radius r and has its centre at the point C.
a) Determine the value of r and the coordinates of C.
b) Find the coordinates of the points where the circle intersects the x axis.

The point $P(3,2)$ lies on the circle.
c) Show that an equation of the tangent to the circle at P is

$$
x-2 y+1=0 .
$$

$\square, r=\sqrt{20}, C(5,-2),(1,0),(9,0)$

Created by T. Madas

Created by T. Madas

Question 19 (***)
The points A and B have coordinates $(3,-1)$ and $(9,7)$, respectively.
a) Show that the equation of the circle whose diameter is $A B$ can be written as

$$
x^{2}+y^{2}-12 x-6 y+20=0
$$

The tangent to the circle at B meets the x axis at the point P.
b) Determine the exact coordinates of P.

Question 20 (***)
A circle has equation
where a and b are constants.

The straight lines with equations

$$
y=x-4 \quad \text { and } \quad x+y=2
$$

are both diameters of this circle.

Determine the length of the radius of the circle.

Question 21 (***)
A circle C has its centre at the point with coordinates $(5,4)$ and its radius is $3 \sqrt{2}$.
a) Find an equation for C.

The straight line L has equation

$$
y=x+1
$$

b) Determine, as exact surds, the coordinates of the points of intersection between C and L.
c) Show that the distance between these points of intersection is 8 units.
$\square,(x-5)^{2}+(y-4)^{2}=18,(4+2 \sqrt{2}, 5+2 \sqrt{2}),(4-2 \sqrt{2}, 5-2 \sqrt{2})$

Question 22 (***+)
A circle has its centre at the point $C(2,5)$ and its radius is $\sqrt{10}$.
a) Show that an equation for the circle is

$$
x^{2}+y^{2}-4 x-10 y+19=0
$$

The straight line with equation

$$
y=x+5
$$

meets the circle at the points P and Q.
b) Determine the coordinates of P and the coordinates of Q.
c) Show that the distance of the chord $P Q$ from C is $\sqrt{2}$ units.
\square , $(3,8),(-1,4)$

Question 23 (***+)
A circle has its centre at the point $C(-3,8)$ and the length of its diameter is $\sqrt{80}$.
a) State an equation for this circle.

The straight line with equation

$$
y=3 x+7
$$

intersects the circle at the points A and B.
b) Find the coordinates of A and the coordinates of B.
c) Show that $A C B$ is a right angle and hence determine the area of the triangle $A C B$.

Created by T. Madas

Question $24 \quad(* * *+)$
The points $P(-2,5)$ and $Q(6,-1)$ lie on a circle so that the chord $P Q$ is a diameter of this circle.
a) Find an equation for this circle.

The straight line with equation $y=6$ intersects the circle at the points A and B.
b) Determine the shortest distance of $A B$ from the centre of the circle and hence, or otherwise, find the distance $A B$.
$\square,(x-2)^{2}+(y-2)^{2}=25$,
4 $|A B|=6$

Created by T. Madas

Question 25 (***+)
A circle has equation

$$
x^{2}+y^{2}-8 x+6 y=0
$$

a) Find the coordinates of the centre of the circle.
b) Determine the radius of the circle.

The points A, B and C lie on the circle so that $|A B|=10$ and $|B C|=5$.
c) Find the distance of $A C$, giving the answer in the form $k \sqrt{3}$, where k is a positive integer.

Created by T. Madas

Question 26 (***+)
A circle has equation

$$
x^{2}+y^{2}-8 x-14 y+40=0
$$

Find an equation of the tangent to the circle at the point $(8,4)$.

$$
4 x-3 y=20
$$

Created by T. Madas

Created by T. Madas

Question 27 (***+)
The points A, B and C have coordinates $(-3,0),(-1,6)$ and $(11,2)$, respectively.
a) Show clearly that

$$
\measuredangle A B C=90^{\circ} .
$$

The points A, B and C lie on the circumference of a circle centred at the point D.
b) Find an equation for this circle in the form

$$
x^{2}+y^{2}+a x+b y+c=0
$$

where a, b and c, are constants to be found.

Question 28 (***+)
The points A and B have coordinates $(-1,2)$ and $(1,8)$, respectively.
a) Show that the equation of the perpendicular bisector of $A B$ is

$$
3 y+x=15 \text {. }
$$

The points A and B lie on a circle whose centre is at $C(3, k)$.
b) Determine an equation for the circle.
, $(x-3)^{2}+(y-4)^{2}=20$

Created by T. Madas

Question $29(* * *+)$

The figure above shows a circle whose centre is at $C(8, k)$, where k is a constant. The straight line with equation

$$
y=3 x-12
$$

is a tangent to the circle at the point $A(5,3)$.
a) Find an equation of the normal to the circle at A.
b) Determine an equation for the circle.

$$
\text { (in) }, x+3 y=14,(x-8)^{2}+(y-2)^{2}=10
$$

Created by T. Madas

Question $30 \quad\left({ }^{* * *}+\right.$)
A circle C has equation

$$
x^{2}+y^{2}-14 x-14 y+49=0
$$

a) Find the radius of the circle and the coordinates of its centre.
b) Sketch the circle, indicating clearly all the relevant details.

The point P has coordinates $(15,8)$.

A tangent drawn from P touches the circle at the point Q.
c) Determine the distance $P Q$.

Question 31 (***+)
A circle has equation

$$
x^{2}+y^{2}-6 x+4 y=13
$$

a) Find the coordinates of its centre and the length of its radius.

The point $P(k,-1), k>0$, lies on the circle.
b) Determine an equation for the tangent to the circle at P.

$$
(3,-2), r=\sqrt{26}, y+5 x=39
$$

Question 32 (***+)
The point $P(12,9)$ lies on the circle with equation

$$
(x+3)^{2}+(y-1)^{2}=289 .
$$

a) Find an equation of the normal to the circle at P.
b) Determine the coordinates of the point Q, where the normal to the circle at P intersects the circle again.
$, 8 x-15 y+39=0, Q(-18,-7)$

Question 33 (***+)
A circle has equation

$$
x^{2}+y^{2}-10 x-8 y+21=0
$$

a) Find the coordinates of the centre and the radius of the circle.
b) Determine mathematically, but without solving any equations, whether the circle crosses the coordinate axes.
c) Show that the straight line with equation

$$
y=2 x+4
$$

is a tangent to the circle, and determine the coordinates of the point where the tangent meets the circle.

Question $34 \quad\left({ }^{* * *}+\right.$)
A circle C has equation

$$
4 x^{2}+4 y^{2}-8 x+24 y-5=0
$$

a) Find the coordinates of the centre of the circle.
b) Determine the size of the radius of the circle, giving the answer in the form $k \sqrt{5}$, where k is a rational constant.

