
Created by T. Maaas BINOMIAL TO NSIONS EXPANSIONS EXAMQUESTIONS Con EX. Con I.Y.G.B. Madasmaths.Com I.Y.G.B. Madasmaths.Com THER. Madasmaths.com I.Y.C.P. Madase

Question 1 (**)

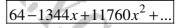
Find, without any calculating aid, the first three terms in the expansion of $(2-5x)^5$, in ascending powers of x.

Question 2 (**)

Expand $(3-2x)^5$ in ascending powers of x, up and including the term in x^3 .

 $243-810x+1080x^2-720x^3+..$

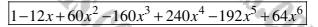
Question 3 (**)


Find the binomial expansion of $(1-5x)^4$ in ascending powers of x.

], $1-20x+150x^2-500x^3+625x^4$

 $\begin{array}{l} & = 1 - 20\lambda + 1503_{2}^{-} - 5003_{3}^{+} + 6233_{4}^{-} + 6333_{4}^{-} +$

Question 4 (**)


Find, without any calculating aid, the first three terms in the expansion of $(2-7x)^6$, in ascending powers of x.

 $\begin{array}{l} (2 -7h)^{\frac{1}{2}} = \begin{pmatrix} k \\ k \\ k \\ - 1 \end{pmatrix} \begin{pmatrix} k \\ k \\ - 1 \end{pmatrix} \begin{pmatrix} k \\ - 1 \end{pmatrix} \begin{pmatrix}$

Question 5 (**)

Find the binomial expansion of $(1-2x)^6$ in ascending powers of x.

Question 6 (**)

a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1+3x)^8$.

b) Determine the coefficient of x^6 in the binomial expansion of $(1+3x)^8$.

], $1+24x+252x^2+1512x^3+...$, 20412]

 $\begin{array}{l} \underbrace{(1+3\alpha)}^{8} = 1 + \underbrace{f_{1}}_{1} \underbrace{(3\alpha)}_{1/2} + \underbrace{\frac{6\alpha}{1/2\alpha}}_{1/2\alpha} \underbrace{(2\alpha)}_{1/2\alpha} + \underbrace{\frac{6\alpha}{1/2\alpha}}_{1/2\alpha} \underbrace{(3\alpha)}_{1/2} + \cdots \\ = 1 + 2i(\alpha + (2\alpha + 2\alpha^{2}) + (3\alpha + 2\alpha^{2})) + \cdots \\ = 1 + 2i(\alpha + 2\alpha^{2})^{2} + \frac{1}{1/2\alpha^{2}} + \cdots \end{array}$

(b) $(1+3\alpha)_{=}^{8} \dots + \frac{8 \times 7 \times 6 \times 3 \times 4 \times 3}{1 \times 2 \times 3 \times 4 \times 5 \times 6} (3\alpha)^{6} + \dots =$

---+ 20 × 1212 + ---

Question 7 (**+)

Find, without using a calculator, the coefficient of x^3 in the expansion of $(2+3x)^6$.

$ \begin{array}{c} \begin{pmatrix} z_1 + z_2 \\ z_3 \\ z_1 \\ z_2 \\ z_3 \\ z_1 \\ z_2 \\ z_1 \\ z_$	000 PASONJ TRAJO 1 1 1 2 1 2 1 2 0 2 1 2 0 2 1 2 0 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
= + 43202 ³ + :.4320	16 (2 (20) 13 - 6 1

Question 8 (**+)

Find the coefficient of x^5 in the binomial expansion of $(2+3x)^9$.

	, 489888
UE TO NOT ACTUALLY NEED THE BAMASION	AS WE ARE DUAY REING HADD FOR A
SINCLE THEM THOS WE HAVE	
$(2+3x)^q = \dots + {\binom{q}{5}}{\binom{1}{2}}{\binom{4}{3}} + \dots$	
(2)(2)(3x) ⁵ since	$\begin{pmatrix} p \\ 2 \end{pmatrix}_{\pi} \begin{pmatrix} p \\ + \end{pmatrix}_{\pi}$
= + 126×16×2430 ⁶ +	
= + 489858 +	
1÷ 489	868

Question 9 (**+)

Find, without using a calculator, the coefficient of x^4 in the expansion of $\left(4x - \frac{1}{2}\right)^7$.

 $\begin{pmatrix} 4_{2} - \frac{1}{2} \end{pmatrix}^{7} = \dots + \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 4_{2} \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}^{2} + \dots + \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 4_{2} \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}^{2} + \dots + \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7$

-1120

Question 10 (**+)

Find, without using a calculator, the coefficient of x^5 in the expansion of $(2x-3)^7$.

6048

(22-3) =	•••• +	$\binom{7}{2}$ $\binom{5}{2}$ $\binom{5}{2}$ $\binom{7}{2}$	(7)- (7)- 7×6
2	\sim +	21 × 323 × 9 +	$\int_{-\infty}^{\infty} \left(\frac{7}{5}\right) = \left(\frac{7}{2}\right) = \frac{7 \times \zeta}{1 \times z} = 21$
	+	199(x 32) 5 +	}
	+-	6048 2 5 4	104 318 755 1512 3024 6448
		. 6048	hand

Question 11 (**+)

- a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1-2x)^{10}$.
- b) Use the answer of part (a) with a suitable value of x to find an approximate value for 0.98^{10} , giving the answer correct to three decimal places.

,	$1 - 20x + 180x^2$	$-960x^{3}$,	≈ 0.817
-		- T	100 million (1990)	

(a) $(1-2\lambda)^{0}_{1-2} = 1 + \frac{10}{1}(-2\lambda) + \frac{10\pi^{4}}{1\times^{2}} (2\lambda)^{2}_{1-1} + \frac{10\pi^{4}\pi^{2}}{1\times^{2}\times^{2}} (2\lambda)^{2} + \cdots$ $= 1-2c\lambda_{+} + (45\times 4\lambda^{2}) + (3a_{2}\times (-2\lambda)^{2}) + \cdots$ $= 1-2b\lambda_{+} + (8b_{2}\lambda^{2} - 96c_{2}\lambda^{2} + \cdots$ (b) $1-2\lambda_{+} = 0.96$ $(-c_{1}\theta_{2} = 2\lambda_{+})$ $(-c_{2}\theta_{2} = 2\lambda_{+})$ $(-c_{2}\theta_{2} = 2\lambda_{+})$ $(-c_{2}\theta_{2} = 2\lambda_{+})$

(1 - 2(0-01)) ¹⁰ ≃	$(-2\alpha(0,01) + 180(0,01)^2 - 960(0,01)^3$
0.98 ¹⁰ ~	[-0.2 + 0.018 - 0.00096
0.98 🗠	0.817
	(3410)

Question 12 (**+)

- a) Find, in ascending powers of x, the first four terms in the binomial expansion of $(2+x)^9$.
- **b**) By using the answer of part (a), or otherwise, find the first four terms in the binomial expansion of $(2-\frac{1}{4}x)^9$.

 $(2+x)^9 = 512 + 2304x + 4608x^2 + 5376x^3 + \dots$ $(2-\frac{1}{4}x)^9 = 512 - 576x + 288x^2 - 84x^3 + \dots$

$$\begin{split} & \left(2+\infty\right)^{0} = \binom{1}{0} \binom{2}{0} \binom{1}{0} + \binom{1}{1} \binom{2}{0} \binom{1}{0} + \binom{2}{0} \binom{2}{0} \binom{2}{0} \binom{1}{0} + \binom{2}{0} \binom{2}{0} \binom{1}{0} + \binom{2}{0} \binom{1}{0} \binom{1}{0} + \ldots \\ & = \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} + \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} + \ldots \\ & = \frac{1}{0} \binom{1}{0} \binom{1$$

Question 13 (**+)

- a) Find the first five terms, in ascending powers of x, in the binomial expansion of $(1+2x)^{12}$.
- **b**) Use the answer of part (a) with a suitable value of x to find an approximate value for 1.02^{12} .
- c) Determine the error in this approximation.

, $1+24x+264x^2+1760x^3+7920x^4+...$

 $1.02^{12} \approx 1.2682392$ error ≈ 0.00000259

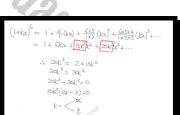
 $\begin{array}{l} \text{Let } \mathbf{J} = \mathbf{O} \leftarrow \mathbf{I} \\ \Rightarrow \begin{bmatrix} 1 + 2(\mathbf{o} \circ \mathbf{I})_{1}^{2} & 1 + 3(\mathbf{o} \circ \mathbf{i})_{1}^{2} \\ \Rightarrow \begin{bmatrix} 1 - \alpha \mathbf{i} \\ 1 & \alpha \mathbf{i} \end{bmatrix}^{2} \\ \Rightarrow 1 - \alpha \mathbf{i}^{2} \\ \Rightarrow$

 $\text{ellol} = 1.02^{12} - 1.2682392 \simeq 0.00000259$ (3 sf)

Question 14 (**+)

In the binomial expansion of

 $\left(1+kx\right)^6,$


where k is constant, the coefficient of x^3 is twice as large as the coefficient of x^2 .

202.81

Find the value of k.

F.G.B.

I.C.B.

1+

nadasm.

madası,

20

F.C.P.

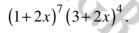
Created by T. Madas

ŀG.p.

Question 15 (***)

- a) Find, in ascending powers of x, the binomial expansion of $(2+x)^5$.
- **b**) By using the expression obtained in part (a), or otherwise, find the binomial expansion of $(2-x^2)^5$.
- c) Use the expression obtained in part (b) to estimate, correct to 3 decimal places, the value of 1.99⁵.

