BINOMIAL

 EXPANSIONS EXAM QUESTIONSCreated by T. Madas

Question 1 (**)
Find, without any calculating aid, the first three terms in the expansion of $(2-5 x)^{5}$, in ascending powers of x.

Question 2 (**)
Expand $(3-2 x)^{5}$ in ascending powers of x, up and including the term in x^{3}.

\square $243-810 x+1080 x^{2}-720 x^{3}+\ldots$
\square

Question 3 (**)
Find the binomial expansion of $(1-5 x)^{4}$ in ascending powers of x.
\square $1-20 x+150 x^{2}-500 x^{3}+625 x^{4}$ Created by T. Madas

Created by T. Madas

Question $4 \quad{ }^{(* *)}$

Find, without any calculating aid, the first three terms in the expansion of $(2-7 x)^{6}$, in ascending powers of x.

Question 5 (**)

Find the binomial expansion of $(1-2 x)^{6}$ in ascending powers of x.

$$
1-12 x+60 x^{2}-160 x^{3}+240 x^{4}-192 x^{5}+64 x^{6}
$$

a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1+3 x)^{8}$.
b) Determine the coefficient of x^{6} in the binomial expansion of $(1+3 x)^{8}$.

$$
\square, 1+24 x+252 x^{2}+1512 x^{3}+\ldots, 20412
$$

Created by T. Madas

Created by T. Madas

Question $7 \quad\left({ }^{* *}+\right.$)

Find, without using a calculator, the coefficient of x^{3} in the expansion of $(2+3 x)^{6}$.

Question 8 (**+)

Find the coefficient of x^{5} in the binomial expansion of $(2+3 x)^{9}$.

Question $9 \quad$ (**+)

Find, without using a calculator, the coefficient of x^{4} in the expansion of $\left(4 x-\frac{1}{2}\right)^{7}$.
-1120

Created by T. Madas

Created by T. Madas

Question $10 \quad\left({ }^{* *}+\right.$)

Find, without using a calculator, the coefficient of x^{5} in the expansion of $(2 x-3)^{7}$.

Question $11 \quad(* *+)$

a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1-2 x)^{10}$.
b) Use the answer of part (a) with a suitable value of x to find an approximate value for 0.98^{10}, giving the answer correct to three decimal places.

Created by T. Madas

Question $12 \quad\left({ }^{* *}+\right)$

a) Find, in ascending powers of x, the first four terms in the binomial expansion of $(2+x)^{9}$.
b) By using the answer of part (a), or otherwise, find the first four terms in the binomial expansion of $\left(2-\frac{1}{4} x\right)^{9}$.

$$
\begin{array}{|}
\square, \frac{(2+x)^{9}=512+2304 x+4608 x^{2}+5376 x^{3}+\ldots}{\left(2-\frac{1}{4} x\right)^{9}=512-576 x+288 x^{2}-84 x^{3}+\ldots}
\end{array}
$$

Question 13

a) Find the first five terms, in ascending powers of x, in the binomial expansion of $(1+2 x)^{12}$.
b) Use the answer of part (a) with a suitable value of x to find an approximate value for 1.02^{12}.
c) Determine the error in this approximation.
\square
$1+24 x+264 x^{2}+1760 x^{3}+7920 x^{4}+\ldots$
$1.02^{12} \approx 1.2682392$,
error ≈ 0.00000259

Created by T. Madas

Created by T. Madas

Question 14 (**+)
In the binomial expansion of

$$
(1+k x)^{6}
$$

where k is constant, the coefficient of x^{3} is twice as large as the coefficient of x^{2}.

Find the value of k.

Question 15 (***)
a) Find, in ascending powers of x, the binomial expansion of $(2+x)^{5}$.
b) By using the expression obtained in part (a), or otherwise, find the binomial expansion of $\left(2-x^{2}\right)^{5}$.
c) Use the expression obtained in part (b) to estimate, correct to 3 decimal places, the value of 1.99^{5}.