The point P has coordinates $(8,11)$.

The straight line L passes through P and touches the circle at the point Q.
c) Calculate the distance $P Q$.
\square
$,(1,-3), r=\frac{3}{2} \sqrt{5}, \frac{1}{2} \sqrt{935} \approx 15.29$

Created by T. Madas

Created by T. Madas

Question 35 (***+)

The figure above shows a circle that passes through the points $A(-1,10)$ and $B(7,4)$.
a) Given that $A B$ is a diameter of the circle show that an equation for this circle is given by

$$
x^{2}+y^{2}-6 x-14 y+33=0 .
$$

The tangent to the circle at B meets the y axis at the point D.
b) Show that the coordinates of D are $\left(0,-\frac{16}{3}\right)$.

Question 36 (***+)

\square where k is a constant.

Given that $\measuredangle P Q R=90^{\circ}$, determine an equation for the circle.

$$
(x-9)^{2}+(y-3)^{2}=125
$$

Question $37 \quad(* * *+)$

The point $R(4,10)$ lies on the curve C whose equation is

$$
y=x^{2}-6 x+18, x \in \mathbb{R} .
$$

The tangent and the normal to C at R meet the y axis at the points Q and P, respectively, as shown in the figure above.
a) Find the coordinates of Q and the coordinates of P.

A circle passes through the points P, Q and R.
b) Determine an equation for the circle.
\square
$\square, P(0,12), Q(0,2), x^{2}+(y-7)^{2}=25$

Created by T. Madas

Created by T. Madas

Question 38 (***+)
A circle C_{1} has equation

$$
x^{2}+y^{2}-4 x+12 y+4=0
$$

a) Determine the coordinates of the centre and the radius of C_{1}.

The circle C_{2} with equation
touches C_{1} externally.
b) Find the value of a as an exact surd.

Question 39 (***+)
A circle has centre at the origin and radius R.

This circle fits wholly inside the circle with equation

$$
x^{2}+y^{2}-10 x-24 y=231
$$

Determine the range of possible values of R.

Question $40 \quad(* * *+)$

A circle C passes through the points $P(1,6)$ and $Q(12,5)$.
a) Find the gradient of $P Q$.

The centre of C is the point R which lies on the x axis.
b) Show that the coordinates of R are $(6,0)$.
c) Determine an equation for C.
$\square,-\frac{1}{11},(x-6)^{2}+(y-0)^{2}=61$

Created by T. Madas

Question $41 \quad(* * *+)$
The points A, B and C have coordinates $(-1,-4),(0,3)$ and $(14,1)$, respectively.
a) Find an equation of the straight line which passes through B and C, giving the answer in the form $a x+b y=c$, where a, b and c are integers.
b) Show that $A B$ is perpendicular to $B C$.

A circle is passing through the points A, B and C.
c) Determine the coordinates of the centre of this circle.
d) Show that the radius of this circle is $k \sqrt{10}$, where k is a rational number.

Created by T. Madas

Question 42 (***+)
A circle C has equation

$$
x^{2}+y^{2}-6 x+14 y+33=0
$$

a) Determine the coordinates of the centre and the radius of C.
b) Show that the circle lies entirely below the x axis.

The point $P(6, k)$, where k is a constant, lies outside the circle.
c) By considering the distance of P from the centre of the circle, or otherwise, determine the range of the possible values of k.
\square
\square

Question $43 \quad\left({ }^{* * *}+\right.$)
The points $A(1,0), B(8,7)$ and $C(7,8)$ lie on the circumference of a circle.
a) Show that $A B$ is perpendicular to $B C$.
b) Find the distance $A C$.
c) Show that an equation of the circle is

$$
(x-4)^{2}+(y-4)^{2}=25
$$

The tangent to the circle at the point C crosses the x axis and the y axis at the points P and Q, respectively.
d) Determine the exact coordinates of P and Q.

$$
|A C|=10, P\left(\frac{53}{3}, 0\right), Q\left(0, \frac{53}{4}\right)
$$

Created by T. Madas

Question $44 \quad(* * *+)$

A circle with centre at the point C has equation

$$
x^{2}+y^{2}-10 x-6 y+14=0
$$

The straight line with equation $y=k$, where k is a non zero constant, is a tangent to this circle
a) Find the possible values k, giving the answers as exact simplified surds.

The points A and B lie on the circumference of the circle and the point M is the midpoint of the chord $A B$.
b) Given the length of $M C$ is 2 , find the length of the chord $A B$.

The straight line with equation

$$
x-2 y-9=0
$$

is a tangent to the circle at the point D.
c) Determine the coordinates of D.

Created by T. Madas

Question $45 \quad(* * *+)$

The figure above shows a circle with centre at C with equation

$$
x^{2}+y^{2}-10 x-12 y+56=0
$$

The tangent to the circle at the point $A(6,4)$ meets the y axis at the point B.
a) Find an equation of the tangent to the circle at A.
b) Determine the area of the triangle $A B C$.
\square $y=\frac{1}{2} x+1, \frac{15}{2}$

Find THf DSTNace $A B$, whtret $A(6,4)$ \& $B(0,1)$
$\Rightarrow d=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$
$\Rightarrow|A B|=\sqrt{(1-4)^{2}+(0-6)^{2}}$
$\Rightarrow|A B|=\sqrt{9+36}$
$\Rightarrow|A B|=\sqrt{45}=3 \sqrt{5}$

$\Rightarrow A \& A A=\frac{1}{2}|A B||A C|$
$\Rightarrow A 8 A=\frac{1}{2} \times 3 \sqrt{5} \times \sqrt{5}$ $\Rightarrow-A 2 A=\frac{15}{2}$

Question 46 (***+)
A circle C has equation

$$
x^{2}+y^{2}-12 x-2 y+33=0
$$

a) Find the radius of the circle and the coordinates of its centre.