 $\boxed{\left(2+x\right)^5 = 32+80x+80x^2+40x^3+10x^4+x^5}, \\ \boxed{\left(2-x^2\right)^5 = 32-80x^2+80x^4-40x^6+10x^8-x^{10}}, \\ \boxed{1.99^5 \approx 31.208}$


a)	NULLAS KOIZZARASA GABAZARIZ JAT QUIZU.
	$ = (2+2)^{\frac{1}{2}} = (\frac{2}{3})(2^{\frac{1}{2}})(2^{\frac{1}{2}} + (\frac{2}{3})(2^{\frac{1}{2}})(2^{\frac{1}{2}} + (\frac{2}{3})(2^{\frac{1}{2}})(2^$
	= (2+2) ⁵ = (1×32×1)+ (3×14×2)+ (10×8×2 ⁴) + (10×4×2 ⁴) + (5×2×2)+ (1×1×2 ⁵)
-	$9(2+2)^{5} = 32 + 802 + 802^{2} + 402^{3} + 102^{4} + 2^{5}$
	BERACE I WITH -2 W THE ABOUE EXPANSION
	$ \begin{bmatrix} 2 + (3t^2)^2 \\ = 3t + 8t(-3t^2) + 8t(-3t^2) + 8t(-3t^2)^2 + 10(-3t^2)^4 + (-3t^2)^4 \\ (2 - 3t^2)^2 \\ = 3t - 8tt(2t^2 + 8t(-3t^2) + 8t(-3t^2) + 10t(-3t^2)^4 + (-3t^2)^4 \\ = 3t(-3t^2)^2 \\$
c)	NEED TO CREMITE 1-99 S ROW (2-22)5
	$(\epsilon - 2 - 3^2 \pm 1.49)$ $\epsilon_0 = \pm 3^2$ $\alpha_0 \pm 5 \cdot 1$ (Barth 494 o. L. 10 4.54)
	SOBSTTUTH INDS THE ANSWE OF PART (b)
	$\left[\left[2-\left(0,1\right)^{2}-\right]^{2}=.32-80(0,1)^{2}+90(0,1)^{4}-40(0,1)^{6}+\frac{1}{1000}$
	[99 ³ = 32 − 6.8 + 0.008 − 0.00004 + 1.93 ⁵ ≈ 31 208

Question 16 (***)

ŀG.B.

I.C.B.

- a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(1+2x)^7$.
- **b**) Hence determine the coefficient of x in the expansion of

|1+|

(1+14)	$x + 84x^2 + 280x^3 + \dots$, [1350]
	an i
21/15.CU	(a) <u>Symple with the strengthed formula frace</u> $\Rightarrow (1+\infty)^{6} = 1 + \frac{1}{2} (m)^{4} + \frac{1}{1+2} (m)^{4} + \frac{n(m-1)(m-2)}{1+2+2} (m)^{4} + \frac{n(m-1)(m-2)}{1+2+2} (m)^{4} + \dots$ $\Rightarrow (1+\infty)^{7} = 1 + \frac{1}{2} (m)^{4} + \frac{1}{2} \frac{n(m-1)}{2} (m)^{4} + \dots$ $\Rightarrow (1+\infty)^{7} = 1 + 10 + 100^{2} + 200^{4} + \dots$ (1+10) $\Rightarrow (1+\infty)^{7}$ (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4} (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4} (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4}</u> (1) Antennic fraces <u>of many terms (1+2)^{4} (1) Antennic fraces</u> <u>of many terms (1+2)^{4} (1) Antennic fraces <u>of many terms (1+2)^{4} (1) Antennic fraces</u> <u>of many term</u></u></u></u>
J.	(+2)) ⁷ (3+2) ¹⁴ = (1+192+) (1342 2162 11342 + 2162 = 13502 <u>The sequence configurates asso</u>
60	n ^S P

manasn

I.C.p

Mada

n

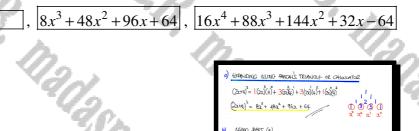
Question 17 (***)

ŀ.G.B.

1. C.B. Madası

2011

I.C.B.


20

a) Find the binomial expansion of $(2x+4)^3$, in descending powers of x.

b) Hence determine the expansion of

$$(2x-1)(2x+4)^3$$
.

20

¥.G.B.

 $(4)^{3} = (2x-1)(9x^{3} + 48x^{2} + 96x + 64)$ 1624 + 9623 + 19222 + 1282

ŀG.Ŗ

Madasmat

2017

(i)

6

madasma

I.Y.C.B. Madasa

Created by T. Madas

0

Question 18 (***)

 $f(x) = (1-2x)^8$

- a) Find the first four terms in the expansion of f(x), in ascending powers of x.
- **b)** Hence determine, in ascending powers of x, the first four terms in the expansion of

$(2+3x)(1-2x)^8.$

 $, 1 - 16x + 112x^2 - 448x^3 + \dots , 2 - 29x + 176x^2 - 560x^3 + \dots$

Question 19 (***)

F.G.B.

I.C.B.

a) Find, in ascending powers of x, the first four terms in the binomial expansion of $(2+x)^9$.

b) Hence find the coefficient of x^3 in the expansion of

$\left(1-\frac{1}{8}x\right)^2\left(2+x\right)^9.$

 $(2+x)^9 = 512 + 2304x + 4608x^2 + 5376x^3 + \dots, [x^3] = 4260$

F.G.B.

200

11+

nadasn.

Madası

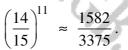
F.G.B.

Question 20 (***)

 $f(x) = \left(2+x\right)^4$

- a) Find the expansion of f(x), in ascending powers of x.
- **b**) Deduce the expansion of $(2-3x)^4$, also in ascending powers of x
- c) Determine the coefficient of x in the expansion of

 $(2+x)^4(2-3x)^4$.


 $f(x) = 16 + 32x + 24x^2 + 8x^3 + x^4$, $16 - 96x + 216x^2 - 216x^3 + 81x^4$, -1024

Question 21 (***)

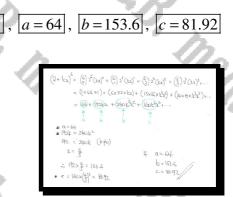
a) Find the first **five** terms, in ascending powers of x, in the binomial expansion of $(1-2x)^{11}$.

b) Use the answer of part (a) with a suitable value of x to show that

c) Determine the percentage error in the approximation of part (b).

, $1-22x+220x^2-1320x^3+5280x^4+...$, % error ≈ 0.122%

a) USING THE STANDARD BINDMIAL EXPANSION FORMULA
$\left(1-2\chi\right)^{H}=1+\frac{H}{1}\left(-2\lambda\right)^{1}+\frac{HMO}{1+\chi\chi}\left(-2\lambda\right)^{2}+\frac{H\chi\chi\chi\lambda^{4}}{1+\chi\chi\lambda^{4}}\left(-2\lambda\right)^{2}+\frac{H\chi\chi\chi\lambda^{4}}{1+\chi\chi\lambda^{4}}\left(-2\lambda\right)^{4}+\cdots\right)$
$= \frac{1 - 22x + 220x^2 - 1320x^3 + 5280x^4 + \dots}{1 - 22x + 220x^2 - 1320x^2 + \dots}$
b) working the focus
$1 - 22_{-} = \frac{4z}{15}$ $\frac{1}{15} = 22_{-}$ $2_{-} = \frac{1}{20}$
USING $Q = \frac{1}{20}$ IN THE EXPANSION OF PART (a)
$\left(1-2\kappa \frac{1}{2\sigma}\right)^{H}$ $\sim 1-22\left(\frac{1}{2\sigma}\right)+22\sigma\left(\frac{1}{2\sigma}\right)^{2}-132\sigma\left(\frac{1}{2\sigma}\right)^{2}+52\beta\sigma\left(\frac{1}{2\sigma}\right)^{4}$
$\left(\frac{14}{15}\right)^{11} \simeq 1 - \frac{11}{15} + \frac{11}{45} - \frac{11}{225} + \frac{22}{3375}$
$\left(\frac{\left[\mu\right]}{\left(\frac{1}{5}\right)^{11}}$ \simeq $\frac{1582}{3332}$ \rightarrow Bright
C) REDRAIE FREDE = HOTUAL EPEDE. X 100
$= \left \frac{\frac{1582}{337_{c}} - \left(\frac{ \mathbf{i} _{c}}{ \mathbf{i} }\right)^{i}}{\left(\frac{ \mathbf{i} _{c}}{ \mathbf{i} }\right)^{i}} \right \times 100$
= 0.122 %


1.5

Question 22 (***+)

It is given that if k is a non zero constant, then

 $(2+kx)^6 \equiv a+bx+bx^2+cx^3+...$

Determine the value of each of the constants a, b and c.

Question 23 (***+)

In the binomial expansion of

where k is a non zero constant,

the coefficient of x^2 is 12 times as large as the coefficient of x^3 .

Find the value of k.

Question 24 (***+) Find the binomial expansion of

I.G.B.

I.C.B.

 $\left(x+\frac{2}{x}\right)^4, \ x\neq 0\,,$

simplifying each term of the expansion.

THE STANDARD BINOWIAL EXPANSION RELIVICA $(\alpha + \beta)^{n} = \binom{n}{2} \alpha \frac{1}{2} \beta^{n} + \binom{n}{1} \alpha \frac{1}{2} + \binom{n}{2} \alpha \frac{1}{2} + \cdots + \binom{n}{2} \alpha \frac{1}{2} \beta^{n} + \cdots + \binom{n}{2} \beta$ $\left(2+\frac{2}{2}\right)^{\frac{4}{2}} = \binom{4}{6}\left(2\right)\binom{4}{2} + \binom{4}{1}\left(2\right)\binom{3}{2} + \binom{4}{1}\left(2\right)\binom{3}{2} + \binom{4}{2}\left(2\right)\binom{3}{2} + \binom{4}{2}\left(2\right)\binom{3}{2} + \binom{4}{2}\left(2\right)\binom{3}{2} + \binom{4}{2}\left(2\right)\binom{3}{2}\binom{3}{2} + \binom{4}{2}\left(2\right)\binom{3}{2}\binom{3}{2} + \binom{4}{2}\binom{3}{2}\binom{3}{2}\binom{3}{2} + \binom{4}{2}\binom{3}{2}\binom{3}{2}\binom{3}{2} + \binom{4}{2}\binom{3}{2}\binom{3}{2}\binom{3}{2}\binom{3}{2} + \binom{4}{2}\binom{3}\binom{3}{2}\binom{3}{2}\binom{3}{2}\binom{$ (1)a)(2) + (1)a(2) $\left(\chi+\frac{2}{\chi}\right)^{\frac{1}{2}}=\left(|\chi\chi|^{\frac{4}{2}}\chi|\right)+\left(4\chi\chi|^{\frac{1}{2}}\chi\frac{2}{\chi}\right)+\left(6\chi\chi|^{2}\chi\frac{4}{\chi^{2}}\right)+\left(4\chi\chi\times\frac{6}{\chi^{4}}\right)+\left(|\chi|\times\frac{U}{\chi^{4}}\right)$ $(2+\frac{2}{4})^6 = 31^6 + 81^2 + 24 + \frac{32}{3^2}$

F.G.B.