Question 16 (***)
a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(1+2 x)^{7}$.
b) Hence determine the coefficient of x in the expansion of

$$
(1+2 x)^{7}(3+2 x)^{4}
$$

\square $, 1+14 x+84 x^{2}+280 x^{3}+\ldots, 1350$

Question 17 (***)
a) Find the binomial expansion of $(2 x+4)^{3}$, in descending powers of x.
b) Hence determine the expansion of

 $(2 x+4)^{3}=1(2 x)^{3}(4)^{0}+3\left(x x^{2}(4)^{1}+3(2 x)^{1}(4)^{2}+1(2)^{0}\right)(4)^{3}$ $(2 x+4)^{3}=8 x^{3}+48 x^{2}+96 x+64$

b) NSINO PART (a)
$(2 x-1)(2 x+4)^{3}=(2 x-1)\left(8 x^{3}+48 x^{2}+96 x+64\right)$

Question 18 (***)

$$
f(x)=(1-2 x)^{8}
$$

a) Find the first four terms in the expansion of $f(x)$, in ascending powers of x.
b) Hence determine, in ascending powers of x, the first four terms in the expansion of

$$
(2+3 x)(1-2 x)^{8}
$$

$1-16 x+112 x^{2}-448 x^{3}+\ldots, 2-29 x+176 x^{2}-560 x^{3}+\ldots$

Question 19 (***)
a) Find, in ascending powers of x, the first four terms in the binomial expansion of $(2+x)^{9}$.
b) Hence find the coefficient of x^{3} in the expansion of

$$
\left(1-\frac{1}{8} x\right)^{2}(2+x)^{9}
$$

$\square,(2+x)^{9}=512+2304 x+4608 x^{2}+5376 x^{3}+\ldots$, \square $\left[x^{3}\right]=4260$

Created by T. Madas

Question 20 (***)

$$
f(x)=(2+x)^{4}
$$

a) Find the expansion of $f(x)$, in ascending powers of x.
b) Deduce the expansion of $(2-3 x)^{4}$, also in ascending powers of x.
c) Determine the coefficient of x in the expansion of

$$
(2+x)^{4}(2-3 x)^{4}
$$

$$
f(x)=16+32 x+24 x^{2}+8 x^{3}+x^{4}, 16-96 x+216 x^{2}-216 x^{3}+81 x^{4},-1024
$$

Question 21 (***)
a) Find the first five terms, in ascending powers of x, in the binomial expansion of $(1-2 x)^{11}$.
b) Use the answer of part (a) with a suitable value of x to show that

$$
\left(\frac{14}{15}\right)^{11} \approx \frac{1582}{3375}
$$

c) Determine the percentage error in the approximation of part (b).

Created by T. Madas

Question 22 (***+)
It is given that if k is a non zero constant, then

$$
(2+k x)^{6} \equiv a+b x+b x^{2}+c x^{3}+\ldots
$$

Determine the value of each of the constants a, b and c.

Question 23 (***+)

In the binomial expansion of

$$
(2 x+k)^{4}
$$

where k is a non zero constant,

Created by T. Madas

Question 24 (***+)
Find the binomial expansion of

$$
\left(x+\frac{2}{x}\right)^{4}, x \neq 0
$$

simplifying each term of the expansion.

Question $25 \quad(* * *+)$
a) Determine, in ascending powers of x, the first three terms in the binomial expansion of $(2-3 x)^{10}$.
b) Use the first three terms in the binomial expansion of $(2-3 x)^{10}$, with a suitable value for x, to find an approximation for 1.97^{10}.
c) Use the answer of part (b) to estimate, correct to 2 significant figures, the value of 3.94^{10}.
\square
\square $1.97^{10} \approx 880.768 \approx 881$,

$$
3.94^{10} \approx 900000
$$

Created by T. Madas

Created by T. Madas

Question 28 (***+)
Find the binomial expansion of

$$
\left(x-\frac{1}{x}\right)^{5}, x \neq 0
$$

simplifying each term of the expansion.

$$
x^{5}-5 x^{3}+10 x-\frac{10}{x}+\frac{5}{x^{3}}-\frac{1}{x^{5}}
$$

Question 29 (***+)
In the binomial expansion of
\square

$$
\left(k-\frac{x}{2}\right)^{6}
$$

where k is a positive constant, one of the terms is $960 x^{2}$.
a) Find the value of k.
b) Determine the coefficient of x^{3}.

