# Created by T. Madas Madas dasmanns.com i ve ITHIS SERIES MASIRALISCOR LYCER MARINESSINALISCOR LYCER MARINESSINALISCOR LYCER MARINESSINALISCOR LYCER MARINESSINALISCOR LYCER MARINESSIN

## Question 1 (\*\*) non calculator

The first few terms of an arithmetic sequence are given below

5, 9, 13, 17, 21, ...

- **a**) Find the fortieth term of the sequence.
- **b**) Determine the sum of the first forty terms of the sequence.

 $S_{40} = 3320$  $u_{40} = 161$ ,

# Question 2 (\*\*) non calculator

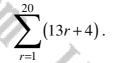
The first term of an arithmetic progression is 17 and the common difference is 6.

- **a**) Find the tenth term of the progression.
- **b**) Determine the sum of the first ten terms of the progression.

 $u_{10} = 71$  $S_{10} = 440$ 

|                 |                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a=17)<br>(d=6) | (a) $\begin{array}{c} (U_{N} = \alpha + (v_{n-1})d) \\ U_{10} = 17 + 9006 \\ \Rightarrow U_{10} = 17 + 9106 \\ \Rightarrow U_{10} = 17 + 910 \\ \Rightarrow U_{10} = 11 \end{array}$ | $ \begin{array}{c} & \left( \begin{array}{c} \left( \begin{array}{c} \left( \begin{array}{c} \left( \begin{array}{c} \left( \begin{array}{c} \left( \left( x \right) + \left( \left( x \right) \right) \right) \right) \\ \left( \left( x \right) + \left( \left( \left( x \right) \right) \right) \right) \\ \end{array} \right) \\ \end{array} \right) \\ & = \left( \begin{array}{c} \left( \left( \left( \left( x \right) \right) \right) \\ \left( \left( x \right) + \left( \left( \left( x \right) \right) \right) \\ \end{array} \right) \\ \end{array} \right) \\ & = \left( \left( \left( \left( x \right) \right) \right) \\ \end{array} \right) \\ & \left( \left( \left( \left( x \right) \right) \right) \\ \end{array} \right) \\ & \left( \left( \left( \left( x \right) \right) \right) \\ \left( \left( \left( x \right) \right) \right) \\ \end{array} \right) \\ & \left( \left( \left( \left( x \right) \right) \right) \\ \left( \left( \left( x \right) \right) \right) \\ & \left( \left( \left( x \right) \right) \\ \left( \left( x \right) \right) \\ \left( \left( x \right) \right) \\ & \left( \left( x \right) \right) \\ \end{array} \right) \\ & \left( \left( \left( x \right) \right) \\ & \left( x $ |

## Question 3 (\*\*) non calculator


The first term of an arithmetic series is 51 and the eighth term is 100.

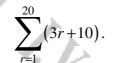
- a) Find the twentieth term of the series.
- **b**) Determine the sum of the first twenty terms of the series.

| $u_{20} = 184$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_{20} = 2350$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \begin{array}{c} (a, 5) \\ (u_{g}, 100) \\ (u_{g}, 100) \\ (u_{g}, 200) \end{array} \end{array} \begin{array}{c} (b) \\ (u_{g}, 0, 0) \\ (u_{g}, 0) \\ (u_{g}, 0) \\ (u_{g}, 0, 0) \\ (u_{g}, 0) \\ (u_{g},$ | $\begin{array}{c c} & \left\{ \begin{array}{c} \mathbf{b}_{1} \\ \end{array} \right\} & \left\{ \begin{array}{c} \mathbf{b}_{1} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \left\{ \begin{array}{c} \mathbf{b}_{2} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \left\{ \begin{array}{c} \mathbf{b}_{1} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \left\{ \begin{array}{c} \mathbf{b}_{1} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \left\{ \begin{array}{c} \mathbf{b}_{2} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \mathbf{b}_{2} \\ \end{array} & \left\{ \begin{array}{c} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \end{array} & \mathbf{b}_{2} \\ \mathbf{b}_$ |

## Question 4 (\*\*) non calculator

Evaluate the following expression, showing clearly all the relevant workings.






2810

19

#### Question 5 (\*\*) non calculator

Evaluate the following expression, showing clearly all the steps in the calculation.





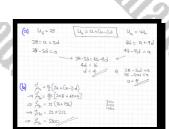
 $\begin{array}{c} \sum\limits_{l=1}^{2n} \left( \Im(k) \right) &\simeq \quad [\frac{1}{2} + l(\frac{1}{2} + l) + \dots + T_0] \\ \hline T_{k_1} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1}^{2n} \left( \frac{1}{2} + l \right) \right) \\ \hline T_{k_2} \left( \sum\limits_{l=1$ 

## Question 6 (\*\*) non calculator

A ball bearing is rolling down an inclined groove.

It rolls down by 1 cm during the first second of its motion, and in each subsequent second it rolls down by an extra 3 cm than in the previous second.

Given it takes 12 seconds for the ball bearing to roll down the groove, find in metres the length of the groove.


2.1 m

| lay 4au, 7au, 10au,. |                                                                              |
|----------------------|------------------------------------------------------------------------------|
| This do A.P with a=1 | $\begin{cases} s_{12} = \frac{12}{2} [2 \times 1 + 11 \times 3] \end{cases}$ |
| d=3.<br>h=12         | S12 6 (2+33)                                                                 |
|                      | \$12 = 6×35                                                                  |
|                      | S12= 210                                                                     |
|                      |                                                                              |

#### Question 7 (\*\*+) non calculator

The sixth and the tenth term of an arithmetic progression are 28 and 44, respectively.

- a) Determine, in any order, the first term and the common difference of the progression.
- b) Calculate the sum of the first fifty terms of the progression.



 $S_{50} = 5300$ 

a = 8, d = 4,

#### **Question 8** (\*\*+) non calculator

The seventh term and the twelfth term of an arithmetic progression are 28 and 73, respectively.

a) Find the first term and the common difference of the progression.

**b**) Calculate the sum of the first forty terms of the progression.

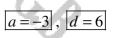
a = -26, d = 9,  $S_{40} = 5980$ 

| {u7=28} (9        |              | + (1-1) - 1     |
|-------------------|--------------|-----------------|
| (u1=733           | 4=28<br>7 4  | ¥2=13           |
|                   | 28 = a + Gd  | 73= a+11d       |
|                   | 28-6d = a    | 73-11d= a       |
|                   | >            |                 |
|                   |              | d=73-11d        |
| (b) = 1/2         |              | d = 45<br>d = 9 |
| -> \$4= 42 [21-   |              |                 |
| => Spo = 20 [-S   | 2+351] a=28- | .54             |
| === \$40 = 20× 20 | 9 a=-26      |                 |
|                   | /            |                 |

## Question 9 (\*\*+) non calculator

The fifth and the twentieth term of an arithmetic series are 38 and 158, respectively.

a) Find the first term and the common difference of the series.


**b**) Determine the sum of the first twenty terms of the series.



**Question 10** (\*\*+) non calculator The fourth term of an arithmetic series is 15.

The sum of its first three terms is 9

Find the first term and the common difference of the series.



11+

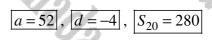
| $u_{4} = R$                | $S_{3} = 9$                                            |
|----------------------------|--------------------------------------------------------|
| Une at Grad                | $S_{1} = \frac{N}{2} \left[ 2\alpha + (N-1) d \right]$ |
| $\implies$ 15 = a + (4-1)d | $= 9 = \frac{3}{2} [2a + (3-1)d]$                      |
| =9 [15= a+3d]              | $= 9 = \frac{3}{2}(2a + 2d)$<br>= 9 = 3a + 3d          |
| 15-3d=9                    | = 9 = 3a + 38                                          |
|                            | 3-4=0                                                  |
| 15-3d= 3-                  | 1                                                      |
| 12 = 2d<br>d=6             | a = 3 - 6<br>A A = 3 - 6                               |
| "                          | a = -3                                                 |

### Question 11 (\*\*+) non calculator

The sum of the first two terms of an arithmetic series is 3.

The seventh term of the series is 40.

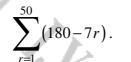
- a) Find the first term and the common difference of the series.
- **b**) Determine the sum of the first forty terms of the series.


| a=-2, d=7,                                                                            | $S_{40} = 5380$                                                                                                                                        |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 122                                                                                   |                                                                                                                                                        |
| (c) • $\beta_2 = 3 + \alpha_1 + \alpha_2 = 3$<br>$\alpha + (\alpha + d) = 3$          | (b) $\left[\frac{1}{2x} + \frac{1}{2}\left[2x + (x-1)d\right]\right]$                                                                                  |
| $\begin{bmatrix} 2\alpha + 4 - 3 \\ - 2\alpha \end{bmatrix} \implies d = 3 - 2\alpha$ | $\Rightarrow \int_{\infty}^{\infty} = \frac{4}{2} \left[ 2(-2) + 39 \times 1 \right]$ $\Rightarrow \int_{\infty}^{\infty} = 2 \left[ -4 + 275 \right]$ |
| $40 = \alpha + 40 - 12\alpha$<br>( $4\alpha = -22$ , $\alpha = -2$ )                  | → X <sub>10</sub> = 2 × 289<br>→ X <sub>10</sub> = 5385                                                                                                |

## **Question 12** (\*\*+) non calculator

The sum of the first five terms of an arithmetic series is 220.

The fifth term of the series is 36.


- a) Find the first term and the common difference of the series.
- **b**) Determine the sum of the first twenty terms of the series.



| (\$\$ = 220) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) | $ \begin{array}{c} \left  \begin{matrix} x_{1}^{2} + \frac{y_{1}}{2} \left( 2\alpha + (\lambda_{1-1}) \frac{1}{2} \right) \\ 220 = \frac{5}{2} \left( 2\alpha + 44 \frac{1}{2} \right) \\ 220 = 5 \left( \alpha + 24 \right) \\ 220 = 5 \left( \alpha + 24 \right) \\ 44 = \alpha + 2d \\ 44 = \alpha + 2d \\ 44 = -2d = \alpha \\ 44 = -$ | → \$\frac{1}{2}\$ => \$\frac{1}{2}\$ => \$\frac{1}{2}\$ = \$\frac |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a = 44-2a<br>a= 44+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a = 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## Question 13 (\*\*+) non calculator

Evaluate the following sum, showing clearly all the steps in the calculation



# Question 14 (\*\*+) non calculator

The 12<sup>th</sup> term of an arithmetic progression is twice as large as the 4<sup>th</sup> term.

- a) Given that the 14<sup>th</sup> term of the progression is 27, show that the first term of the progression is 7.5.
- **b**) Find the sum of the first 20 terms of the progression.



75

435

## Question 15 (\*\*+) non calculator

The  $k^{th}$  term of a sequence is given by

 $a_k = 5k - 3.$ 

By showing clearly all the steps in the calculations, evaluate the sum

Question 16 (\*\*\*) non calculator

The  $n^{\text{th}}$  term of an arithmetic series is given by

 $u_n = 11 + 6n$ .

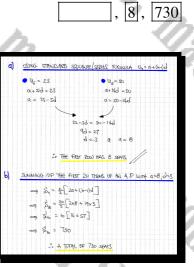
Find the sum of the first twenty terms of the series.

 $S_{20} = 1480$ 

24950



#### Question 17 (\*\*+)


Seats in a theatre are arranged in rows. The number of seats in this theatre form the terms of an arithmetic series.

The sixth row has 23 seats and the fifteenth row has 50 seats.

a) Find the number of seats in the first row.

The theatre has 20 rows of seats in total.

b) Find the number of seats in this theatre.



1+

row 20

row 5

row 4

row 3

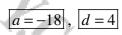
row 2 row 1

## Question 18 (\*\*\*) non calculator

The fourth term and the tenth term of an arithmetic series are 20 and 47, respectively.

Calculate the sum of the first twenty terms of the series.




| 1.002 - 0        | +-(u-1)d               | $\int \left[ S_n = \frac{n}{2} \left[ 2a + C_{n-1} \right] d \right]$                                                                                       |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04-20            | • u <sub>10</sub> = 47 | $= \frac{1}{2} = \frac{2}{2} \left[ 2 \times \frac{3}{2} + 19 \times \frac{9}{2} \right]$                                                                   |
| 20=0+35          | 47= 0+9d               |                                                                                                                                                             |
| 20-3d =0         | 47-9d=a                | ) = 5 = 10 [13 + 1747                                                                                                                                       |
| d=<br>a = 20- 3d | 27<br>9<br>2           | $\frac{\alpha_{11}}{228} + \alpha_{21} = \frac{\alpha_{12}^2}{\alpha_{12}^2} \in$ $\frac{228}{288} + \alpha_{21} = \frac{\alpha_{12}^2}{\alpha_{12}^2} \in$ |

# Question 19 (\*\*\*) non calculator

The seventh term of an arithmetic series is 6.

The sum of its fifth term and its tenth term is 16.

Find the first term and the common difference of the series.



| U1=6 - (U1= a+(b-1)d)          |                                                                                                                                        |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| a = G-Gd<br>Solo she the other | (a+4d) + (a+4d) = 4c $(2a+4cd) + 6d = 1c$ $2(c-6d) + 6d = 1c$ $12 - 12d + 13d = 1c$ $d = 4$ $a = -6d = 6 - 6d = 6 - 6d4$ $a = -6d = 6$ |

## Question 20 (\*\*\*) non calculator

20

I.C.B.

The sum of the first 20 terms of an arithmetic series is 1070.

The sum of its fifth term and its tenth term is 65.

a) Find the first term and the common difference of the series.

nadasmat,

E.B.

Madasn.

F.G.p.

2017

**b**) Calculate the sum of the first 30 terms of the series.

| 45+4m =                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a+dd) + (a)<br>(2u + 13d) =             | +9d)=05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2a = 107-19d 2<br>2a = 65-13d            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 107 - 19d = 65 - 13d<br>42 = 6d<br>d = 7 | bi-2a = 65 - 13d<br>2a = 23 - 23<br>2a = 16 - 21<br>2a = 25 - 2<br>2a = -26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          | a = -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - <u>1770</u><br>- <u>185</u><br>- 2655  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4) + (2+4 |

a = -13, d = 7, 2655

nn,

11+

Madasm.

madasn.

## Question 21 (\*\*\*) non calculator

The sixteenth term of an arithmetic series is 6.

The sum of the first sixteen terms is 456.

a) Find the first term and the common difference of the series.

The sum of the first k terms of the series is zero.

**b**) Determine the value of k.



, a = 51, d = -3, k = 35

## Question 22 (\*\*\*) non calculator

An arithmetic progression has first term -8 and common difference 2

The sum of the first n terms of the progression is 220.

Use algebra to find the value of n.

*n* = 20

Question 23 (\*\*\*) non calculator

 $107 + 114 + 121 + 128 + \dots + 1500$ .

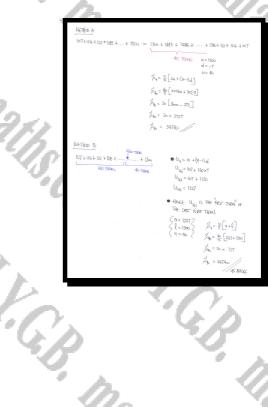
madasn.

inn

The above series has 200 terms.

Madasmaths.

alasmans.com


Smaths,

I.C.B

K.C.B. Madasm

COM

Find the sum of the last 40 terms of the series.



Madasmaths.Com

011

Mains.co

nadasman

E.

ins.com

54540

Created by T. Madas

madasmaths,

2017

.C.A

Question 24 (\*\*\*)

 $-53 - 44 - 35 - 26 - \dots + 1000$ .

The above series has 118 terms.

Find the sum of the last 18 terms of the series.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Mttho A - etwent Backwees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1000 + 981 + 982 + 973 + 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| $\begin{array}{ccc} d & + 1000 \\ d & - & -9 \\ \mathcal{H} &= 20 \end{array} \end{array} \xrightarrow{\begin{array}{c}} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Little 8 - BY JERMOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| $ \frac{\partial \left( \frac{1}{2} - \frac{1}{2} \right)}{\beta + q} \left\{ \begin{array}{l} \sum_{i=1}^{n} \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} $ |     |
| : 2600210 JUN = 55873-39250 = 16623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| METUDO C - 84 WORKING 007 THE FRUT THEM OF THE CAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18       |
| $\begin{array}{c} Q=-rij \\ d=9 \\ n= 0  \\ U_{inj}=-ri + lcos j \\ U_{inj}=-6l + 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| THIS GR THE LATT 18 THEALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| $\begin{array}{c} Q = P q T \\ d = q \\ m = 10 \end{array} \right\} \longrightarrow \begin{array}{c} \int_{q} L_{q} = \frac{M}{2} \left[ 2a + (n-1)d \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T + T) \right] \\ \int_{M} g = \frac{M}{2} \left[ 2m (T + T $ |          |
| $\frac{x_{10}}{16623}$ = 16623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |

, 16623

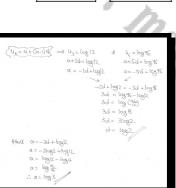
## Question 25 (\*\*\*) non calculator

The common difference of an arithmetic progression is 0.01.

