ARITHMETIC SERIES

Created by T. Madas

Question 1 (**) non calculator
The first few terms of an arithmetic sequence are given below

$$
5,9,13,17,21, \ldots
$$

a) Find the fortieth term of the sequence.
b) Determine the sum of the first forty terms of the sequence.

$$
u_{40}=161, S_{40}=3320
$$

Question 2 (**) non calculator
The first term of an arithmetic progression is 17 and the common difference is 6 .
a) Find the tenth term of the progression.
b) Determine the sum of the first ten terms of the progression.

$$
u_{10}=71, S_{10}=440
$$

Created by T. Madas

Created by T. Madas

Question 3 (**) non calculator
The first term of an arithmetic series is 51 and the eighth term is 100 .
a) Find the twentieth term of the series.
b) Determine the sum of the first twenty terms of the series.

Question 4 (**) non calculator
Evaluate the following expression, showing clearly all the relevant workings.

$$
\sum_{r=1}^{20}(13 r+4)
$$

$$
\square, 2810
$$

Created by T. Madas

Question 5 (**) non calculator
Evaluate the following expression, showing clearly all the steps in the calculation.

Question 6 (**) non calculator
A ball bearing is rolling down an inclined groove.
It rolls down by 1 cm during the first second of its motion, and in each subsequent second it rolls down by an extra 3 cm than in the previous second.

Given it takes 12 seconds for the ball bearing to roll down the groove, find in metres the length of the groove.

Created by T. Madas

Question 7 (**+) non calculator

The sixth and the tenth term of an arithmetic progression are 28 and 44 , respectively.
a) Determine, in any order, the first term and the common difference of the progression.
b) Calculate the sum of the first fifty terms of the progression.

Question 8 (**+) non calculator

The seventh term and the twelfth term of an arithmetic progression are 28 and 73, respectively.

$$
a=8, d=4, S_{50}=5300
$$

a) Find the first term and the common difference of the progression.
b) Calculate the sum of the first forty terms of the progression.

$$
a=-26, d=9, S_{40}=5980
$$

Created by T. Madas

Question $9(* *+)$ non calculator
The fifth and the twentieth term of an arithmetic series are 38 and 158 , respectively.
a) Find the first term and the common difference of the series.
b) Determine the sum of the first twenty terms of the series.

Question $10 \quad\left({ }^{* *}+\right.$) non calculator
The fourth term of an arithmetic series is 15 .
The sum of its first three terms is 9 .
Find the first term and the common difference of the series.

$$
a=-3, d=6
$$

Created by T. Madas

Created by T. Madas

Question 11 (**+) non calculator

The sum of the first two terms of an arithmetic series is 3 .

The seventh term of the series is 40 .
a) Find the first term and the common difference of the series.
b) Determine the sum of the first forty terms of the series.

Question 12 (**+) non calculator

The sum of the first five terms of an arithmetic series is 220 .
The fifth term of the series is 36 .
a) Find the first term and the common difference of the series.
b) Determine the sum of the first twenty terms of the series.

$$
a=52, d=-4, S_{20}=280
$$

Created by T. Madas

Question 13 (**+) non calculator

Evaluate the following sum, showing clearly all the steps in the calculation

The $12^{\text {th }}$ term of an arithmetic progression is twice as large as the $4^{\text {th }}$ term.
a) Given that the $14^{\text {th }}$ term of the progression is 27 , show that the first term of the progression is 7.5 .
b) Find the sum of the first 20 terms of the progression.

Created by T. Madas

Question $15 \quad\left({ }^{* *}+\right.$) non calculator

The $k^{\text {th }}$ term of a sequence is given by

$$
a_{k}=5 k-3 .
$$

By showing clearly all the steps in the calculations, evaluate the sum

$$
\sum_{k=1}^{100} a_{k}
$$

\square
\square

Question 16 (***) non calculator
The $n^{\text {th }}$ term of an arithmetic series is given by

$$
u_{n}=11+6 n
$$

Find the sum of the first twenty terms of the series.

$$
S_{20}=1480
$$

Created by T. Madas

Question 17 (**+)

Seats in a theatre are arranged in rows. The number of seats in this theatre form the terms of an arithmetic series.

The sixth row has 23 seats and the fifteenth row has 50 seats.
a) Find the number of seats in the first row.

The theatre has 20 rows of seats in total.
b) Find the number of seats in this theatre.

Created by T. Madas

Question 18 (***) non calculator

The fourth term and the tenth term of an arithmetic series are 20 and 47 , respectively.

Calculate the sum of the first twenty terms of the series.

Question 19 (***) non calculator
The seventh term of an arithmetic series is 6 .

The sum of its fifth term and its tenth term is 16 .

Find the first term and the common difference of the series.

Created by T. Madas

Question 20 (***) non calculator

The sum of the first 20 terms of an arithmetic series is 1070 .

The sum of its fifth term and its tenth term is 65 .
a) Find the first term and the common difference of the series.
b) Calculate the sum of the first 30 terms of the series.

Created by T. Madas

Question 21 (***) non calculator
The sixteenth term of an arithmetic series is 6 .

The sum of the first sixteen terms is 456 .
a) Find the first term and the common difference of the series.

The sum of the first k terms of the series is zero.
b) Determine the value of k.

Question 22 (***) non calculator

An arithmetic progression has first term -8 and common difference 2 .

The sum of the first n terms of the progression is 220 .
Use algebra to find the value of n.

Created by T. Madas

Question 23 (***)
non calculator

$$
107+114+121+128+\ldots+1500
$$

The above series has 200 terms.