$$
\begin{aligned}
& -k=4 \\
& \hline
\end{aligned}
$$

Created by T. Madas

Created by T. Madas

Question 30 (***+)
Given that k is a non zero constant and n is a positive integer, then

$$
(1+k x)^{n} \equiv 1+40 x+120 k^{2} x^{2}+\ldots
$$

Find the value of k and the value of n.

$$
\square, k=\frac{5}{2}, n=16
$$

\square

Question 31 (***+)
Given that k and A are constants with $k>0$, then

Find the value of k and the value of A.

$$
(2-k x)^{8} \equiv 256+A x+1008 x^{2}+\ldots
$$

\square

Created by T. Madas

Question $32(* * *+)$

$$
f(x)=(2-3 x)^{2}(1+4 x)^{7}
$$

Find the coefficient of x^{2} in the polynomial expansion of $f(x)$.
\square

EXPAND of to x^{2} in Ascending pawhes of x
$f(x)=(2-3 x)^{2}(1+4 x)^{7}$ $f(x)=\left(4-12 x+9 x^{2}\right)\left[1+\frac{7}{1}(4 x)^{1}+\frac{7 \times 6}{1 \times 2}(4 x)^{2}+\cdots\right]$ $f(x)=\left(4-12 x+9 x^{2}\right)\left(1+28 x+336 x^{2}+\cdots\right)$ $\underbrace{\frac{\underbrace{2}_{9 x^{2}}}{-336 x^{2}}}_{+1341 x^{2}}$ Repurets cogffichs) is
$9-336+1344=1017$

Question 33 (***+)

$$
(2+x)^{5}=x^{5}+10 x^{4}+a x^{3}+b x^{2}+c x+32 .
$$

a) Find the value of each of the constants a, b and c.
b) Hence, or otherwise, simplify $(2-\sqrt{2})^{5}$, giving the final answer in the form $p+q \sqrt{2}$, where p and q are constants.

$$
a=40, b=80, c=80,232-164 \sqrt{2}
$$

Created by T. Madas

Question 34 (***+)

$$
f(x)=\left(2+\frac{1}{4} x\right)^{8}
$$

a) Find the first four terms in ascending powers of x in the expansion of $f(x)$.
b) Use the expansion found in part (a) to find an approximation, to 3 significant figures, for $\left(\frac{81}{40}\right)^{8}$.

$$
f(x)=256+256 x+112 x^{2}+28 x^{3}+\ldots,\left(\frac{81}{40}\right)^{8} \approx 283
$$

Question 35 (***+)
a) Find the binomial expansion of

$$
(5+10 x)^{4}
$$

b) Hence, by using the answer of part (a) with a suitable value of x find the exact value of 1005^{4}.
You may not give the answer in standard index form.
\square , $625+5000 x+15000 x^{2}+20000 x^{3}+10000 x^{4}, 1,020,150,500,625$

Created by T. Madas

Question 36 (***+)

$$
f(x)=(1-2 x)^{6}, \quad g(x)=(2+x)^{7}, \quad h(x)=f(x) g(x) .
$$

a) Find the first four terms in ascending powers of x in the binomial expansion of $f(x)$ and in the binomial expansion of $g(x)$.
b) Hence determine the coefficient of x^{2} in the binomial expansion of $h(x)$.

$$
g(x)=128+448 x+672 x^{2}+560 x^{3}+\ldots, 2976
$$

Question 37 (***+)
Find the binomial expansion of

$$
\left(x+\frac{2}{x}\right)^{6}, x \neq 0
$$

simplifying each term of the expansion.
$\square, x^{6}+12 x^{4}+60 x^{2}+160+\frac{240}{x^{2}}+\frac{192}{x^{4}}+\frac{64}{x^{6}}$

$$
+\left(15 \times x^{2}+\frac{6}{x^{4}}\right)+\left(6 \times x \times \frac{32}{x^{2}}\right)+\left(1 \times 1 \times \frac{64}{x^{2}}\right)
$$

$$
=\frac{x^{6}+12 x^{4}+60 x^{2}+160+\frac{240}{x^{2}}+\frac{192}{x^{4}}+\frac{64}{x^{6}}}{}
$$