The sum of the first 2401 terms the progression is 4802.

Find the first term of the progression.

| ~       |                                                                                |
|---------|--------------------------------------------------------------------------------|
| d= 0.01 | a \$ = 4802                                                                    |
|         | $\implies s_{N}^{d} = \frac{N}{2} \left[ 2\alpha + O(-1) d \right]$            |
|         | $\rightarrow 4802 = \frac{2401}{2} \left[ 2a + (2401 - 1) \times 0.01 \right]$ |
|         | $\Rightarrow 4802 = \frac{2401}{2} \left[ 2x + 2400 \times 0.01 \right]$       |
|         | $\rightarrow 4802 = \frac{2401}{2} \left[ 24 + 24 \right]$                     |
|         | → 4802 = 2401 (a+12)                                                           |
|         | = 2 = a + 12                                                                   |
|         | −10 = q                                                                        |
|         | 00 a = -10                                                                     |


a = -10

## Question 26 (\*\*\*) non calculator

The first term of an arithmetic series is a and the common difference is d.

The third term of the series is log12 and the sixth term is log96.

Find the exact values of a and d.



 $d = \log 2$ 

 $a = \log 3$ 

Question 27 (\*\*\*)

The first term of an arithmetic series is a and the common difference is d.

The sum of the first 21 terms the series is 735.

**a**) Show clearly that

a + 10d = 35.

The sum of the second and the fifth term is 10.

**b**) Find the value of a and the value of d.

| 2         |                                                      | 1 |
|-----------|------------------------------------------------------|---|
|           | $\left( b \right) \left[ u_{n} = a + (n-1)d \right]$ |   |
| +(4-1)d   | $u_2 + u_2 = u_2$                                    |   |
| 24 + 20d] | $\left(a+d\right)+\left(a+dd\right)=10$              |   |
| a + 10d   | aa + Sol = 10                                        |   |
| 735       | (a=35-lod) (porta)                                   |   |
| 35        | 01= bd = 2(35-10d) + 5d = 10                         |   |
|           | 70 - 20d + 5d = 10                                   |   |

a = -5, d = 4

#### **Question 28** (\*\*\*)

Arnold is planning to save for the next 48 months in order to raise a deposit to buy a flat. He plans to save  $\pm 300$  this month and each successive month thereafter, to save an extra  $\pm 5$  compared to the previous month.

- a) Find the amount he will save on the twelfth month.
- b) Find the total amount he will save at the end of the 48 months.

Franco is also planning to save for the next 48 months in order to buy a car.

He plans to save  $\pounds a$  this month and each successive month thereafter, to save an extra  $\pounds 15$  compared to the previous month.

c) Find the value of *a*, if Franco saves the same amount of money as Arnold does in the next 48 months.

#### Question 29 (\*\*\*) non calculator

The first three terms of an arithmetic series are 26.1, 25.2 and 24.3.

Find the smallest value of n for which the sum of the first n terms of the series is negative.

| (a=26.1) (sh= | 1 2 2a+Cu-1)d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 => | 0.94 = 53.1     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| {d=-09 = 0=   | $\frac{1}{2}$ $\frac{1}$ | 1 -> | H = 59          |
|               | 4 [52.2 -0AN +0.9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Shinkulest N=60 |
|               | N [53.1-0.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | /               |
| ⇒ o=          | 53.1-0.9N (N=0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                 |

n = 60

 $\pounds 355$ ,  $\pounds 20040$ , a = 65

## Question 30 (\*\*\*) non calculator

The 17<sup>th</sup> term of an arithmetic progression is 14 and the sum of the first 25 terms of the progression is 200.

- a) Show that the first term of the progression is -10.
- b) Find the number of terms in the progression that are less than 100.

| (a) | 0 U17 = 14                        | @ \$25 = 200                                    |
|-----|-----------------------------------|-------------------------------------------------|
|     | $(A^{n}) = \alpha + (N^{n-1})q$   | \$4= # [2a + (4-1)d]                            |
|     | 14 = a + 16d                      | $200 = \frac{25}{2} \left[ 2a + 24d \right]$    |
|     | 14-16d = a                        | 200= 25 [ a + 12d]                              |
|     | 4                                 | 8 = a+12d                                       |
|     | ¥                                 | 8-12d = q                                       |
|     | 14-16d = 8 -12d -                 |                                                 |
|     | d = 40<br>d = 5 = 3 = 1.5         | u Jace J                                        |
|     | + 2                               |                                                 |
|     | wino a = 8 - 129 = 8 - 13         |                                                 |
|     |                                   | IE q=-to H<br>BEPUNED                           |
|     |                                   | BeponeeD                                        |
| (b) | (4= a+(4-1)d                      |                                                 |
|     | $(00 = -10 + (N^{-1}) \times 1.2$ |                                                 |
|     | 110 = 1.2(n-1)                    |                                                 |
|     | 110 = 1.5y - 1.5                  |                                                 |
|     | 111-2 = 1-20                      |                                                 |
|     | N= 11.2 = 3 =                     | $\frac{210 + 12 + 1}{3} = 70 + 4 + \frac{1}{3}$ |
|     | h = 743                           |                                                 |
|     | - N=74                            |                                                 |
|     |                                   |                                                 |

74

## Question 31 (\*\*\*) non calculator

An arithmetic series has first term 5 and common difference 4.

a) Show that the sum of the first n terms of the series is given by

## n(2n+3).

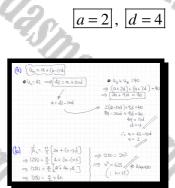
b) Find the smallest value of n for which the sum of the first n terms of the series exceeds 819.

(You may find the fact  $21 \times 39 = 819$ , useful)



| a (a=sh) | $\Rightarrow$ $S_1 = \frac{11}{2} \left[ 2n + (n-1)d \right]$                                 | (b) 5,= 819                                                      |
|----------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| (d=43    | > Sy = = [10 + (1-1)x4]                                                                       | n(2n+3) = 819                                                    |
|          | $\Rightarrow S_{1} = \frac{1}{2} [10 + 4n - 4]$<br>$\Rightarrow S_{1} = \frac{1}{2} [4n + 6]$ | $2\eta^2 + 3\eta - 81\% = 0$<br>$(2\eta - 3\eta)(\eta + 21) = 0$ |
|          | $\Rightarrow S_{+} = n(2n+3)$                                                                 | n->-×                                                            |
|          |                                                                                               | $-\frac{31}{2} = 19.5$                                           |
|          |                                                                                               | ** N= 20                                                         |

#### **Question 32** (\*\*\*)


The eleventh term of an arithmetic progression is 42 and the sum of its third and eighth term is 40.

**a**) Find the first term and the common difference of the progression.

The first n terms of this progression add to 1250.

**b**) Show clearly that

 $n^2 = 625$ .



#### Question 33 (\*\*\*)

The fifth term of an arithmetic series is 12 and the sum of its first three terms is -9.

- a) Find the first term and the common difference of the series.
- The  $n^{\text{th}}$  term of the series exceeds 144.
  - **b**) Determine smallest value of n.

| <br>a = -8 |   | d = 5 |   | n = 32 |
|------------|---|-------|---|--------|
| u = 0      | , | u - J | , | n = 52 |

| (a) $(U_{1} = \alpha + (U_{1} - 1))$<br>$U_{2} = \alpha + 4d$<br>$\downarrow$<br>$(\alpha = 12 - 4d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • $\beta_{\eta} = \frac{y}{2} \left[ 2\eta + (\eta - \eta) d \right]$<br>$\neg = \frac{y}{2} \left[ 2\eta + 2\eta \right]$<br>$-\eta = 3 (\eta + d)$<br>$\left[ -\frac{z}{2} = \eta + d \right]$<br>$\frac{1}{23 - d} = \eta$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} U_{n} = -\frac{1}{2} + \frac{1}{2} +$ | $\begin{array}{c} 1 & 0.5 - 3 - 5 \\ \Rightarrow & \eta = \frac{157}{5} \\ \Rightarrow & \eta = \frac{157}{5} \\ \end{array}$                                                                                                 |
| ⇒ 147 = 5n -13<br>⇒ 157 = 5n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | → ha 315 . He 31.4                                                                                                                                                                                                            |

#### Question 34 (\*\*\*)

The sum of the first ten terms of an arithmetic progression is 20 and the tenth term of the progression is 65.

Find the fifth term of the progression.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $ \begin{array}{c} \overbrace{(d_1)}{(d_2)} \underbrace{(d_1)}{(d_2)} \underbrace{(d_2)}{(d_2)} \underbrace{(d_1)}{(d_2)} \underbrace{(d_2)}{(d_2)} (d_2$ | 56 |

 $u_5 =$ 

#### **Question 35** (\*\*\*)

Andrew is planning to pay money into a pension scheme for the next 40 years.

He plans to pay into the pension scheme  $\pounds 800$  in the first year and each successive year thereafter, an extra  $\pounds 100$  compared to the previous year.

- a) Calculate the amount Andrew will pay into the scheme on the tenth year.
- b) Find the total amount Andrew will have paid into the scheme after 20 years.

Beatrice is also planning to pay money into a pension scheme for the next 40 years.

She plans to pay £1580 in the first year and each successive year thereafter, to pay an extra  $\pounds d$  compared to the previous year.

c) Find the value of d, if both Andrew and Beatrice paid into their pension schemes the same amount of money over the next 40 years.

 $\pm 1700$ ,  $\pm 35000$ , d = 60

#### **Question 36** (\*\*\*)

The  $n^{\text{th}}$  term of a sequence is given by

 $a_n = 8n + 5.$ 

Show clearly that

 $\sum_{n=1}^{k} a_n = k \left(4k + 9\right)$ 

| proof |
|-------|
|-------|

| а <sub>9</sub> = 8n +5<br>14 Squart is<br>13,21, 24, 37,<br>14 А.Р. WH a=13<br>d=8 | $\begin{split} \bullet & \begin{bmatrix} \sum_{i=1}^{k} \frac{1}{2} \left( 2k + (j_{i-1}) \frac{1}{2} \right) \\ \Rightarrow & \sum_{k=1}^{k} \frac{1}{2} \left[ 2k \left( k + (k_{i-1}) \frac{1}{2} \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = \frac{1}{2} \left( 2k + k - 0 \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = \frac{1}{2} \left( 2k + k + 0 \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = \frac{1}{2} \left( 2k + k + 0 \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = k \left( 2k + 1 \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = k \left( 2k + 1 \right) \\ \Rightarrow & \sum_{k=1}^{k} q_{i} = k \left( 2k + 1 \right) \\ \end{cases}$ |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# Question 37 (\*\*\*)

A novelist is planning to write a new book.

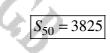
He plans to write 15 pages in the first week, 17 pages in the second week, 19 pages in the third week, and so on, so that he writes an extra two pages each week compared with the previous week.

a) Find the number of pages he plans to write in the tenth week.

**b**) Determine how many pages he plans to write in the first ten weeks.

The novelist sticks to his plan and produces a book with 480 pages, after n weeks.

c) Use algebra to determine the value of n.


| 33 | , | 240 | , | n = 16 |
|----|---|-----|---|--------|
|    |   |     |   |        |

| 6)         | $\begin{cases} \frac{b(i-iO+\alpha-\mu)}{2xP+2i=\alpha iU} \\ \frac{5xP+2i=\alpha iU}{2i+2i=\alpha iU} \\ \frac{6i+2i=\alpha iU}{2i} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} \left[ \begin{array}{c} \left[ \begin{array}{c} \left[ \left[ x_{1} - \left\{ x_{1} + \left\{ x_{1} - \right\} \right) d \right] \right] \\ \left[ \left[ x_{1} - \left\{ x_{1} + \left\{ x_{1} - \right\} \right] d \right] \\ \left[ \left[ x_{1} - \left\{ x_{1} + \left\{ x_{1} + \left\{ x_{1} - \right\} \right] \right] \\ \left[ \left[ x_{1} - \left\{ x_{1} + \left\{ x_{1} + \left\{ x_{1} - \right\} \right] \right] \\ \left[ x_{1} - \left\{ x_{1} + \left\{ x_{1} + \left\{ x_{1} - \right\} \right] \right] \\ \left[ x_{1} - \left\{ x_{1} + \left$ |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>(</u> ) | $ \begin{bmatrix} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \begin{bmatrix} 2n + (n-1)d \end{bmatrix} \\ \frac{1}{2} \frac{1}{2} \begin{bmatrix} 2n + (n-1)d \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 3n + (n-1)x_2 \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 3n + (n-1)x_2 \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 3n + 2n - 2 \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 2n + 2n \end{bmatrix} $ | ∴ H = 1C Y = 1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Question 38 (\*\*\*)

An arithmetic series has first term 3 and its  $40^{th}$  term is 4 times as large as its  $10^{th}$  term.

Find the sum of the first 50 terms of the series.



| (a=3)<br>(U <sub>40</sub> = 441 <sub>10</sub> ) | $\begin{array}{c} (Sincy \left[ U_{1} = q + C_{n-1} \right]_{4} \\ \Rightarrow \left( a + 39d \right) = U_{1} \left( a + 9d \right) \\ \Rightarrow 3 + 39d = 4 \left( 3 + 9d \right) \\ \Rightarrow 3 + 39d = 12 + 36d \\ \Rightarrow 3 + 39d = 12 + 36d \end{array}$ | $ \begin{array}{l} & \qquad $ |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | 6=3                                                                                                                                                                                                                                                                   | $\Rightarrow \beta_{20}^{+} = \frac{3825}{38^{2}}$                                                                                                   |

# Question 39 (\*\*\*+)

An athlete is training for a long distance race.

He is preparing by running on 16 consecutive days so that his daily running distances form an arithmetic sequence.

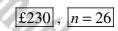
The athlete ran for 15 km on the 16<sup>th</sup> day of his training and the total distance run over the 16 day training period was 288 km.

Find the distance the athlete ran on the 11<sup>th</sup> day of his training.

 $\begin{array}{c} U_{4} = 15\\ U_{4} = 15\\ U_{5} = 2470\\ U_{5} = 2470\\ U_{5} = 2415d\\ U_{5} = 2415d\\ U_{5} = 2415d\\ U_{5} = 2416d\\ U_{5} = 1644\\ U_{5} = 1$ 

17 km

### Question 40 (\*\*\*+) non calculator


On his 1<sup>st</sup> birthday, Anthony was given £50 as a present by his godmother Cleo.

For every birthday ever since, Cleo gave Anthony £20 more than on his previous birthday. This money was saved by Anthony's mother until Anthony was n years old.

a) Find the amount of money Anthony received as a birthday present on his tenth birthday.

After Anthony's  $n^{\text{th}}$  birthday his mother gave him Cleo's presents, which was £7800 in total.

**b**) Determine the value of n.



| (a) (a=50)<br>(d=20) | $ \begin{array}{c} \underbrace{\left( \underline{l}_{q} \circ \alpha_{A} \left( \underline{s}_{i} - \eta_{i} \right)_{d} \right)}_{= 0} \underbrace{u_{log} \circ S_{D} + \eta_{A} \otimes \alpha_{D}}_{= 0} \underbrace{u_{log} \circ S_{D} + \eta_{B}}_{= 0} \underbrace{u_{log} \circ S_{D} + \eta_{B$ | $\left  \begin{array}{c} \left( b \right) & \left[ \frac{1}{p_1^2} + \frac{1}{2} \left[ \frac{1}{2} + \left( b + \frac{1}{2} \right) \right] \right] \\ \left( b \right) & \left[ \frac{1}{p_1^2} + \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{2} \left( b + \frac{1}{2} \right) \right] \right] \\ \left( b + \frac{1}{p_1^2} + \frac{1}{2} \left( b + \frac{1}{2} \right) \right] \\ \left( b + \frac{1}{p_1^2} + \frac{1}{2} \left( b + \frac{1}{2} \right) \right] \\ \left( b + \frac{1}{p_1^2} + \frac{1}{2} \left( b + \frac{1}{2} \right) \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} \right) \\ \left( b + \frac{1}{p_1^2} +$ |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### **Question 41** (\*\*\*+)

The sum of the first ten terms of an arithmetic series is 20 and the sum of its first twenty terms is 10.