Find the sum of the last 40 terms of the series.
\square 54540

Created by T. Madas

Question 24 (***)

$$
-53-44-35-26-\ldots+1000 .
$$

The above series has 118 terms.

Find the sum of the last 18 terms of the series.

Question 25 (***) non calculator
The common difference of an arithmetic progression is 0.01 .

The sum of the first 2401 terms the progression is 4802 .

Find the first term of the progression.

Created by T. Madas

Question 26 (***) non calculator

The first term of an arithmetic series is a and the common difference is d

The third term of the series is $\log 12$ and the sixth term is $\log 96$

Find the exact values of a and d.

Question 27 (***)
The first term of an arithmetic series is a and the common difference is d.

The sum of the first 21 terms the series is 735 .
a) Show clearly that

$$
a+10 d=35 \text {. }
$$

The sum of the second and the fifth term is 10 .
b) Find the value of a and the value of d.

$$
a=-5, d \leq 4
$$

Created by T. Madas

Question 28 (***)

Arnold is planning to save for the next 48 months in order to raise a deposit to buy a flat. He plans to save $£ 300$ this month and each successive month thereafter, to save an extra $£ 5$ compared to the previous month.
a) Find the amount he will save on the twelfth month.
b) Find the total amount he will save at the end of the 48 months.

Franco is also planning to save for the next 48 months in order to buy a car.

He plans to save $£ a$ this month and each successive month thereafter, to save an extra $£ 15$ compared to the previous month.
c) Find the value of a, if Franco saves the same amount of money as Arnold does in the next 48 months.

Question 29 (***) non calculator

The first three terms of an arithmetic series are 26.1, 25.2 and 24.3.

Find the smallest value of n for which the sum of the first n terms of the series is negative.

Created by T. Madas

Question 30 (***) non calculator
The $17^{\text {th }}$ term of an arithmetic progression is 14 and the sum of the first 25 terms of the progression is 200 .
a) Show that the first term of the progression is -10 .
b) Find the number of terms in the progression that are less than 100 .
\square

Question 31 (***) non calculator
An arithmetic series has first term 5 and common difference 4.
a) Show that the sum of the first n terms of the series is given by

$$
n(2 n+3)
$$

b) Find the smallest value of n for which the sum of the first n terms of the series exceeds 819 . (You may find the fact $21 \times 39=819$, useful)

Created by T. Madas

Question 32 (***)

The eleventh term of an arithmetic progression is 42 and the sum of its third and eighth term is 40 .
a) Find the first term and the common difference of the progression.

The first n terms of this progression add to 1250.
b) Show clearly that
$a=2, d=4$ $n^{2}=625$.
b)

Question 33

(***)
The fifth term of an arithmetic series is 12 and the sum of its first three terms is -9 .
a) Find the first term and the common difference of the series.

The $n^{\text {th }}$ term of the series exceeds 144 .
b) Determine smallest value of n.

$$
a=-8, d=5, n=32
$$

Created by T. Madas

Created by T. Madas

Question 34 (***)

The sum of the first ten terms of an arithmetic progression is 20 and the tenth term of the progression is 65 .

Find the fifth term of the progression.

Question 35 (***)

Andrew is planning to pay money into a pension scheme for the next 40 years.
He plans to pay into the pension scheme $£ 800$ in the first year and each successive year thereafter, an extra $£ 100$ compared to the previous year.
a) Calculate the amount Andrew will pay into the scheme on the tenth year.
b) Find the total amount Andrew will have paid into the scheme after 20 years.

Beatrice is also planning to pay money into a pension scheme for the next 40 years.

She plans to pay $£ 1580$ in the first year and each successive year thereafter, to pay an extra $£ d$ compared to the previous year.
c) Find the value of d, if both Andrew and Beatrice paid into their pension schemes the same amount of money over the next 40 years.

Created by T. Madas

Created by T. Madas

Question 36 (***)

The $n^{\text {th }}$ term of a sequence is given by

$$
a_{n}=8 n+5 .
$$

Show clearly that

Question 37 (***)
A novelist is planning to write a new book.

He plans to write 15 pages in the first week, 17 pages in the second week, 19 pages in the third week, and so on, so that he writes an extra two pages each week compared with the previous week.
a) Find the number of pages he plans to write in the tenth week.
b) Determine how many pages he plans to write in the first ten weeks.

The novelist sticks to his plan and produces a book with 480 pages, after n weeks.
c) Use algebra to determine the value of n.

Created by T. Madas

Question 38 (***)
An arithmetic series has first term 3 and its $40^{\text {th }}$ term is 4 times as large as its $10^{\text {th }}$ term.

Find the sum of the first 50 terms of the series.

Question 39 (***+)

An athlete is training for a long distance race.

He is preparing by running on 16 consecutive days so that his daily running distances form an arithmetic sequence.

The athlete ran for 15 km on the $16^{\text {th }}$ day of his training and the total distance run over the 16 day training period was 288 km .

Find the distance the athlete ran on the $11^{\text {th }}$ day of his training.
\square 17 km

Created by T. Madas

Question $40 \quad(* * *+)$ non calculator
On his $1^{\text {st }}$ birthday, Anthony was given $£ 50$ as a present by his godmother Cleo.
For every birthday ever since, Cleo gave Anthony $£ 20$ more than on his previous birthday. This money was saved by Anthony's mother until Anthony was n years old.
a) Find the amount of money Anthony received as a birthday present on his tenth birthday.

After Anthony’s $n^{\text {th }}$ birthday his mother gave him Cleo's presents, which was $£ 7800$ in total.
b) Determine the value of n.