Question 38 (***)

$$
f(x)=(3-2 x)^{2}(1+2 x)^{6} .
$$

Find the binomial expansion of $f(x)$ in ascending powers of x, up and including the term in x^{3}.
\square $9+96 x+400 x^{2}+768 x^{3}+\ldots$

$f(3)=(3-2)^{2}(1+2)^{2}$
(6) $=9+98+4 \cos ^{2}+\operatorname{rex}^{2}+\ldots$

Created by T. Madas

Created by T. Madas

Question 39 (***+)
It is given that

$$
(1-2 x)(2+k x)^{5} \equiv A+B x+240 x^{2}+\ldots
$$

where k, A and B are constants.

Determine the possible values of k

Question $40 \quad(* * *+)$
a) Find the binomial expansion of $\left(1+\frac{1}{4} x\right)^{10}$ in ascending powers of x up and including the term in x^{3}, simplifying fully each coefficient.
b) Use the expansion of part (a) to show that

$$
\left(\frac{41}{40}\right)^{10} \approx 1.28
$$

, $1+\frac{5}{2} x+\frac{45}{16} x^{2}+\frac{15}{8} x^{3}+\ldots$

Created by T. Madas

Question 41 (***+)

$$
f(x)=(1+3 x)^{6} .
$$

a) Find, in ascending powers of x, the binomial expansion of $f(x)$ up and including the term in x^{4}.
b) Use the expansion found in part (a) to show that

$$
(1.003)^{6} \approx 1.01813554122
$$

$$
f(x)=1+18 x+135 x^{2}+540 x^{3}+1215 x^{4}+\ldots
$$

Question 42 (***+)
a) Find the binomial expansion of $(3+2 x)^{4}$.
b) State the binomial expansion of $(3-2 x)^{4}$.
c) Use the answers of part (a) and (b) to find

$$
(3+\sqrt{8})^{4}+(3-\sqrt{8})^{4}
$$

No credit will be given for any other type of evaluation.

$$
\begin{array}{r}
(3+2 x)^{4}=16 x^{4}+96 x^{3}+216 x^{2}+216 x+81, \\
(3-2 x)^{4}=16 x^{4}-96 x^{3}+216 x^{2}-216 x+81,(3+\sqrt{8})^{4}+(3-\sqrt{8})^{4}=1154
\end{array}
$$

Question 43 (***+)
a) Find the first four terms, in ascending powers of x, of the binomial expansion of $\left(1+\frac{x}{2}\right)^{7}$, giving each coefficient in exact simplified form.
b) Hence determine the coefficient of x in the expansion of

$$
\left(1+\frac{2}{x}\right)^{2}\left(1+\frac{x}{2}\right)^{7}
$$

$$
\square, 1+\frac{7}{2} x+\frac{21}{4} x^{2}+\frac{35}{8} x^{3}+\ldots, \quad[x]=42
$$

Question $44 \quad(* * *+)$

$$
f(x)=(1+2 x)^{7}
$$

a) Determine the first four terms, in ascending powers of x, in the binomial expansion of $f(x)$.
b) Hence, or otherwise, find the first four terms in the expansion of

$$
\left(3+4 x-4 x^{2}\right)(1+2 x)^{6}
$$

giving the answer in ascending powers of x.
\square , $1+14 x+84 x^{2}+280 x^{3}+\ldots$ \square
Ma $3+40 x+224 x^{2}+672 x^{3}+\ldots$

$\Rightarrow(1+2 x)^{6}=1+12 x+60 x^{2}+160 x^{3}+\cdots$
 $\left(3+4 x-4 x^{2}\right)(1+2 x)^{6}=\left(3+4 x-4 x^{2}\right)\left(1+12 x+60 x^{2}+160 x^{3}+\ldots\right)$
$3+36 x+180 x^{2}+480 x^{3}$
$4 x+48 x^{2}+240 x^{3}+$
$-\quad-4 x^{2}-48 x^{3}$
$=3+40 x+224 x^{2}+672 x^{3}+$