 $x^4 + 8x^2 + 24 + \frac{32}{x^2} +$

16

1:0.

6

Created by T. Madas

ŀG.p.

Question 25 (***+)

- a) Determine, in ascending powers of x, the first three terms in the binomial expansion of $(2-3x)^{10}$.
- **b**) Use the first three terms in the binomial expansion of $(2-3x)^{10}$, with a suitable value for x, to find an approximation for 1.97^{10} .
- c) Use the answer of part (b) to estimate, correct to 2 significant figures, the value of 3.94¹⁰.

 $(2-3x)^{10} = 1024 - 15360x + 103680x^2 + \dots, 1.97^{10} \approx 880.768 \approx 881$


 $\binom{10}{2}\binom{2}{-32} + \binom{12}{2}\binom{2}{-32}^{+}$ + Fa 906.427

 $3.94^{10} \approx 900000$

Question 26 (***+)

I.V.G.R

Find the term which is independent of x, in the binomial expansion of

7

6

Question 27 (***+)

 $\left(1+\sqrt{2}\right)^5 \equiv a+b\sqrt{2} \; .$

Determine the value of each of the constants a and b.

I.C.

I.F.G.B.

a = 41, b = 29

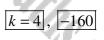
N.C.B. Madası

 $\begin{array}{l} \frac{1}{2} + (\overline{C})^{\frac{1}{2}} \leq 1 + \frac{\pi}{2} - (\overline{C})^{\frac{1}{2}} + \frac{564}{564} (\overline{C})^{\frac{1}{2}} + \frac{562}{162344} (\overline{C})^{\frac{1}{2}} + \frac{5625}{1623444} (\overline{C})^{\frac{1}{2}} + \frac{5625}{1623444} (\overline{C})^{\frac{1}{2}} \\ = 1 + 5\overline{C} + (50.2) + (0.53)\overline{C} + (50.2) + (50.2) + (50.4) + (50.$

Question 28 (***+) Find the binomial expansion of

 $\left(x-\frac{1}{x}\right)^5, x\neq 0,$

simplifying each term of the expansion.


10 $x^5 - 5x^3 + 10x - 5x^3 + 5x$ 5 x

$$\begin{split} & \left\langle \xi_{-} \right\rangle \left\langle \xi_{-} \right\rangle$$

Question 29 (***+) In the binomial expansion of

where k is a positive constant, one of the terms is $960x^2$

- **a**) Find the value of k.
- **b**) Determine the coefficient of x^3 .

$\left(k-\frac{x}{2}\right)^{6} = \binom{4}{6}\binom{6}{2}\binom{6}{-\frac{x}{2}}^{6} + \binom{6}{2}$	$ \begin{pmatrix} c \\ 1 \end{pmatrix} \begin{pmatrix} c \\ - \frac{3}{2} \end{pmatrix}^{3} + \begin{pmatrix} c \\ 2 \end{pmatrix} \begin{pmatrix} c \\ - \frac{3}{2} \end{pmatrix}^{2} + \begin{pmatrix} c \\ - \frac{3}{2} \end{pmatrix}^{3} + \begin{pmatrix} c \\ -$
	\dots + $15 k^4 \left(\frac{32^2}{4} \right) = 20 k^3 \left(\frac{32^3}{6} \right) + \dots$
	$- + \left(\frac{4}{12}F_{4}\right)\mathfrak{I}_{f} \left[-\frac{5}{2}F_{3}\mathfrak{I}_{3}+\right]$
	960
(a) .: 22k4 = 960	(p) $-\frac{5}{2}(4)_3 = -100$
k= 4 (k>0)	
(6)	

Created by T. Madas

 $k-\frac{x}{2}$

Question 30 (***+)

Given that k is a non zero constant and n is a positive integer, then

$$(1+kx)^n \equiv 1+40x+120k^2x^2+...$$

Find the value of k and the value of n.

$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right], \left[\frac{k=\frac{3}{2}}{2} \right], \left[\frac{k}{2} \right]$	<u>1 = 16</u>
$ \begin{array}{l} \left(1+kx\right)^{\eta} = 1 + \frac{w}{1}(kx)^{1} + \frac{w(w-1)}{1\times 2}(kx)^{2} + \\ = 1 + \frac{w}{1}kx + \frac{1}{2}w(w-1)}k^{2}x^{2} + \\ \frac{1}{40} \end{array} $	
• $h_{k}^{L} = 4\phi$ • $\frac{1}{2}h_{k}^{L}(h_{1}) = 120$ = $h_{k}^{L}(h_{1}) = 24\phi$ = $h_{k}^{L}(h_{1}) = 24\phi$	
$ \Rightarrow h^{2} + h - 240 = 6 $ $ \Rightarrow (h + 5)(h - 4\xi) = 0 $ $ h = \langle -\frac{1}{4\xi} \rangle $	

Question 31 (***+)

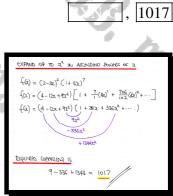
Given that k and A are constants with k > 0, then

$$(2 - kx)^8 \equiv 256 + Ax + 1008x^2 + \dots$$

Find the value of k and the value of A.

 $k = \frac{3}{4}$ A = -768

EXPAND AND COMPARE CONFFICUENTS

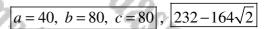

	$+ {\binom{6}{1}}{\binom{2}{-k_2}}^7 + {\binom{8}{2}}{\binom{2}{-k_2}}^2 + \cdots$
= (1x 52(x1) +	$\left[\mathbb{B} \times 128 \times (-b_{2})\right] + (28 \times 64 \times k_{2}^{2})$
- 256 - 1024k A OMPACINY TWO -QUATIONS	1008 1008
4 = - 1024k @	1792k ² = 1008
	$k_{r} = \frac{3}{16}$
	k=+3 (k>0)
	đ A= -loz4× 34
	4 = -768
∴ A=-768 9	k= \$

Question 32 (***+)

 $f(x) = (2-3x)^2 (1+4x)^7$.

Find the coefficient of x^2 in the polynomial expansion of f(x).

Mana,



Question 33 (***+)

 $(2+x)^5 = x^5 + 10x^4 + ax^3 + bx^2 + cx + 32.$

a) Find the value of each of the constants a, b and c.

b) Hence, or otherwise, simplify $(2-\sqrt{2})^5$, giving the final answer in the form $p+q\sqrt{2}$, where p and q are constants.

232-164/2

Question 34 (***+)

P.C.A

 $f(x) = \left(2 + \frac{1}{4}x\right)^8.$

- **a**) Find the first four terms in ascending powers of x in the expansion of f(x).
- **b)** Use the expansion found in part (a) to find an approximation, to 3 significant figures, for $\left(\frac{81}{40}\right)^8$.

 $f(x) = 256 + 256x + 112x^2 + 28x^3 + \dots, \left(\frac{81}{40}\right)^8 \approx 283$

)	EXPANDING IN THE LOUAL MANNE
	$(2 + \frac{1}{2}x)^{\beta} = (2)(2)(\frac{1}{2}x)^{2} + (9)(2)(\frac{1}{2}x)^{2} + (9)(2)(\frac{1}{2}x)^{2} + (9)(2)(\frac{1}{2}x)^{2} + \cdots$
	$(2+\frac{1}{4}\chi)^{6} = (1\times 26\times 1) + (8\times 106\times \frac{1}{4}\chi) + (38\times 64\times \frac{1}{6}\chi^{2}) + (56\times 32\times \frac{1}{64}\chi^{3})_{+} \dots$
	$(2+\frac{1}{4}x)^6 = 256 + 2562 + 112x^2 + 252^3 + \cdots$
)	START BY FINDING THE Unive of a without ADDOLES BI
	-> 2+ 12 = BL
	$\Rightarrow \frac{1}{4x} = \frac{1}{40}$
	$\Rightarrow x = \frac{1}{10} = 0.1$
	SUBSTITUT IN THE OXPAILING
	$- \tilde{\mathcal{D}} \left(2 + \frac{1}{4} \times \frac{1}{ v } \right)^{g} = 2.86 + 2.96 \times \frac{1}{2} + 112 \times \left(\frac{1}{ v } \right)^{2} + 2g_{0} \times \left(\frac{1}{ v } \right)^{3} + \cdots$
	$\Rightarrow \begin{pmatrix} g_1\\ \phi_0 \end{pmatrix}^8 = 256 + 25 \cdot 6 + 1 \cdot 12 + 0 \cdot 028 + \cdots$
	$\Rightarrow \left(\frac{81}{40}\right)^{\beta} = 282.74g_{\dots}$
	$\therefore \left(\frac{91}{49} \right)^6 = 263 $

E.B.

1+

Question 35 (***+)

a) Find the binomial expansion of

 $(5+10x)^4$.

b) Hence, by using the answer of part (a) with a suitable value of x find the exact value of 1005^4 .

You may not give the answer in standard index form.

 $\left[\frac{625 + 5000x + 15000x^2 + 20000x^3 + 10000x^4}{1, 020, 150, 500, 625} \right],$

 $\begin{array}{c} & & & \\ & & & 1 \\ & &$

USING PASCALS TRIANGLE OR A CALOLLATOR

 $+ \frac{1}{(1 \times 5^{-1})^{1/2}} + \frac{1}{(1 \times 5^{-1})$

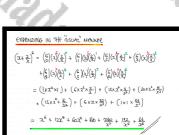
Question 36 (***+)

$$f(x) = (1-2x)^6$$
, $g(x) = (2+x)^7$, $h(x) = f(x)g(x)$.

- a) Find the first four terms in ascending powers of x in the binomial expansion of f(x) and in the binomial expansion of g(x).
- **b**) Hence determine the coefficient of x^2 in the binomial expansion of h(x).