Question 41

$(* * *+)$
The sum of the first ten terms of an arithmetic series is 20 and the sum of its first twenty terms is 10 .

Show that the sum of the first forty terms of the series is -100 .

Created by T. Madas

Question 42 (***+)
Evaluate each of the following sums.
a) $\sum_{r=1}^{5}\left(r^{2}+1\right)$.

Created by T. Madas

Question 43 (***+)
The first three terms of an arithmetic series are

$$
(k-2),(2 k+5) \text { and }(4 k+1) \text { respectively, }
$$

where k is a constant.
a) Show clearly that $k=11$.
b) Find the $41^{\text {st }}$ term of the series.

The sum of the first n terms of the series is denoted by S_{n}.
c) Show that S_{n} is always a square number.

Created by T. Madas

Question 44 (***+)
The $n^{\text {th }}$ term of an arithmetic series is denoted by u_{n}.
a) Given that $u_{7}=7 u_{19}$ and $u_{31}=25$, show that the common difference of the series is 2.5 .

The last term of the series is 150 .
b) Determine the number of terms in the series.
c) Find the sum of the last 20 terms of the series.

Created by T. Madas

Question $45 \quad(* * *+)$
The sum of the first n terms of the sequence $50,53,56,59, \ldots$ is denoted by S_{n}.

The sum of the first n terms of the sequence $200,198,196,194, \ldots$ is denoted by T_{n}.

Find the smallest value of n so that $S_{n}>T_{n}$.
\square $n=62$

Question 46 (***+)
The third term of an arithmetic series is 204 and the ninth term of the same arithmetic series is 186 .

Find the sum of the eleventh to the fortieth term of the series, inclusive.

Created by T. Madas

Question $47 \quad(* * *+)$

A new gym opened and during its first trading month 26 people joined its membership.

A business forecast for the gym membership is drafted for the next twelve months.

It assumes that every month an extra x number of members will join, so that next month $(26+x)$ members will be added, the following month $(26+2 x)$ members will be added, and so on.

Taking $x=15$, find
a) ... the number of members that will join in the twelfth month.
b) ... the total number of members that will join during the first twelve months.

The business plan recognises that in order for the business to succeed in the long term, it needs a total membership of at least 1500 during its first twelve months.
c) Using the same model, find the required value of x in order to achieve a twelve month membership target of 1500 .

Created by T. Madas

Question 48 (***+)
The first few terms of an arithmetic sequence is given below

$$
5,11,17,23,29, \ldots
$$

Find, by using an algebraic method ...
a) ... the eleventh term of the sequence.
b) \ldots the sum of the first eleven terms of the sequence.

The $n^{\text {th }}$ term of the sequence exceeds 200 .
c) Determine the smallest value of n.

The sum of the first k terms of the sequence is 705 .
d) Determine the value of k.
$u_{11}=65, S_{11}=385, n=34, \quad k=15$

Question 49 (***+)
The $n^{\text {th }}$ term of an arithmetic series is given by

$$
u_{n}=177-7 n
$$

Calculate, showing full workings, ...
(1) $\ldots \sum_{n=1}^{40} u_{n}$.
b) ... the number of positive terms or the series.

An arithmetic series has common difference -4 and the sum of its first 50 terms is four times as large as the sum of its first 10 terms.

Show that the $50^{\text {th }}$ term of the series is 222 .

Created by T. Madas

Question $51 \quad(* * *+)$
A non regular polygon has 9 sides whose lengths, in cm , form an arithmetic sequence with common difference d.

The longest side of the polygon is 6 cm and the perimeter of the polygon is 45 cm . Find in any order ...
a) ... the length of the shortest side of the polygon.
b) ... the value of d.

Created by T. Madas

Question 53 (***+)

William started receiving his annual allowance on his $13^{\text {th }}$ birthday. His first allowance was $£ 750$ and this amount was increased in each successive birthday by $£ 150$.
a) Use algebra to find the amount William received on his $18^{\text {th }}$ birthday.
b) Show that the total amount of allowances William received up and including his $18^{\text {th }}$ birthday was $£ 6750$.

When William turned k years old he received his last allowance. The total amount of his allowances up and including that of his $k^{\text {th }}$ birthday was $£ 30000$.
c) Find the value of k.

Created by T. Madas

Question 54 (***+)

The roof of a museum has a sloping shape with the roof tiles arranged neatly in horizontal rows. There are 28 roof tiles in the top row and each row below the top row has an extra 4 tiles than the row above it.

The bottom row has 96 tiles.

Show that there are 1116 tiles on the roof of the museum.

Created by T. Madas

Question $56 \quad(* * *+)$
$19,23,27,31,35, \ldots$

For the above arithmetic sequence, find ...
a) ... the thirtieth term.
b) ... the sum of its first thirty terms.

The $n^{\text {th }}$ term of this sequence is less than 250 .
c) Determine the largest value of n.

The sum of the first k terms of this sequence exceeds 4000.
d) Calculate the smallest value of k.

Question 57 (***+)
Evaluate, showing a clear method, each of the following sums.
a) $\sum_{k=1}^{5}\left(k^{2}+2^{k}\right)$.
b) $\sum_{r=1}^{24}(2 r+17)$.
$117,1008,1590$

Created by T. Madas

Created by T. Madas

Question 58 (***+)
A non regular polygon has 10 sides whose lengths, in cm , form an arithmetic sequence with common difference d.

The longest side of the polygon is twice as long as the shortest side.
Given that the perimeter of the polygon is 405 cm , find in any order ...
a) ... the length of the shortest side of the polygon.
b) ... the value of d.