Created by T. Madas

Question 45 (***+)

a) Find the binomial expansion of $(2-5 x)^{10}$ in ascending powers of x up and including the term in x^{3}, simplifying fully each coefficient.
b) Use the expansion of part (a) to show that
$(1.99)^{10} \approx 974$.
$1024-25600 x+288000 x^{2}-1920000 x^{3}+\ldots$

Question 46 (****)

$$
(1+a x)^{n}=1-30 x+405 x^{2}+b x^{3}+\ldots
$$

where a and b are constants, and n is a positive integer.
Determine the value of n, a and b.

$$
n=10, a=-3, b=-3240
$$

Created by T. Madas

Created by T. Madas

Question 47 (****)

$$
f(x) \equiv(1+x)^{n}, x \in \mathbb{R}, n \in \mathbb{N}
$$

Determine showing a clear complete method the coefficient .
a) \ldots of the highest power of x in the binomial expansion of $f(x)$, when $n=13$.
b) \ldots of the second highest power of x in the binomial expansion of $f(x)$, when $n=14$.
\square , 1716,3003

Question 48 (****)
Find the coefficient of x^{5} in the binomial expansion of

$$
(1-x)^{5}(1+x)^{6}
$$

\square , $\left[x^{5}\right]=10$

Created by T. Madas

Created by T. Madas

Question 49
(****)
where k is a positive constant.

Given the coefficient of x^{3} in the binomial expansion of $f(x)$ is 21 , determine the value of k.

Created by T. Madas

Question 50 (****)

$$
f(x)=(1+2 x)^{5}, x \in \mathbb{R} .
$$

a) Find the binomial expansion of $f(x)$.
b) Hence state the binomial expansion of $f(-x)$.
c) Find the two non zero solutions of the equation
$f(x)-f(-x)=64 x$.

$$
\begin{array}{|}
\square, f(x)=1+10 x+40 x^{2}+80 x^{3}+80 x^{4}+32 x^{5} \\
f(-x)=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5} & x= \pm \frac{1}{2}
\end{array}
$$

Created by T. Madas

Question 51 (****)
In the binomial expansion of $(1+a x)^{k}$, where a and k are non zero constants, the coefficient of x is 8 and the coefficient of x^{2} is 30 .
a) Determine the value of a and the value of k.
b) Find the coefficient of x^{3}.
$\square, a=\frac{1}{2}, k=16,70$

Created by T. Madas

Question 52 (****)

$$
f(x) \equiv(k+x)^{n}, x \in \mathbb{R}
$$

where k and n are constants such that $k \in \mathbb{R}, k \neq 0, n \in \mathbb{N}, n>3$.
a) Given the coefficients of x^{2} and x^{3} in the binomial expansion of $f(x)$ are equal, show clearly that

$$
n=3 k+2 .
$$

b) Given further that $k=2$, determine the coefficient of x^{4} in the binomial expansion of $f(x)$.

Question 53 (****)
a) Find the binomial expansion of $(3+x)^{4}$, simplifying fully each coefficient.
b) Hence solve the equation

Created by T. Madas

Question 54 (****)
a) Find the binomial expansion of $(2 x-4)^{5}$, simplifying fully each coefficient.
b) Hence find the coefficient of ...
i. $\ldots y^{2}$ in the binomial expansion of $\left(\frac{y+16}{4}\right)^{5}$.
ii. $\ldots z^{8}$ in the binomial expansion of $(\sqrt{2} z-2)^{5}(\sqrt{2} z+2)^{5}$.
$\square, 32 x^{5}-320 x^{4}+1280 x^{3}-2560 x^{2}+2560 x-1024,\left[y^{2}\right]=40$, \square

Find the coefficient of x^{11} in the binomial expansion of

$$
\left(\frac{9}{2 x}-\frac{2 x^{2}}{3}\right)^{13}
$$

\square
\square

Created by T. Madas

Question 56 (****)
If $k>0$ and n is a positive integer, then

$$
(1+k x)^{n} \equiv 1+\frac{7}{2} x+B x^{2}+B x^{3}+\ldots
$$

where B is a non zero constant.

By considering the coefficients of x^{2} and x^{3}, show that

$$
n k=2 k+3
$$

and hence find the value of n and the value of k.