 $f(x) = 1 - 12x + 60x^2 - 160x^3 + \dots$

USING STINUDARD EXPINSION FORMULAE
• $f(x) = (1-2x)^6 = 1 + \frac{6}{1}(-2x)^4 + \frac{6x5}{1\times 2}(-2x)^3 + \frac{6x5x4}{1\times 2}(-2x)^3 + \dots$
$= 1 - 12x + 60x^{2} - 160x^{3} + \cdots$
• $g(\hat{a}) = (2+2\hat{a})^7 = (\frac{7}{6})(2\hat{b}(\hat{a})^2 + (\frac{7}{6})(2\hat{b}(\hat{a}) + (\frac{7}{2})(2\hat{b}(\hat{a})^2 + (\hat{a})(2\hat{b}(\hat{a}) + \cdots)))$
$= (1 \times 128 \times 1) + (7 \times 64 \times 2) + (3 \times 22 \times 2^{1}) + (3 \times 16 \times 2^{2}) + \cdots$ $= 128 + 1482 + 672 \times 2^{2} + 5803^{3} + \cdots$


ewang wh the
$\eta(\chi) = -(\eta_1) \eta_1(\chi) = (1 - 12\chi + 60\chi^2 +)(28 + 44/8\chi + 672\chi^2 +)$
↓ 1. 76802 ¹ .1 - 5382 ² - 672 ¹
" <u>Deputed antificity of 32 11</u>
7690 - 5376 + 672 = 2976

Question 37 (***+)

Find the binomial expansion of

$$\left(x+\frac{2}{x}\right)^6, \ x\neq 0,$$

simplifying each term of the expansion.

240

 $x^6 + 12x^4 + 60x^2 + 160 +$

192

64

.6

Question 38 (***+)

 $f(x) = (3-2x)^2 (1+2x)^6$

Find the binomial expansion of f(x) in ascending powers of x, up and including the term in x^3 .

 $9+96x+400x^2+768x^3+...$

XAMUDING USING THE STAUDAED BINOMIAL FORMULAE

$$\begin{split} & \left\{ \left(\zeta_{3} \right) = \left(\frac{3}{4} - 2\lambda_{3} \right)^{\zeta} \left(1 + 2\lambda_{3} \right)^{\zeta} \\ & \left\{ \left(d_{3} \right) = \left(\frac{9}{4} - 12\lambda_{3} + 4\lambda_{3}^{2} \right) \left[1 + \frac{6}{12} \left(2\lambda_{3} \right)^{1} + \frac{655}{122} \left(2\lambda_{3} \right)^{2} + \frac{65554}{12224} \left(2\lambda_{3} \right)^{4} + \cdots \right] \\ & \left\{ \left(d_{3} \right) = \left(\frac{9}{4} - 12\lambda_{3} + 4\lambda_{3}^{2} \right) \left(1 + 12\lambda_{3} + 62\lambda_{3}^{2} + 162\lambda_{3}^{2} + \cdots \right) \\ & \left\{ d_{3} \right\} = \left(\frac{9}{4} - 12\lambda_{3} + 4\lambda_{3}^{2} \right) \left(1 + 12\lambda_{3} + 62\lambda_{3}^{2} + 162\lambda_{3}^{2} + \cdots \right) \\ & \left(- 12\lambda_{3} - 14\lambda_{3}^{2} - 722\lambda_{3}^{2} + \cdots \right) \\ & - 12\lambda_{3} - 14\lambda_{3}^{2} - 722\lambda_{3}^{2} + \cdots \right) \end{split}$$

+ 40002 + 7682

Question 39 (***+) It is given that

 $(1-2x)(2+kx)^5 \equiv A+Bx+240x^2+...,$

where k, A and B are constants.

Determine the possible values of k

7 <i>0</i> /	
$2\lambda (2 + k_{2})^{2} = (1 - 2\lambda) \left[\left(\frac{5}{6} \right) (2^{\frac{5}{2}} (\lambda_{1}^{2}) + \binom{5}{2} (2^{\frac{5}{2}} (\lambda_{2}) + \binom{5}{2} (2^{\frac{5}{2}} (\lambda_{2}) + \binom{5}{2} (\lambda_{2})^{\frac{5}{2}} + \cdots \right]$	
$=(1-2x)(32+80b_{-}+80b_{-}^{2}+)$	
$w \frac{80k^2}{2} - \frac{16ka^2}{2} \equiv 240a^2$	
$k^2 - 2k = 3$ $k^2 - 2k - 3 = 0$	
b = a(k-3)(k+1)	

k = -1,

Question 40 (***+)

- a) Find the binomial expansion of $(1+\frac{1}{4}x)^{10}$ in ascending powers of x up and including the term in x^3 , simplifying fully each coefficient.
- **b**) Use the expansion of part (**a**) to show that

 $\left(\frac{41}{40}\right)^{10}\approx 1.28\,.$

n	
6)	$ \begin{pmatrix} 1+\frac{1}{2}\chi \\ = 1+\frac{10}{1}\binom{1}{2}\chi + \frac{10\chi}{1\chi}\binom{1}{2}\chi + \frac{10\chi}{1\chi}\binom{1}{2}\chi^2 + \frac{10\chi}{1\chi}\binom{1}{2}\chi + \frac{10\chi}{1\chi}\binom{1}{2}\chi + \dots $
	$= 1 + \frac{5}{2}x_{+} + \frac{45}{16}x_{+}^{2} + \frac{15}{8}x_{+}^{3} + \cdots$
(L)	$ \begin{array}{c} (1+\frac{1}{4}\chi_{-}=\frac{41}{40}) \\ \qquad $
	$\begin{array}{c} \mathcal{X} \simeq \frac{1}{ 0 } = 0.1 \\ \begin{pmatrix} \underline{41} \\ \underline{40} \end{pmatrix}^{10} \simeq 1 + \frac{5}{2} (0.1) + \frac{45}{16} (0.1)^2 + \frac{15}{16} (0.1)^3 \end{array}$
	$\begin{pmatrix} 4 \\ -\Phi \end{pmatrix}^{p} \approx 1 + \frac{1}{4^{+}} + \frac{2}{320} + \frac{3}{160}$
	$\left(\frac{41}{40}\right)^{10} \simeq 1.28$

 $\frac{15}{9}x^3 +$

 $1 + \frac{5}{2}x + \frac{45}{16}x$

Question 41 (***+)

F.C.B.

 $f(x) = (1+3x)^6.$

- a) Find, in ascending powers of x, the binomial expansion of f(x) up and including the term in x^4 .
- b) Use the expansion found in part (a) to show that

 $(1.003)^6 \approx 1.01813554122$

 $f(x) = 1 + 18x + 135x^2 + 540x^3 + 1215x^4 + \dots$

 $\begin{array}{c} -\cdot, 4_{1}\left(g_{2}\right) \frac{g_{2}g_{2}g_{2}}{g_{2}g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g_{2}}{g_{2}g_{2}} + \frac{g_{2}g_{2}g_{2}g$

Ś

1+

2028m

mada

F.G.B.

1.003⁶ ≈ 1.018135 54 1215
 ∞ 1.018135 54 (22)
 ds 240mpr0

Question 42 (***+)

F.C.B.

I.C.P.

- a) Find the binomial expansion of $(3+2x)^4$.
- **b**) State the binomial expansion of $(3-2x)^4$.
- c) Use the answers of part (a) and (b) to find

 $\left(3+\sqrt{8}\right)^4+\left(3-\sqrt{8}\right)^4.$

No credit will be given for any other type of evaluation.

 $(3+2x)^4 = 16x^4 + 96x^3 + 216x^2 + 216x + 81$ $(3-2x)^4 = 16x^4 - 96x^3 + 216x^2 - 216x + 81$ $, (3+\sqrt{8})^4 + (3-\sqrt{8})^4 = 1154$

 $\begin{array}{l} (\P \ (3 + 2x)^4 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} (5) \begin{pmatrix} 2 \\ -1 \end{pmatrix} (4 + \frac{1}{2}) (5) \begin{pmatrix} 2 \\ -1 \end{pmatrix} ($

 $\begin{array}{c} (3-2\alpha)^{k} = (\zeta_{1}(-\alpha)^{k} + q_{1}'(-\alpha)^{k} + 2\alpha(\zeta_{1}^{2} + 2\alpha(\zeta_{2}) + b) \\ = (\zeta_{2}\alpha^{k} - q_{1}'\alpha^{2} + 2\alpha(\zeta_{2}^{2} - 2)\zeta_{2} + b) \\ \sqrt{b}^{k} = 2\sqrt{a} \\ \sqrt{b} = 2\sqrt{a} \\ \sqrt{b} = 2\sqrt{a} \\ \sqrt{b} = 2\sqrt{a} \\ \sqrt{b} = 2\sqrt{a}$

 $(f, \mathcal{Q} = hZ, \longrightarrow) (3+2hZ)^{+}(3-2hQ)^{+} = 32(KZ)^{0} + hZ_{0}(KZ)^{0} + hZ_{0}$ = $22X + h 422XX + hG_{0}$ = $128 + 604 + hG_{0}$ = 1154

F.C.B.

(***+) Question 43

nadasma,

Maths.com

Smarns-Com I.F.C.

I.C.B.

a) Find the first four terms, in ascending powers of x, of the binomial expansion

 $\left(1+\frac{2}{x}\right)^2 \left(1+\frac{x}{2}\right)^7.$

 $x^2 + \frac{35}{8}x^3 + \dots$

I.C.B. Madasman

 $(b) \left(1 + \frac{2}{3}\right)^{2} \left(1 + \frac{3}{2}\right)^{T}$

[x] = 42

Ś

1

11.212SM2

I.V.C.B. Madası

of $\left(1+\frac{x}{2}\right)'$, giving each coefficient in exact simplified form.

b) Hence determine the coefficient of x in the expansion of

Created by T. Madas

N.C.

K.C.B. Madasmatics Madasmaths Maths.Com

Question 44 (***+)

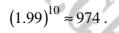
 $f(x) = (1+2x)^7$

- a) Determine the first four terms, in ascending powers of x, in the binomial expansion of f(x).
- b) Hence, or otherwise, find the first four terms in the expansion of

 $(3+4x-4x^2)(1+2x)^6$,

giving the answer in ascending powers of x.