The straight line with equation $y=x-3$ intersects the circle at the points P and Q, dividing the circle into two segments.
b) Determine the coordinates of P and Q.
c) Show that the area of the minor segment is $\pi-2$.
\square $r=2,(6,1),(4,1),(6,3)$

a)	
	$\Rightarrow x^{2}+y^{2}-12 x-2 y+33=0$
	$\Rightarrow x^{2}-12 x+y^{2}-2 y+33=0$
	$\Rightarrow(x-6)^{2}-6^{2}+(y-1)^{2}-1^{2}+33=0$
	$\Rightarrow(x-6)^{2}-36+(y-1)^{2}-1+33=0$
	$\Rightarrow(x-6)^{2}+(y-1)^{2}=4$
	\therefore cavreat ar (6,1) a rasus 2
b)	Solwing smurinowsy w Oftan
	$\Rightarrow(x-6)^{2}+(y-1)^{2}=4$
	$\Rightarrow(x-6)^{2}+(x-3-1)^{2}=4 \quad(y=x-3)$
	$\Rightarrow(x-6)^{2}+(x-4)^{2}=4$
	$\Rightarrow x^{2}-12 x+36+x^{2}-8 x+16=4$
	$\Rightarrow 2 x^{2}-20 x+48=0$
	$\Rightarrow x^{2}-10 x+24=0$
	$\Rightarrow(x-6)(x-4)=0$
	$\Rightarrow x=\ll-4$
	$\therefore P(4,1)$ q $P(6,3)$

Question $47 \quad\left({ }^{* * *}+\right.$)
The points A, B and C have coordinates $(2,1),(4,0)$ and $(6,4)$ respectively.
a) Determine an equation of the straight line L which passes through C and is parallel to $A B$.
b) Show that the angle $A B C$ is 90°.
c) Calculate the distance $A C$.

A circle passes through the points A, B and C.
d) Show that the equation of this circle is given by

$$
x^{2}+y^{2}-8 x-5 y+16=0
$$

e) Find the coordinates of the point other than the point C where L intersects the circle.

Created by T. Madas

Question $48 \quad(* * *+)$
The straight line l passes through the points $P(7,10)$ and $Q(17,3)$.
a) Find an equation of l.
b) Show that $O P$ is perpendicular to $P Q$, where O is the origin.

A circle passes through O, P and Q.
c) Find an equation for this circle.

Question $49 \quad\left({ }^{* * *}+\right.$)
A circle C with centre at the point P and radius r, has equation

$$
x^{2}-8 x+y^{2}-2 y=0
$$

a) Find the value of r and the coordinates of P.
b) Determine the coordinates of the points where C meets the coordinate axes.

The points A, B and $Q(8,2)$ lie on C.

The straight line $A B$ is diameter of the circle so that $P Q$ is perpendicular to $A B$.
c) Calculate the coordinates of A and B.

$$
\square, r=\sqrt{17}, P(4,1),(8,0),(0,0),(0,2), A(3,5), B(5,-3)
$$

Created by T. Madas

Question $50 \quad(* * *+)$

The points $A(1,2), B(3,8)$ and $C(13,8)$ are shown in the figure below.

The straight lines l_{1} and l_{2} are the perpendicular bisectors of straight line segments $A B$ and $B C$, respectively.
a) Find an equation for l_{1}.

Give the answer in the form $a x+b y=c$, where a, b and c are integers.

The point D is the intersection of l_{1} and l_{2}.
b) Show that the coordinates of D are $(8,3)$.

A circle passes through the points A, B and C.
c) Find an equation for this circle.

$$
x+3 y=17,(x-8)^{2}+(y-3)^{2}=50
$$

Created by T. Madas

Created by T. Madas

Question 51 (****)

The figure above shows a circle with centre at P and radius of 6 units.

The y axis is a tangent to the circle at the point $S(0,3)$.
a) Find an equation for the circle.

A tangent to the circle is drawn from the point $Q(12,10)$ and meets the circle at the point R.
b) Determine the length of $Q R$,

$$
\square,(x-6)^{2}+(y-3)^{2}=36, Q R=7
$$

Created by T. Madas

Question 52 (****)
The points A, B and C have coordinates $(3,5),(15,11)$ and $(17,7)$, respectively.
a) Show that $\measuredangle A B C=90^{\circ}$.

All three points A, B and C lie on the circumference of a circle.
b) Find an equation for this circle in the form

$$
x^{2}+y^{2}+a x+b y+c=0
$$

where a, b and c, are integers to be found.

The point P also lies on this circle so that $B P$ is a diameter of the circle.
c) Determine the coordinates of P.

Question 53 (****)
The circle C_{1} has centre at $(8,4)$ and touches the y axis.

The circle C_{2} has centre at $(16,4)$ and touches the x axis.
a) Find the equation of C_{1} and the equation of C_{2}.

Give the answers in the form $(x-a)^{2}+(y-b)^{2}=c$, where a, b and c are constants to be found.

The two circles intersect at the points A and B.
b) Determine, in exact surd form where appropriate, the coordinates of A and the coordinates of B.
$,(x-8)^{2}+(y-4)^{2}=64,(x-16)^{2}+(y-4)^{2}=16$,
$(15,4+\sqrt{15}),(15,4-\sqrt{15})$

Question 54 (****)
The points $P(-4,1)$ and $Q(5,10)$ lie on a circle C.
a) Find an equation of the perpendicular bisector of $P Q$.
b) Given that one of the diameters of C has equation $x+2 y=17$, show that an equation of C is

$$
x^{2}+y^{2}+10 x-22 y+45=0
$$

c) Determine whether the origin O lies inside the circle.

$$
x+y=6
$$

Question 55 (****)
A circle C has equation

$$
x^{2}+y^{2}+a x+b y+43=0
$$

where a and b are constants.
a) Given that the points $(-4,7)$ and $(-2,5)$ lie on C, determine the coordinates of the centre of C and the size of its radius.

A straight line passes through the point $P(4,5)$ and is a tangent to C at the point Q.
b) Show that the length of $P Q$ is $4 \sqrt{3}$.
\square $,(-3,6), r=\sqrt{2}$

Created by T. Madas

Question 56 (****)
A circle C_{1} has equation

$$
x^{2}+y^{2}-10 x-10 y+41=0
$$

a) Determine the coordinates of the centre of C_{1} and the size of its radius.

Another circle C_{2} is such so that C_{2} is touching both C_{1} and the y axis.
b) Find the two possible equations of C_{2}, given further that the centres of both C_{1} and C_{2}, have the same y coordinate.
$(5,5), r=3,(x-1)^{2}+(y-5)^{2}=1$ or $(x-4)^{2}+(y-5)^{2}=16$

Created by T. Madas

Question 57 (****)
A circle C has equation

$$
x^{2}+y^{2}-4 x-12 y+15=0
$$

a) Show that C does not cross the x axis.
b) Show further that the straight line with equation $3 x+4 y=5$ is a tangent to C.

Created by T. Madas

Created by T. Madas

Question 58 (****)

The figure above shows a circle with centre at $C(7,2)$.