Show that the sum of the first forty terms of the series is -100.



| $S_1 = \frac{VL}{2}(2a+Cn-1)d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S & 4 = 2a +9d                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \left\{ \begin{array}{c} 2 o = \frac{10}{2} \left[ 2 a + q d \right] \\ 1 o = \frac{20}{2} \left[ 2 a + 18 d \right] \end{array} \right\} \Longrightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{cases} \Rightarrow 4 = 2n + 9(-03) \\ \Rightarrow 4 = 2n - 2.7 \end{cases}$                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |
| $\left\{ \begin{array}{l} \left\{ b, p \neq a_{S} \right\} \\ \left\{ c = 0 \\ \left\{ a \neq 0 \\ a \neq 0 \\ c = 0 \end{array} \right\} \\ \left\{ c = 0 \\ c$ | a: 3-35                                                                                                                                                                         |
| (4 = 2a +96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{cases} \#_{W}(\xi + \frac{1}{2}_{0}) = \frac{49}{2} \left[ 2 \times 3 \times +39 \left( -0.3 \right) \right] \\ = 20 \left[ 4 \cdot 7 - 11 \cdot 7 \right] \end{cases}$ |
| $\begin{cases} 4 = 2a + 9d \\ 1 = 2a + 9d \\ 3u \text{ Struct} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 26 [61 - 161]<br>= $20 \times (-5)$                                                                                                                                           |
| -3 = lod unuts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = -100                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS REQUEN                                                                                                                                                                       |

#### (\*\*\*+) Question 42

a) 
$$\sum_{r=1}^{5} (r^2 + 1).$$
  
b)  $\sum_{k=1}^{20} (4k + 23).$ 

$$\sum_{n=19}^{30} (365-5n).$$



asmanns.com i k.c.

| Question 42 (***+)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluate each of the following                           | sums.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "Co. "O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5                                                        | $D \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{a})  \sum_{r=1}^{\infty} \left(r^2 + 1\right).$ | トー くた                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r=1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. 4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _20                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>b</b> ) $\sum_{k=0}^{20} (4k+23)$ .                   | ~B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>k=1</u>                                               | i h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30                                                       | 2. Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| c) $\sum_{n=19}^{30} (365-5n)$ .                         | · 12. · 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "ISM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n=19                                                     | Sh Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . V.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arr Sh                                                   | 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300, 2910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 418 414                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · Cn. · · · · · · · · · · · · · · · · · · ·            | (a) $\frac{5}{2}(\frac{5}{10}+1) = 245+10+17+26 = 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                          | $ \begin{array}{c} \left( \bigcup_{i=1}^{n} \sum_{i=1}^{n} (4+2i) = 2i + 3i + 35i \cdots 4 \ln 3} \right) \\ \left( \bigcup_{i=1}^{n} (4+2i) = 2i + 3i + 35i \cdots 4 \ln 3} \right) \\ \left( \bigcup_{i=1}^{n} (4+i) + 3i + 2i + 2$ | 2025-54) = 232+225 +225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 + 225 |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{aligned} & \overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\underset{z=z}{\overset{(z=z)}{\underset{z=z}{\underset{z=z}{\atopz=z}{\atopz=z}{\atopz=z}{\atopz=z}{z}}}}}} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| In the                                                   | 50 = 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $s_{2}^{2} = 6$ (les) $z_{4}^{2}$<br>$s_{2}^{2} = 210$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Con Ch                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 60 0                                                     | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5B 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | h 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| an no                                                    | an In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | 20. 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sp. Sp.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the Var                                                  | The U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| So. Do                                                   | S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Uh. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          | Co Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Y F. C.K.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K. 14 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.1 10                                                   | 1. L. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sim$ $/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - C G2                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4B V.                                                    | SP .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| x " A                                                    | no. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12 122                                                   | Created by T. Madas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| " () <sub>2</sub> . " () <sub>2</sub> .                  | Sh. Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The The                                                  | ×12-, ×1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $h$ $V_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Question 43 (\*\*\*+)

The first three terms of an arithmetic series are

(k-2), (2k+5) and (4k+1) respectively,

where k is a constant.

- **a**) Show clearly that k = 11.
- **b**) Find the 41<sup>st</sup> term of the series.

The sum of the first n terms of the series is denoted by  $S_n$ 

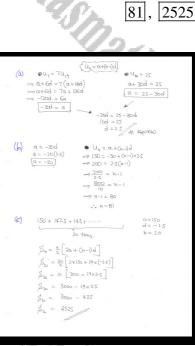
c) Show that  $S_n$  is always a square number.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K+S) = (3K+S)- | .(k-2)                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} (b) & u_{1} \leq u_{1-2} = q \\ u_{2} \leq 2x(1+5-q) \\ u_{3} \leq 4x(1+1-45) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | NORMAL $\begin{array}{c} \left[ U_{ij} = a + (k-1) d \right] \\ U_{ij} = \left[ q + 40 \times 10 \right] \\ U_{ij} = \left[ q + 720 \right] \\ U_{ij} = \left[ 729 \right] \end{array}$ |
| (C)  (C) |                | $=\frac{41}{2}\times 18u$<br>= $9u^2$                                                                                                                                                   |
| ⇒ \$4 = 2 [18+ 184 -+18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( => \$4:      | = (3n) <sup>2</sup> thursts A<br>sports where                                                                                                                                           |

729

2

#### Question 44 (\*\*\*+)


The  $n^{\text{th}}$  term of an arithmetic series is denoted by  $u_n$ .

a) Given that  $u_7 = 7u_{19}$  and  $u_{31} = 25$ , show that the common difference of the series is 2.5.

The last term of the series is 150.

**b**) Determine the number of terms in the series.

c) Find the sum of the last 20 terms of the series.



#### Question 45 (\*\*\*+)

The sum of the first *n* terms of the sequence 50, 53, 56, 59, ... is denoted by  $S_n$ .

The sum of the first *n* terms of the sequence 200, 198, 196, 194, ... is denoted by  $T_n$ .

Find the smallest value of *n* so that  $S_n > T_n$ 



4095

 $\begin{array}{c} x_{1} > T_{1} \\ \Rightarrow & \left[ 2x \cos + (x-1)x_{2}^{2} \right] > \underbrace{\#} \left[ 2x \cos + (x-1)(x_{2}) \\ \Rightarrow & (x_{0} + 3n - 3) > 4x_{0} - 2n + 2 \\ \Rightarrow & 5n > 4x_{2} - 97 \\ \Rightarrow & 5n > 3x_{2} \\ \Rightarrow & n > 61 \\ \therefore & n = 61 \end{array}$ 

#### Question 46 (\*\*\*+)

The third term of an arithmetic series is 204 and the ninth term of the same arithmetic series is 186.

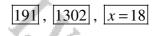
Find the sum of the eleventh to the fortieth term of the series, inclusive.

| $ \begin{array}{c} (\underline{u}_{3} = 1264) \\ (\underline{u}_{3} = 166) \\ (\underline{u}_{3} = 16) \\ (\underline{u}_{3} = 16$ | Note that the set of |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Question 47 (\*\*\*+)

A new gym opened and during its first trading month 26 people joined its membership.

A business forecast for the gym membership is drafted for the next twelve months.


It assumes that every month an extra x number of members will join, so that next month (26+x) members will be added, the following month (26+2x) members will be added, and so on.

Taking x = 15, find ...

- a) ... the number of members that will join in the twelfth month.
- **b**) ... the total number of members that will join during the first twelve months.

The business plan recognises that in order for the business to succeed in the long term, it needs a total membership of at least 1500 during its first twelve months.

c) Using the same model, find the required value of x in order to achieve a twelve month membership target of 1500.



|             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000 |                                                                                                                                                                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>(</b> @) | $b_{ip} = a + (it - t) d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ئ)  | $\beta_1 = \frac{M}{Z} \left[ 2a + (M-1)d \right]$                                                                                                                                                                                                                        |
|             | $\begin{split} & \bigcup_{\substack{u,v \in u \in u \in U}} \frac{ u _{u} +  u _{$ |      | $\begin{aligned} Son &= \frac{1}{2} \left[ 2x2\xi + 1 xd \right] \\ Son &= \frac{1}{2} \left[ 2x\xi + 1 xd \right] \\ Son &= 4 \left( 5z + 1 d \right) \\ 2So &= 5z + 1 d \\ 198 &= 11d \\ d &= \frac{198}{11} = \frac{994 + 99}{11} \\ d &= \frac{19}{11} \end{aligned}$ |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                           |

#### Question 48 (\*\*\*+)

The first few terms of an arithmetic sequence is given below

5, 11, 17, 23, 29, ...

Find, by using an algebraic method ...

- a) ... the eleventh term of the sequence.
- **b**) ... the sum of the first eleven terms of the sequence.

The  $n^{\text{th}}$  term of the sequence exceeds 200.

c) Determine the smallest value of n.

The sum of the first k terms of the sequence is 705.

**d**) Determine the value of k.

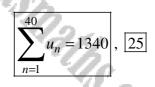
| S.Co.                            | · Con            |
|----------------------------------|------------------|
| $u_{11} = 65$ , $S_{11} = 385$ , | n = 34, $k = 15$ |

| (a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)<br>(a)(b)(b)<br>(a)(b)(b)<br>(a)(b)(b)<br>(a)(b)(b)<br>(a)(b)(b)<br>(a)(b)(b)<br>(a)(b)(b)(b)<br>(a)(b)(b)(b)(b)<br>(a)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) | $ \begin{array}{l} \left( b\left( \alpha,\beta\right) g_{2}^{k}+g_{2}^{k} & g_{2}^{k} & g_{2}^{k} & g_{2}^{k} & g_{2}^{k} & g_{2}^{k} \\ \left( b\left( \alpha,\beta\right) g_{2}^{k} & g_{2}^{k} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \textbf{(C)} & [\underline{U}_{1} = 0 + \mathbf{G}_{n} - 1]\mathbf{d}_{1} \\ \\ \Rightarrow 2 \mu 0 = \mathbf{S} + (\overline{0}_{1} - 1)1_{0} \\ \Rightarrow 2 \mu 0 = \mathbf{S} + \mathbf{G}_{n} - \mathbf{G} \\ \\ \Rightarrow 2 \mu 0 = \mathbf{G} \\ \Rightarrow 0 = \frac{2 \mu 0_{1}}{6} = \frac{G \mathbf{I}}{2} = \mathbf{G} \\ \\ \Rightarrow 0 = \frac{2 \mu 0_{1}}{6} = \frac{G \mathbf{I}}{2} = \mathbf{G} \\ \\ \mathbf{J}_{n} = \mathbf{U} = \mathbf{J} \\ \\ \mathbf{J}_{n} = \mathbf{U} = \mathbf{J} \\ \\ \end{array} $                                                                                                                                                 | $ \begin{array}{c} \left( \mathbf{d} \right) & \left[ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \pm 2x_{i} & \frac{1}{2} & \pm 2x_{i} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \pm 2x_{i} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \sum_{i=1}^{N} (-x_{i}) & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \\ \sum_{i=1}^{N} $ |

21/2.517

12

#### Question 49 (\*\*\*+)


The  $n^{\text{th}}$  term of an arithmetic series is given by

$$u_n = 177 - 7n$$

Calculate, showing full workings, ...

**a**) ... 
$$\sum_{n=1}^{40} u_n$$
.

**b**) ... the number of positive terms or the series.



| (a) $(U_{1} = \prod_{i=1}^{n} \prod_{j=1}^{n} i \in \frac{10}{10} U_{0,j} U_{0,j} U_{0,j}$<br>$U_{1} = \frac{10}{10} \sum_{i=1}^{n} $ | $r_{0}$ $r_{0}$ $r_{0}$ $r_{1}$ $r_{1$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -) 440 - 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

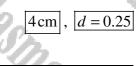
#### Question 50 (\*\*\*+)

An arithmetic series has common difference -4 and the sum of its first 50 terms is four times as large as the sum of its first 10 terms.

Show that the  $50^{\text{th}}$  term of the series is 222

proof

| $\left(\sum_{k=1}^{N} \frac{W}{2} \left(2\pi + Q_{k-1}\right) d_{k}\right)$                                                 | Z HANCE Uy = a + (n-1)d              |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| => \$ 50 = 4 × \$10                                                                                                         | $\rightarrow u_{s_0} = 418 + 43(-4)$ |
| $\Rightarrow \frac{50}{2} \left[ 2a + 49 \times (-4) \right] = 4 \times \frac{10}{2} \left[ 2a + 9 \left(-4\right) \right]$ | H <sub>50</sub> = 418 - 156          |
| $\Rightarrow 25(2q - 136) = 20(2q - 36)$                                                                                    | → Us. = 222//                        |
| $\Rightarrow$ So $(a - 98) = 40(a - 18)$                                                                                    |                                      |
| $\implies 5(a - 16) = 4(a - 16)$                                                                                            | -As BRINGLO                          |
| -> Sa - 490 = 4a - 72                                                                                                       |                                      |
|                                                                                                                             | 7                                    |


#### Question 51 (\*\*\*+)

A non regular polygon has 9 sides whose lengths, in cm, form an arithmetic sequence with common difference d.

The longest side of the polygon is 6 cm and the perimeter of the polygon is 45 cm.

Find in any order ...

- a) ... the length of the shortest side of the polygon.
- **b**) ... the value of d.



Question 52 (\*\*\*+)

Use algebra to show that

 $\sum_{k=10}^{30} (4k+11) = 1911.$ 



| اادا = الات النين |
|-------------------|
|-------------------|

#### Question 53 (\*\*\*+)

William started receiving his annual allowance on his  $13^{th}$  birthday. His first allowance was £750 and this amount was increased in each successive birthday by £150.

- a) Use algebra to find the amount William received on his 18<sup>th</sup> birthday.
- b) Show that the total amount of allowances William received up and including his 18<sup>th</sup> birthday was £6750.

When William turned k years old he received his last allowance. The total amount of his allowances up and including that of his  $k^{\text{th}}$  birthday was £30000.

c) Find the value of k.

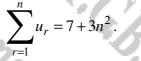


 $\pounds 1500$ , k = 28

#### **Question 54** (\*\*\*+)

The roof of a museum has a sloping shape with the roof tiles arranged neatly in horizontal rows. There are 28 roof tiles in the top row and each row below the top row has an extra 4 tiles than the row above it.

The bottom row has 96 tiles.


Show that there are 1116 tiles on the roof of the museum.

| 28<br>32<br>36<br>               | $\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ $ |
|----------------------------------|------------------------------------------------------------------------------------------------------|
|                                  | Uy= L=96                                                                                             |
| 0 (4= a+ (n-1) d S               | $e_{\beta_{q}} = \frac{h}{2}(a+L)$                                                                   |
| 96 = - + (4-1)4                  | $\beta'_{16} = \frac{18}{2} (28 + 46)$                                                               |
| 96 = 28 + 4n - 4<br>96 = 24 + 4n | \$ 18 = 9 × 124                                                                                      |
| 72= 44                           | S108 = 900 + 180 + 36                                                                                |
| [18 = M]                         | Sus = 1116                                                                                           |
|                                  | to exputero.                                                                                         |

proof

Question 55 (\*\*\*+)

It is given that for all positive integers



a) Evaluate  $\sum u_r$ 

**b**) Hence find the value of  $u_5$ .

 $u_{r} = 55$  $u_5 = 27$ 

 $\sum_{r=1}^{n} u_r = 7 + 3n^2$ 

 $u_{\rm P} = 7.43 {\rm k} {\rm k}^2 = 7.43 {\rm x} {\rm k} 6 = 7.448 = 55$ 

 $M^{2} = \sum_{k=1}^{k} M^{k} - \sum_{k=1}^{k} M^{k} = [\frac{1}{2} + 3k2_{k}] - 22 = [\frac{1}{2} + 12] - 32 = 52$ 

Question 56 (\*\*\*+)

# 19, 23, 27, 31, 35, ...

For the above arithmetic sequence, find ....

- **a**) ... the thirtieth term.
- **b**) ... the sum of its first thirty terms.

The  $n^{\text{th}}$  term of this sequence is less than 250.

c) Determine the largest value of n.

The sum of the first k terms of this sequence exceeds 4000.

**d**) Calculate the smallest value of k.

| (a   b) = (b   z = 0) $(a   b) = (b   z = 0)$ $(a  $ | + =>=====[0+135]               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| () Uk = a+ (n-1)d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) [Sy = 2 [24+ (4-1)4]       |
| => 250 = 19 + (u-1) x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | === 4000 = 10 [2×14 + (k-1)×+] |
| => 250 = 10 + 04 - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | => 4000 = 4 (38+44-4)          |
| ⇒ 250 = 44 + LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | → 4aco = 4 (44+34)             |
| ⇒ 235 × 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9 4000 = 4 (2n + 17)          |
| $\Rightarrow$ $h = \frac{235}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 1= 40x 97 = 3880             |
| => 4= 200+32+3 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vi=41 41×99 = 4059             |
| $\gg N = 28 \frac{4}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : k=4                          |
| A 10 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |

C.B.