Created by T. Madas

Question $60 \quad(* * *+)$
Consider the arithmetic series below

$$
77+80+83+\ldots+500 .
$$

a) Find the sum of the arithmetic series.
b) Calculate the sum of the even terms of the series.

\square , sum $=40967$, sum of evens $=20590$

Question 61 (***+)
The council of Broxbourne undertook a housing development scheme which started in the year 2001 and is to finish in the year 2025 . Under this scheme the council will build 760 houses in 2012 and 240 houses in 2025.

The number of houses the council builds every year, forms an arithmetic sequence.
a) Determine the number of houses built in 2001 .
b) Calculate the total number of houses that will be built under this scheme.

Created by T. Madas

Question 62 (***+)
The first three terms of an arithmetic series are

$$
-p, \quad(2 p-5) \quad \text { and } \quad(3 p-2) \quad \text { respectively, }
$$

where p is a constant.
a) Show clearly that $p=4$.
b) Find the sum of the first twenty terms of the series.

The $k^{\text {th }}$ term of the series is over 1000 .
c) Determine the smallest value of k.

Question 63 (***+)
Show clearly that

Question 64 (***+)
Find the sum of all the integers between -25 and 75 inclusive.

Created by T. Madas

Question $65 \quad(* * *+)$

Osama starts his new job on an annual salary of $£ 18000$. His contract promises a pay rise of $£ 1800$ in each subsequent year until his salary reaches $£ 36000$. When the salary reaches $£ 36000$ Osama will receive no more pay rises. Osama’s salary first reaches the maximum salary of $£ 36000$ in year N.
a) Determine the value of N.
b) Find Osama's total salary earnings during the first N years of his employment.

Obama starts his new job at the same time as Osama on an annual salary of $£ A$.
His contract promises a pay rise of $£ 1000$ in each subsequent year until his salary reaches $£ 36000$. When the salary reaches $£ 36000$ Obama will receive no more pay rises. Obama's salary first reaches the maximum salary of $£ 36000$ in year 15 .
c) Find the year when both Osama and Obama have the same annual salary.
d) Calculate the difference in the total salary earnings between Osama and Obama in the first 15 years of their employment.

$, N=11, S_{N}=297000, n=6, d=6000$

Created by T. Madas

Evaluate the sum

$$
201+203+205+\ldots+399
$$

Question 67 (***+)
The $n^{\text {th }}$ term of a sequence is given by

$$
u_{n}=84-3 n .
$$

Find the value of k given that

$$
\sum_{n=1}^{k} u_{n}=0
$$

Created by T. Madas

Question 68 (***+)
a) Find the sum of the multiples of twelve between 1 and 250 .
b) Hence, or otherwise, determine the value of

$$
\sum_{r=1}^{20} 4(3 r+1)
$$

\square , 2520, 2600

Created by T. Madas

Question $69 \quad(* * *+)$

The first three terms of an arithmetic series are

$$
8-k, 2 k+1 \text { and } 4 k-1 \text { respectively, }
$$

where k is a constant.
a) Show clearly that $k=5$.
b) Find the sum of the first fifteen terms of the series.
c) Determine how many terms of the series have a value less than 400 .

Created by T. Madas

Question 70 (***+)

Thomas is making patterns using sticks. He uses 6 sticks for the first pattern, 11 sticks for the second pattern, 16 sticks for the third pattern and so on.

a) Find how many sticks Thomas uses to make the tenth pattern.
b) Show clearly that Thomas uses 285 sticks to make the first ten patterns.

Thomas has a box with 1200 sticks. Thomas can make k complete patterns with the sticks in his box.
c) Show further that k satisfies the inequality

$$
k(5 k+7) \leq 2400
$$

d) Hence find the value of k.

Created by T. Madas

Created by T. Madas

Question $71 \quad(* * *+)$
The sum of the third, sixth and ninth term of an arithmetic progression is 90 . The sum of its first twelve terms is 408 .

Determine the first term and the common difference of the progression.

Created by T. Madas

Question 73 (***+)

The $n^{\text {th }}$ term of an arithmetic progression is denoted by u_{n}, and given by

$$
u_{n}=2 n+7 .
$$

Question 74 (***+)

Show by using algebra, that the sum of the integers between 1 and 600 inclusive, that are not divisible by 3 , is 120000 .

Created by T. Madas

Question 75 (***+)

The first three terms of an arithmetic series are

$$
(m+1),\left(m^{2}+m\right) \text { and }\left(3 m^{2}-m-4\right) \text {, respectively, }
$$

where m is a constant.
a) Find the $21^{\text {st }}$ term of the series.

The sum of the first n terms of the series is denoted by S_{n}.
b) Show that S_{n} is always a square number.

Created by T. Madas

Question 76

$(* * *+)$
A length of rope is wrapped neatly around a circular pulley.
The length of the rope in the first coil (the nearest to the pulley) is 60 cm , and each successive coil of rope (outwards) is 3.5 cm longer than the previous one.

The outer coil has a length of 144 cm .

Show that total length of the rope is 25.5 metres.

Question 77 (***+)
Consider the terms of the sequences

$$
x_{n}=4 n-1 \quad \text { and } \quad y_{n}=5 n-4,
$$

where $n=1,2,3,4,5, \ldots$.

Determine the sum of the first 20 terms, common to both sequences.

4020

Created by T. Madas

Created by T. Madas

Question 78 (***+)
Consider the first few terms of the arithmetic progression

$$
(2 p+3),(4 p+5),(6 p+7),(8 p+9)
$$

where p is a non zero constant.