\square
$n=14, k=\frac{1}{4}$
\square

Question 57 (****)
Show that if x is numerically small

$$
\left(2+x-x^{2}\right)^{5} \approx A+B x+C x^{3}
$$

where A, B and C are integers to be found.

$$
\square, A=32, B=80, C=-120
$$

$$
\begin{aligned}
& =1 \times 32 \times 1+\sin \left(x-x^{2}\right)+10 \times 8\left(x^{2}-2 x^{2}+\ldots\right)+b \times 4\left(3^{3}-\ldots\right) \\
& =32+80 x-\operatorname{son}^{2} /
\end{aligned}
$$

$$
\begin{aligned}
& =32+80 x-80 x^{2} / 20 x^{2}-160
\end{aligned}
$$

$$
=\frac{3 x+80 x-120 x^{3}}{40 x^{3}+\cdots}
$$

$$
=3+80 x-120 x^{3}
$$

Question 58 (****)
It is given that

$$
(1-2 x)^{2}(2+k x)^{4} \equiv A+B x-104 x^{2}+\ldots
$$

where k, A and B are non zero constants.

Determine the possible values of B.

$$
\begin{aligned}
& \theta \\
& \text { 20, }
\end{aligned}
$$

Created by T. Madas

Question 59

$$
(2+a x)(1+b x)^{7}=2-41 x+357 x^{2}+\ldots
$$

where a and b are integers.

Show that $b=-3$ and find the value of a.

Question 60 (****+)
a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(6 x-3)^{8}$, simplifying fully each coefficient.
b) Hence find the coefficient of
i. $\ldots y^{3}$ in the binomial expansion of $\left(\frac{y+9}{3}\right)^{8}$.
ii. ... z^{6} in the binomial expansion of $(\sqrt{2} z-1)^{8}(\sqrt{2} z+1)^{8}$.
\square
$6561-104976 x+734832 x^{2}-2939328 x^{3}+\ldots,\left[y^{3}\right]=504$,

$$
\left[z^{6}\right]=-448
$$

a) Expandina By thf Sminard Binomial Revura
$\left.\left.(6 a-3)^{8}=\binom{8}{(1)}(69)(-3)^{8}+\binom{8}{1}(62)\right)^{1}(-3)^{7}+\left(\frac{(8)}{2}\right)(62)^{2}\right)(-3)^{6}+\left(\frac{8}{3}\right)(62)^{3}(-3)^{5}+\cdots$ $=(1 \times 1 \times 6561)+(8 \times 62 \times(-28171))+(28 \times 364 \times 729)$
$=6551-104976 x+734832 x^{2}-2939388 x^{3}+\cdots$
b) Proctio \uparrow frowows
$\frac{y+9}{3}=6 x+3$
$y+9=18 x+$
$18 x=y$
$x=\frac{1}{B} y$
Winc. PNRT (a)
$\begin{aligned} {\left[6\left(\frac{1}{8} y\right)-3\right]^{8} } & =6561-\ldots .2-2993328\left(\frac{1}{18} 9\right)^{3}+\cdots \\ {\left[\frac{y+9}{3}\right]^{8} } & =6561-\cdots-594 y^{3}+\cdots\end{aligned}$
c) $\begin{aligned} \frac{\text { work As Gwows }}{(\sqrt{2} z-1)^{8}(\sqrt{2} z+1)^{8}} & =[(\sqrt{2} z-1)(\sqrt{2} z+1)]^{8} \\ & =\left(2 z^{2}-1\right)^{8} \\ & =\frac{1}{3^{8}} \times 3^{8} \times\left(2 z^{2}-1\right)^{8}\end{aligned}$

Created by T. Madas

Question 61 (****+)

$$
(2+a x)^{2}(1+b x)^{6}=4+44 x+85 x^{2}+\ldots
$$

where a and b are integers.

Find the possible values of a and the possible values of b.

Question 62 (****+)
a) Given that c is a non zero constant, determine the first four terms, in ascending powers of x, in the binomial expansion of $(1+c x)^{6}$.