The circle meets the x axis at the points P and R, and the y axis at the points Q and S.
a) Given that $R(17,0)$, find an equation of this circle.
b) Show that

$$
|Q S|=2 \sqrt{55}
$$

c) Determine the area of the quadrilateral $P Q R S$.
\square $(x-7)^{2}+(y-2)^{2}=104,20 \sqrt{55} \approx 148.32$

Question 59 (****)
A circle is given parametrically by the equations

$$
x=4+3 \cos \theta, y=3+3 \sin \theta, 0 \leq \theta<2 \pi
$$

a) Find a Cartesian equation for the circle.
b) Find the equations of each of the two tangents to the circle, which pass through the origin O.

Created by T. Madas

Question 60 (****)

The figure above shows a circle meeting the x axis at $P(-5,0)$ and $Q(13,0)$, and the y axis at $R(0,-4)$ and $S(0,16)$.
a) Show that an equation of the circle is

$$
x^{2}+y^{2}+a x+b y=c
$$

where a, b and c are constants to be found.

The point A has coordinates $(20,12)$.

A tangent drawn through A meets the circle at the point B.
b) Show that the distance $A B$ is $k \sqrt{7}$, where k is an integer.

$$
a=-8, b=-12, c=65, k=5
$$

Created by T. Madas

Created by T. Madas

Question 61 (****)
Relative to a fixed origin O, the points A and B have coordinates $(0,1)$ and $(6,5)$, respectively.
a) Find an equation of the perpendicular bisector of $A B$.

A circle passes through the points O, A and B.
b) Determine the coordinates of the centre of this circle.

Created by T. Madas

Question 62 (****)

The figure above shows the circle C and the straight line L with respective equations

$$
x^{2}+y^{2}-6 x-8 y+21=0 \quad \text { and } \quad x+2 y=2 .
$$

a) Find an equation of the line which passes through the centre of C and is perpendicular to L.
b) Hence determine, in exact surd form, the shortest distance between C and L.

Question 63 (****)
A circle has centre at $C(4,4)$ and passes through the point $P(6,8)$.

The straight line l_{1} is a tangent to the circle at P.
a) Show that an equation of l_{1} is

$$
x+2 y=22
$$

The straight line l_{2} has equation $y=2 x-14$ and meets l_{1} at the point Q.
b) Find the coordinates of Q.
c) Show that l_{2} is also a tangent to this circle at the point R, and determine the coordinates of R.
\square , $Q(10,6), R(8,2)$

Created by T. Madas

Question 64 (****)
A circle C_{1} has equation

$$
x^{2}+y^{2}+20 x-2 y+52=0
$$

a) Determine the coordinates of the centre of C_{1} and the size of its radius.

A different circle C_{2} has its centre at $(14,8)$ and the size of its radius is 10 .

The point P lies on C_{1} and the point Q lies on C_{2}.
b) Determine the minimum distance of $P Q$.

Created by T. Madas

Question 65 (****)

The figure above shows a square $P Q R S$ with vertices at the points $P(1,1), Q(3,5)$, $R(7,3)$ and $S(5,-1)$.

The square is circumscribed by the circle C_{1}.
a) Determine the coordinates of the centre of C_{1} and the size of its radius.

A circle C_{2} is inscribed in the square $P Q R S$.
b) Find an equation of the circle C_{2}.

Created by T. Madas

Question 66 (****)
A circle has equation

$$
x^{2}+y^{2}-4 x-4 y+6=0
$$

a) Determine the coordinates of the centre and the radius of the circle.

The point $A(9,1)$ lies outside the circle.
b) Find the shortest distance from A to the circle, giving the answer as a surd.

A tangent is drawn from the point A to the circle, touching the circle at the point B.
c) Determine, as an exact surd, the distance $A B$.

Question 67 (****)
A circle has equation

$$
(x-2)^{2}+(y+2)^{2}=20
$$

a) Write down the coordinates of its centre the size of its radius.
b) Sketch the circle.

The sketch must include the coordinates of any points where the graph meets the coordinate axes.

The straight line with equation $y=2 x+k$, where k is a constant, meets the circle.
c) Show that the coordinates of any points of intersection between the line and the circle satisfies the equation

$$
5 x^{2}+4(k+1) x+k^{2}+4 k-12=0
$$

d) Hence, find the two values of k for which the line $y=2 x+k$ is a tangent to the circle.

Question 68 (****)
A circle has centre at $C(2,3)$ and radius 6 .
a) Show that an equation of the circle is

$$
x^{2}+y^{2}-4 x-6 y=23
$$

The circle crosses the y axis at the points P and Q, where the y coordinate of P is positive.
b) Find the distance $P Q$, giving the answer as an exact simplified surd.

The vertical straight line with equation $x=1$ intersects the radii $C P$ and $C Q$ at the points R and S, respectively.
c) Determine the exact area of the trapezium PQSR.
\square $|P Q|=8 \sqrt{2}, \quad$ area $=6 \sqrt{2}$

Created by T. Madas

Question 69 (****)
The points $A\left(\frac{96}{13}, \frac{40}{13}\right)$ and $B\left(\frac{216}{13}, \frac{90}{13}\right)$ are the endpoints of the diameter of circle.
a) Show that an equation of the circle is

$$
(x-12)^{2}+(y-5)^{2}=25
$$

b) Sketch the circle, indicating clearly all the relevant details.
c) Show that a normal to the circle at B passes through the origin.

Created by T. Madas

Question 70 (****)
A circle C_{1} has equation

$$
x^{2}+y^{2}-10 x+4 y=71
$$

a) Find the coordinates of the centre of C_{1} and the size of its radius.

Another circle C_{2} is centred at the point with coordinates $(-4,10)$ and has radius 5 .
b) Show that C_{1} and C_{2} touch each other.

The two circles touch each other at the point P and the straight line L is the common tangent of C_{1} and C_{2}.
c) Determine the coordinates of P.
d) Show that an equation of L is

$$
4 y=3 x+27
$$

Question 71 (****)

The figure above shows a circle that crosses the x axis at the points $A(-1,0)$ and $B(7,0)$, while it passes through the point $C(3,8)$.

Determine the coordinates of the centre of the circle and the length of its radius.
\square , $(3,3)$, radius $=5$

Created by T. Madas

Question 72 (****)

The figure above shows the circle C with equation

$$
x^{2}+y^{2}-14 x+33=0
$$

a) Determine the coordinates of the centre of C and the size of its radius.

