INTEGRATION INTRODUCTION

STANDARD
 INTEGRATION

Question 1
Integrate the following expressions with respect to x.
a) $\int 2 \sqrt{x}-\frac{1}{x^{2}} d x$

$$
\frac{4}{3} x^{\frac{3}{2}}+\frac{1}{x}+C
$$

b) $\int 4 \sqrt{x}-2 \sqrt{x^{5}} d x$

$$
\frac{8}{3} x^{\frac{3}{2}}-\frac{4}{7} x^{\frac{7}{2}}+C
$$

c) $\int \frac{3}{4 \sqrt{x}}+\frac{1}{x^{3}} d x$

$$
\frac{3}{2} \sqrt{x}-\frac{1}{2 x^{2}}+C
$$

d) $\int 2 x \sqrt{x}-\frac{4}{3 x^{2}} d x$

$$
\frac{4}{5} x^{\frac{5}{2}}+\frac{4}{3} x^{-1}+C
$$

e) $\int 2 \sqrt{x}+\frac{1}{2 \sqrt{x}} d x$

$$
\frac{4}{3} x^{\frac{3}{2}}+\sqrt{x}+C
$$

Question 2
Integrate the following expressions with respect to x.
a) $\int \frac{4}{x^{3}}+12 x^{\frac{2}{3}} d x$
$-2 x^{-2}+\frac{36}{5} x^{\frac{5}{3}}+C$
b) $\int 14 x^{\frac{3}{4}}-\frac{3}{2 x^{4}} d x$

$$
8 x^{\frac{7}{4}}+\frac{1}{2} x^{-3}+C
$$

c) $\int 4 x-\frac{6}{x^{3}}+4 \sqrt{x}-1 d x$

$$
2 x^{2}-3 x^{-2}+\frac{8}{3} x^{\frac{3}{2}}-x+C
$$

d) $\int \sqrt[3]{x^{2}}-\frac{4}{x^{2}} d x$

$$
\frac{3}{5} x^{\frac{5}{3}}+\frac{4}{x}+C
$$

e) $\int 6 \sqrt{x^{3}}-\frac{1}{2 x^{6}} d x$

$$
\frac{12}{5} x^{\frac{5}{2}}+\frac{1}{10} x^{-5}+C
$$

Question 3
Integrate the following expressions with respect to x.
a) $\int \frac{2+5 x}{3 x^{3}} d x$

$$
-\frac{1}{3 x^{2}}-\frac{5}{3 x}+C
$$

b) $\int \frac{2 x^{2}+x}{2 \sqrt{x}} d x$

$$
\frac{2}{5} x^{\frac{5}{2}}+\frac{1}{3} x^{\frac{3}{2}}+C
$$

c) $\int \frac{2 x+\sqrt{x}}{3 x^{3}} d x$
$-\frac{2}{3} x^{-1}-\frac{2}{9} x^{-\frac{3}{2}}+C$
d) $\int \frac{\sqrt{x}(4-x)}{2 x^{2}} d x$
$-\sqrt{x}-\frac{4}{\sqrt{x}}+C$
e) $\int \frac{(x+1)(2 x-1)}{2 x^{5}} d x$?

$$
-\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}+\frac{1}{8 x^{4}}+C
$$

Question 4
Integrate the following expressions with respect to x.
a) $\int \frac{x+x^{2}}{\sqrt{x}} d x$
$\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{5} x^{\frac{5}{2}}+C$
b) $\int \frac{4 x^{3}+\sqrt{x}}{2 x^{2}} d x$
$x^{2}-x^{-\frac{1}{2}}+C$
c) $\int \frac{x^{2}+2}{x^{4}} d x$
$-x^{-1}-\frac{2}{3} x^{-3}+C$
d) $\int \frac{1-\sqrt{x}}{4 x^{3}} d x$
$-\frac{1}{8} x^{-2}+\frac{1}{6} x^{-\frac{3}{2}}+C$
e) $\int \frac{\sqrt[3]{x^{5}}-2 x \sqrt{x}}{3 x} d x$
$\frac{1}{5} x^{\frac{5}{3}}-\frac{4}{9} x^{\frac{3}{2}}+C$