Find simplified expressions, in terms of p, for ...
a) \ldots the twentieth term of the progression
b) \ldots the sum of the first twenty terms of the progression.

$$
u_{20}=40 p+41, S_{20}=420 p+440
$$

Created by T. Madas

Question 79 (****)
The first two terms of an arithmetic progression are

$$
\log _{2} a^{2} \text { and } 2 \log _{2} a b, a>0, b>0
$$

Given further that $a b^{2}=8$, show clearly that the sum of the first 5 terms of the progression is 30 .

Question 80 (****)

The sum of the first eight terms of an arithmetic series is 124 .

The sum of its first twenty terms of is 910 .
The series has k terms.

Given the last term of the series is 193 find the value of k.

Created by T. Madas

Question 81 (****)
The first term of an arithmetic series is a and the common difference is d. The $25^{\text {th }}$ term the series is 100 .

The $5^{\text {th }}$ term the series is 8 times larger than the $35^{\text {th }}$ term the series.
a) Find the value of a and the value of d.
b) Determine how many terms of the series are positive.

The sum of the first n terms of the series is denoted by S_{n}.
c) Calculate the maximum value of S_{n}.

$$
a=268, d=-7,39 \mathrm{terms}, S_{\max }=5265
$$

Created by T. Madas

Question 82 (****)
Find the value of the constant p, so that

$$
\sum_{n=1}^{20}(25+n p)=80
$$

Created by T. Madas

Question 83 (*****)
The $n^{\text {th }}$ term of an arithmetic series is given by

$$
u_{n}=\frac{5}{2}(5 n+28)
$$

The $k^{\text {th }}$ term of the series is 370 .
a) Find the value of k.
b) Evaluate the sum

Created by T. Madas

Question 84 (****)
Find the value of x that satisfies the equation

Created by T. Madas

Question 85 (****) non calculator

A farmer has difficulty persuading strawberry pickers to work for the entire 40 day strawberry picking season. He devises a wage plan to make the pay of the workers more attractive the more days they work.

He pays $£ a$ on the first day, $£(a+d)$ on the second day, $£(a+2 d)$ on the third day, and so on, increasing the daily wages by $£ d$ every day.

A strawberry picker that worked for forty days got paid $£ 53.40$ on the last day and earned $£ 1668$ in total.
a) Show clearly that

$$
10(a+53.4)=834
$$

b) Calculate the wages that this strawberry picker received on the twentieth day.

Created by T. Madas

Question 86 (****)
Consider the multiples of seven between 1 and 1000 .
a) Show that the sum of the multiples of seven between 1 and 1000 is 71071
b) Hence find the sum of the multiples of fourteen between 1 and 1000 .
c) Use the answer of part (a) to find

$$
8+15+22+29+\ldots+995
$$

The fifth term of an arithmetic series is 5 and the sum of its first five terms is $\frac{125}{4}$.
a) Show that the common difference of the series is $-\frac{5}{8}$.

The $k^{\text {th }}$ term of the series is zero.
b) Find the value of k
c) Show that maximum sum of this series is $\frac{195}{4}$.

Created by T. Madas

Question 88 (****)

Tyler is repaying a loan over a period of n months in such a way so that his monthly repayments form an arithmetic series.

He repays $£ 350$ in the first month, $£ 340$ in the second month, $£ 330$ in the third month and so on until the full loan is repaid.
a) Assuming it takes more than 12 months to repay his loan find
i. ... the amount he pays on the twelfth month.
ii. ... the total amount of his repayments in the first twelve months.

Tyler pays back his loan of $£ 6200$ after n months.
b) Show clearly that ...
i. $\quad \ldots n^{2}-71 n+1240=0$
ii. ... $n=40$ is one of the solutions of this equation and find the other.
c) Determine, with a valid reason, which of the two values of n represents the actual number of months it takes Tyler to repay his loan.

Created by T. Madas

Question 89 (****)
An oil company is drilling for oil.

It costs $£ 5000$ to drill for the first 10 metres into the ground.

For the next 10 metres it costs an extra $£ 1200$ compared with the first 10 metres, thus it costs $£ 6200$. Each successive 10 metres drilled into the ground costs an extra $£ 1200$, compared with the cost of drilling the previous 10 metres.
a) Find the cost of drilling 200 metres into the ground.

Created by T. Madas

Question 90 (****)

The sum, S_{n}, of the first n terms of an arithmetic series is given by

$$
S_{n}=3 n^{2}+7 n
$$

Find the first term and the common difference of the series.
 $a=10, d=6$

Question 91 (****)
In the TV game "Extra Fifty" contestants answer a series of questions.

Contestants win $£ 50$ for answering the $1^{\text {st }}$ question correctly, $£ 100$ for answering the $2^{\text {nd }}$ question correctly, $£ 150$ for answering the $3^{\text {rd }}$ question correctly, and so on.

Once an incorrect answer is given the game ends but the contestant keeps the winnings up to that point.

A contestant wins $£ 15000$.
Determine, showing all parts in the calculation, the number of the questions he or she answered correctly.

Created by T. Madas

Question 92 (****)
A company agrees to pay a loan back in monthly instalments, starting with $£ 1500$.

The agreement states that the company will pay back $£(1500-x)$ in the $2^{\text {nd }}$ month, $£(1500-2 x)$ in the $3^{\text {rd }}$ month,
$£(1500-3 x)$ in the $4^{\text {th }}$ month,
and so on, with the repayments decreasing by $£ x$ every month.
a) Given that in the first year the company repaid a total of $£ 15360$, find the value of x.
b) Show that the total money T_{n}, repaid in n months, is given by

$$
T_{n}=20 n(76-n)
$$

The total value of the loan was $£ 26000$.
c) Show that the equation

$$
T_{n}=26000
$$

is satisfied by two different values of n.
d) Determine, with a valid reason, which of the two values of n represents the actual number of months it takes for the company to repay the loan.