The tangents to C from the point $R(7,8)$ meet C at the points P and Q.
b) Show that the area of the finite region bounded by C and the two tangents, shown shaded in figure, is

$$
\frac{16}{3}[3 \sqrt{3}-\pi] .
$$

Created by T. Madas

Question 73 (****)
A circle passes through the points $A(1,2), B(3,-4)$ and $C(15,0)$.
a) Show that $A B$ is perpendicular to $B C$.
b) Hence find the exact length of the diameter of the circle.
c) Show that an equation of the circle is

$$
x^{2}+y^{2}-16 x-2 y+15=0 .
$$

d) Determine the coordinates of the point which lies on the circle and is furthest away from the point B.

Question 74 (****)
A circle has equation

$$
x^{2}+y^{2}=8 y
$$

a) Find the coordinates of the centre of the circle and the size of its radius.
b) Sketch the circle.

The line with equation $x+y=k$, where k is a constant, is a tangent to this circle.
c) Determine, as exact surds, the possible values of k.

Created by T. Madas

Question 75 (****)
A circle passes through the points $(0,0),(8,0)$ and $(0,6)$.

Determine the coordinates of the centre of the circle and the size of its radius.

Question 76 (****)

The figure above shows the circle with equation

$$
x^{2}+y^{2}-4 x=12 .
$$

The circle has centre at C and radius r
a) Find the coordinates of C and the value of r.

The circle crosses the coordinate axes at the points P, Q, R and S, as shown in the figure above.
b) Show that
i. $\quad \ldots \measuredangle P C Q=\frac{2 \pi}{3}$.
ii. ... the area of the shaded region bounded by the circle and the positive sections of the coordinate axes is

$$
\frac{2}{3}(8 \pi+3 \sqrt{3})
$$

\square
, $(2,0), r=4$

Created by T. Madas

Question 77 (*****)
A circle has centre at $C(3,-8)$ and radius of 10 units. The tangent to the circle at the point A has gradient -1 .

Determine, as exact surds, the possible x coordinates of A.

You may not use a calculus method in this question

Question 78 (****)
A circle C has equation

$$
x^{2}+y^{2}+4 x-10 y+9=0
$$

a) Find the coordinates of the centre of C and the size of its radius.

A tangent to the circle T, passes through the point with coordinates $(0,-1)$ and has gradient m, where $m<0$.
b) Show that m is a solution of the equation

$$
2 m^{2}-3 m-2=0
$$

The tangent T meets C at the point P.
c) Determine the coordinates of P.
\square $,(-2,5), r=\sqrt{20}, P(-4,1)$

Created by T. Madas

Question 79 (****)
A circle has equation

$$
x^{2}+y^{2}-8 x+c y=33
$$

where c is a positive constant.

The straight line L, with equation $y=2 x-12$, intersects the circle at the point with coordinates $(9, k)$.

Find, as an exact surd, the perpendicular distance of L from the centre of the circle.

$$
D, D=\sqrt{5}
$$

Created by T. Madas

Question 80

The figure above shows the circle with equation

$$
9 x^{2}+(3 y-25)^{2}=225
$$

whose centre is at C and its radius is r.
a) Determine the coordinates of C and the value of r.

The points $A\left(4, \frac{16}{3}\right)$ and $B\left(-4, \frac{16}{3}\right)$ lie on the circle. The straight lines l_{1} and l_{2} are tangents to the circle at A and B, respectively.
b) Show that l_{1} passes through the origin O.
c) Show further that the angle $B C A$ is approximately 1.8546 radians.
d) Calculate the area of the shaded region, bounded by the circle, l_{1} and l_{2}.

Question 81 (****)
The circles C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& x^{2}+y^{2}-6 x-2 y=15 \\
& x^{2}+y^{2}-18 x+14 y=95
\end{aligned}
$$

a) By considering the coordinates of the centres and the lengths of the radii of C_{1} and C_{2}, show that C_{1} and C_{2} touch internally at some point P.
b) Determine the coordinates of P.
c) Show that the equation of the common tangent to the circles at P is given by

$$
3 x-4 y+20=0 .
$$

\square
\square

Created by T. Madas

Question 82 (****)
A circle has equation

$$
x^{2}+y^{2}-4 x-6 y+8=0 .
$$

The straight line T_{1} is a tangent to the circle at the point $P(4,4)$.
a) Find an equation of T_{1}.

The tangent T_{1} passes through the point $Q(2,8)$.

The straight line T_{2} is a tangent to the circle at the point R and it also passes through the point Q.
b) Determine in any order
i. ... the coordinates of R.
ii. $\quad \ldots$ an equation of T_{2}.

Created by T. Madas

Question $83 \quad(* * * *+)$

The figure above shows a circle C centred at the point with coordinates $(5,6)$, and the straight line L which passes though the points $A(1,8)$ and $B(10,11)$.

Given that L is a tangent to C, determine the radius of C.
[You may not use a standard formula which finds the shortest distance of a point from a line]

Created by T. Madas

Question $84 \quad(* * * *+)$
Determine the exact coordinates of the points of intersection between the circles with equations

Created by T. Madas

Question 85 (****+)

The points A, B and C have coordinates $(6,6),(0,8)$ and $(-2,2)$, respectively.
a) Find an equation of the perpendicular bisector of $A B$.

The points A, B and C lie on the circumference of a circle whose centre is located at the point D.
b) Determine the coordinates of D.

Question $86 \quad(* * * *+)$

The figure above shows three circles C_{1}, C_{2} and C_{3}.
The coordinates of the centres of all three circles are positive.

- The circle C_{1} has centre at $(6,6)$ and touches both the x axis and the y axis.
- The circle C_{2} has the same size radius as C_{1} and touches the x axis.
- The circle C_{3} touches the x axis and both C_{1} and C_{2}.

Determine an equation of C_{3}.

Question 87 (****+)
The circles C_{1} and C_{2} have respective equations

$$
\begin{aligned}
& x^{2}+y^{2}-6 x=16 \\
& x^{2}+y^{2}-18 x+16 y=80
\end{aligned}
$$

a) By solving these equations simultaneously show that C_{1} and C_{2} touch at a point P and determine its coordinates.
b) Determine further whether C_{1} and C_{2} touch internally or externally.

Question $88 \quad(* * * *+)$
Two circles have equations

$$
\begin{aligned}
& x^{2}+y^{2}-8 x-2 y+13=0 \\
& x^{2}+y^{2}-2 x-2 y+1=k
\end{aligned}
$$

where k is a constant.
a) Find the values of k, for which the two circles touch each other.
b) Hence state the range of values of k, for which the two circles intersect each other at exactly two points.

Mve , $k=0, k=24,0<k<24$

Question 89 (****+)
A circle has centre at $C(6,2)$ and radius of 4 units.

