GEOMETRIC MENSURATION IN 3 DIMENSIONS

Created by T. Madas

Question 1 (**)

A square pyramid $A B C D E$ stands on level horizontal ground.

The vertex of the pyramid is at E. The points A, B, C and D are the corners of a square of side 12 cm , whose diagonals intersect at the point O.

Each of the sloping edges of the pyramid has length 15 cm .
a) Calculate the volume of the pyramid.
b) Calculate the total surface area of the pyramid.

$$
V=144 \sqrt{17} \approx 594 \mathrm{~cm}^{3}, A=144+72 \sqrt{21} \approx 474 \mathrm{~cm}^{2}
$$

Created by T. Madas

Question 2 (***)

A square pyramid $A B C D E$ stands on level horizontal ground. The points A, B, C and D are the corners of a square of side 12 cm , whose diagonals intersect at the point O. The vertex of the pyramid is at E. Each of the sloping edges of the pyramid makes an angle of 30° with the ground.
a) Determine the height of the pyramid, $O E$.
b) Calculate the angle the face $E B C$, makes with the ground.

The point F lies on $A D$ so that $A F: F D=1: 3$.
c) Calculate the angle $E F O$.

$$
|O E|=2 \sqrt{6} \approx 4.90 \mathrm{~cm}, \approx 39.2^{\circ}, \measuredangle E F O \approx 36.1^{\circ}
$$

Created by T. Madas

Question 3 (***)

The figure above shows a cuboid $A B C D W X Y Z$, standing on level horizontal ground. The lengths of $A B, B C$ and $C Y$ are $15 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm , respectively.
a) Find the length of $A Y$.
b) Calculate the angle $A Y$ makes with the ground.
c) Determine the area of the triangle $A B Y$.

The point M is the midpoint of $A B$ and the point N lies on $A Y$.
d) Calculate the length of $M N$, given further that $M N$ is perpendicular to $A Y$.

$$
|A Y|=5 \sqrt{13} \approx 18.0 \mathrm{~cm}, \approx 19.4^{\circ}, \quad \text { area }=75 \mathrm{~cm}^{2}, \quad \approx 4.16 \mathrm{~cm}
$$

Created by T. Madas

Created by T. Madas

Question 5 (***)

A pyramid $V A B C D$ stands on level horizontal ground. The points A, B, C and D are the corners of a rectangle, where $|A D|=|B C|=24 \mathrm{~cm}$ and $|A B|=|C D|=18 \mathrm{~cm}$. The vertex of the pyramid is at V and the diagonals intersect at the point O.

Each of the four sloping edges of the pyramid is 17 cm .
a) Determine the height of the pyramid, $V O$.
b) Calculate the angle the face $V A B$, makes with the base of the pyramid.
c) Calculate the exact area of the face $V A B$.

$$
|V O|=8 \mathrm{~cm}, \approx 33.7^{\circ}, \text { area }=36 \sqrt{13} \mathrm{~cm}^{2}
$$

Created by T. Madas

Question 6 (***)

The figure above shows a wooden pole structure $A B C D E F$, modelling a tent, standing on level horizontal ground. The base of the tent $A B C D$ is a rectangle. The pole $E F$ is horizontal.

The following measurements are given in metres.

$$
|A B|=|C D|=18, \quad|B C|=|D A|=8, \quad|E F|=14, \quad|E A|=|E D|=|F B|=|F C|=5 .
$$

a) Calculate the angle $F B C$.
b) Find the height of the pole $E F$, from the ground.
c) Calculate the angle the face $B F C$ makes with the ground.
d) Determine the angle the pole $B F$ makes with the ground.

$$
\approx 36.9^{\circ},|F N|=\sqrt{5} \approx 2.24 \mathrm{~m}, \approx 48.2^{\circ}, \approx 26.6^{\circ}
$$

Created by T. Madas

Question 7 (****)

A pyramid $P Q R S$ has a triangular horizontal base $P Q R$, where $|P Q|=|P R|=8 \mathrm{~m}$ and $|R Q|=12 \mathrm{~m}$. The vertex of the pyramid S lies directly above the level of $P Q R$ so that $|S Q|=|S R|=10 \mathrm{~m}$ and $|S P|=8 \mathrm{~m}$.
a) Show that the shortest distance of S from the base $P Q R$ is $\sqrt{57} \mathrm{~m}$.
b) Calculate to the nearest degree the acute angle between ...
i. ... the plane $S Q R$ and the plane $P Q R$.
ii. ... the edge $S Q$ and the plane $P Q R$.
c) Determine as an exact surd the shortest distance of P from the plane $S Q R$.
$71^{\circ}, 49^{\circ}, d=\frac{1}{2} \sqrt{399}$