Created by T. Madas

Question 93 (****)
A machine cuts a circular sheet of plastic into exactly n sectors, $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$.

The angle that each sector subtends at the centre of the circle forms an arithmetic series.

The smallest sector and the largest sector subtend angles at the centre of 7.25° and 32.75°, respectively.

Find the value of n.

Use an algebraic method to show that the sum of all the integers between 60 and 220 which are divisible by 8 , is 2800 .

Created by T. Madas

Question 95 (****)
A company offers two pay schemes for its employees.

Scheme One

- Annual salary in Year 1 is $£ X$.
- Annual salary increases every subsequent year by $£(2 Y)$, forming an arithmetic series.

Scheme Two

- Annual salary in Year 1 is $£(X+2000)$.
- Annual salary increases every subsequent year by $£ Y$, forming an arithmetic series.
a) Show that the total salary received by an employee under Scheme One, over a nine year period is

$$
9(X+8 Y)
$$

After nine years, the total salary received by an employee under Scheme One is $£ 3600$ larger than the total salary received by an employee under Scheme Two.
b) Show clearly that

$$
Y=600 .
$$

c) Given further that an employee under the Scheme One earns $£ 36000$ in the eleventh year of his employment, determine the value of X.

Question 96 (****)
An arithmetic series has first term a, last term L and common difference d.
a) Show that the sum of the first n terms of the series is given by

$$
\frac{1}{2}(L+a)\left(\frac{L-a}{d}+1\right)
$$

b) Hence, or otherwise, find the sum of all the multiples of 11 between 549 and 1101.

Question 97 (****)

$$
100+101+102+\ldots+200
$$

a) Find the value of the above sum.
b) Hence, or otherwise, determine the sum of all the integers between 500 and 1000 , inclusive, which are divisible by 5 .

Created by T Madas

Question 98 (****)
Consider the arithmetic progression

$$
t+2 t+3 t+4 t+\ldots+50
$$

where t is a factor of 50 .

Show clearly that the sum of the terms of this progression is

Created by TMadas

Question 99 (****)
The second term of an arithmetic progression is 49 and the fifth term is 67 .
a) Determine the value of the twentieth term of the progression.

The $k^{\text {th }}$ term of the progression is greater than 500 .
b) Find the least value of k.

A different arithmetic progression has first term -17 and its common difference is 10 .
c) Given that the sum of the first n terms of these two progressions are equal, determine the value of n.

Created by T Madas

Question 100
(****)
The second term of an arithmetic progression is $2 k$ and the sum of its first six terms is $11 k-2$, where k is a constant.
a) Show clearly that ...
i. ... the first term of the progression is $\frac{1}{9}(19 k+2)$.
ii. ... the common difference of the progression is $-\frac{1}{9}(k+2)$.

The eleventh term of the progression is 5 .
b) Find the value of k.
c) Calculate the sum of the first 56 terms of the progression.

Created by T Madas

Question 101 (****)
A sequence is defined as

$$
u_{r+1}=u_{r}-3, u_{1}=117, n \geq 1
$$

Solve the equation

Question 102 (****+)
Ladan is repaying an interest free loan of $£ 6200$ over a period of n months, in such a way so that her monthly repayments form an arithmetic series.

She repays $£ 350$ in the first month, $£ 340$ in the second month, $£ 330$ in the third month and so on until the full loan is repaid.

Determine, showing a full algebraic method, the value of n.
\square , $n=31$

Created by T Madas

Question 103
(****+)
It is given that the angles $\theta, \frac{\pi}{4}$ and φ, in that order, are in arithmetic progression.

Show that

$$
(\sin \theta-\sin \varphi)^{2}+(\cos \theta+\cos \varphi)^{2}=k
$$

\square , $k=2$

IF IN ARTTHMETLC PBGRESEION, in THE ORDER GNN
$\rightarrow \frac{\pi}{4}-\theta=\phi-\frac{\pi}{4}$
$\Rightarrow \phi+\theta=\frac{\pi}{2}$
Now we tince
$(\sin \theta-\sin \phi)^{2}+(\cos \theta+\cos \phi)^{2}$
$=\sin ^{2} \theta-2 \sin \theta \sin \phi+\sin ^{2} \phi+\cos ^{2} \theta+2 \cos \theta \cos \phi+\cos ^{2} \phi$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)+2[\cos \theta \cos \phi-\sin \theta \sin \phi]$
$=2+2[\cos \theta \cos \phi-\sin \theta \sin \phi]$
$=2+2[\cos (\theta+\phi)]$
$=2+2 \cos \frac{\pi}{2}$
$=2$

Created by T Madas

Question 104 (****+)
The first four terms of an arithmetic series are

$$
2,(2 b+3 c),(b-3 c+1) \text { and }(4 b+5 c),
$$

respectively, where b and c are a constants.

Show that the sum of the first thirty terms of the series is 1365 .

Created by T Madas

Question 105 (****+)
The common difference of an arithmetic series is denoted by d and the sum of its first n terms is denoted by S_{n}.