], $1+14x+84x^2+280x^3+...$, $3+40x+224x^2+672x^3+...$


 $\left(\left[+\alpha_{2}\right]^{N}=\left[+\frac{n}{l}\left(\alpha_{2}\right)^{l}+\frac{n\left(\alpha_{2}\right)}{l\times2}\left(\alpha_{2}\right)^{2}+\frac{n\left(n+1\right)\left(n-2\right)}{l\times2\times\frac{n}{2}}\left(\alpha_{2}\right)^{3}+\right.$ $\left(1+2\chi\right)^{7} = 1 + \frac{7}{1} \left(2\chi\right)^{1} + \frac{7\chi_{6}}{1\chi_{2}} \left(2\chi\right)^{2} + \frac{7\chi_{6\chi,5}}{1\chi_{2}\chi_{3}} \left(2\chi\right)^{3} + \frac{7\chi_{6\chi,5}}{1\chi_{2}\chi_{3}} \left(2\chi\right)^{3} + \frac{1}{1} \left(2\chi\right)^{1} + \frac{1}{$ $= 1 + \frac{1}{4} + 21(4\frac{2}{4}) + 35(61^3) +$ 2 (1+2) $(1+2x)^2 = 1+14x + 84x^2$ 280x3 woths. THE EXPORTS $(3+4x-4x^2)(1+2x)^6 = -(4x^2-4x-3)(1+2x)^6$ $(\pi - 4\pi - 5 \sqrt{1+21})$ = $-(2\pi + 1)(2\pi - 3)(1+2\pi)^6$ = $-(2\pi - 3)(2\pi + 1)^7$ $= (3-2x)(1+2x)^7$ USING PART (a) $(3+4x-4x^2)(1+2x)^6 = (3-2x)(1+14x+84x^2+280x^3+$ $= 3 + 42x + 252x^{2} + 840x^{3} + ... \\ -2x - 28x^{2} - 168x^{3} + ...$ 3 + 402 + 2242 + 6722 ACTIVENATIONE TO PART (b) $(1+21)^6 = 1 + \frac{6}{4}(21)^1 + \frac{635}{122}(21)^2 + \frac{63523}{12223}(21)^3 +$ $((+2x)^{4} = 1 + 12x + 15(4x^{2}) + 20(6x^{4})$

ic.p.

Question 45 (***+)

- a) Find the binomial expansion of $(2-5x)^{10}$ in ascending powers of x up and including the term in x^3 , simplifying fully each coefficient.
- **b**) Use the expansion of part (a) to show that

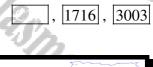
Question 46 (****

 $(1+ax)^n = 1 - 30x + 405x^2 + bx^3 + \dots$

where a and b are constants, and n is a positive integer.

Determine the value of n, a and b.

<i>n</i> =	[=10], [a=-3], [b=-3240]
2	$ \begin{array}{lll} & \sum_{q \in \mathcal{T}_{q}} \left(\sum_{q \in \mathcal{T}_{q}} \right) \right) \right) \right) \right) \right) \right) \right) \right) \\ = \left(\sum_{q \in \mathcal{T}_{q}} \right) $
	$\begin{array}{l} ha = -30 \\ \frac{1}{2}n(h_1-1)a^{k_2} = 405 \end{array} \xrightarrow{\longrightarrow} n(h_1-1)a^{k_2} Blo \\ \xrightarrow{\longrightarrow} n(h_1-1)a^{k_2} Blo \\ \xrightarrow{\longrightarrow} n(h_1-1)\frac{4k_2}{h_1^2} \xrightarrow{\longrightarrow} Blo \\ \xrightarrow{\longrightarrow} n(h_1-1)\frac{4k_2}{h_1^2} \xrightarrow{\longrightarrow} Blo \\ \xrightarrow{\longrightarrow} n(h_1-1)\frac{4k_2}{h_1^2} \xrightarrow{\longrightarrow} n(h_1-1)4k$
	$\rightarrow \underline{n} \overline{n} - \underline{n} = 4$

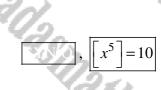

Created by T. Mada

Question 47 (****)

 $f(x) \equiv (1+x)^n, x \in \mathbb{R}, n \in \mathbb{N}.$

Determine showing a clear complete method the coefficient ...

- a) ... of the highest power of x in the binomial expansion of f(x), when n = 13.
- **b**) ... of the **second highest** power of x in the binomial expansion of f(x), when n = 14.



(a)	
	● ODD POWER => 2 HIGHTS 2 (Had) 3 3 1
	$ = \frac{1}{2} + \frac$
	" " "
(6)	$(i+x)^{14}$
	· EVEN POWER = " I thatest"
	 +(RL THE +GAEST IS (14)
	\therefore 2nd that $U \begin{pmatrix} 14\\ 6 \end{pmatrix} = \begin{pmatrix} 14\\ 8 \end{pmatrix} = 3003$
	/

Question 48 (****)

Find the coefficient of x^5 in the binomial expansion of

 $(1-x)^5(1+x)^6$.

 $\begin{array}{l} \sum_{k=1}^{2} \left(1 + 2k \right) = \left(1 + 2k \right) \left(1 + 2k$

(****) Question 49

Y.C.B. Madası

2017

, G.B.

$$f(x) = \left(4x + \frac{1}{kx}\right)^7,$$

where k is a positive constant.

Given the coefficient of x^3 in the binomial expansion of f(x) is 21, determine the value of k.

FGB.

202

m

madasm,

0

 $\left(4\lambda + \frac{1}{k\lambda}\right)^2 = \left(\frac{1}{k}\left(\frac{1}{k\lambda}\right)^2 + \frac{1}{k}\left(\frac{1}{k\lambda}\right)^2 + \frac{1}$ $\left(\frac{1\times6}{1\times2}\right) \times \left(10240^{5}\right) \times \left(\frac{1}{1232}\right)$ 21× 1024 = 2

COM

k = 32

Ĉ.B.

nadasmans.com

1+

Madasm.

I.C.B. Madasa

Question 50 (****)

Ĉ,

P.C.B.

 $f(x) = (1+2x)^5, x \in \mathbb{R}.$

- **a**) Find the binomial expansion of f(x).
- **b**) Hence state the binomial expansion of f(-x).
- c) Find the two non zero solutions of the equation

f(x)-f(-x)=64x.

 $f(x) = 1 + 10x + 40x^{2} + 80x^{3} + 80x^{4} + 32x^{5}$ $f(-x) = 1 - 10x + 40x^{2} - 80x^{3} + 80x^{4} - 32x^{5}$ $x = \pm \frac{1}{2}$

 $\begin{array}{l} = 1 + 10^{2} + \frac{10^{2}}{10^{2}} + \frac{10^{2}}{20^{4}} + \frac{10$

è

(c) $\widehat{\mathcal{H}}(h) - \widehat{\mathcal{H}}(-h) = 64x \implies (+10x + 10x^2 + 10x^2 + 10x^2) = 64x$ $\frac{-(+10x + 10x^2 + 10x^2 + 10x^2)}{28x} = 64x$ $\Rightarrow 64x^2 + 10x^2 - 14x^2 = 0$ $\Rightarrow 64x^2 + 10x^2 - 11x^2 = 0$ $\Rightarrow 64x^2 + 10x^2 - 11x^2 = 0$ $\Rightarrow 64x^2 + 10x^2 - 11x^2 = 0$

BY QUADRATIC FORMULA 2²= -40± 12304 __ -40± 48

2×16 3

 $J = \pm \frac{1}{2}$

É.G.P.

Question 51 (****)

C.B.

C.P.

In the binomial expansion of $(1+ax)^k$, where a and k are non zero constants, the coefficient of x is 8 and the coefficient of x^2 is 30.

70

k = 16,

F.G.B.

17.202

 $a = \frac{1}{2}$

$$\begin{split} & |+ \frac{k}{1} \left(a_{2} \right)^{1} + \frac{k(k-1)}{1 \times 2} \left(a_{2} \right)^{2} + \frac{k(k-1)(k-2)}{1 \times 2 \times 3} \left(a_{2} \right)^{3} + \cdots \\ & |+ \left(k_{2} a_{2} + \left(\frac{k}{2} k(k-1) a_{2}^{2} \right)^{2} + \left(\frac{k}{2} k(k-1)(k-2) a_{2}^{2} \right)^{3} \right)^{3} \end{split}$$

k²(k-i ∕7

EXPAND OF & INDIDING THE 23 TROM

 $(1 + ax)^k =$

Ear = 8 + (2-1)q²= 30

To find the coefficients of $\frac{1}{1-k(k-1)(k-2)q^3} = \frac{1}{2}$

a) Determine the value of a and the value of k.

12/12

b) Find the coefficient of x^3 .

Question 52 (****)

 $f(x) \equiv (k+x)^n, x \in \mathbb{R}$,

where k and n are constants such that $k \in \mathbb{R}$, $k \neq 0$, $n \in \mathbb{N}$, n > 3.

a) Given the coefficients of x^2 and x^3 in the binomial expansion of f(x) are equal, show clearly that

n = 3k + 2.

b) Given further that k = 2, determine the coefficient of x^4 in the binomial expansion of f(x).

(a) $(k+\alpha)^{N} = \left[k\left(1+\frac{\alpha}{K}\right)\right]^{M} = k^{M}\left(1+\frac{\alpha}{K}\right)^{N}$ $= k^{4} \left[\left(1 + \frac{w_{1}}{1} \left(\frac{\infty}{k} \right)^{1} + \frac{w_{(k-1)}}{1 \times \infty} \left(\frac{\infty}{k} \right)^{2} + \frac{w_{(k-1)}(w_{-2})}{1 \times 2 \times 3} \left(\frac{\infty}{k} \right)^{3} + \dots \right] \right]$ $= k^{3} \left[1 + \frac{y_{1}}{R} \alpha_{*} + \frac{y_{1}(y_{1-1})}{2k^{2}} \alpha^{2} + \frac{y_{2}(y_{1-1})(y_{2-2})}{6k^{2}} \alpha^{3} + \cdots \right]$ $\cdots \quad \frac{\Im K_{p}}{\mu(p-1)} = \quad \frac{e F_{2}}{\mu(n-1)(n-5)}$ ⇒ 62° K (14-1) = 22° K (4-1) (11>3) $\Rightarrow 6k^3 = 2k^2(n-2)$ $\Rightarrow 3k = n-2$ (Kto) ⇒ い= 3k+2 歩 既の1860 low k=2; u=8 . WHELLAD OF Q. Y - $\mathcal{R}^{8}\left[\dots+\frac{8\kappa_{1\times6\times5}}{(\times2\times5\times4}\left(\frac{\pi}{2}\right)^{4}+\dots\right]$ $256 \left[\cdots + \frac{70}{16} x^4 + \cdots \right]$

4 (8)(2)(24)+ - 70x16 x4 + 1120 x4

ALTHOMATUH

: [a4]= 1120

=1120

Question 53 (****)

ŀ.C.B.

F.G.B.

ŀG.p.

a) Find the binomial expansion of $(3+x)^4$, simplifying fully each coefficient.

b) Hence solve the equation

 $(3+x)^4 + (3-x)^4 = 386.$

 $(\mathbf{A} = (\mathbf{x} + \mathbf{x})^{4} = (\mathbf{x})^{7} (\mathbf{x})^{7} + (\mathbf{x})^{7} (\mathbf{x})^{7} +$ $= (1 \times B(x1) + (4 \times 2(x2) + (6x^{9}x2^{2}) + (4 \times 3 \times 2^{3}) + (1 \times 1 \times 2^{4})$ = 81+1082+5422+1223+24

1+

202.sm

L.C.B.