The point $P(6+2 \sqrt{2}, k)$ lies on this circle, where k is a positive constant.
a) Determine the exact value of k.

The straight line T_{1} is the tangent to the circle at the point P.

The straight line T_{2} is another tangent to the circle so that T_{2} is parallel to T_{1}.
b) Determine the equations of T_{1} and T_{2}.
\square $, k=2+2 \sqrt{2}, T_{1}: x+y=8+4 \sqrt{2}, T_{2}: x+y=8-4 \sqrt{2}$

Created by T. Madas

Question 90 (****+)
A circle has equation

$$
x^{2}+y^{2}-4 x-2 y=13
$$

a) Find the coordinates of the centre of the circle and the size of its radius.

The points A and B lie on the circle such that the length of $A B$ is 6 units.
b) Show that $\measuredangle A C B=90^{\circ}$, where C is the centre of the circle.

A tangent to the circle has equation $y=k-x$, where k is a constant.
c) Show clearly that

$$
2 x^{2}-2(k+1) x+k^{2}-2 k-13=0 .
$$

d) Determine the possible values of k.

Created by T. Madas

Question $91 \quad(* * * *+)$
The straight line passing through the points $P(1,9)$ and $Q(5,5)$ is a tangent to a circle with centre at $C(6,8)$.

Determine, in exact surd form, the radius of the circle.

In this question you may not use ...
... a standard formula which determines the shortest distance of a point from a straight line.
... any form of calculus.

Question 92 (****+)
The straight line with equation $y=2 x-3$ is a tangent to a circle with centre at the point $C(2,-3)$.

Determine, in exact surd form, the radius of the circle.

In this question you may not use ...
... a standard formula which determines the shortest distance of a point from a straight line.
... any form of calculus.
\square $r=\frac{4}{5} \sqrt{5}$

- Sowina fimertina oused witt $y=2 x-3$ to "rine" T
$\Rightarrow(a-2)^{2}+(2 x-3+3)^{2}=r^{2}$
$\Rightarrow(x-2)^{2}+(2 x)^{2}=r^{2}$
$\Rightarrow 3^{2}-4 x+4+4 x^{2}=r^{2}$
$\Rightarrow 5 x^{2}-4 x+\left(4-r^{2}\right)=0$
- this cquation mist proacce resceatio reats as tie

Polist T is A Pons of tamicancy
$b^{2}-4 a c=0 \Rightarrow(-4)^{2}-4 \times 5 \times\left(4-r^{2}\right)=0$
$\Rightarrow 16-20\left(4-r^{2}\right)=0$
$\Rightarrow 16-80+20 r^{2}=0$
$\Rightarrow 20 r^{2}=64$
$\Rightarrow \quad r^{2}=64$
$\begin{array}{ll}\Rightarrow & r^{2}=\frac{64}{20}=\frac{4}{10} \times 5 \\ \Rightarrow r & r=\frac{4}{5}\end{array}$
NembD C - by minimization (conulatinna Tht squaret)

- considier a pais on the int $y=2 x-3$, it $(x, 2 x-3)$
- Tife Distanile fron $(x, 2 x-3)$ to the coner $\left(z_{1}-3\right)$ $\Rightarrow d=\sqrt{(x-2)^{2}+[2 x-3-(-3)]^{2}}$
$\Rightarrow d=\sqrt{(x-2)^{2}+4 x^{2}}$
$\Rightarrow d^{2}=x^{2}-4 x+4+4 x^{2}$

Created by T. Madas

Question 93 (****+)

The figure above shows a circle with centre at $C(3,6)$. The points $A(1,5)$ and $B(p, q)$ lie on the circle. The straight lines $A D$ and $B D$ are tangents to the circle.

The kite $C A D B$ is symmetrical about the straight line with equation $x=3$.
a) Calculate the radius of the circle.
b) State the value of p and the value of q.
c) Find an equation of the tangent to the circle at A.
d) Show that the angle $A C B$ is approximately 2.214 radians.
e) Hence determine, to three significant figures, the area of the shaded region bounded by the circle and its tangents at A and B.
\square $r=\sqrt{5}, p=q=5, y=7-2 x, \quad$ area ≈ 4.46

Created by T. Madas

Question 94 (****+)
A circle C has equation

$$
x^{2}+y^{2}+2 x-4 y+1=0
$$

The straight line L with equation $y=m x$ is a tangent to C.

Find the possible values of m and hence determine the possible coordinates at which L meets C.

Created by T. Madas

Question 95 (*****)

The figure above shows a circle whose centre is located at the point $C(k, h)$, where k and h are constants such that $2<h<5$.

The points $A(3,2)$ and $B(7,8)$ lie on this circle.

The straight line l passes through C and the midpoint of $A B$.
Given that the radius of the circle is $\sqrt{26}$, find an equation for l, the value of k and the value of h.
\square , $2 x+3 y=25, k=8, h=3$

Created by T. Madas

Question 96 ($* * * * *$)
The figure below shows the circle with centre at $C(5,10)$ and radius 5 .

The straight lines with equations, $x=0$ and $y=\frac{3}{4} x$ are tangents to the circle at the points P and Q respectively.

Show that the area of the triangle $P C Q$ is 10 square units.

Created by T. Madas

Question 97 (*****)
The circle C_{1} has equation

The circle C_{2} has equation

$$
x^{2}+y^{2}-10 x-10 y+k=0,
$$

where k is a constant.

Given that C_{1} and C_{2} have exactly two common tangents, determine the range of possible values of k.

Question 98 (*****)
A circle passes through the points $A\left(x_{1}, y_{1}\right)$ and $A\left(x_{2}, y_{2}\right)$.

Given that $A B$ is a diameter of the circle, show that the equation of the circle is

A circle passes through the points $P(18,0)$ and $Q(32,0)$. A tangent to this circle passes through the point $S(0,199)$ and touches the circle at the point T.