Show clearly that

$$
d=S_{n+2}-2 S_{n+1}+S_{n}
$$

\square , proof

$\oint_{a}=\frac{n}{2}(2 a+n d-d)=\frac{n}{2}(a+n d)-\frac{1}{2} n d$
$\hat{\lambda}_{4+1}^{\prime}=\frac{n}{2}(2 a+n d)+\frac{1}{2}(a+n d)=\frac{n}{2}(2 a+n d)+a+\frac{1}{2} n d$
$S_{n+2}=\frac{n}{2}(2 a+n d+d)+(2 a+n d+d)=\frac{n}{2}(2 a+n d)+\frac{1}{5} n d+2 a+n d+d$
$=\frac{n}{2}(2 a+n d)+2 a+\frac{3}{2} n d+d$
Ginatay Tionnac vp
$S_{\mathrm{S}_{42}-2}-2 \mathrm{~S}_{\mathrm{sm}}+S_{S_{4}}^{\prime}=$
$\left.\frac{4}{2}(3 a+y d)+2 a\right)+\frac{3}{2} n d+d$
$-n(2 a+n d)-\sqrt{2 a}-n d$
$\frac{n}{2}(20+n d)-y_{2} n d$

Created by T Madas

Question 106
The sum of the first 25 terms of an arithmetic series is 1050 and its $25^{\text {th }}$ term is 72 .
a) Find the first term and the common difference of the series.

The $n^{\text {th }}$ term of the series is denoted by u_{n}.
b) Given further that

$$
117\left[\sum_{n=1}^{25} u_{n}-\sum_{n=1}^{k} u_{n}\right]=233 \sum_{n=1}^{k} u_{n}
$$

determine the value of k.
\square , $a=12, d=2.5, k=13$

Question 107 (****+)
The sum, S_{n}, of the first n terms of an arithmetic series is given by

$$
S_{n}=2 n(4 n-7)
$$

Find the fifth term of the series.
\square

$)^{3}$
?

$S_{4}=2 n(4 n-7) \quad n \in \mathbb{N}$
HFTH TECH SATISFIES
$u_{3}=S_{5}-S_{4}$

Question 108 (****+)
A company arranges to pay a debt of $£ 360,000$ by 40 monthly instalments.

These monthly instalments form an arithmetic series.

After 30 of these instalments were paid, the company declared themselves bankrupt leaving one third of their debt unpaid.

Find the value of the first instalment.

Created by T Madas

Created by T Madas

Question 109 (****+)

A gym has 125 members and in order to meet its outgoings it needs 600 members.

A Public Relations company is hired to re-launch the gym and increase its membership thereafter, using a variety of marketing strategies.

A preliminary model for the recruitment of new members is as follows.

It is expected that 10 new members will join in the week following the gym's relaunch, 12 new members in the second week, 14 in the third week and so on with 2 new members joining the gym in each subsequent week.
a) Find according to this preliminary model ...
i. ... the number of the new members that will join in the $12^{\text {th }}$ week.
ii. ... the total number of members after 12 weeks.

The model is refined to allow for the gym losing members at the constant rate of 3 members per week. The gym reaches the desired target of 600 members in N weeks.
b) Determine the value of N.

Question 110 (****+)
Five numbers are consecutive terms of an arithmetic progression.

The arithmetic mean of these numbers is 7 , while the arithmetic mean of the squares of these numbers is 67 .

Determine these five numbers.

Created by T Madas

Question 111 (****+)
The $1^{\text {st }}$ term of an arithmetic series is $3 x$, the $10^{\text {th }}$ term is 7 and the $14^{\text {tn }}$ term is x.
a) Show clearly that $x=\frac{13}{3}$

The sum of the first k terms of the series is 125 .
b) Find the possible values of k.

$$
d=-\frac{2}{13} x, k=15,25
$$

Created by T Madas

Question 112 (****+)
A pension broker gets paid $£ 15$ commission per week for every pension scheme he sells. Each week he sells a new pension scheme so that ...

In the $1^{\text {st }}$ week he gets paid $£ 15$ commission for the pension he just sold.

In the $2^{\text {nd }}$ week he gets paid $£ 30, £ 15$ for the pension sold in the $1^{\text {st }}$ week plus $£ 15$ for pension he sold in the $2^{\text {nd }}$ week.

In the $3^{\text {rd }}$ week he gets paid $£ 45, £ 15$ for the pension sold in the $1^{\text {st }}$ week plus $£ 15$ for pension he sold in the $2^{\text {nd }}$ week, plus $£ 15$ for the pension he sold in the $3^{\text {rd }}$ week, and so on.
a) Find the commission he gets paid on the last week of the year.
b) Find his annual earnings after one year in this job.

His commission increases to $£ 20$ for new pension schemes sold during the $2^{\text {nd }}$ year but decreases to $£ 10$ for the schemes he sold in the $1^{\text {st }}$ year.

The broker continues to sell at the rate of one new pension scheme every week.
c) Find his annual earnings in the $2^{\text {nd }}$ year.
, £780, £20670, £54600

Created by T Madas

Question 113 (****+)

The sum, S_{n}, of the first n terms of an arithmetic series is given by

$$
S_{n}=5 n^{2}+3 n
$$

a) Find a simplified expression for S_{n-1}.
b) Hence, or otherwise, find a simplified expression for the $n^{\text {th }}$ term of the series, denoted by u_{n}.

Question 114 (****+)

The sum, S_{n}, of the first n terms of an arithmetic series is given by

$$
S_{n}=n^{2}+k n,
$$

where k is a non zero constant.

Given that the $5^{\text {th }}$ term of the series is 11 , find the $17^{\text {th }}$ term of the series.

Question 115 (****+)
An arithmetic progression has first term -10 and common difference 4 . The $n^{\text {th }}$ term of the progression is denoted by u_{n}.