 $\begin{array}{l} \underbrace{(\underline{3},-\underline{x})^4}_{=} = \underline{81} + 100(-\underline{x}) + 54(-\underline{x})^2 + 12(-\underline{x})^4 + (-\underline{x})^4 \\ = \underline{81} - 1082x + S4\underline{x}^2 - 12\underline{x}^3 + 3\underline{x}^4 \end{array}$

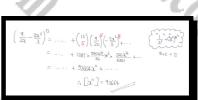
 $81 + 108x + 54x^2 + 12x^3 + x^4, \quad x = \pm\sqrt{2}$

 $\begin{array}{c} 38(+820) + 42(-386) \\ 38(+820) + 28(-380) + 28(-380) \\ 38(+820) + 10(-20) \\ (4) + 28(-10) = 0 \\ (4) + 28(-10) = 0 \\ (4) + 28(-10) = 0 \\ (4) + 28(-10) \\$

Ĉ.B.

2

Question 54 (****)


- a) Find the binomial expansion of $(2x-4)^5$, simplifying fully each coefficient.
- **b**) Hence find the coefficient of ...
 - **i.** ... y^2 in the binomial expansion of $\left(\frac{y+16}{4}\right)^5$.
 - **ii.** ... z^8 in the binomial expansion of $(\sqrt{2}z-2)^5(\sqrt{2}z+2)^5$.
 - $\left[, \frac{32x^5 320x^4 + 1280x^3 2560x^2 + 2560x 1024}{x^2}, \left[y^2\right] = 40\right], \left[z^8\right] = -320$

$ \begin{array}{l} \left(\widehat{\phi}_{1}^{2} - \widehat{\phi}_{2}^{2} \right) = \left(\widehat{\phi}_{1}^{2} - \widehat{\phi}_{2}^{2} \right) + \left(\widehat{\phi}_{1}^{2} - \left(\widehat{\phi}_{1}^{2} - \left(\widehat{\phi}_{1}^{2} \right) + \left(\widehat{\phi}_{1}^{2} - \left$
(b) $\Re = 2x + 4$ the the coefficients of g^2 must be $g + y = 2x + 4$ and $g = 2x + 4$ and $g = 2x + 6$
2 =
· 40
$(\underline{\mu}) (\sqrt{25} - 5)_{(\sqrt{25} + 5)_2} = (35_z^{-4})_2 $
Z ² = 2 - HINKE THE COEFFICINT OF Z ⁸ IS THE SAME AS THAT OF 2 ⁵
+ −3n2
6 - 50

Question 55 (****)

Find the coefficient of x^{11} in the binomial expansion of

= 92664

(****) Question 56

F.G.B. 1113/381

I.C.B.

If k > 0 and *n* is a positive integer, then

e integer, then $(1+kx)^n \equiv 1 + \frac{7}{2}x + Bx^2 + Bx^3 + ...,$

where B is a non zero constant.

By considering the coefficients of x^2 and x^3 , show that

nk = 2k + 3

and hence find the value of n and the value of k.

	172	12
, <u>n=14</u>	$k = \frac{1}{4}$	

hs.com

6

ERANDARY SHAMAN & CLAMARY	
$ \begin{array}{l} \left(1+\frac{1}{2x}\right)^{b}=1+\frac{h}{1}\left((2x)^{1}+\frac{h(2x-1)}{1+2x}(2x)^{2}+\frac{h}{1+2x}(2x)^{2}+\frac{h}{1+2x+2}(2x)^{2}+\cdots\right)\\ =1+\frac{h}{2}\frac{h}{2}x+\frac{h}{2}h(x-1)^{2}x^{2}+\frac{h}{2}h(x-1)^{2}x+\frac{h}{2$	
EXACITALIZED OUT BUILDENTE	
• $n_k^2 = \frac{7}{2}$ • $\frac{1}{2}n(y_{-1})t^2 = \frac{1}{6}n(y_{-1})(y_{-2})t^3$	
n>2 a k≠0	
$\rightarrow \frac{1}{2} := \frac{1}{6} (g_{-2}) k$	
⇒ 3 = (n-2)k	
=> 3 = mk - 2k	
$\Rightarrow 3 = nk - 2k$ $\Rightarrow \frac{3k+3 - nk}{4t}$	
SOUDING SINUUTINGUSLY YIELOS	
→ 22+3=n2 → 22+3=Z → 22=5	
$\Rightarrow k = \frac{1}{4} \qquad a \qquad nk = \frac{7}{2} \\ nk = \frac{7}{4}$	
h= lil	

nn

hs.com

M2(12)

I.G.p.

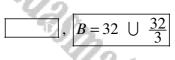
Question 57 (****)

Show that if x is numerically small

$$\left(2+x-x^2\right)^5 \approx A+Bx+Cx^3$$

where A, B and C are integers to be found.

A = 32,	B = 80, $C = -120$
12	10.
CARAND AS A BINON	
	+ $(2-\chi^2)$] ² $(2-\chi^2)$ + $(\frac{1}{2})^2(x-\chi^2)$ + $(\frac{1}{2})^2(x-\chi^2)$ + $(\frac{1}{2})^2(x-\chi^2)$ + x ₁ + $2x_1(_{2}(x-\chi^2) + 10x_18(\frac{1}{2}-2\chi^2+) + 12x_2(\frac{1}{2})$


Question 58 (****)

It is given that

 $(1-2x)^{2}(2+kx)^{4} \equiv A+Bx-104x^{2}+...,$

where k, A and B are non zero constants.

Determine the possible values of B.

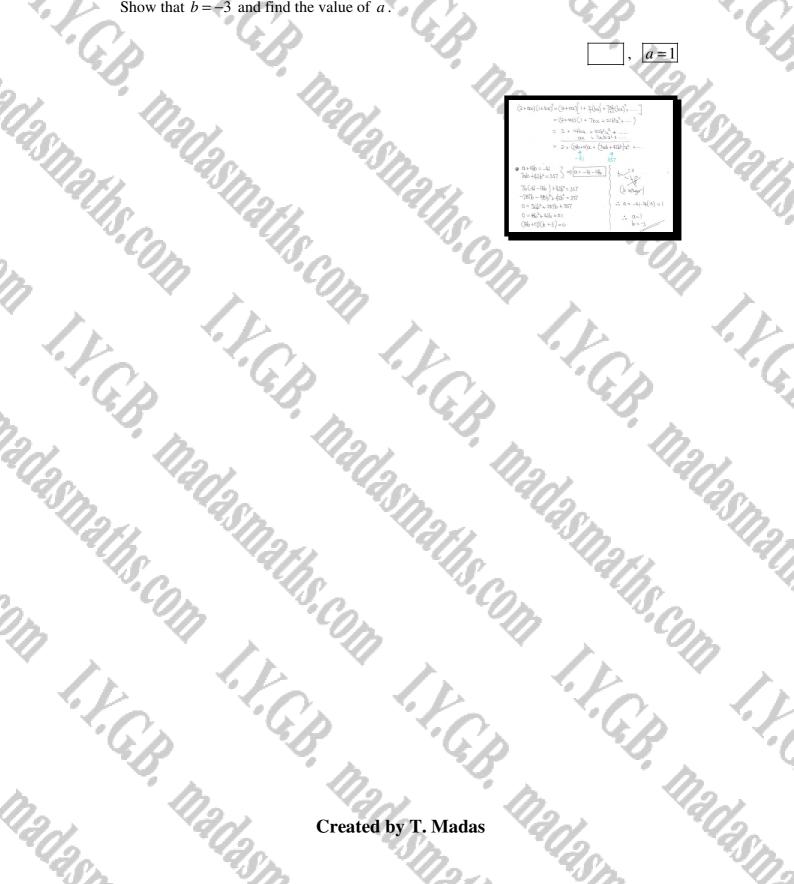
Albeeeo di Rouaus

$$\begin{split} & \left(1-2\lambda_{1}^{2}\left(2\lambda+k_{2}\right)^{k}\equiv -A+B\lambda_{2}-\log\lambda_{2}^{2}+\cdots\right) \\ & \left(1-(\lambda_{2}+Q\lambda_{2}^{2})\left[\binom{k}{2}\lambda_{2}^{2}\left(2\lambda_{1}^{2}\right)^{k}\left(\binom{k}{2}\right)^{2}\left(\lambda_{2}^{2}\right)^{k}\left(\binom{k}{2}\right)^{2}\left(\lambda_{2}^{2}\right)^{k}\left(\binom{k}{2}\right)^{2}\left(\lambda_{2}^{2}\right)^{k}\left(\binom{k}{2}\right)^{k}\left(\lambda_{2}^{2}\right)^{k}\left(\frac{k}{2}\right)^{k}\left(\lambda_{2}^{$$

100 0110) 111 1 12 Q				
16 + 32f2 + 24k ³ 2 ² + -642 - 128f2 ² + 642 ² +	}	ß	$A + B_{\lambda} - log_{2^{2} + -}$	

 $16 + (32k-6k)a + (24k^2-128k+64)a^2 = -4 + 8a - 104a^2 + ...$

A = 16 (Vit NeED(20)


= 240 - 1206 + 64 = -104
⇒ 242°-1286k+168 =0
→ 3t2- 16k + 21 = 0
⇒ (3k -7)(L-3)=0
$k = < \frac{3}{7}$

Question 59 (****)

asmaths.com $(2+ax)(1+bx)^7 = 2-41x+357x^2+...,$

where *a* and *b* are integers.

I.F.G.B. Show that b = -3 and find the value of a.

a = 1

asiliatilis.com

1.4.6

Question 60 (****+)

I.C.A.

a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(6x-3)^8$, simplifying fully each coefficient.

b) Hence find the coefficient of ...

i. ... y^3 in the binomial expansion of $\left(\frac{y+9}{3}\right)^8$.

ii. ... z^6 in the binomial expansion of $(\sqrt{2}z-1)^8(\sqrt{2}z+1)^8$.

 $\begin{bmatrix} 6561 - 104976x + 734832x^2 - 2939328x^3 + \dots \\ y^3 \end{bmatrix} = 504$

448

1+

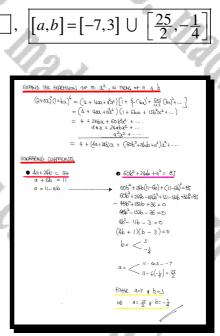
2939328(22)3+-7

I.C.P.