Given that the y axis is a tangent to this circle, determine the coordinates of T

\square , $(49,31)$

- woknce for fefrefteo roors, As tite une is A Thnting at T
$\rightarrow[50(7 m-1)]^{2}-4\left(14^{2}+1\right) \times 175^{2}=0$
$\Rightarrow 50^{2}(7 \mu-1)^{2}-2^{2} \times(25 \times 7)^{2}\left(m^{2}+1\right)=0 \quad$ DWot $B y 50^{2}$
$\left.\Rightarrow 50^{2}(7 m-1)^{2}-2^{2} \times 28^{2} \times 7^{2}\left(m^{2}\right)=1\right)$
$\Rightarrow 50^{2}(7 m-1)^{2}-2^{2} \times 8^{2} \times 2^{2}\left(m^{2}+1\right)=0$
$\Rightarrow 49 \mathrm{~m}^{2}-14 m+1-49\left(m^{2}+1\right)=0$
$\Rightarrow 44 m^{2}-15 x+1-49 m^{2}-4 y^{2}=0$
$\Rightarrow-14 m=49$
$\Rightarrow m=-24$
\qquad
- Intay using $m=-\frac{24}{7}$ in
$\Rightarrow\left(44^{2}+1\right) x^{2}+50 x(74-1)+175^{2}=0$
$\Rightarrow\left[\left(-\frac{24}{7}\right)^{2}+1\right] x^{2}+50 x[7(-24)-1]+775^{2}=0$
$\rightarrow\left[\frac{22^{2}}{72^{2}}+1\right] x^{2}+50 x[-25]+175^{2}=0$ $\Rightarrow\left[\frac{24^{2}+7^{2}}{7^{2}}\right] x^{2}-25 \times 50 x+175^{2}=0$
\qquad
$\Rightarrow \frac{1}{7^{2}} x^{2}-2 x+7^{2}=0$
$\Rightarrow\left(\frac{x}{7}-7\right)^{2}=0$ $\Rightarrow x=49$
\& $\begin{aligned} & y=199-\frac{24}{7} \times 49=199-24 \times 7 \\ & y=199-168=31\end{aligned}$
$\therefore T(t, 3,3)$

Created by T. Madas

Question 100
(*****) non calculator

The figure above shows the circle with equation

$$
x^{2}+y^{2}-4 x-8 y=205
$$

with centre at the point C and radius r.

The straight line $A B$ is parallel to the y axis and has length 24 units.

The tangents to the circle at A and B meet at the point D.

Find the length of $A D$ and hence deduce the area of the kite $C A D B$.
\square ,$|A D|=20$, area $=300$

SThet By obtinning the curats makiculates $\begin{aligned} & x^{2}+y^{2}-4 x-8 y=205 \\ & (x-2)^{2}-4+(y-4)^{2}-16=205 \\ & (x-2)^{2}+(y-4)^{2}=225 \end{aligned}$ Crimpe at $(2,1)$, Dablus is next dean a glod diagram by PyThmeras $\begin{aligned} & \|C M\|=\sqrt{15^{2}-12^{2}} \\ & \|C M\|=\sqrt{225-144} \\ & \|C M\|=\sqrt{81} \\ & \|C M\|=9 \\ & B Y(N S R(T 1 O)(\text { IF NE(6) } 61) \\ & A(2+9,4+12)=A(11,16) \\ & B(2+9,4-12)=B(11,-8) \end{aligned}$	now Loobina at simule tranaess $\begin{aligned} \sin \theta-\frac{4}{15} & -\frac{12}{x} \\ 4 x & =12 \times 15 \\ x & =4 \times 5 \\ x & =20 \end{aligned}$ $\begin{aligned} \text { ABAA of } A T t & =2 \times\left(\frac{1}{2}\|A C\|\|A D\|\right) \\ & =15 \times 20 \\ & =300 \end{aligned}$

Created by T. Madas

Question 101 (*****)

The figure above shows a circle C_{1} with equation

$$
x^{2}+y^{2}-18 x+k y+90=0
$$

where k is a positive constant.
a) Determine, in terms of k, the coordinates of the centre of C_{1} and the size of its radius.

Another circle C_{2} has equation

$$
x^{2}+y^{2}-2 x-2 y=34
$$

b) Given that C_{1} and C_{2} are touching externally at the point P, find \ldots
i. ... the value of k.
ii. ... the coordinates of P.
$\square,\left(9,-\frac{1}{2} k\right), r=\sqrt{\frac{k^{2}}{4}-9}, \quad k=10, P\left(\frac{29}{5},-\frac{13}{5}\right)$

allienatuut variation br (b)

Question 102 (*****)
The curve C has equation

$$
y=x^{2}-4 x+7
$$

The points $P(-1,12)$ and $Q(4,7)$ lie on C.

The point R also lies on C so that $\measuredangle P R Q=90^{\circ}$.

Determine, as exact surds, the possible coordinates of R.

$$
\text { O, (} \left.\frac{5+\sqrt{21}}{2}, \frac{17+\sqrt{21}}{2}\right) \text { or }\left(\frac{5-\sqrt{21}}{2}, \frac{17-\sqrt{21}}{2}\right)
$$

Question 103 (*****)
A circle C is centred at (a, a) and has radius a, where a is a positive constant.

The straight line L has equation

$$
4 x-3 y+4=0
$$

Given that L is tangent to C at the point P, determine \ldots
a) \ldots an equation of C.
b) \ldots the coordinates of P.

You may not use a standard formula which determines the shortest distance of a point from a straight line in this question.

$$
\square,(x-1)^{2}+(y-1)^{2}=1, P\left(\frac{1}{5}, \frac{8}{5}\right)
$$

- sowing smetrintowny
$16(x-a)^{2}+16(y-a)^{2}=16 a^{2}$
$4 x=3 y-4$
$\Rightarrow(3 y-4-4 a)^{2}+(4 y-4 a)^{2}=16 a^{2}$
$(A+B+C)^{2} \equiv A^{2}+B^{2}+C^{2}+2 A B+2 B C+2 C A$
$\left\{\begin{array}{l}9 y^{2}+16+16 a^{2}-24 y+32 a-24 a y \\ 26 y^{2}+16 x^{2}\end{array}-32 a y\right\}=16 a^{2}$
$\Rightarrow 25 y^{2}-24 y-56 a y+32 a+16+16 a^{2}=0$
$\Rightarrow 25 y^{2}-(24+56 a) y+\left(16 a^{2}+32 a+16\right)=0$
\qquad
[as, neplwimar muse Be zeiwo $64(7 a+3)^{2}-4 \times 25 \times 16\left(a^{2}+2 a+1\right)=0$ $(T a+3)^{2}-25\left(a^{2}+2 a+1\right)=0$
$4 a^{2}-42 a+9-25 x^{2}-5 x-25=0$ $\Rightarrow \quad x=\frac{1}{5}$

Question 104 (*****)
The circles C_{1} and C_{2} have respective equations

$$
(x+1)^{2}+(y+2)^{2}=\frac{9}{4} \quad \text { and } \quad(x-5)^{2}+(y-6)^{2}=36
$$

The point P lies on C_{2} so that the distance of P from C_{1} is least.

Determine the exact coordinates of P.