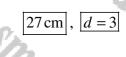
Madası

 $u_{30} = 135$ ,  $S_{30} = 2310$ , n = 58, k = 41

nadasm

#### (\*\*\*+) Question 57

| 2817 . | Created by T. Madas                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Question 57 (***+)                                             | alls asco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Evaluate, showing a clear method, each of the following su $5$ | ins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7      | $\mathbf{a})  \sum_{k=1}^{k} \left( k^2 + 2^k \right).$        | the In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · k    | 24                                                             | G. G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Į,     | <b>b</b> ) $\sum_{r=1}^{\infty} (2r+17).$                      | · 112.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20/2   | c) $\sum_{n=1}^{31} u_n$ , where $u_n = 144 - 3n$ .            | ada adash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 102    | n=12                                                           | Nan Math                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 44     | is wath alls                                                   | 117, 1008, 1590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| b.     | Con S.Con CO                                                   | $ \begin{array}{c} (\mathbf{b}) & \sum_{i=1}^{N} (x_i - y_i) = (y_i - 2ix_i 2j_{i-1} - y_i) = (y_i - 2ix_i) = (y_i - $ |
| Ч. J.  |                                                                | $\begin{array}{c} 2\lambda^{1}             \\ 2\lambda^{1}                                      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · · /  | a Go th                                                        | $ \begin{array}{c} 2^{2} \operatorname{find}_{3} & \qquad \sum_{k=1}^{2} \operatorname{cg}\left[\operatorname{reg}(n)\right] \\ a + 0 & \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2      | B S A                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                | ash ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | as the the                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| n.     | On Con                                                         | n S.Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ~~ y   |                                                                | L. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I.     | C. Co to                                                       | Co V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | S. S. B.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nan    | Created by T. Madas                                            | Madas Madasm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -428   | asp Sp                                                         | 1202 123M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |


# **Question 58** (\*\*\*+)

A non regular polygon has 10 sides whose lengths, in cm , form an arithmetic sequence with common difference d.

The longest side of the polygon is twice as long as the shortest side.

Given that the perimeter of the polygon is 405 cm, find in any order ...

- a) ... the length of the shortest side of the polygon.
- **b**) ... the value of d.



## Question 59 (\*\*\*+)

Show clearly that

 $\sum_{r=1}^{23} (5r-1) = 1530.$ 





#### Question 60 (\*\*\*+)

Consider the arithmetic series below

 $77 + 80 + 83 + \ldots + 500$ .

sum = 40967, sum of evens = 20590

1200, 18000

- a) Find the sum of the arithmetic series.
- **b**) Calculate the sum of the even terms of the series.

# Question 61 (\*\*\*+)

The council of Broxbourne undertook a housing development scheme which started in the year 2001 and is to finish in the year 2025. Under this scheme the council will build 760 houses in 2012 and 240 houses in 2025.

The number of houses the council builds every year, forms an arithmetic sequence.

- a) Determine the number of houses built in 2001.
- **b**) Calculate the total number of houses that will be built under this scheme.

#### Question 62 (\*\*\*+)

The first three terms of an arithmetic series are

-p, (2p-5) and (3p-2) respectively,

where p is a constant.

- **a**) Show clearly that p = 4.
- **b**) Find the sum of the first twenty terms of the series.

The  $k^{\text{th}}$  term of the series is over 1000.

c) Determine the smallest value of k

|     |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | 10 AND 10 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (9) | (U2=2P=5)                                                                                                                                                                         | $U_{2}-U_{1} = U_{3}-U_{2}$<br>p-1-(-p)=3p-2-(p-5)<br>2p-1=-p+3<br>p = 4                                                                                                                                                                                                                                    |           |
| 6)  | (4)=-4<br>(4)=-4<br>(4)==3<br>(4)=7<br>(4)=7                                                                                                                                      | $\begin{aligned} & = \frac{1}{2} \begin{bmatrix} 2u + (h-1)d \\ -1 \end{bmatrix} \\ & = \frac{2v}{2} \begin{bmatrix} 2u + (h-1)d \\ -1 \end{bmatrix} \\ & = \frac{2v}{2} \begin{bmatrix} 2u + (h-1)d \\ -1 \end{bmatrix} \\ & = \frac{2v}{2} \begin{bmatrix} 2u + (h-1)d \\ -1 \end{bmatrix} \end{aligned}$ |           |
|     |                                                                                                                                                                                   | $\beta_{10} = 10 [125]$<br>$\beta_{10} = 10 [125]$                                                                                                                                                                                                                                                          |           |
| E)  | $U_{4} = \alpha + (\lambda - 1) d$<br>$U_{00} = -\psi + (Q - 1) \times 7$<br>$U_{00} = -\psi + -7 \gamma - 7$<br>$U_{00} = -\lambda + -1 \gamma - 7$<br>$U_{00} = -\lambda - 1 1$ |                                                                                                                                                                                                                                                                                                             |           |
|     | $h = \frac{ v  }{7}$ $h = \frac{100 + 280 + 28 + 3}{7}$                                                                                                                           | $= 100+40+6+\frac{1}{2} \approx 100+\frac{1}{7}$                                                                                                                                                                                                                                                            | k=145     |

C.P.

1.4

 $S_{20} = 1250$ , k = 145

Question 63 (\*\*\*+)

Show clearly that

Y.C.B

I.C.p

ŀ.C.p.

$$\sum_{k=1}^{n} \left(\frac{k+5}{3}\right) \equiv \frac{1}{6}n(n+11).$$





Question 64 (\*\*\*+)

Find the sum of all the integers between -25 and 75 inclusive.

madasn.

C.J.



| $ \begin{array}{c} AP & (\omega) \stackrel{V}{\longrightarrow} \left( \begin{array}{c} q_{2} & -25 \\ d = 1 \\ (u = 101) \end{array} \right) \end{array} $ | $\begin{aligned} \sum_{k=1}^{k-1} &= \frac{w}{2} \left[ 2a + (w_{-1})d \right] \\ \sum_{k=1}^{l} &= \frac{\log \left[ 2(-2s) + \log_{X} \right]}{2} \\ d_{101} &= \frac{\log 1}{2} \times S_{0} \\ d_{101} &= 2s_{2}s_{2} \end{aligned}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OR \$1= \$2 (a+L) Guid. Lor -25.                                                                                                                           | 50]-2525 3                                                                                                                                                                                                                               |
| <u>40779447744</u><br>(-25)+(-24)+(-23)++74+75= 26+7                                                                                                       |                                                                                                                                                                                                                                          |
|                                                                                                                                                            | AP with d= 26<br>d= 1<br>y= So                                                                                                                                                                                                           |
| OLING Sy= # [2a+Gu-1)d] GUTS Sy                                                                                                                            | . Enerso S                                                                                                                                                                                                                               |
| as fue to [a+L] and for                                                                                                                                    | , = <u>≫</u> [2×26 + 44(×]]<br>, = 25 × 10                                                                                                                                                                                               |
| žs.                                                                                                                                                        | ° 2525                                                                                                                                                                                                                                   |

F.G.B.

Mada.

#### Question 65 (\*\*\*+)

Osama starts his new job on an annual salary of £18000. His contract promises a pay rise of £1800 in each subsequent year until his salary reaches £36000. When the salary reaches £36000 Osama will receive **no more** pay rises. Osama's salary first reaches the maximum salary of £36000 in year N.

- **a**) Determine the value of N.
- **b**) Find Osama's total salary earnings during the first N years of his employment.

Obama starts his new job at the same time as Osama on an annual salary of  $\pounds A$ .

His contract promises a pay rise of £1000 in each subsequent year until his salary reaches £36000. When the salary reaches £36000 Obama will receive **no more** pay rises. Obama's salary first reaches the maximum salary of £36000 in year 15.

- c) Find the year when both Osama and Obama have the same annual salary.
- d) Calculate the difference in the total salary earnings between Osama and Obama in the first 15 years of their employment.

N = 11,  $S_N = 297000$ , n = 6, d = 6000



Question 66 (\*\*\*+)

Evaluate the sum

Y.C.F

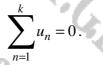
 $201 + 203 + 205 + \dots + 399$ .



| 201 + 203 + 205 ++. | 399 (Uy= a+(u-1))     |
|---------------------|-----------------------|
| AP a=zoi            | ( 399 = 201 + (n-1)×2 |
| d = 2               | (399 = 201+24-2       |
| N= LOO              | ( 399 = 199 + 2h      |
|                     | 200 - 24<br>17=100    |
| SIND = So [600]     | OR Stand              |
| \$ 100 = 30000      | Ster = 100 201+319    |
|                     | \$ = 3000             |

Question 67 (\*\*\*+)

I.G.B.


The  $n^{\text{th}}$  term of a sequence is given by

i C.P.

 $u_n = 84 - 3n$ .

Madasm.

Find the value of k given that





2) = 22 = 22

12/12

k = 55

6

Smains.co

4.60

Ths.com

#### (\*\*\*+) Question 68

- a) Find the sum of the multiples of twelve between 1 and 250. T.Y.C.B. Madasmannscom T.Y.C.B. Madasmannscom

CLASHALLSCOM I.Y.C.B. MACASHALLSCOM I.Y.C.B. MARAN

#### Question 69 (\*\*\*+)

The first three terms of an arithmetic series are

8-k, 2k+1 and 4k-1 respectively,

where k is a constant.

P.C.P.

- **a**) Show clearly that k = 5.
- **b**) Find the sum of the first fifteen terms of the series.

c) Determine how many terms of the series have a value less than 400.

 $S_{15} = 885$ , 50 terms

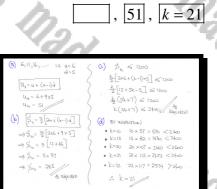
è

21/2.57

Madası,

#### **Question 70** (\*\*\*+)

Thomas is making patterns using sticks. He uses 6 sticks for the first pattern, 11 sticks for the second pattern, 16 sticks for the third pattern and so on.


- a) Find how many sticks Thomas uses to make the tenth pattern.
- b) Show clearly that Thomas uses 285 sticks to make the first ten patterns.

Thomas has a box with 1200 sticks. Thomas can make k complete patterns with the sticks in his box.

c) Show further that k satisfies the inequality

 $k(5k+7) \le 2400 \, .$ 

**d**) Hence find the value of k.



#### Question 71 (\*\*\*+)

The sum of the third, sixth and ninth term of an arithmetic progression is 90.

The sum of its first twelve terms is 408.

Determine the first term and the common difference of the progression.

202.81

| $0 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ $0 = \frac{1}{2} + \frac{1}{2$ | • $\frac{5}{2} \frac{1}{12} = \frac{408}{100}$<br>$\Rightarrow 488 = \frac{5}{2} \frac{1}{2} \frac{1}{2} \frac{1}{100} \frac{1}{100}$<br>$\Rightarrow 478 = 6 \frac{1}{2} \frac{1}{2} \frac{1}{100} \frac{1}{100}$<br>$\Rightarrow 478 = 6 \frac{1}{2} \frac{1}{2} \frac{1}{100} \frac{1}{100}$<br>$\Rightarrow 68 = 2(30-54) + 114$<br>$\Rightarrow 78 $ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4iu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

, a = -10, d = 8

Question 72 (\*\*\*+)

 $T = 240 - 5 + 237 - 5 + 234 - 5 + 231 - \dots + 6 - 5 + 3 - 5.$ 

Show clearly that T = 9320.



1+

20

#### REMODEL WITO IN ARITHMETIC PROFERENCE

 $T = 240-5+232+224+226+\cdots+1+(-2)$  T = (240-5)+(237-5)+(24-5)+(24-5)+(24-5)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2+2)+(-2

#### Hs to 4.P. with a= 235 g d=-3

 $U_{y} - a + (u - 1)d$  -2 = 235 + (n - 1)(-3) -2 = 235 - 3n + 3  $\partial_{1} = 240$  h = 80ULING  $\beta_{n} = \frac{9}{2}(a + L)$ 

 $\rightarrow$   $S_{40}^{l} - \frac{30}{2} \begin{bmatrix} 235-2 \end{bmatrix}$ 

 $\Rightarrow \beta_{q_0} = 40 \times 233$  $\Rightarrow \beta_{q_0} = 9320$ 

#### Question 73 (\*\*\*+)

The  $n^{\text{th}}$  term of an arithmetic progression is denoted by  $u_n$ , and given by

 $u_n = 2n + 7.$ 

n=1

Determine the value of N given that  $\sum u_n = 2100$ .

|             | ₹ø. |       |
|-------------|-----|-------|
| Question 74 | (   | ***+) |

Show by using algebra, that the sum of the integers between 1 and 600 inclusive, that are **not** divisible by 3, is 120000.

|   |   |  | , | proof |
|---|---|--|---|-------|
| _ | 2 |  |   | 1     |

42

FIRST FIND THE JUM OF THE FIRST GOD WITHGERS USING Streethout)

|     | P600 | e ź    | X 600     | x 60 | 4 = | 18030 | 0 |   |   |
|-----|------|--------|-----------|------|-----|-------|---|---|---|
|     |      |        |           |      |     |       |   |   |   |
| NOw | C 10 | and of | · · · · · | - 6  |     |       |   | 1 | - |

- 3+6+9+....+597+600
- = 3(1+2+3+ .....+199+200)
- $= 3 \not\leq_{2m} = 3 \times \not\pm \times 200 \times 20$ = 60300
- E THE REPORTS SOL IL

#### Question 75 (\*\*\*+)

The first three terms of an arithmetic series are

 $(m+1), (m^2+m)$  and  $(3m^2-m-4)$ , respectively,

where m is a constant.

**a**) Find the  $21^{st}$  term of the series.

The sum of the first n terms of the series is denoted by  $S_n$ .

**b**) Show that  $S_n$  is always a square number.

| (a) | $ \begin{array}{c} \left\{ \begin{array}{c} U_1 = W_1 + 1 \\ U_1 = W_1^{k+1} \\ U_2 = W_1^{k+1} \\ U_3 = \frac{W_1^{k-1} + U_1}{2} \\ \end{array} \right\} \xrightarrow{ \qquad } \left\{ \begin{array}{c} \Psi_1 = U_2 \\ \Psi_2 = W_1^{k-1} \\ \Psi_3 = \Psi_1^{k-1} \\ \Psi_3 = \Psi_1^{k-1} \\ \end{array} \right\} \xrightarrow{ \qquad } \left\{ \begin{array}{c} \Psi_1 = U_2 \\ \Psi_1 = W_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \end{array} \right\} \xrightarrow{ \qquad } \left\{ \begin{array}{c} \Psi_1 = U_2 \\ \Psi_1 = W_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \Psi_1 = \Psi_1^{k-1} \\ \end{array} \right\} \xrightarrow{ \qquad } \left\{ \begin{array}{c} \Psi_1 = U_2 \\ \Psi_1 = \Psi_1^{k-1} \\ \Psi_$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ĩ., | $\left\{ u_2 = u_1^2 + u_1 \right\} \implies (3u_1^2 - u_1 - 4) - (u_1^2 + u_1) = (u_1^2 + u_1) - (u_1 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | (43= 347-m-4) == 2m2-2m-4 = 42-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | $\implies (w_1 - 3)(u_1 + 1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $\Rightarrow m = \leq_{a}^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | · 1 m=-1 u1=0, u2=(-1)-1=1-1=0, u3=3(-1)-(-1)-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | $u_3 = 3 + 1 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $u_3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | out mes use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $u_2 = 3^2 + 3 = 12$<br>$u_3 = 3^3 + 3^2 = 2 = 10^2 - 275$ $\Rightarrow d = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | $\begin{array}{c} u_2 = 3^2 + 3 = 12 \\ u_3 = 3 \times 3^2 - 3 - 4 = 20 \end{array} \qquad \Longrightarrow \begin{array}{c} a = 4 \\ d = 8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | Un=a+Ch-Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | U21 = 4 + 20×B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | U21 = 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (6) | $\Rightarrow$ $S_{ij} = \frac{h}{2} \left[ 2a + O(-) d \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (4  | $\Rightarrow S_{h} = \frac{1}{2} [2x4 + G_{t-1}] \times 8]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | $\Rightarrow$ $S_{1} = \frac{1}{2} \begin{bmatrix} 8+8+7 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | $\Rightarrow = \frac{4}{2} \times 6n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $\Rightarrow$ $\$_{1} = 4u^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | => \$ = (2h) 4 twents + source NULLERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

i C.B.

164

1

#### Question 76 (\*\*\*+)

A length of rope is wrapped neatly around a circular pulley.

The length of the rope in the first coil (the nearest to the pulley) is 60 cm, and each successive coil of rope (outwards) is 3.5 cm longer than the previous one.

The outer coil has a length of 144 cm.

Show that total length of the rope is 25.5 metres.

| 2              |                                                                                                                                                                 | , proof                    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| x= 60<br>d=3.5 | ● Uy = a + (b-1)d                                                                                                                                               |                            |
| 4= 1= 144      | $\Rightarrow  44 = 60 + (u-1) \times 3 \cdot 5$<br>$\Rightarrow 84 = (u-1) \times \frac{7}{2}$<br>$\Rightarrow 12 = \frac{1}{2}(u-1)$<br>$\Rightarrow 84 = u-1$ |                            |
|                | $\Rightarrow y = 25$ $\Rightarrow y_{4} = \frac{y}{2} [a + L]$ $\Rightarrow y_{35} = \frac{32}{25} [6 + 44]$                                                    | d.                         |
|                | $\Rightarrow \beta_{25} = \frac{25}{2} \times 264$ $\Rightarrow \beta_{25} = 25 \times 102.$                                                                    | :, 2550 am<br>0e<br>25:511 |
|                | ⇒ \$25 = 2500 + 50                                                                                                                                              | AS SUN B BURN              |

Question 77 (\*\*\*+) Consider the terms of the sequences

 $x_n = 4n - 1$  and  $y_n = 5n - 4$ ,

where n = 1, 2, 3, 4, 5, ...