(a) <u>EXAMPLE A FUNCTO</u> (b) <u>EXAMPLE 100</u> (c) $(3)^{\frac{1}{2}} (\frac{1}{2})^{\frac{1}{2}} ($	$ = \frac{1}{36} \left(c_{1} \left(c_{2} \right)^{2} + \cdots \right) = \frac{1}{656} \left[c_{2} \left(c_{2} \right)^{2} + \cdots \right] $ $ = \frac{1}{656} \left[c_{2} \left(c_{2} \right)^{2} + \cdots \right] $ $ = \frac{1}{656} \left[c_{2} \left(c_{2} \right)^{2} + c_{2} + c$
$\frac{3+3}{3} = 63+3$ $9+3 = 16x + 9$ $8x = 9$ $\lambda = \frac{1}{8}9$	= 448 z⁶ + I <u>.f - 448</u>
$\begin{array}{c} \text{Linus: PART} (a) \\ \hline \\ \left[\left(\frac{1}{2} \frac{1}{2} \right)^{-2} \right]^{\frac{2}{3}} = \frac{1}{3} \left(\frac{1}{2} \frac{1}{2$	
$\begin{array}{rcl} \textbf{C} & \underline{\text{wave } t \ \text{free set}} \\ & & \left(\sqrt{2} z_{2-1}\right)^{\theta} \left(\sqrt{2} z_{2+1}\right)^{\theta} = \left[\left(\sqrt{2} z_{2-1}\right) \left(\sqrt{2} z_{2+1}\right)\right]^{\theta} \\ & = \left(2 z_{2-1}\right)^{\theta} \\ & = \frac{1}{3^{\theta}} \times 3^{\theta} \times (2 z_{2-1}) \end{array}$	

Question 61 (****+)

 $(2+ax)^{2}(1+bx)^{6} = 4+44x+85x^{2}+\dots,$


where a and b are integers.

F.G.B.

i.C.p.

Find the possible values of a and the possible values of b.

2112

200

F.G.B.

COM

21/2.5m

Madası

Question 62 (****+)

a) Given that c is a non zero constant, determine the first four terms, in ascending powers of x, in the binomial expansion of $(1+cx)^6$.

It is further given that

I.C.P.

 $\left(a+\frac{b}{x}\right)(1+cx)^{6} \equiv -\frac{4}{x}+74-576x+\dots,$

where a and b are non zero constants.

b) Show that one of the two possible values of c is -3, and find the other.

a) EXPANDING ASING THE BINDMIAL BRUCKA
$\left(\left +Cx\right)^{c}=\left +-\frac{c}{C}\left(cx\right)^{1}+\frac{c_{XZ}}{C}\left(cx\right)^{2}+\frac{c_{XZ}y}{C}\left(cx\right)^{2}+\cdots\right)$
$= 1 + 6ca + 15c^{3}a^{2} + 20c^{3}a^{3} + \dots$
Proceed its follows
$\Rightarrow \left(a + \frac{b}{2}\right) \left(1 + Ca\right)^{6} \equiv 74 - \frac{4}{2} - 576a + \cdots$
$\Rightarrow \left(a + \frac{b}{2}\right) \left(1 + 6\alpha + 5ca^2 + 2ca^3 + \dots\right) \equiv 74 - \frac{b}{2} - 576\alpha + \dots$
$= 74 - \frac{6}{2} - 575 \times + \cdots$
$ = \frac{1}{2c} + (a+6bc) + (6ac+15bc^2)x + \dots = 74 - \frac{1}{2c} - 576x $
$\therefore b = -4$ $\left(\frac{b}{\lambda} = -\frac{b}{\lambda}\right)$
Asio us Here
• $a + 6bc = 74$ • $6ac + 15bc^2 = -576$
$\Rightarrow a - 24c = 74$ $\Rightarrow 6ac - 60c^2 = -51c$
$\Rightarrow a = 74 + 24c$ $\Rightarrow ac - 10c^2 = -96$
$(74+24c)c - Voc^2 = -96$
= 74c + 24c ² - 10c ² = -%
$\implies 14c^{2} + 74c + 9L = 0$
- 7C2 + 37C + 48 = 0
-(

 $c = -\frac{16}{7}$

i C.B.

20

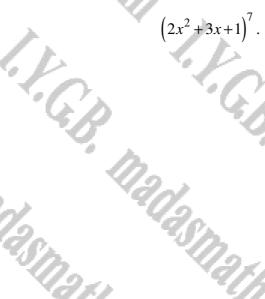
6

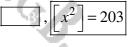
 $1 + 6cx + 15c^2x^2 + 20c^3x^3 + \dots$

Question 63 (****+)

I.F.G.B.

alasmaths.com


2


ISMATHS COM INC.

I.F.C.P.

Find the coefficient of x^2 in the binomial expansion of

madasmaths.com

The Com

21/1S.

60

6

11303SM31

I.V.C.B. Madasm

 $f(x) = (2x^2 + 3x +$ $f(x) = \left[(2x+1)(x+1) \right]$ -(a) = (1+a)(1+2a) $-\left(x\right) = \left[1 + \frac{7}{1}(x) + \frac{7\chi_{0}}{12}(x)^{2} + \dots\right] \left[1 + \frac{7}{1}(2x) + \frac{7\chi_{0}}{12}(2x)^{2} + \dots\right]$: [2²] = 21+98+84 =

 $+(x) = 1 + \frac{7}{4}(3x+2x^2)^1 + \frac{7x_0}{1x^2}(3x+2x^2)^2 +$ $f(x) = 1 + 7(3x+2x^2) +$

 $\therefore [x^2] = 14 + 189 = 203$ I. C.B. Madasman

I.G.S.

I.Y.C.B. Madasmarks.Com

Created by T. Madas

I.F.G.P.

Question 64 (****+)

- a) Find the binomial expansion of $(2+x)^5$.
- **b**) Hence solve the equation

$$(2+x)^5 + (2-x)^5 = 105.25$$

 $(2+x)^5 = 32+80x+80x^2+40x^3+10x^4+x^5$,

$$\begin{split} & (3+2)_{0}^{5} = \left(\frac{3}{2}\left|\frac{1}{2}(0_{1}^{2}+\frac{1}{2}(0_{2}^{2})_{1}+$$

(b) (C) (C)

- $$\begin{split} & (2^{-}x)^{5} = & 32 + 80(-3) + 80(-3)^{2} + 40(-3)^{3} + 10(-3)^{4} + (-3)^{5} \\ & (2^{-}x)^{2} + 802 + 802^{2} 402^{3} + 102^{6} 32^{5} \\ & = & 32 802 + 802^{2} 402^{3} + 102^{6} 32^{5} \end{split}$$
- $\therefore (2+3)^{2} + (2-3)^{2} = 105.25$
- $\Rightarrow \begin{pmatrix} 32 + 80x + 80x^2 + 40x^3 + 10x^4 x^2 \\ 32 80x + 80x^2 + 40x^3 + 10x^4 x^2 \end{pmatrix} = 102.52$
- \implies 64 + 160 α^2 + 20 α^4 = 105-25 \implies 20 α^4 + 160 α^2 - 41-25 = 0
- → THU IS A QUAREATIC IN
- $\begin{array}{l} \mbox{counterfield} \label{eq:linearized_lineari$
 - $\begin{aligned} a^2 &= \frac{1}{4} \\ \therefore \ a &= \pm \frac{1}{2} \end{aligned}$

Question 65 (****+

í C.P.

$$(1+x-x^2)^6 = 1 + Ax + Bx^2 + Cx^3 + \dots$$

Determine the value of each of the constants A, B and C.

, A = 6, B = -21, C = -10

 $(|+2-3^2)^6 = [|+(2-3^2)]$

- $= 1 + \frac{6}{1} \left(x 2t^{2} \right)^{1} + \frac{6x5}{1\times 2} \left(x 2t^{2} \right)^{2} + \frac{6x5x4t}{1\times 2\times 3} \left(x 2t^{2} \right)^{2} + .$
- $= 1 + 6(\chi \chi^2) + 15(\chi \chi^2)^2 + 2\alpha(\chi \chi^2)^3 + \dots$ = 1 + 6\chi - 6\chi^3 + 15(\chi^2 - 2\chi^3 + \chi^4) + 2\alpha(\chi^2 + \dots) + \dots
- $= (+6x-6x^2+(5x^2-30x^3+20x^3+\cdots))+\cdots$
- $= 1 + 6\alpha + 9\lambda^2 10\lambda^3 + \cdots$

A=6, B=9, C=-10

(****+) Question 66 It is given that if k is a constant then

 $(1+k\sqrt{3})^4 \equiv 892 - 336\sqrt{3}$.

11202.SI

20

2017

I.V.G.B.

I.G.B.

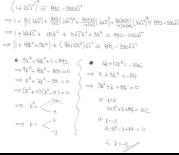
2017

madasmaths,

Determine the value of k.

2112.50

nn


N.G.B. Madasn

00

I.G.B.

0

Smaths,

I.C.S.

Madasmaths.com

The Com

<u>k = -3</u>

.G.D.

6

112d2sm2

I.C.B. Madasm

Question 67 (****+)

If A, k and n are constants, with $n \in \mathbb{N}$, then

 $(1+kx)^n = 1 + Ax + 264x^2 + 1760x^3 + \dots$

a) Show that

I.C.B.

I.C.P.

(n-2)k=20.

b) Determine the value of A.