Question 105 (*****)
A curve in the $x-y$ plane has equation

$$
x^{2}+y^{2}+6 x \cos \theta-18 y \sin \theta+45=0
$$

where θ is a parameter such that $0 \leq \theta<2 \pi$.

Given that curve represents a circle determine the range of possible values of θ.

Created by T. Madas

Question 106 (*****)
Two circles, C_{1} and C_{2}, have respective radii of 4 units and 1 unit and are touching each other externally at the point A.

The coordinates axes are tangents to C_{1}, whose centre P lies in the first quadrant.

The x axis is a tangent to C_{2}, whose centre Q also lies in the first quadrant.

The straight line l_{1}, passes through P and Q, and meets the x axis at the point R.

The straight line l_{2} has negative gradient, passes through R and is a common tangent to C_{1} and C_{2}.

Determine, in any order and in exact form where appropriate, the coordinates of A, the length of $P R$ and an equation of l_{2}.
\square
\square $|P R|=\frac{20}{3}, 24 x+7 y=224$

c)

COOKING AT THE MAIN DIAGRAM

- gehane of $l_{1}=-\frac{3}{4}$
- Gerpilat of $B C=\frac{4}{3}$
- Equition of $l_{1} \Rightarrow y-7=-\frac{3}{4}(2-4)$
- gquation of $B C \Rightarrow y-0=\frac{4}{3}(x-4)$

Soung sluutnnocosy to find tite coodes of M
$\Rightarrow 4=\frac{4}{3}(x-4)+\frac{3}{4}(x-4)$ $\Rightarrow 48=6(x-4)+9(x-4)$ $\Rightarrow \angle B=25(x-4)$

Question 107 (*****)
A family of circles is passing through the points with coordinates $(2,1)$ and $(4,5)$

Show that the equation of every such circle has equation

$$
x^{2}+y^{2}+2 x(2 k-9)+2 k y=6 k-41
$$

where k is a parameter.

let the gquation of the ciraE bis $\begin{aligned} & (x-A)^{2}+(y-B)^{2}=R^{2} \\ (2,1) \Rightarrow & (2-A)^{2}+(1-B)^{2}=R^{2} \\ & A^{2}-4 A+4+B^{2}-2 B+1=R^{2} \\ & A^{2}+B^{2}-4 A-2 B=R^{2}-S \\ (4 S) \Rightarrow & (4-A)^{2}+(S-B)^{2}=R^{2} \\ & A^{2}-8 A+16+B^{2}-10 B+25=R^{2} \\ & A^{2}+B^{2}-8 A-10 B=R^{2}-41 \end{aligned}$ subtrating $\begin{aligned} & 44+B B=36 \\ & A+2 B=9 \\ & A=9-2 B \end{aligned}$ Thas we thut $\begin{aligned} & (9-2 B)^{2}+B^{2}-8(9-2 B)-10 B=R^{2}-41 \\ & \left(\begin{array}{c} 4 B^{2}-36 B+81 \\ B^{2}+16 B-72 \\ -10 B \end{array}\right)=R^{2}-41 \\ & 5 B^{2}-30 B+50=R^{2} \end{aligned}$ HWNE THE EQUATION BECOMTS $\begin{aligned} & (x-9+2 B)^{2}+(y-B)^{2}=5 B^{2}-30 B+50 \\ & x^{2}+4 B^{2}+81-18 x+4 B x-36 B+y^{2}-2 B y+B^{2}=5 B^{2}-30 B+50 \\ & x^{2}+(4 B-18) x+y^{2}-2 B y=6 B-41 \\ & x^{2}+2(a k-9) x+y^{2}+2 k y=6 k-41 \end{aligned}$

Question 108 (*****)
The straight line with equation

$$
y=t(x-2),
$$

where t is a parameter, crosses the circle with equation

$$
x^{2}+y^{2}=1
$$

at two distinct points A and B.
a) Show that the coordinates of the midpoint of $A B$ are given by

$$
M\left(\frac{2 t^{2}}{1+t^{2}},-\frac{2 t}{1+t^{2}}\right)
$$

b) Hence show that the locus of M as t varies is a circle, stating its radius and the coordinates of its centre.

Question 109 (*****)
The straight line L and the circle C, have respective equations

$$
L: y=\lambda(x-a)+a \sqrt{\lambda^{2}+1} \quad \text { and } \quad C: x^{2}+y^{2}=2 a x
$$

where a is a positive constant and λ is a parameter.

Show that for all values of λ, L is a tangent to C.

Question 110 (*****)
Two parallel straight lines, L_{1} and L_{2}, have respective equations

$$
y=2 x+5 \quad \text { and } \quad y=2 x-1 .
$$

L_{1} and L_{2}, are tangents to a circle centred at the point C.

A third line L_{3} is perpendicular to L_{1} and L_{2}, and meets the circle in two distinct points, A and B.

Given that L_{3} passes through the point $(9,0)$, find, in exact simplified surd form, the coordinates of C.
$\square, C\left[\frac{1}{10}(5+\sqrt{61}), \frac{1}{5}(15+\sqrt{61})\right]$

Created by T. Madas

Question 111 (*****)

Three circles, C_{1}, C_{2} and C_{3}, have their centres at A, B and C, respectively, so that $|A B|=5,|A C|=4$ and $|B C|=3$.

The positive x and y axis are tangents to C_{1}.

The positive x axis is a tangent to C_{2}.
C_{1} and C_{2} touch each other externally at the point M

Given further that C_{3} touches externally both C_{1} and C_{2}, find, in exact simplified form, an equation of the straight line which passes through M and C.

Question 112 (*****)
Two circles, C_{1} and C_{2}, are touching each other externally, and have respective radii of 9 and 4 units.

A third circle C_{3}, of radius r, touches C_{1} and C_{2} externally.

Given further that all three circles have a common tangent, determine the value of r.

$$
r=\frac{36}{25}=1.44
$$

\square
\square COMBINING fuvations $\begin{array}{ll}x^{2}=36 r & y^{2}=16 r \\ x=+6 r^{2} & y=+4 r^{\frac{1}{2}}\end{array}$

Question 113 (*****)
The point $A(6,-1)$ lies on the circle with equation

$$
x^{2}+y^{2}-4 x+6 y=7
$$

The tangent to the circle at A passes through the point P, so that the distance of P from the centre of the circle is $\sqrt{65}$.

Another tangent to the circle, at some point B, also passes through P.

Determine in any order the two sets of the possible coordinates of P and B.
, $P(3,5) \cap B\left(-\frac{1}{13},-\frac{18}{13}\right) \cup P(9,-7) \cap B\left(\frac{30}{13},-\frac{97}{13}\right)$
\square
\square
\square