It is further given that

$$
\left(a+\frac{b}{x}\right)(1+c x)^{6} \equiv-\frac{4}{x}+74-576 x+\ldots
$$

where a and b are non zero constants.
b) Show that one of the two possible values of c is -3 , and find the other.

Created by T. Madas

Question 63 (****+)
Find the coefficient of x^{2} in the binomial expansion of

$$
\left(2 x^{2}+3 x+1\right)^{7}
$$

\square
\square
,

Question 64 (****+)
a) Find the binomial expansion of $(2+x)^{5}$.
b) Hence solve the equation

Created by T. Madas

Question 66 ($* * * *+$)
It is given that if k is a constant then

Determine the value of k.

Question 67 (****+)
If A, k and n are constants, with $n \in \mathbb{N}$, then

$$
(1+k x)^{n}=1+A x+264 x^{2}+1760 x^{3}+\ldots
$$

a) Show that

$$
(n-2) k=20
$$

b) Determine the value of A.
\square ,$A=24$

b) Now ue Hfove

- $\begin{aligned} \frac{1}{2} n(n-1) t^{2} & =264 \\ n(n-1) k^{2} & =520\end{aligned}$ DULDINE THE GEOATIONS SLOE BV SIDE
$\frac{n(\eta-1) k^{2}}{(n-2)^{2} k^{2}}=\frac{52 B}{400}$

Created by T. Madas

Question 68 (*****)
The binomial coefficients are given by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}, k \in \mathbb{N}, n \in \mathbb{N} \cup\{0\} .
$$

Show directly from the above definition that

Find the value, or possible values, of y if

Created by T. Madas

Question 70
$(* * * * *)$
It is given that

$$
f(x)=\sum_{r=0}^{n}\left[\binom{n}{r}^{r}\left(1+x+x^{2}\right)^{n-r}\right]
$$

where n is a positive integer constant.
a) Evaluate $f(-1)$.
b) Find the value of n that satisfies the equation

\square $, f(-1)=0, n=2592$

Created by T. Madas

Question 71 (*****)
The coefficients of x^{n}, x^{n+1} and x^{n+2} in the binomial expansion of $(1+x)^{23}$ are in arithmetic progression.

Determine the possible values of n.

\square

Created by T. Madas

Question 72 (*****)
It is given that

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n-1}+\binom{n}{n}=k^{n},
$$

where n and k are positive integer constants.
a) By considering the binomial expansion of $(1+x)^{n}$, determine the value of k.
b) By considering the coefficient of x^{n} in

$$
(1+x)^{n}(1+x)^{n} \equiv(1+x)^{2 n}
$$

simplify fully

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n-1}^{2}+\binom{n}{n}^{2} .
$$

\square

$$
1, k=2
$$

\qquad
b) $(1+x)^{n}(1+x)^{n} \equiv(1+x)^{2 n}$
$\Rightarrow\left[\left[(b)+(y) x+(y) x^{2}+\cdots+(n) x\right][(y)+(4) \mid x+(y))^{2}+\cdots+(n) x^{4}\right]$
\qquad
WOLING to Tite coeffichar of x^{4} on Beat SIOES
$(n)\left(n_{n}^{n}\right)+(M)\binom{n}{n=1}+(n)\left(n_{2}^{n}\right)+\cdots+(n)\left(n_{0}\right)=\binom{n}{n}$
 Honce $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$

Created by T. Madas

Question 73
It is given that

$$
(a+b x)^{n}=8192+6656 x+2496 x^{2}+\ldots
$$

where a, b and n are non zero constants.

Use algebra to determine the values of a, b and n.

No credit will be given to solutions by inspection and/or verification

Created by T. Madas

Question 74 (*****)
It is given that

$$
(a+b x)^{n}=512+576 x+288 x^{2}+\ldots
$$

where a, b and n are non zero constants.

Use algebra to determine the values of a, b and n.
No credit will be given to solutions by inspection and/or verification

Created by T. Madas

Question 75 (*****)
Find the term independent of x in the expansion of

Created by T. Madas

Question 76 (*****)
The binomial coefficients are given by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}, k \in \mathbb{N}, n \in \mathbb{N} \cup\{0\}
$$

Show directly from the above definition that if $n \geq r \geq m$, then