Determine the sum of the first 20 terms, common to both sequences.

For sequence  $3 + 7 + 11 + 15 + ... <math>2c_n \approx 4n - 1$ second sequence  $1 + 6 + 11 + 16 + ... <math>3n_n = 3n - 4$ . The LCLAN between  $4 \neq 3$  is a 20 ke they wanted every 20 The Fort Constant Than is 11 + 7160 + 31, 7160 + 51 erc 3 + 71 + 123 + 27 + 3331 + 6(3) + 12 + 126 + 33

.: 4.20

4020

- Si Si = 11+31+51+71+--- d==10 H=20 H=20
- $\Rightarrow$   $s_{1}^{2} = \frac{y}{2} \left[ 2e + (u-1)d \right]$
- $\Rightarrow f_{2n} = f_{2n} [2x11 + 19 x_{2n}]$  $\Rightarrow f_{2n} = h [22 + 380]$
- $\implies \mathcal{G}_{2_0}^l = 10 \times 402$

#### Question 78 (\*\*\*+)

Consider the first few terms of the arithmetic progression

 $(2p+3), (4p+5), (6p+7), (8p+9), \dots$ 

where p is a non zero constant.

Find simplified expressions, in terms of p, for ...

**a**) ... the twentieth term of the progression

**b**) ... the sum of the first twenty terms of the progression.

|                                  | 1 A.       | 1 |
|----------------------------------|------------|---|
| Dr.                              | Mari .     |   |
| ogression.                       | - ash      |   |
| $u_{20} = 40  p + 41$ , $S_{20}$ | =420 p+440 |   |
|                                  | 7 K A      |   |

200

F.G.B.

Mada,

| 2p+3, 2p+5, 6p+7,                                             | 8p+9,                                                                                               |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| • a = 2p+3                                                    |                                                                                                     |
| · d = 2p+2 (BY INSTERN                                        | (μα                                                                                                 |
| 2) $U_{4} = \alpha + (4-1) d$<br>$U_{2b} = (2p+3) + 19(2p+2)$ | (b) $\beta_{\gamma} = \frac{M}{2}(a+L)$                                                             |
| U20 = 2p+3+3Bp+38                                             | $S_{2a} = \frac{2\omega}{2} \left( (2p+3) + (40p+41) \right)$ $S_{2a} = 10 \left( (42p+44) \right)$ |
| U20 = 40p +4                                                  | \$ = 420p+W40                                                                                       |
|                                                               |                                                                                                     |

COM

#### Question 79 (\*\*\*\*)

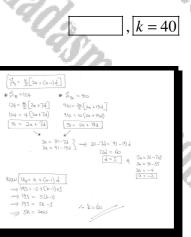
The first two terms of an arithmetic progression are

 $\log_2 a^2$  and  $2\log_2 ab$ , a > 0, b > 0.

Given further that  $ab^2 = 8$ , show clearly that the sum of the first 5 terms of the progression is 30.

| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Ya                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • $d = u_2 - u_1 = 2\log_2(ab) - \log_2$<br>= $\log_2\left(\frac{a^2b^2}{a^2}\right) = \log_2\left(\frac{a^2b^2}{a^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| • $\beta_{y} = \frac{y}{2} \left[ 2a + (b-1)d \right]$<br>$\Rightarrow \beta_{z} = \frac{y}{2} \left[ 2x \log_{2}a^{2} + 4x \log_{2}b^{2} - 3x \log_{2}b^{2} - $ | 6 1 4 02                                                                                                                                                                       |
| $\Rightarrow \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} = \begin{array}{l} \\ \\ \end{array} \\ \begin{array}{l} \\ \end{array} \end{array} = \begin{array}{l} \\ \\ \end{array} \\ \begin{array}{l} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \end{array} \\ \end{array} = \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} $                                                                                                                                                                              | $\begin{cases} \Rightarrow \beta_{3}^{\prime} : 10 \times \log_{2} 2^{3} \\ \Rightarrow \beta_{3}^{\prime} : 30 \log_{2} 2 \\ \Rightarrow \beta_{3}^{\prime} : 30 \end{cases}$ |
| $\rightarrow s_s = 5 \log_2(ab^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -AS ELEVIELO                                                                                                                                                                   |

proof


#### Question 80 (\*\*\*\*)

The sum of the first eight terms of an arithmetic series is 124.

The sum of its first twenty terms of is 910.

The series has k terms.

Given the last term of the series is 193 find the value of k.



#### Question 81 (\*\*\*\*)

The first term of an arithmetic series is a and the common difference is d.

The  $25^{\text{th}}$  term the series is 100.

The 5<sup>th</sup> term the series is 8 times larger than the 35<sup>th</sup> term the series.

**a**) Find the value of a and the value of d.

**b**) Determine how many terms of the series are positive.

The sum of the first n terms of the series is denoted by  $S_n$ .

c) Calculate the maximum value of  $S_n$ .

(b) U. = a + (n-1)

 $S_{\text{max}} = 5265$ 

a = 268, d = -7, 39 terms,

#### (\*\*\*\*) Question 82

Find the value of the constant p, so that



#### (\*\*\*\*) Question 83

The  $n^{\text{th}}$  term of an arithmetic series is given by

 $u_n = \frac{5}{2} \bigl( 5n + 28 \bigr) \,.$ 

The  $k^{\text{th}}$  term of the series is 370.

- **a**) Find the value of k.
- **b**) Evaluate the sum

N.G.B. Madasm

COM

I.C.B.

20

 $\sum_{n=1}^{k} u_n.$ 

200

2017

I.C.B.

 $u_n = 5430$ k = 24,

I.C.B.

COM

madasm.

1.G.D.

6

| 1.J.   | $\begin{array}{c} (3) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\$ |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. 46 | $= \frac{5}{2} \times \frac{32}{24} \begin{bmatrix} 33 \cdot 148 \end{bmatrix}$ $= \frac{5}{2} \times 181$ $= 30 \times 181$ $= 5130$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| adasm. | Mada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | nath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

2011

Smaths.com

I.V.C.B. Madasa

#### (\*\*\*\*) Question 84

Find the value of x that satisfies the equation



#### Question 85 (\*\*\*\*) non calculator

A farmer has difficulty persuading strawberry pickers to work for the entire 40 day strawberry picking season. He devises a wage plan to make the pay of the workers more attractive the more days they work.

He pays  $\pounds a$  on the first day,  $\pounds(a+d)$  on the second day,  $\pounds(a+2d)$  on the third day, and so on, increasing the daily wages by  $\pounds d$  every day.

A strawberry picker that worked for forty days got paid  $\pounds 53.40$  on the last day and earned  $\pounds 1668$  in total.

a) Show clearly that

10(a+53.4) = 834.

**b**) Calculate the wages that this strawberry picker received on the twentieth day.



£41.40

#### **Question 86** (\*\*\*\*)

P.C.P.

- Consider the multiples of seven between 1 and 1000.
  - a) Show that the sum of the multiples of seven between 1 and 1000 is 71071
  - **b**) Hence find the sum of the multiples of fourteen between 1 and 1000.
  - c) Use the answer of part (a) to find

8+15+22+29+...+995.



è

madasn.

#### (\*\*\*\*) Question 87

The fifth term of an arithmetic series is 5 and the sum of its first five terms is  $\frac{125}{4}$ 

**a**) Show that the common difference of the series is  $-\frac{5}{8}$ .

The  $k^{th}$  term of the series is zero.

**b**) Find the value of k.

K.C.B. 1113/13/13/11

I.C.P.

c) Show that maximum sum of this series is  $\frac{195}{4}$ .

| 100                             | (a) $ \begin{array}{c} \bullet U_q = a + (y_{-1}) d \\ \hline 5 = a + 4 d \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • $S_{\eta} = \frac{y}{2} \left[ \alpha + L \right]$<br>$\Rightarrow \frac{125}{7} = \frac{5}{2} \left( \alpha + 5 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 6                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\implies \boxed{\sigma = 2.2}$ $\implies \boxed{\sigma = 2.2}$ $\implies 152 = \sigma + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | $ \begin{aligned} \varphi & 5 = 7.5 + 4d \\ -2.5 &= 4d \\ -4d = -\frac{5}{2} \\ d &= -\frac{5}{2} \end{aligned} $ The reputed in the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. J.C.J.                       | $\begin{array}{c} U_{n} = \alpha + 0 - 1 d \\ \Rightarrow 0 = \frac{1}{2} \frac{1}{2} (-n) \frac{1}{2} \frac{1}{2} \\ \Rightarrow 0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \Rightarrow 0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \Rightarrow 0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \Rightarrow 0 = \frac{1}{2} \frac{1}{2$ | $\begin{aligned} \zeta_{p} &= \frac{1}{2} \frac{\zeta_{p}}{\zeta_{p}} \\ &\chi_{p} &= \frac{1}{2} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \\ &\chi_{p} &= \zeta_{p} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \\ &\chi_{p} &= \zeta_{p} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{\zeta_{p}} \\ &\chi_{p} &= \zeta_{p} \frac{\zeta_{p}}{\zeta_{p}} \frac{\zeta_{p}}{$ |
| × 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 3<br>215/11/260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>2</sup> SID <sub>212</sub> | 40 <sub>35</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains.c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

k = 13

hs.com

Madasn.

F.G.B.

G

6

#### Question 88 (\*\*\*\*)

Tyler is repaying a loan over a period of n months in such a way so that his monthly repayments form an arithmetic series.

He repays £350 in the first month, £340 in the second month, £330 in the third month and so on until the full loan is repaid.

- a) Assuming it takes more than 12 months to repay his loan find ...
  - i. ... the amount he pays on the twelfth month.
  - **ii.** ... the total amount of his repayments in the first twelve months.

Tyler pays back his loan of  $\pounds 6200$  after *n* months.

- **b**) Show clearly that ...
  - **i.** ...  $n^2 71n + 1240 = 0$
  - ii.  $\dots n = 40$  is one of the solutions of this equation and find the other.
- c) Determine, with a valid reason, which of the two values of *n* represents the actual number of months it takes Tyler to repay his loan.

£240, £3540, n = 31, 31 months

(I) (D)  $S_{h} = \frac{h}{2} \left( \alpha + L \right)$ 3540 4 23540 6 (1) S. = 671 h2 -71 h +1240= 6)(n-31)= A BROOKIN  $U_{n} = 0 + (h_{-1})d$ 1 = 390+ 30×1

#### Question 89 (\*\*\*\*)

An oil company is drilling for oil.

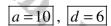
It costs £5000 to drill for the first 10 metres into the ground.

For the next 10 metres it costs an extra £1200 compared with the first 10 metres, thus it costs £6200. Each successive 10 metres drilled into the ground costs an extra £1200, compared with the cost of drilling the previous 10 metres.

a) Find the cost of drilling 200 metres into the ground.

The company has a budget of  $\pounds 15,000,000$ .

**b**) Determine the maximum depth, in metres, that can be reached on this budget.


£328,000, 1540 m

#### Question 90 (\*\*\*\*)

The sum,  $S_n$ , of the first *n* terms of an arithmetic series is given by

$$S_n = 3n^2 + 7n.$$

Find the first term and the common difference of the series.



| Made A                                                                                        | MATHED B                                                                    |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| • $\beta_{n_1} = 3\eta_1^2 + 7\eta_1$<br>• $\beta_{n_1} = 3(\eta_1 + 1)^2 + 7(\eta_1 + 1)$    | <ul> <li>\$_1 = 3x1<sup>2</sup>+7x1 = 10</li> </ul>                         |
| $= 3(y_{-2n+1}^{2}) + 1_{N-7}^{2}$<br>= $3y_{-6n+3+7n-7}^{2}$                                 | <ul> <li>\$\$_2^2 = 3x2^2 + 7x2 = 26</li> <li>\$\$_1 + 42 = 26\$</li> </ul> |
| $=3n^2 \neq n - 4$                                                                            | 10+42=26<br>42=16                                                           |
| $U_{\eta} = S_{\eta} - S_{\eta-1}$<br>$U_{\eta} = (3\eta^2 + 7\eta) - (3\eta^2 + \eta - \mu)$ | ** (4 <sub>1</sub> =10<br>42=16                                             |
| U1 = G1 + 4<br>WHICH YIERDS 10,16,22,28,                                                      | a=10<br>d=6                                                                 |
| * a= 10, d=6                                                                                  |                                                                             |

#### Question 91 (\*\*\*\*)

In the TV game "Extra Fifty" contestants answer a series of questions.

Contestants win £50 for answering the  $1^{st}$  question correctly, £100 for answering the  $2^{nd}$  question correctly, £150 for answering the  $3^{rd}$  question correctly, and so on.

Once an incorrect answer is given the game ends but the contestant keeps the winnings up to that point.

A contestant wins £15000.

Determine, showing all parts in the calculation, the number of the questions he or she answered correctly.

| So, 100, 150, d. 50<br>Sun Materia 15000 Si, 15000                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIND 4 .                                                                                                                                                                                     |
| $ \sum_{i=1}^{n} \frac{n}{2} \left[ 2a + (a-i)d \right] $ $ \sum_{i=1}^{n} \frac{1}{6cc} = n(n+1) $                                                                                          |
| $\implies  5000 = \frac{N}{2} \left[ 2x50 + (u-i)x50 \right] \qquad $ |
| $= 15000 = \frac{N}{2} (100 + 504 - 50) $ $N = 10  0 \times 1  = 110$                                                                                                                        |
| -> 15000 = 4 (504+50) . N=20 20×21=420                                                                                                                                                       |
| $\implies 30000 = m(504 + 50) \qquad \qquad$                          |
| =30000 = Son(N+1)                                                                                                                                                                            |
| => 3000 = Sm (n+1) + N=24                                                                                                                                                                    |
|                                                                                                                                                                                              |

24

#### Question 92 (\*\*\*\*)

A company agrees to pay a loan back in monthly instalments, starting with £1500.

The agreement states that the company will pay back

 $\pounds(1500-x)$  in the 2<sup>nd</sup> month,

 $\pounds(1500-2x)$  in the 3<sup>rd</sup> month,

 $\pounds(1500-3x)$  in the 4<sup>th</sup> month,

and so on, with the repayments decreasing by  $\pounds x$  every month.

a) Given that in the first year the company repaid a total of  $\pm 15360$ , find the value of x.

**b**) Show that the total money  $T_n$ , repaid in *n* months, is given by

# $T_n = 20n(76-n).$

The total value of the loan was  $\pounds 26000$ .

c) Show that the equation

# $T_n = 26000$

is satisfied by two different values of n.

**d**) Determine, with a valid reason, which of the two values of *n* represents the actual number of months it takes for the company to repay the loan.

x = 40, n = 26,50, n = 26

| (a) 1500 1500 - x 1500 - 2x 1500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3a,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} a \in ISOO \\ a^{a} - a^{a} \\ b^{a} - a^{a} \\ \beta^{a}_{a} = \frac{1}{3} State = \frac{1}{3} \\ \beta^{a}_{a} = \frac{1}{3} State = \frac{1}{3} \\ \beta^{a}_{a} = ISIO = \frac{1}{3} \\ \beta^{a}_{a}$ | $\begin{array}{l} \left[ b(x_{1}) d \right] \\ \left[ 2x_{1} \left[ 5 \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ 3 \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( -1 \right) \left( x_{2} \right) \left( x_{2} \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( x_{2} \right) \left( x_{2} \right) \left( x_{2} \right) \left( x_{2} \right) \right] \\ \left[ \cos \left( x_{2} \right) \right] \\ \left[ \cos \left( x_{2} \right) \left( x$ |
| (b) $\beta_{4} = \frac{4}{2} \left[ 2\alpha + (n-1)d \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) T, ~ 26000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Rightarrow T_{4} = \frac{h}{2} \left[ 2x15x0 + (h-1)(-40) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204(76-h)=26000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\implies \overline{1_{y_1}} = \frac{n}{2} \left[ 3000 - 40y + 40 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N (76-4) = 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| == Ty = 4 3040-4047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BY INCREETION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = T_ = 4 [1520-204]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4=50 is Asolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -> Ty = 204 (76-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50x 26 = 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26 × 50 = 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to expure up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : n= 26<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (d) • IF N=26 $U_{26} = 1500 + 25(-40)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (uy=a+(u-1)d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • # H=SO 426= 1500 + 40(-40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = -460 NOT POSSIBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Question 93 (\*\*\*\*)

A machine cuts a circular sheet of plastic into **exactly** n sectors,  $S_1, S_2, S_3, ...,$ 

The angle that each sector subtends at the centre of the circle forms an arithmetic series.

The smallest sector and the largest sector subtend angles at the centre of  $7.25^{\circ}$  and  $32.75^{\circ}$ , respectively.

Find the value of n.