(1 + kx) ¹¹ = 1 + Ax + a) <u>EXPAND</u> ((+ b) ¹¹ UP AND IN			
	$\frac{W(y_{l-1})}{1\times 2}(y_{l-1})^2 + \frac{W(y_{l-1})(y_{l-2})}{1\times 2\times 3}(y_{l-2})^3 + \cdots$		
$= 1 + nkx + \frac{1}{2}$	$\frac{1}{2}h(u-1)k^{2}x^{2} + \frac{1}{6}h(u-1)(u-2)k^{3}x^{3}$		
COMPACING COSPACITIZES IN S	1 ² 4 1 ³		
 ±h(n-1)k² = 264 	• th(1-1)(1-2)k3 = 1760		
	$\frac{1}{3}\left[\frac{1}{2}h(\mu-1)k^{2}\right](4-2)k = 1760$		
	$\frac{1}{3}$ x 264 (n-2) K = 1760		
	(h-2)k = 20		
	ts Equiero		
b) NOW WE HAVE			
• $\frac{1}{2}h(y-1)k^2 = 264$	• (n-2)k = 20		
h(k-1) k2 = 528	$(n-2)^{2}k^{2} = 400$		
DIVIDING THE SPORTIOUS SIDE IN SIDE			
$\frac{h(y_{-1})k^2}{(h-2)^2k^2} = \frac{528}{400}$			

1 m	
1000	
$\rightarrow \frac{N(y-1)}{(y-2)^2} \approx \frac{33}{25}$	
$\implies \frac{N^2 - N}{N^2 - 4N + 4} \approx \frac{33}{2r}$	
⇒ 25h ² -25n = 33n ² -132n+132	
$= 0 = 8n^{2} - 107n + 132$	
$\Rightarrow 0 = (8n - 11)(n - 12)$	
(OR BY THE QUADRATIC - GRALULA	
$N = \frac{107 \pm \sqrt{(-107)^2 - 4_{XB_X132}}}{2 \times 8}$	
$h = \frac{107 \pm \sqrt{7225}}{16} =$	
$h = \frac{28 \pm 701}{6} = \frac{12}{61}$	
9 n = < 12	
<u>-4/huce usino (n-z)k = 20</u> 10k = 20 k = 2	
Finitury A= nk	
A= 12×2	
· · · · · · · · · · · · · · · · · · ·	ł

ains

I.F.C.B.

COM

11202s1

m

hs.com

A = 24

1.4

Question 68 (*****)

F.G.B.

I.C.B.

The binomial coefficients are given by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ k \in \mathbb{N}, \ n \in \mathbb{N} \cup \{0\}.$$

 $\binom{n-1}{n-1}$

Ĉŀ.

 $\binom{n}{k} = \binom{n-1}{k-1}$

Show directly from the above definition that

F.C.B.

Mada

6

$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

$$\begin{split} & \left[\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\right)^{-1}+\left(\frac{1}{2},\frac{1}{2}\right)^{-1}-\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1}{2},\frac{1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1}{2},\frac{1}$$

Question 70 (*****)

It is given that

 $f(x) = \sum_{r=0}^{n} \left[\binom{n}{r} x^r \left(1 + x + x^2 \right)^{n-r} \right],$

where n is a positive integer constant.

a) Evaluate f(-1).

b) Find the value of n that satisfies the equation

 $f(3)f(2) = 1728^{1728}$

f(-1)	=0, $n=2592$
$\begin{cases} f(x) = \sum_{k=0}^{n} \binom{w}{k} \alpha^{k} (1 + \alpha + \alpha^{2})^{k-1} = 0 \end{cases}$	
(a) $\therefore f(-1) = (1-5+1)_{A} = 0_{A} = 0$	(for Au u) $\Rightarrow D^{24} = D^{etzex3}$
$ \Rightarrow \frac{(1+\epsilon+1)^{\delta}}{8271} = \frac{(1+\epsilon+1)^{\delta}}{8271} = \frac{(1+\epsilon+1)^{\delta}}{8271} $ $ \Rightarrow \frac{(1+\epsilon+1)^{\delta}}{8271} = \frac{(1+\epsilon+1)^{\delta}}{1278} $	$ \Rightarrow 2n = 1728 \times 3 $ $ \Rightarrow n = \frac{1728 \times 3}{2} $ $ \Rightarrow n = 84 \times 3 $
$\Rightarrow (44^{h}) = (12^{3})^{1728}$ $\Rightarrow (12^{2})^{h} = (12^{3})^{1728}$	⇒ y = 2592

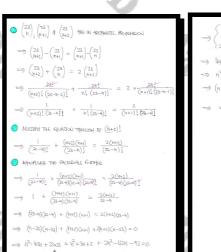
E.B.

nada.s.

2

Question 71 (*****)

F.G.B.


F.G.B. Ma

. F.G.B.

20

The coefficients of x^n , x^{n+1} and x^{n+2} in the binomial expansion of $(1+x)^{23}$ are in arithmetic progression.

Determine the possible values of n.

n = 8, 13

2 × 52 7 4× 26 8× (3)

Madasm.

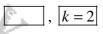
he,

°OM

Question 72 (*****) It is given that

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} = k^n.$$

where n and k are positive integer constants.


- a) By considering the binomial expansion of $(1+x)^n$, determine the value of k
- **b**) By considering the coefficient of x^n in

 $(1+x)^n (1+x)^n \equiv (1+x)^{2n}$,

simplify fully

P.C.P.

 $\binom{n}{0}^{2} + \binom{n}{1}^{2} + \binom{n}{2}^{2} + \dots + \binom{n}{n-1}^{2} + \binom{n}{n}^{2}.$

 $\Rightarrow \underbrace{(\downarrow + 1)^{n}}_{(0)} = \binom{n}{2} + \binom{n}{1} + \binom{n}{2} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n}$ $\Rightarrow \binom{n}{2} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^{\frac{n}{2}} / /$

$$\begin{split} & \sum_{\substack{\alpha \in \mathcal{A}_{1}^{(n)}, \\ \alpha \in \mathcal{A}_{2}^{(n)}, \\ \alpha \in \mathcal{A}_{2$$

 $\begin{array}{c} \underbrace{\mathcal{B}(\mathcal{T},\mathcal{H})}_{\mathcal{L}} = \underbrace{\mathcal{B}(\mathcal{H})}_{\mathcal{L}} & \underbrace{\mathcal{B}(\mathcal{H})}_{\mathcal{L}} = \underbrace{\mathcal{B}(\mathcal{H})}_{\mathcal{L}} & \underbrace{\mathcal{B}(\mathcal{H})}_{\mathcal{L}} = \underbrace{\mathcal{B}(\mathcal{H})}_{\mathcal{L}} & \underbrace{\mathcal{B}(\mathcal{$

 $\begin{pmatrix} \eta \\ 0 \end{pmatrix}^2 + \begin{pmatrix} \eta \\ 1 \end{pmatrix}^2 + \begin{pmatrix} \eta \\ 2 \end{pmatrix}^2 + \cdots + \begin{pmatrix} \eta \\ \eta \end{pmatrix}^2 = \begin{pmatrix} 2\eta \\ \eta \end{pmatrix}$

Question 73 (*****) It is given that

 $(a+bx)^n = 8192 + 6656x + 2496x^2 + \dots,$

where a, b and n are non zero constants.

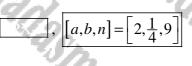
Use algebra to determine the values of a, b and n.

No credit will be given to solutions by inspection and/or verification

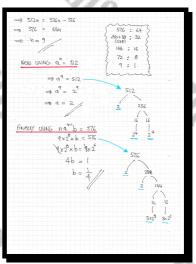
ID IN OFNECH FOCUL UP TO 2^2 $\left(\alpha+b_{\lambda}\right)^{n} = \binom{n}{0}\binom{n}{(\alpha)}\binom{n}{b_{\lambda}}^{0} + \binom{n}{(\alpha)}\binom{n}{(b_{\lambda})}^{1} + \binom{n}{2}\binom{n}{(a)}\binom{n}{(b_{\lambda})}^{2} + \cdot$ $= \left[\left[x a^{4} \times 1 \right] + \left[\frac{y}{2} \times a^{4+1} \right] x bx \right] + \left[\frac{y(t_{e})}{(x_{e})} \times a^{4+2} \right] bx^{2} + \cdots$ $a^{*} + \left[ha^{*+b}bb + \left[\frac{1}{2}w(h-y)a^{*+2}b^{2}\right]x^{2}\right]$ 1- a"= 8192 = 6656 26624 92 = 26624

n=13 NOW WEING OF = 8192 (I) => q. = 8192 = a = 13 8192 - a= 2 Finally wint hamb = 6656 === 13x 2¹²×6 = 6656 $\implies b = \frac{-6656}{13 \times 2^2}$ => b= 1

 $\left[a,b,n\right] = \left[2,\frac{1}{8},13\right]$


Question 74 (*****) It is given that

 $(a+bx)^n = 512 + 576x + 288x^2 + \dots,$


where a, b and n are non zero constants.

Use algebra to determine the values of a, b and n.

No credit will be given to solutions by inspection and/or verification

EXPTWO IN	PENNEHL ROLL	UP TO 222		
(a+b	x)" = (n)(a)($\left(\log^{2} + \binom{n}{1} \right) \left(a \right)$	$(bz)' + {\binom{N}{2}}(a$)(ba)+
			$\left[\frac{N+1}{2}\right] + \left[\frac{N}{2}\right] + \left[\frac{N}{2}\right]$	
	= a ⁿ +	(na ⁿ⁺¹ b)x+	(1-1)4"-2	3 ²) x ² +
	† 512	† 576	↑ 288	
LOCKING AT	240jTAUGA 3HT	০৬াপ্যাগায় দি	NU THE CORFICE	×p×70 2.521
$ = \left(\begin{array}{c} ha^{n-1}b \\ \frac{1}{2}h(n-1)a^n \\ \end{array} \right) $ $ = \left(\begin{array}{c} h^2a^{2n-2} \\ h(h-1)a^{n-2} \\ \end{array} \right) $				
$\frac{n^{2}}{n^{(n-1)}a^{n-2}}$	$\frac{5^2}{b^2} = \frac{512^2}{576^2}$		a ⁴ x ⁴ =	
BUT FOM TH	te constituit thei	u a ^y = 512,		
$\Rightarrow \frac{n}{n-1} \times s$	12 = 576			
⇒ Si2n	= 576 (m-1)			

12

(****) Question 75

I.F.G.B.

alasmaths.com

Smarns com tro

Ż

I.F.G.B.

Find the term independent of x in the expansion of

Madasmaths.com

I.G.S.

Madasmaths Com

The Com

210

mains.co

4.60

6

I.V.C.B. Madasn

Created by T. Madas

Y.G.B.

V.C.B. Madasmaths.Com

2017

(*****) Question 76

0

ISMaths.com

Smarks Com L. K. C.B.

I.F.G.B

The binomial coefficients are given by

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ k \in \mathbb{N}, \ n \in \mathbb{N} \cup \{0\}.$

Show directly from the above definition that if $n \ge r \ge m$, then

$$\binom{n}{m}\binom{n-m}{r-m} = \binom{n}{r}\binom{r}{m}.$$

Madasmaths.com

Ths.com

proof

N.G.

1

-

nadasm.

Created by T. Madas

l.Y.C.B.