Determine the value of k given that

Question 116 (****+)
The $r^{\text {th }}$ term of an arithmetic progression is given by $u_{r}=120-3 r$.

Determine the value of N given that

Created by T Madas

Question 117 (****+)
Find in simplified form, in terms of n, the value of

Created by T Madas

Question 118 (*****)
An arithmetic progression has first term 11.
The sum of its first 20 terms is 1360 , and the sum of its last 20 terms is 4720 .

Determine the number of terms in the progression.

Created by T Madas

Question 119
(*****)
The $k^{\text {th }}$ of an arithmetic progression is 849 , where k is a positive integer.

The $(k+p)^{\text {th }}$ term and the $(k+2 p+1)^{\text {th }}$ term of the same arithmetic progression are 873 and 905 respectively, where p is a positive integer.

Find the value of the $(k+20)^{\text {th }}$ term of the progression.
\square

Created by T Madas

Question 120 (*****)
An arithmetic progression has common difference 5 .

The sum of its first 20 terms is 610 , and the sum of its last 20 terms is 7410 .

Determine the number of terms in the progression.

Question 121 (*****)
Show by a suitable algebraic method that

$$
60^{2}-59^{2}+58^{2}-57^{2}+\ldots+22^{2}-21^{2}=1620
$$

\square , proof
\qquad $=\sum_{i=1}^{20}\left[4 r^{2}-(x-1)^{2}\right]-\sum_{r=1}^{n}\left[4 r^{2}-(x-1)\right.$
$=\sum_{t=1}^{2}\left[(4 r-1)-\sum_{r=1}^{\infty}(4-1)\right.$
GSING UNEARERY OF SICMAT OPREATOR $=4 \sum_{r=1}^{30} r-\sum_{r=1}^{30} 1-4 \sum_{r=1}^{b} r+\sum_{r=1}^{10} 1$
\qquad
$\left.=4 \times \frac{1}{2} \times 30 \times 31-30-4 \times \frac{1}{2} \times 10 \times 1 \right\rvert\,+10$ $=2 \times 30 \times 31-30-2 \times 10 \times 11+10$

- Mithos
$=\left[60^{2}+58^{2}+56^{2}+\cdots+22^{2}\right]-\left[57^{2}+57^{2}+55^{2}+\cdots+21^{2}\right]$ 1860
$=1620$ $=1620$

Question 122 ($* * * * * *)$ non calculator
The sum of the first k terms of an arithmetic progression is 110.
The sum of the first $2 k$ terms of the same arithmetic progression is 946 .
Given further that $k \neq 1$, determine the first term and the common difference of the arithmetic progression.

Question 123 ($* * * * * *)$ non calculator
An arithmetic series has an even number of terms.

The sum of its odd numbered terms, $u_{1}+u_{3}+u_{5}+u_{7}+\ldots$, is 752 .

The sum of its even numbered terms, $u_{2}+u_{4}+u_{6}+u_{8}+\ldots$, is 800 .

Given further that the difference between the last and the first term of the series is 93 , use an algebraic method to find the number of terms of the series.

Question 124 (*****)
By considering a suitable arithmetic series, evaluate

$$
99^{2}-97^{2}+95^{2}-93^{2}+\ldots+3^{2}-1^{2}
$$

Question 125 (*****)
The sum of the first n terms of an arithmetic series with first term a and common difference d, is denoted by S_{n}.

Simplify fully
\square , $S_{n}-2 S_{n+1}+S_{n+2}=d$

$\$_{4}=\frac{n}{2}(2 a+(a-1) d)=\frac{n}{2}(2 a+n d-d)$ $S_{n+1}=\frac{n+1}{2}[2 a+n d]=\left(\frac{n}{2}+\frac{1}{2}\right)(2 a+n d)$ $\left.S_{4+2}=\frac{n+2}{2}[2 a+(n+1)]\right]=\left(\frac{n}{2}+1\right)(2 a+n+d)$
$S_{4}=\frac{n}{2}(2 a+n d)+\frac{n}{2}(-d)$
$\tilde{S}_{+1}=\frac{n}{2}(2 a+n d)+\frac{1}{2}(2 a+n d)$
$S_{n+2}=\frac{n}{2}(2 a+n d)+\frac{n d}{2}+2 a+n d+d$
\qquad
$=-\frac{n t}{2}-2 x-x^{2}+\frac{n+x}{2}+2 x+4 n+d$

Actres and
$S_{m+2}-S_{m+1}=u_{m+2}=a+C_{n+1)} d=a+n d+d$
$S_{n+1}-S_{n}=u_{n+1}=a+n d=a+n d$

$s_{4+2}-2 s_{n+1}+s_{4}=d$

Created by T Madas

Created by T Madas

Question 126
The $r^{\text {th }}$ term of an arithmetic progression is denoted by u_{r} and satisfies

$$
u_{r}=4 r-7
$$

Solve the simultaneous equations

$$
\begin{aligned}
& \sum_{r=K+1}^{N} u_{r}-\sum_{r=1}^{K} u_{r}=400 \\
& u_{N}-u_{K}=40
\end{aligned}
$$

\square $, N=20, K=10$
\square

Created by T Madas

Question 127 (*****)
The coefficients of x^{n}, x^{n+1} and x^{n+2} in the binomial expansion of $(1+x)^{23}$ are in arithmetic progression.

Determine the possible values of n.

Created by T Madas

Question 128 (*****)
The sum of the first n terms of an arithmetic series is $m, m \in \mathbb{N}$.

The sum of the first m terms of the same arithmetic series is n.