*n* = 18

| $u_{h} = l = 32.75$<br>$u_{h} = 360$ | $ \mathfrak{S}_{4}^{l} = \frac{\mathfrak{H}}{2} \left( a + L \right) $ $ \mathfrak{S}_{60}^{l} = \frac{\mathfrak{H}}{2} \left( 7.25 + 32.75 \right) $ $ \mathfrak{S}_{60}^{l} = \frac{\mathfrak{H}}{2} \times 40 $ |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | $\implies 360 = 204$ $\implies 4 = 18$                                                                                                                                                                             |

Question 94 (\*\*\*\*)

Use an algebraic method to show that the sum of all the integers between 60 and 220 which are divisible by 8, is 2800.

proof

| REPUIRED                             | 64 + 72<br>4<br>8H<br>Multiple of |                                                                                                                                            | + 200 + 208<br>P<br>2th<br>wultiple + 28 | + 2.16<br>\$<br>27th<br>wittiple of 6 |
|--------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|
| a = 64<br>d = 8<br>L = 216<br>h = 20 | Ş                                 | $\begin{aligned} \hat{\beta}_{1} &= \frac{n}{2} \left( \\ \hat{\beta}_{2} &= \frac{2n}{2} \right) \\ \hat{\beta}_{2} &= 10; \end{aligned}$ | (64.4.216)<br>x 280                      |                                       |
| (sift -                              | 744)                              | \$ <sub>24</sub> = 28                                                                                                                      | °//                                      |                                       |

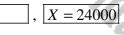
#### Question 95 (\*\*\*\*)

A company offers two pay schemes for its employees.

#### Scheme One

#### Annual salary in Year 1 is $\pounds X$ .

- Annual salary increases every subsequent year by £(2Y), forming an arithmetic series.
- Scheme Two
  - Annual salary in Year 1 is  $\pounds(X+2000)$ .
  - Annual salary increases every subsequent year by  $\pounds Y$ , forming an arithmetic series.
- a) Show that the total salary received by an employee under Scheme One, over a nine year period is


# 9(X+8Y).

After nine years, the total salary received by an employee under Scheme One is £3600 larger than the total salary received by an employee under Scheme Two.

**b**) Show clearly that

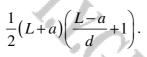
#### Y = 600.

Given further that an employee under the Scheme One earns  $\pounds$ 36000 in the eleventh year of his employment, determine the value of X.



 $\begin{array}{c} \dot{\lambda}_{0} = \frac{y}{2} \left[ 2x + (n-1)d \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ 2x + B(2n) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ 2x + B(2n) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right] \\ \dot{\lambda}_{0} = \frac{y}{2} \left[ (X + B) \right]$ 

$$\begin{split} & \overset{\beta}{\succ}_{g} = \frac{9}{2} \left[ 2 \left( \chi + 2000 \right) + \beta \gamma \right] \overset{\text{submin}}{\leftarrow} \\ & \overset{\beta}{\searrow}_{g} = 9 \left[ \chi + 2000 + 44 \gamma \right] \end{split}$$


нысе 9 9(X+8Y)-9(X+2000+4Y)=3600 9 (X+8Y)-(X+2000+4Y)=3600

 $\Rightarrow X + BY = X - 2000 - 4Y = 400$  $\Rightarrow 4Y = 2400$ 

#### Question 96 (\*\*\*\*)

An arithmetic series has first term a, last term L and common difference d

a) Show that the sum of the first n terms of the series is given by



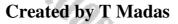
**b**) Hence, or otherwise, find the sum of all the multiples of 11 between 549 and 1101.

 $\begin{aligned} & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + L \right] \right] \\ L &= \alpha + (b + b) \\ \end{array} \right| \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + L \right] \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + L \right] \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + L \right] \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{1} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \alpha + b \right] \\ \end{array} \right] \\ & \left| \begin{array}{c} \dot{\varphi}_{2} - \frac{b}{2} \left[ \left[ \left[ \alpha + b \right] \\$ 

15150, 75750

500 + 505 + 510 +.. = 5 (100 + 101 + 102 + ... = 5 × 15 1 50

100+101+102+


42075

1

Question 97 (\*\*\*\*

100 + 101 + 102 +.. + 200.

- **a**) Find the value of the above sum.
- **b**) Hence, or otherwise, determine the sum of all the integers between 500 and 1000, inclusive, which are divisible by 5.



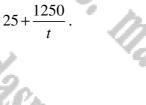
(\*\*\*\*) Question 98 Consider the arithmetic progression

 $t + 2t + 3t + 4t + \dots + 50$ ,

20

where t is a factor of 50.

2025m2


Madasm,

COM

ŀG.B.

I.C.p

Show clearly that the sum of the terms of this progression is



I.G.B.

00

nadasmaths,

ゆ

proof

1:0.

6

11202SI12

I.Y.C.B. Madasn

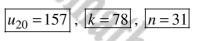
The Com

| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | • $\vec{\lambda}_1 = \frac{\pi}{2} \left( \alpha + L \right)$<br>$\Rightarrow \vec{\lambda}_2 = -\frac{\pi}{2} \left( \alpha + L \right)$<br>$\Rightarrow \vec{\lambda}_2 = -\frac{\pi}{2} \left( \alpha + L \right)$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Rightarrow h = \frac{S_0}{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = St = Sot + Sox So                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow \beta \frac{n}{t} = 2t + \frac{1250}{t}$                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |

Madasmans.com

#### Question 99 (\*\*\*\*)

The second term of an arithmetic progression is 49 and the fifth term is 67.


a) Determine the value of the twentieth term of the progression.

The  $k^{\text{th}}$  term of the progression is greater than 500.

**b**) Find the least value of k.

A different arithmetic progression has first term -17 and its common difference is 10.

c) Given that the sum of the first n terms of these two progressions are equal, determine the value of n.



| (9) | ) $\left[ \bigcup_{q} = a + (n-1)d \right]$                                                           |
|-----|-------------------------------------------------------------------------------------------------------|
|     | $u_2 = 44 \implies a+d=49$<br>$u_5 = 67 \implies a+dd=67$<br>Support $3d = 69$<br>d=6                 |
|     | $\hat{q} = (43) (x_1 - 49)$                                                                           |
|     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                  |
| (6) | Uy = Soo                                                                                              |
|     | 500 = 43 + G-1)×6                                                                                     |
|     | 457 = 64-6                                                                                            |
|     | 463 = 64                                                                                              |
|     | $h = \frac{463}{6} = \frac{470 + 42 + 1}{6} = 70 + 7 + \frac{1}{6} = 77\frac{1}{6}$                   |
| (c) | $\frac{1}{2}\left[2\times43+(n-1)\times6\right] = \frac{1}{2}\left[2\times(-11)+(n-1)\times10\right]$ |
|     | $M \neq 0$ B6 + $G_{H} = -G = -34 + 10_{H} - 10$                                                      |
|     | 64+80 = 104-44                                                                                        |

1+

#### Question 100 (\*\*\*\*)

The second term of an arithmetic progression is 2k and the sum of its first six terms is 11k-2, where k is a constant.

a) Show clearly that ...

i. ... the first term of the progression is  $\frac{1}{9}(19k+2)$ .

**ii.** ... the common difference of the progression is  $-\frac{1}{9}(k+2)$ .

The eleventh term of the progression is 5.

- **b**) Find the value of k.
- c) Calculate the sum of the first 56 terms of the progression.

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \boldsymbol{\omega} \boldsymbol{u}_{k} = \boldsymbol{\alpha} + (\boldsymbol{y} - \boldsymbol{t})  \boldsymbol{d} \\ \boldsymbol{u}_{2} = \boldsymbol{2} \boldsymbol{K} \\ \hline \boldsymbol{\alpha} + \boldsymbol{d} = \boldsymbol{2} \boldsymbol{k} \\ \hline \boldsymbol{\omega} + \boldsymbol{d} = \boldsymbol{2} \boldsymbol{k} \\ \hline \boldsymbol{k} \\ \hline \boldsymbol{u}_{k} \\ \hline \boldsymbol{d} = \boldsymbol{2} \boldsymbol{k} - \boldsymbol{\alpha} \end{array} $ | $\begin{split} & \vec{p}_{n}^{\prime} = \frac{g_{0}^{\prime}\left(2a+(uv)\right)d\right) \\ & \vec{S}_{0} = \frac{g_{0}^{\prime}\left(2a+5d\right)}{\left(1b-2 = 3\left(2a+5d\right)\right)} \\ & 1b-2 = 3\left(2a+5d\right) \\ & 1b-2 = 6a+b\left(2k-a\right) \\ & 1b-2 = 6a+b\left(2k-a\right) \end{split}$                                                      |
| $d = \lambda k - a = -\frac{1}{2}k - \frac{1}{2}k$<br>$d = -\frac{1}{2}k - \frac{2}{3}k = -\frac{1}{2}k$                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{split} \ k-2 &= 6a + 3ck - 16a \\ q &= 19L + 2 \\ a &= \frac{1}{3}(19k + 2) \\ 0k+2) &= ak - \frac{a_1}{7}k - \frac{a_2}{5} + \frac{bk}{5} - \frac{a_1}{5} - \frac{a_2}{5} \\ c+2 \end{split}$                                                                                                                                                             |
| $ \begin{array}{l} \bigcup_{l_{q}} \sim a + (l_{q} - l_{q}) d \\ \Longrightarrow S = \frac{1}{q} (9642) + lox - \frac{1}{q} \\ \Longrightarrow 4S = 198.+2 - 10(2+3) \\ \Longrightarrow 4S = 198.+2 - lok - 22 \end{array} $                                                                                                                                                                                                                                                                               | $e_1 = -\frac{1}{2}(7+2) = -1$                                                                                                                                                                                                                                                                                                                                     |
| $\Rightarrow 45 = 9k - 18$ $\Rightarrow 9k = 63$ $\Rightarrow k = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Rightarrow \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{S_{i}}{i_{i}} = \frac{S_{i}}{S_{i}} \left[ S_{i} \left\{ S_{i} + \frac{S_{i}}{S_{i}} \right\} \right]$<br>$\Rightarrow \sum_{j=1}^{N} \sum_{i=1}^{N} \left[ S_{i} \left\{ S_{i} + \frac{S_{i}}{S_{i}} \right\} \right]$<br>$\Rightarrow \sum_{j=1}^{N} \sum_{i=1}^{N} \left[ S_{i} + \frac{S_{i}}{S_{i}} \right]$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Rightarrow \beta_{56} = -7\infty$                                                                                                                                                                                                                                                                                                                                |

 $[k=7], [S_{56}=-700]$ 

2

ths.col

60

6

•

11202SI120

The Com

n = 79

I.Y.C.B. Madasmaths.Com

#### (\*\*\*\*) Question 101

A sequence is defined as

nadasmaths.com

 $u_{r+1} = u_r - 3$ ,  $u_1 = 117$ ,  $n \ge 1$ .

Solve the equation

Smaths.com

I.V.G.B

alasmaths.com

2

**Created by T Madas** 

The management of the second s

COM

I.V.C.B.

#### Question 102 (\*\*\*\*+)

Ladan is repaying an interest free loan of  $\pounds 6200$  over a period of n months, in such a way so that her monthly repayments form an arithmetic series.

She repays £350 in the first month, £340 in the second month, £330 in the third month and so on until the full loan is repaid.

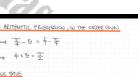
Determine, showing a full algebraic method, the value of n.

| 9. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| THE AUTIMUTIC SERVES IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 350+ 340+ 380 + + (?) = 6200<br>h thma, hapter n is a regime ministr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| HARF WE HAVE a= 350, d=-10 & Su= 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| $ \begin{cases} y_{n} = \frac{y}{2} \cdot \left[ 2a + (a + b - i)a \right] \\ (2a + (a - i)a \right] \\ (2a - \frac{y}{2} \cdot \left[ 2x335 + (2a - i)(2a - i) \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - \frac{y}{2} \cdot \left[ 776 - 10a + 16 \right] \\ (2a - 16 - 10a + 16 + 16 + 16 + 16 \right] \\ (2a - 16 - 16 + 16 + 16 + 16 + 16 + 16 + 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| $h = \frac{71 \pm \sqrt{-71^2 - 4 \times 1 \times 1240}}{2 \times 1} = \frac{71 \pm 9}{2} = \frac{40}{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| TO THEAK UN TO CALLAU IS WAITED OF UN- a + CH-1) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $\begin{array}{c c} (\sigma_{ij})_{ij} + \sigma_{ij} & \sigma_{ij$ |   |
| · 4=31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |

n = 31

# Question 103 (\*\*\*\*+)

It is given that the angles  $\theta$ ,  $\frac{\pi}{4}$  and  $\varphi$ , in that order, are in arithmetic progression.


Show that

I.G.B.

I.C.P.

 $(\sin\theta - \sin\varphi)^2 + (\cos\theta + \cos\varphi)^2 = k,$ 

where k is a constant to be found.



k = 2

1.4

21/2.57

11<sub>202</sub>51

- $\frac{\omega}{\omega} = \frac{1}{\omega} \frac{\omega}{\omega} + (\omega + \omega)^2 + (\omega + \omega)^2$
- $= Suf \theta 2Sm \theta Sm \theta + arg + los \theta + 2los \theta los \theta + los g + los \theta$
- $= \left( \widehat{\omega_{\alpha}} + \widehat{\omega_{\alpha}} + \widehat{\omega_{\alpha}} + \widehat{\omega_{\alpha}} + \widehat{\omega_{\alpha}} + 2 \widehat{\omega_{\alpha}} \widehat{$ 
  - = 2 + 2 [lasbust Smbsmd]
  - $= 2 + 2 \left[ \cos(\theta + \phi) \right]$  $= 2 + 2 \cos(\theta + \phi)$
  - = 2

277

I.C.B.

RA.

1.E K= 2.

**Created by T Madas** 

10

#### Question 104 (\*\*\*\*+)

The first four terms of an arithmetic series are

2, (2b+3c), (b-3c+1) and (4b+5c),

respectively, where b and c are a constants.

Show that the sum of the first thirty terms of the series is 1365.

| an                                                                                                                                                                                                | , proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   | $3c \qquad \qquad \Rightarrow 3b + 8c - 1 = -b - 6c + 1$ $\Rightarrow 4b + 14c = 2$ $2b + 7c = 1$ $\Rightarrow 2 - 6c + 7c = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{l} & u_{*} & u_{*} = 2 \\ & u_{1,2} = 2 x q_{*} + 2 (c_{1}) = 5 \\ & u_{3} = 4 - 3 (c_{3}) + v = 8 \\ & u_{4} = 4 x 4 + 8 (c_{1}) \\ & u_{4} = 4 x 4 + 8 (c_{1}) \\ \end{array} $ | $ \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \hline \\ \hline \\ \hline \\ \end{array} \end{array} \\  \end{array} \\  \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                   | $\begin{bmatrix} z + 2xz \\ z + 2xz \\ (z + 1) \\ z + z \\ (z + 1) \\ z + z \\ z $ |

200

ŀ.C.p.

ng

COM

#### Question 105 (\*\*\*\*+)

The common difference of an arithmetic series is denoted by d and the sum of its first n terms is denoted by  $S_n$ .

Show clearly that

N.C.A.

 $d = S_{n+2} - 2S_{n+1} + S_n$ 

|         | Sm2 -                        |                  |        |     |         |     |        |
|---------|------------------------------|------------------|--------|-----|---------|-----|--------|
|         | St + Um                      |                  |        |     |         |     |        |
| =       | × + Un                       | 4 U.+-           |        | 25, | - 2U4+1 | + > | κ      |
| =       | 0 <sub>1942</sub> - C        | J <sub>4+1</sub> |        |     |         |     |        |
| =       | $\left[ u_{n+1} + d \right]$ | ] - u            | 4+)    |     |         |     |        |
| =       | d                            | - to 849         | une.6D |     |         |     |        |
| AUTRANA | W+                           |                  |        |     |         |     |        |
| \$442   | - 5/1+1 =                    | U442             | =      | a + | (n+1)d  |     | a + nd |
| Sur     | =                            | UkH              |        | a + | (r) q   | =   | a + nd |
| Gikm    | KERING- THE                  | ABIE             | SIDE   | NS  | 104     |     |        |

LONGER ACTIONATIONS

$$\begin{split} &\tilde{\beta}_{1} = \frac{1}{2} \Big[ 2 \mathbf{a}_{1} \{ (\mathbf{a}_{1}) \mathbf{d}_{1} - \frac{1}{2} \Big[ 2 \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{d}_{2} - \frac{1}{2} \mathbf{d}_{2} \mathbf{a}_{1} \mathbf{d}_{2} \Big] \\ & \tilde{\beta}_{11} = \frac{1}{2} \frac{1}{2} \Big[ 2 \mathbf{a}_{1} \mathbf{d}_{2} \Big] = \frac{1}{2} \Big[ (2 \mathbf{a}_{1}) \mathbf{d}_{2} \Big] = \frac{1}{2} \Big[ 2 \mathbf{a}_{1} \mathbf{d}_{2} \mathbf{d}_{2} - \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \mathbf{d}_{2} \mathbf{d}_{2} \mathbf{d}_{2} \Big] \\ & \tilde{\beta}_{21} = \frac{1}{2} \frac{1}{2} \sum_{i=1}^{2} \frac$$

| $S_{q} = \frac{n}{2}(2q + nd - d) =$ | $\frac{\eta}{2}(2a+hd) = \frac{1}{2}hd$             |
|--------------------------------------|-----------------------------------------------------|
| Sty = <u>n</u> (2a+nd)+ ½€a +n       | $d) = \frac{n}{2}(2a+nd) + a + \frac{1}{2}nd$       |
| \$442 = 1/2(2a+ud+d)+ (2a+           | nd+d)= \${(2a+nd)+ynd+2a+nd+d                       |
|                                      | $=\frac{h}{2}\left(2a+hd\right)+2a+\frac{3}{2}hd+d$ |
|                                      |                                                     |
| Europe Terrie                        |                                                     |

proof

| hNAUY              | TIONN | G UP   |                                                   |       |       |     |   |
|--------------------|-------|--------|---------------------------------------------------|-------|-------|-----|---|
| \$ <sub>92</sub> - | 2\$m+ | \$1, = | # (24+4) + 2d + 3/4 + d<br>- h (294 hd) - 2a - yd |       |       |     |   |
|                    |       |        | 2 (2a+nd)                                         | -12mb |       |     |   |
|                    |       |        |                                                   |       | 4     | 1   | 0 |
|                    |       |        |                                                   |       | A REP | лею |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |
|                    |       |        |                                                   |       |       |     |   |

·C.B.

#### Question 106 (\*\*\*\*+)

The sum of the first 25 terms of an arithmetic series is 1050 and its 25<sup>th</sup> term is 72.

a) Find the first term and the common difference of the series.

The  $n^{\text{th}}$  term of the series is denoted by  $u_n$ 

**b**) Given further that

K.C.

 $117\left[\sum_{n=1}^{25} u_n - \sum_{n=1}^k u_n\right] = 233\sum_{n=1}^k u_n.$ 

determine the value of k.

| dia. |                                                    |                                               |                                        |                                                                                 |
|------|----------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|
| a)   | SETTING OF THE FURTIONS                            |                                               |                                        | asing a=12 gd=5/2                                                               |
| d    | • $\beta_{q} = \frac{\pi}{2} \left[ q + L \right]$ | <ul> <li>U<sub>4</sub>= a + (u-1)d</li> </ul> |                                        | $\Rightarrow \frac{k}{2} \left[ 2 \times 12 + (k-1) \times \frac{5}{2} \right]$ |
|      | \$21 = 10201 = 25€                                 | 0 <sub>25</sub> = 72_                         |                                        | $\Rightarrow \frac{k}{2} \left[ 2k + \frac{5}{2}(k-1) \right] =$                |
|      | $\frac{2}{22}(a+f) = 1070$                         | 0 + 24 d = 72                                 |                                        | ⇒ K [ 12 + 5(k-1)] = 3                                                          |
|      | 25(a+72) = 2100                                    | 12 + 24J = 72<br>24J = 60                     |                                        | => 4+ (12 + ≨(1-1)] = 11                                                        |
|      | $a + 72 = \frac{2100}{25}$                         | $d = \frac{240}{2\pi}$                        |                                        | $\implies k \left[ 48 + S(k-1) \right] = 1$                                     |
|      | a 1 72 - 4200<br>So                                | d= 5                                          |                                        | → k [ 5k+43] = 1404                                                             |
|      | $a_1 + 72 = \frac{84a0}{100}$                      |                                               |                                        | NOW BY TRIAL & INPROVEMINI,,,                                                   |
|      | a + 72 = 84                                        |                                               |                                        |                                                                                 |
|      | 9 = 12                                             |                                               |                                        | 1F K= 10 → 10×13<br>1F K= 15 → 15×118                                           |
| 10   | 같                                                  |                                               |                                        | IF k=13 ⇒ 13×106                                                                |
| Þj   | LET US NOTE THAT & U,                              | = 1050 (Grow in America)                      | 2                                      |                                                                                 |
|      | → 117 [1050 - T.] =                                | 233 TE {TE 2 44                               | <pre>{</pre>                           | - AUTRINATINE                                                                   |
|      | ======================================             | 233 Tk                                        | ــــــــــــــــــــــــــــــــــــــ | $\frac{k}{2}\left[2\times12+(k-1)\times\frac{5}{2}\right] = 351$                |
|      | $\implies 117 \times 1050 = 350 T_{E}$             |                                               |                                        | $\frac{1}{2} \left[ 54 + \frac{5}{2}F - \frac{3}{2} \right] = 321$              |
|      | =) Tk = 117 × 1050 3                               |                                               |                                        | $l_{2k} \neq \frac{1}{2}k^2 - \frac{1}{2}k = 35l$                               |
|      | ⇒ T <sub>k</sub> = 351                             |                                               |                                        | $48k + 5k^2 - 5k = 1404$                                                        |
|      | ⇒ ∑ (u = 351                                       |                                               |                                        | $9k^2 + 43k - 1404 = 0$                                                         |
|      | Ref                                                |                                               |                                        | $k = \frac{-43 \pm \sqrt{43^2 - 4x_{5} \times (-1404)}}{2 \times 5}$            |
|      |                                                    |                                               |                                        |                                                                                 |

a = 12, d = 2.5, k = 13

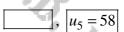
KATING THAT K<24

 $\frac{43+173}{10} = 13$ 

C.B.

12

1404


2

#### Question 107 (\*\*\*\*+)

The sum,  $S_n$ , of the first *n* terms of an arithmetic series is given by

$$S_n = 2n(4n-7).$$

Find the fifth term of the series.



|                                         | 100 |  |
|-----------------------------------------|-----|--|
| \$1 = 2n (4n-7) n∈N                     |     |  |
| THE RETH THEN SATISFIES                 |     |  |
| $u_s = S_s - S_4$                       |     |  |
| $U_{5} = 2x5x(2a-7) - 2x4 \times (4-7)$ |     |  |
| u <sub>s</sub> = 130 - 72               |     |  |
| U <sub>1</sub> = 58                     |     |  |
|                                         |     |  |

#### Question 108 (\*\*\*\*+)

A company arranges to pay a debt of £360,000 by 40 monthly instalments.

These monthly instalments form an arithmetic series.

After 30 of these instalments were paid, the company declared themselves bankrupt leaving one third of their debt unpaid.

Find the value of the first instalment.

| , £510                                                            | 0 |
|-------------------------------------------------------------------|---|
| Sh                                                                |   |
| 0000 = 1 Sector 240000 Phill IN 30 WORRY                          |   |
| $10 \approx 360000$ 4 $3_{30} \approx 240000$                     |   |
| $\cos = \frac{40}{2}(2a + 3qd)$ $240000 = \frac{30}{2}(2a + 2qd)$ |   |
| 8000 = 2a + 39d $16000 = 2a + 29d$                                |   |
| 2a = 18000 - 39 d 2a = 16000 - 29 d                               |   |
| ~ 4                                                               |   |
| 18000-39d = 16000 - 29d                                           |   |
|                                                                   |   |

#### Question 109 (\*\*\*\*+)

A gym has 125 members and in order to meet its outgoings it needs 600 members.

A Public Relations company is hired to re-launch the gym and increase its membership thereafter, using a variety of marketing strategies.

A preliminary model for the recruitment of new members is as follows.

It is expected that 10 new members will join in the week following the gym's relaunch, 12 new members in the second week, 14 in the third week and so on with 2 new members joining the gym in each subsequent week.

a) Find according to this preliminary model ...

i. ... the number of the new members that will join in the  $12^{th}$  week.

ii. ... the total number of members after 12 weeks.

The model is refined to allow for the gym losing members at the constant rate of 3 members per week. The gym **reaches** the desired target of 600 members in N weeks.

**b**) Determine the value of N.

| $ \begin{array}{c} (\underline{a}) \begin{pmatrix} \underline{a} \\ \underline{b} \end{pmatrix} \begin{pmatrix} \underline{a} \\ \underline{b} \\ \underline{c} \\ \underline{c}$ | 4006 822<br>125<br>377                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| (b) • WEBK   +10 -3 = +7<br>. WEBK 2 +12 -3 = +9<br>. WEBK 3 +14 -3 = +11 ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | so {a=7<br>d=2                                             |
| $\begin{array}{cccc} \# & & & & & \\ \# & & & & \\ & & & & \\ & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N=10<br>N=15, 15×15=42<br>N=15, 15×15=42<br>N=15, 15×15=42 |

, 19 weeks

, 32, 377

#### Question 110 (\*\*\*\*+)

Five numbers are consecutive terms of an arithmetic progression.

The arithmetic mean of these numbers is 7, while the arithmetic mean of the **squares** of these numbers is 67.

Determine these five numbers.

| , 1, 4, 7, 10, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MODELLING 45 ROUDING - LET THE "HIDDLE" THEM BE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $U_{k_{-2}} \ , \ U_{k_{-1}} \ , \ U_{k_{-1}} \ , \ U_{k_{k_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f}}}}}}}}}$ |
| a-2d a-d a a+d a+2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE AUTHMATIC MAD IS $\underline{7}$<br>$\longrightarrow (2-2d) + (x-d) + x + (z+d) + (x+2d) = 7$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\rightarrow \frac{2\pi}{2\pi} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\rightarrow \alpha - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NEXT THE MATHWETK WIMN OF THE SQUARES IS 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\implies \frac{(2-2d)^{2}+(2-d)^{2}+2(2+d)^{2}+(2+d)^{2}+(2+2d)^{2}}{5} \approx 67$                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\implies (7 - 2d)^{2} + (7 - d)^{2} + 7^{2} + (7 + d)^{2} + (7 + 2d)^{2} = 67 \times 5$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\Rightarrow  49 - 286 + 44^2 + 49 - 1446 + 6^2 + 49 + 49 + 1466 + 6^2 + 49 + 2864 + 46^2 = 335$                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Rightarrow$ $10d^2 + 44x5 = 335$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Rightarrow 2d^2 + 4t = 67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\rightarrow 2d^{2} = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

12.87

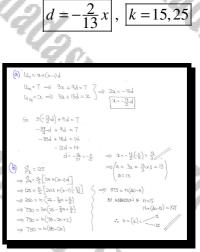
#### (\*\*\*\*+) Question 111

0

ŀ.G.B.

Smaths,

I.C.P.


COM

The 1<sup>st</sup> term of an arithmetic series is 3x, the 10<sup>th</sup> term is 7 and the 14<sup>th</sup> term is x.

**a)** Show clearly that  $x = \frac{13}{3}$ 

The sum of the first k terms of the series is 125.

**b**) Find the possible values of k.



nadasmaths.com

2011

d = -

k = 15, 25

The .

1+

nadasm.

N.C.B. Madasn

**Created by T Madas** 

nadasmaths,

#### Question 112 (\*\*\*\*+)

A pension broker gets paid  $\pounds 15$  commission **per week** for every pension scheme he sells. Each week he sells a new pension scheme so that ...

In the  $1^{st}$  week he gets paid £15 commission for the pension he just sold.

In the  $2^{nd}$  week he gets paid £30, £15 for the pension sold in the  $1^{st}$  week plus £15 for pension he sold in the  $2^{nd}$  week.

In the  $3^{rd}$  week he gets paid £45, £15 for the pension sold in the  $1^{st}$  week plus £15 for pension he sold in the  $2^{nd}$  week, plus £15 for the pension he sold in the  $3^{rd}$  week, and so on.

- a) Find the commission he gets paid on the last week of the year.
- **b**) Find his annual earnings after one year in this job.

His commission increases to £20 for new pension schemes sold during the  $2^{nd}$  year but decreases to £10 for the schemes he sold in the  $1^{st}$  year.

The broker continues to sell at the rate of one new pension scheme every week.

c) Find his annual earnings in the 2<sup>nd</sup> year

 $\pounds780$ ,  $\pounds20670$ ,  $\pounds54600$ 

| A                                                              | <u> </u> |
|----------------------------------------------------------------|----------|
| a) LOOKING AT THE PATTERN                                      |          |
| Week: 1 2 3 52                                                 |          |
| $\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & $ |          |
| $\rightarrow O_{\eta} = \alpha + O_{\theta-1}d$                |          |
| $\Rightarrow U_{g_2} = 15 + 51 \times 10^{-10}$                |          |
| → U <sub>12</sub> = 780 1.6. \$780                             |          |
| b) SUMMINE THE COMMISSIONS USING PART (a)                      |          |
| $S_{4} = \frac{y}{2} \left[ \alpha + L \right]$                |          |
| State = ∰[15+780] = 26×745 = 20670                             | 20670    |
| () CONTRUCTOR THE PATTIEN & LINKING WITH THE FEET YEAR         |          |
| WEEK COMMISSION                                                |          |
| SI \$765 FRIT WHO                                              |          |
| 52, ±780                                                       |          |
| (52×10)+20 a as 540                                            |          |
| 2. (52× lb) + 20+20                                            |          |
| 3 (22×10) + 20+20+20 > SEGAD YAAR                              |          |
|                                                                |          |
| 52 (52×10)+ 2×22 and 1= 1560                                   |          |
| Sommer atting St = # (a+) 7                                    |          |

#### Question 113 (\*\*\*\*+)

The sum,  $S_n$ , of the first *n* terms of an arithmetic series is given by

$$S_n = 5n^2 + 3n \, .$$

- **a**) Find a simplified expression for  $S_{n-1}$
- **b**) Hence, or otherwise, find a simplified expression for the  $n^{\text{th}}$  term of the series, denoted by  $u_n$ .

$$S_{n-1} = 5n^2 - 7n + 2$$
,  $u_n = 10n - 2$ 

| and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) $\xi_{n}^{l} = 5n^{2} + 3n$<br>$\xi_{n+1}^{l} = 5(n-1)^{2} + 3(n-1) = 5(n^{2} - 2n + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)+3n-3= Sn <sup>2</sup> -10n+5+3n=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ** \$4-1 = 5h2-7n+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (b) $\beta_{n-1} = U_n$<br>$(5n^2+3n) - (5n^2-7n+2) = U_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4_{21}$ $4$ |
| $U_{ij} = 10i - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(u_1 = 8)   u_2 = 24 - 8 = 18 \\ u_3 = 54 - 26 = 28 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ = (u_{\eta} = \alpha_{1} + (u_{n-1}) d = 8 + (u_{n-1}) \times U_{D} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. U4= 104-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Question 114 (\*\*\*\*+)

The sum,  $S_n$ , of the first *n* terms of an arithmetic series is given by

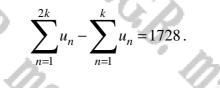
$$S_n = n^2 + kn \,,$$

where k is a non zero constant.

Given that the 5<sup>th</sup> term of the series is 11, find the 17<sup>th</sup> term of the series.

| • $U_s = 11$<br>$\Rightarrow \beta_s - \beta_4 = 11$<br>$\Rightarrow (5^2 + 5k) - (4^2 + kk) = 11$<br>$\Rightarrow 25 + 5k - kk - kk = 11$<br>$\Rightarrow k + 9 = 11$<br>$\boxed{ k=2 }$ | $ \begin{array}{c} \bullet \\ \uparrow = \eta^{2} + 2\eta \\ \downarrow = 3 \\ \downarrow = 3 \\ \downarrow = 3 \\ \downarrow = 3 \\ \downarrow = 4 + 4 = 8 \\ \downarrow = 2 \\ \downarrow = 4 + 4 = 8 \\ \downarrow = 4 + 4 \\ \downarrow = 4 + 4$ | $b(\iota_{-n})+\sigma_{-n}\mu \bullet \\ \sum_{2\ell=q} U \\ 2\ell = q U$                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                           | $\begin{array}{c} \underbrace{O2}_{\eta_1} & \underbrace{S_{\eta_1} = \eta^2 + 2\eta}_{\eta_1} \\ \underbrace{U_{\eta_1} = & \underbrace{S_{\eta_1} - \eta}_{\eta_2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{cases} \zeta_{16} = (t_1^2 + 34) - (t_6^2 + 32) \\ = 288 + 34 - 256 - 32 \\ = 35 \end{cases}$ |

#### Question 115 (\*\*\*\*+)


I.C.B.

I.F.G.B.

An arithmetic progression has first term -10 and common difference 4.

The  $n^{\text{th}}$  term of the progression is denoted by  $u_n$ .

Determine the value of k given that



|                                                                     | and the second se |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSING THE SOMMATION FORM                                            | WA FOR the t.P. WITH a= -10, d=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $S_n = \frac{n}{2} \left( \sum_{i=1}^{n} + 0 \right)$               | Gi-I) d ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | $(+(k-1)) \times \psi = \frac{k}{2} (-20 + qk - \psi = k(2k - 12))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\sum_{k=1}^{2k} u_k = S_{2k} = \frac{2k}{2} \left[ 2(-10) \right]$ | +(2k-1)xt] = k(-2r+8t-t] = k(8k-2t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THUS WE CAN WORR                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\sum_{k=1}^{2k} u_k - \sum_{k=1}^{k} u_k$                          | - 1728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| k(86-24) - k(26-12)                                                 | = 1728<br>⇒ 863-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| k(4K-12) - K (K-6)                                                  | = 864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| K (4K-12-K+6)                                                       | - 064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · K(3K-6)                                                           | = 864 ) ÷3<br>> 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| k (k -2)                                                            | ≥ 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BY INSPECTION 45 WE ARE LOOK                                        | KNG- GAR-A POSITIUF INSHREP. OR THA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| QUADDATIC FORMULA                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12-21-288 =                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (k+16)(k-18)=                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| < r /                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K= 18                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

200

I.F.G.B.

madasn,

k = 18

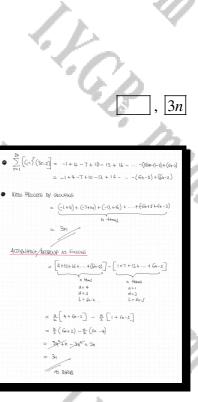
E.

6

**Created by T Madas** 

I.C.

#### Question 116 (\*\*\*\*+)


The  $r^{\text{th}}$  term of an arithmetic progression is given by  $u_r = 120 - 3r$ .

Determine the value of N given that





2



naths.com

asiliatils.Col

1.60

## Question 118 (\*\*\*\*\*)

I.C.P.

An arithmetic progression has first term 11.

The sum of its **first** 20 terms is 1360, and the sum of its **last** 20 terms is 4720.

Mada,

Determine the number of terms in the progression.

| LOOKING AT THE SOM OF TH                  | E FICT 20 THEMS.                                                                                                                                                                                                                                                                |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | $ \begin{array}{c} \longrightarrow [360 = \frac{5}{24}, [22 + 6y_{cd}] \\ \longrightarrow [360 + 10 (22 + 6y_{cd})] \\ \longrightarrow [136 = 22 + 6y_{cd}] \\ \longrightarrow [144 - 10y_{cd}] \\ \longrightarrow [144 - 10y_{cd}] \\ \longrightarrow d = 4^{-4} \end{array} $ |
| NOW JUPPOSE THE SERIES HA                 | ts & THEMS - FIND THE LAST THEM                                                                                                                                                                                                                                                 |
| $u_{\eta} = a + (n-1)d$                   | $  \qquad $                                                                                                                                              |
| NOW CONSIDER THE LAST TW                  | ESTY THEM - REWEITS THE THEMS BACKWARDS                                                                                                                                                                                                                                         |
| a = 62+5<br>d = -6<br>$5_{20}^{2} = 4720$ | \$4 = \$2 [2a + (u-1) d]<br>4720 = 32 [2(2c+5) +19(-6)]<br>4720 = 10 ( 12k +10 - 1114)                                                                                                                                                                                          |
|                                           | 472 = 12k -104                                                                                                                                                                                                                                                                  |
|                                           | 576 = 12k                                                                                                                                                                                                                                                                       |
|                                           | $k = \frac{576}{12} = \frac{600 - 24}{12} = 50 - 2$                                                                                                                                                                                                                             |
|                                           | k= 40                                                                                                                                                                                                                                                                           |
|                                           | It 40 THEMS                                                                                                                                                                                                                                                                     |
|                                           |                                                                                                                                                                                                                                                                                 |

manasn

F.G.B.

200

48

1+

Madasm.

madasn

### Question 119 (\*\*\*\*\*)

The  $k^{\text{th}}$  of an arithmetic progression is 849, where k is a positive integer.

The  $(k + p)^{\text{th}}$  term and the  $(k + 2p + 1)^{\text{th}}$  term of the same arithmetic progression are 873 and 905 respectively, where p is a positive integer.

Find the value of the  $(k+20)^{\text{th}}$  term of the progression.

| $(k+20)^{\text{tn}} = 1009$                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| da -                                                                                                                                                         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                        |
| $ \label{eq:result} \begin{gathered} \blacksquare_k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                   |
| O FOUL U <sub>E</sub> TO U <sub>ENTPH</sub> THESE ARE "2PH" TRUNG     THEEL UA DIFFERENCE OF THESE SEA = 35     (2PH)×d = 55     (2PH)×d = 55                |
| Solute Shutcheouty<br>$\Rightarrow (2p+1)d = St$ $\Rightarrow 2pd + d = St$ $\Rightarrow 2pd + d = St$ $= 48 + d = St$ $\frac{1}{(d - S)}$ $\frac{8}{(p-3)}$ |
| $\therefore U_{k+30} = U_{k} + 20 \times 8 = 849 + 160 = 1009$                                                                                               |

## Question 120 (\*\*\*\*\*)

An arithmetic progression has common difference 5.

The sum of its **first** 20 terms is 610, and the sum of its **last** 20 terms is 7410.

Determine the number of terms in the progression.

| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 88                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} s_{k} = \frac{\pi}{2} \left[ 2 a + i \right] \\ (b_{2} - \frac{\pi}{2}) \left[ a + i \right] \\ (b_{3} - \frac{\pi}{2}) \left[ a + i \right] \\ (b_{3} - \frac{\pi}{2}) \left[ a + i \right] \\ -\frac{3}{2} - \frac{\pi}{2} - \frac{3}{2} \\ -\frac{3}{2} - \frac{\pi}{2} - \frac{\pi}{2} \\ -\frac{3}{2} - \frac{\pi}{2} \\ (a - 1) \\ (a - 1)$ | $\begin{array}{c} \label{eq:second} \text{Generation} \\ \mbox{Generation} \\ \mbox$ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $ |

**Question 121** (\*\*\*\*\*) Show by a suitable algebraic method that

 $60^2 - 59^2 + 58^2 - 57^2 + \dots + 22^2 - 21^2 = 1620$ .

METIOD A  $80^{\circ}_{\circ} - 2\delta_{r} + 28_{\circ} - 2\delta_{r} + 2\delta_{r} - 2\delta_{r} + 2\delta_{r}$ + 222-212 (72-82)(72+82) + (92+02)(92-0 · · + (22+21)[22-21] + 43 \$<u>1</u> = <sup>2</sup>9 [49+43] 55<sup>2</sup>+...+21<sup>2</sup>]  $\sum_{l=1}^{2n} (2r \cdot l)^2 - \sum_{l=1}^{2n} (2r \cdot l)^2$  $\Psi^2 = \sum_{n=1}^{2n} (2^{n-1})^2 = \sum_{n=1}^{1} (2^{n-1})^2 = \sum_{n=1}^{2} \Psi^2$ 

 $-(3r-i)^2$   $-\sum_{l=1}^{N} [4r^2-(2r-1)^2]$  $\sum_{i=1}^{3n} (4i-1) = \sum_{i=1}^{3n} (4i-1)$ 4 2 r - $\sum_{n=1}^{\infty} 1 = -4\sum_{n=1}^{\infty} 1 = +$  $U_{M}(L, THAT \sum_{k=1}^{N} \Gamma = \frac{1}{2} H(k+1) d$  $\sum_{i=1}^{n} i = n$ 

proof

6

- $4x \frac{1}{2} \times 30x \frac{3}{2} = 30 = 4x \frac{1}{2} \times 10x \frac{1}{2} + 10$ 
  - 0 226 +10
- the Break

## Question 122 (\*\*\*\*\*) non calculator

The sum of the first k terms of an arithmetic progression is 110.

The sum of the first 2k terms of the same arithmetic progression is 946.

Given further that  $k \neq 1$ , determine the first term and the common difference of the arithmetic progression.

, a = -20, d = 6K=ll d=6  $2a + kd - d = \frac{220}{k}$  $\int_{M}^{a} = \frac{M}{2} \left[ 2a + (u-1)d \right]$ 2k (2a + (2k-1))] = 946 20+kd-d = 220 946  $kd = \frac{72.6}{K}$ k2 = 726 🗖 d = 726 k2 726 - 600 + 120 +

**Created by T Madas** 

29

## Question 123 (\*\*\*\*\*) non calculator

An arithmetic series has an even number of terms.

The sum of its odd numbered terms,  $u_1 + u_3 + u_5 + u_7 + ...$ , is 752.

The sum of its even numbered terms,  $u_2 + u_4 + u_6 + u_8 + ...$ , is 800.

Given further that the difference between the last and the first term of the series is 93, use an algebraic method to find the number of terms of the series.

# THE SECURE HATE N TRANS, WHEN N=20 UP THE SECURE HATE N TRANS, WHEN N=20 Up to Up

#### Question 124 (\*\*\*\*\*)

By considering a suitable arithmetic series, evaluate

 $99^2 - 97^2 + 95^2 - 93^2 + \dots + 3^2 - 1^2$ 



| $39^2 - 97^2 + 95^2 - 93^2 + \dots + 3^2 - 1^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $= (99-97)(99+97) + (91-93)(91+93) + (91-99)(91+89) + \dots + (3-1)(3+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $= (2 \times 196) + (2 \times 188) + (2 \times 180) + \dots + (2 \times 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| = 2 × (196 + 186 + 180 + + 4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| = 2×4× [49+47+45++1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $= 8 \times \frac{h}{2}(a+k)$ $= \frac{g}{8} \times \frac{25}{2}(a+k)$ $= \frac{g}{8} \times \frac{25}{2}(a+k)$ $= \frac{1}{28} \times \frac{1}{28$ |  |
| $= \frac{4}{8} \times \frac{25}{2} \left(1 + 49\right) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 02 × 001 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| = 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

#### Question 125 (\*\*\*\*\*)

The sum of the first *n* terms of an arithmetic series with first term *a* and common difference *d*, is denoted by  $S_n$ .

Simplify fully

 $-2S_{n+1}+S_{n+2}$ 

 $S_n - 2S_{n+1} + S_{n+2} = d$ 

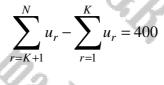
$$\begin{split} & \stackrel{\text{ch}}{\rightarrow} = \frac{y}{2} \left( 2a + (k_{-1})d \right) \qquad = \frac{y}{2} \left( 2a + y_{0}d - d \right) \\ & \stackrel{\text{ch}}{\rightarrow} \frac{y_{+1}}{2} \left[ 2a + y_{0}d \right] \qquad = \left( \frac{y}{2} + \frac{1}{2} \right) \left( 2a + y_{0}d \right) \\ & \stackrel{\text{ch}}{\rightarrow} \frac{y_{+2}}{2} \left[ 2a + Cy_{1} \right) d \right] \qquad = \left( \frac{y}{2} + t \right) \left( 2a + u_{0}d + d \right) \end{split}$$

$$\begin{split} \dot{\beta}_{\eta} &= \frac{\pi}{2}(2a+hd) + \frac{\pi}{2}(-d) \\ \dot{\beta}_{H_1} &= \frac{\pi}{2}(2a+hd) + \frac{1}{2}(2a+hd) \\ \dot{\beta}_{\eta+2} &= \frac{\pi}{2}(2a+hd) + \frac{Hd}{2} + 2a+hd+d \end{split}$$

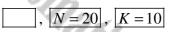
ALTRAJANNE  $\beta_{442} - \beta_{441} = U_{442} = a + O(41)d = a + hd + d$  $\beta_{441} - \beta_{41} = U_{441} = a + hd = a + hd$ 

SUBTRACT<u>SOL</u> BY <u>SDC</u>  $\beta_{n+2} - 2\beta_{n+1} + \beta_{ny} = d$ 

## Question 126 (\*\*\*\*\*)


Ĉ.Ŗ

Y.G.B.


The  $r^{\text{th}}$  term of an arithmetic progression is denoted by  $u_r$  and satisfies

 $u_r = 4r - 7 \; .$ 

Solve the simultaneous equations







115

#### • $U_r = 4r - 7$ YIELDS $-3_1 I_1 S_1 9_1 I_{3_1} \cdots$ So $\begin{cases} a = -3 \\ d = 4 \end{cases}$

 $\begin{array}{ccc} \bullet & U_{k_{1}} - U_{k_{2}} = \$0 & \Longrightarrow & \left[ -2 + (k_{1-1}) \times \varphi \right] - \left[ -2 + (k_{2-1}) \times \varphi \right] = \$0 \\ & \Rightarrow & \left[ -2 + (k_{2-1}) \times \varphi \right] - \left( -2 + (k_{2-1}) \times \varphi \right] = \$0 \\ & \Rightarrow & 4k_{1} - 4k_{2} = 40 \\ & \Rightarrow & N - k_{1} = 10 \\ & \Rightarrow & N - k_{1} = 10 \\ & \Rightarrow & N = k + 10 \end{array}$ 

$$\sum_{\substack{r=k+1\\r=k}} u_r - \sum_{\substack{r=1\\r=1}} u_r = 4\infty$$

- $\Rightarrow$   $\beta_{N} 2\beta_{k} = 400$
- $\Rightarrow \frac{N}{2} \left[ 2(3) + (N-1) \times \frac{1}{2} 2 \times \frac{k}{2} \left[ 2(-3) + (k-1) \times \frac{1}{2} \right] = 400$
- $\implies \frac{N_2}{2} \left[ -6 + 4\lambda 4 \right] k \left[ -6 + 4k 4 \right] = 4\infty$   $\implies \frac{N_2}{2} \left[ -4\lambda 4c \right] k \left[ 4k 4c \right] = 4\infty$
- $\Rightarrow 2N^2 5N 4k^2 + 10k = 400$
- $\Rightarrow 2(k+10)^2 5(k+10) 4k^2 + 10k = 400$  $\Rightarrow 3k^2 + 40k + 200 - 5k - 50 - 4k^2 + 10k = 400$
- $= -2K^2 + 45K 250 = 0$
- => 2k2-45k+250=0

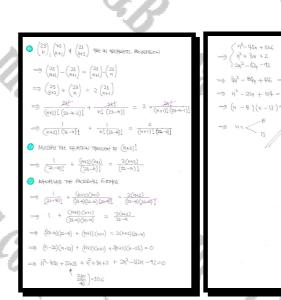
$$k = \sqrt{\frac{2}{N}} \implies N = 20$$

de.

i C.P.

Mada

#### Question 127 (\*\*\*\*\*)


V.G.B. Ma

200

I.C.P.

The coefficients of  $x^n$ ,  $x^{n+1}$  and  $x^{n+2}$  in the binomial expansion of  $(1+x)^{23}$  are in arithmetic progression.

Determine the possible values of n.



*n* = 8, 13

2 × 52 4× 26 8× 3

2

Madasm.

he,

°om

### Question 128 (\*\*\*\*\*)

Ĉ.B.

P.C.B.

The sum of the first *n* terms of an arithmetic series is  $m, m \in \mathbb{N}$ .

The sum of the first m terms of the same arithmetic series is n.

Use algebra to show that the sum of the first (m+n) terms of the series is -m-n.

STATE BY PINDING THE FIRST THAT & DOWN ON DIFFFERENCE  $\sum_{i=1}^{N} q_i = N$  $\sum_{i=1}^{n} u_i = w_i$ 1 [2a + (n-1)d] = m  $\frac{M}{2}\left[2a+6n-1\right)d\right]=h$ = (n-1)d - (m-1)d = 2m - 2n  $p(n-m)d = 2\left(\frac{m}{m} - \frac{n}{m}\right)$  $p(n-m)d = \frac{2(m-n)(m+n)}{mn}$ -2(M+H) GE-101 (m+h)

• NOW DEE DEPUEE THE SLU OF THE FIELT MAN TIGHT  $\Rightarrow S_{nin}^{1} = \frac{10417}{2} \left[ 2x \frac{W_{1}^{2} + G_{11}(M+m)}{Mn} + (N+h) - 1 \left[ \frac{2(M+N)}{Nn} \right] \right]$   $\Rightarrow S_{nin} = (N+h) \left[ \frac{N_{1}^{2} + C_{11}(M+m)}{Mn} + (N+h) - 1 \left[ \frac{2(M+N)}{Nn} \right] \right]$   $\Rightarrow S_{nin} = (N+h) \left[ \frac{M_{1}^{2}}{Mn} + \frac{(N+h)(L+1)}{Nn} - (\frac{M+h}{Mn} - 1 \right]$   $\Rightarrow S_{nin} = (N+h) \left[ \frac{M_{1}^{2}}{Mn} + \frac{N_{1}(h)}{Nn} + \frac{N_{1}(h)}{Nn} - \frac{(M+h)(L+1)}{Mn} \right]$   $\Rightarrow S_{nin} = (N+h) \left[ \frac{M_{1}^{2}}{Mn} + \frac{N_{1}(h)}{Nn} + \frac{N_{1}(h)}{Nn} - \frac{N_{1}(h)}{Nn} + \frac{N_{1}(h)}{Nn} \right]$   $\Rightarrow S_{nin} = (N+h) \left[ \frac{M_{1}^{2} + (N+h)(L+h)}{Nn} - \frac{N_{1}(h)(L+h)}{Nn} + \frac{N_{1}$ 

っ

I.C.p

proof

2112.51