Question 5
Integrate the following expressions with respect to x.
a) $\int x\left(\sqrt{x}+x^{-4}\right) d x$

$$
\frac{2}{5} x^{\frac{5}{2}}-\frac{1}{2} x^{-2}+C
$$

b) $\int \frac{1}{\sqrt{x}}\left(\frac{2}{x}-\frac{3}{4 x^{2}}\right) d x$
$-4 x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}+C$
c) $\int 4 x^{\frac{7}{2}}\left(\frac{6}{x^{2}}-\frac{5}{\sqrt{x}}\right) d x$
$\frac{48}{5} x^{\frac{5}{2}}-5 x^{4}+C$
d) $\int 2 \sqrt{x}\left(\frac{5}{x}+x^{2}\right) d x$
$20 x^{\frac{1}{2}}+\frac{4}{7} x^{\frac{7}{2}}+C$
e) $\int \frac{2}{x^{\frac{3}{2}}}\left(\frac{7 x^{3}-5 x^{2}}{4 x}\right) d x$
$\frac{7}{3} x^{\frac{3}{2}}-5 x^{\frac{1}{2}}+C$

Question 6
Integrate the following expressions with respect to x.
a) $\int \frac{(2 x-1)(2 x-3)}{2 x^{\frac{3}{2}}} d x$ \square
$\frac{4}{3} x^{\frac{3}{2}}-8 x^{\frac{1}{2}}-3 x^{-\frac{1}{2}}+C$
b) $\int \frac{(1+2 \sqrt{x})^{2}}{2 x^{3}} d x$
$-\frac{1}{4} x^{-2}-\frac{4}{3} x^{-\frac{3}{2}}-2 x^{-1}+C$
c) $\int \frac{2 x^{3}+\sqrt{x^{3}}}{\sqrt{x}} d x$
$\frac{4}{7} x^{\frac{7}{2}}+\frac{1}{2} x^{2}+C$
d) $\int \frac{(1+\sqrt{x})(3-\sqrt{x})}{x^{4}} d x$
$-x^{-3}-\frac{4}{5} x^{-\frac{5}{2}}+\frac{1}{2} x^{-2}+C$
е) $\int \frac{\left(2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\left(x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}\right)}{3 x^{5}} d x \quad \sqrt{-\frac{1}{3} x^{-2}+\frac{1}{3} x^{-4}-\frac{1}{9} x^{-3}+\frac{2}{15} x^{-5}+C}$
\square

Question 7
Evaluate the following integrals.
a) $\int_{1}^{4} \frac{2}{\sqrt{x}} d x$
b) $\int_{1}^{2} 4 x^{3}+5+\frac{2}{x^{2}} d x$
c) $\int_{1}^{2} 3 x^{2}-1-\frac{4}{x^{2}} d x$
d) $\int_{1}^{3} \frac{x}{3}+\frac{1}{x^{2}} d x$
e) $\int_{0}^{2}(2 x-1)(3 x-4) d x$

Question 8
Evaluate the following integrals.
a) $\int_{1}^{3} x^{2}+\frac{14}{x^{2}} d x$
b) $\int_{1}^{2} x^{4}+3-\frac{2}{5 x^{2}} d x$
c) $\int_{1}^{5} 2 x-\frac{15}{x^{2}} d x$
d) $\int_{1}^{4} \frac{x^{3}+2 \sqrt{x}}{x} d x$
e) $\int_{1}^{4} \sqrt{x}(5 x-3) d x$

48

Question 9
Evaluate the following integrals.
a) $\int_{1}^{2} \frac{2 x^{5}+3}{x^{2}} d x$
b) $\int_{1}^{3} \frac{2 x^{5}-21}{x^{3}} d x$
c) $\int_{1}^{9}(1+3 \sqrt{x})^{2} d x$
d) $\int_{0}^{6}\left(x^{\frac{1}{2}}+x^{\frac{3}{2}}\right)^{2} d x$

472

486
e) $\int_{0}^{4}\left(x^{\frac{1}{2}}-3\right)^{2} d x$

12

Question 10
Evaluate the following integrals.
a) $\int_{\frac{1}{2}}^{1} \frac{4-x}{2 x^{3}} d x$

b) $\int_{1}^{5} 3 \sqrt{x}-\frac{1}{\sqrt{x}} d x$
c) $\int_{0}^{36}(2+\sqrt{x})^{2} d x$
d) $\int_{0}^{1} \frac{15(2 x+1)^{2}}{2 \sqrt{x}} d x$
e) $\int_{1}^{2}\left(x^{\frac{3}{2}}-8 x^{-\frac{3}{2}}\right)^{2} d x$ $\frac{47}{4}$

VARIOUS

INTEGRATION

QUESTIONS

Created by T. Madas

Question 1

Find an expression for

$$
y=2 x^{2}-\frac{6}{x^{3}}+8 x^{3}, x \neq 0 .
$$

$$
\frac{2}{3} x^{3}+3 x^{-2}+2 x^{4}+C
$$

$\int y d x=\int x^{2}-6 x^{-3}+8 x^{3} d x=\frac{2}{3} x^{3}-\frac{6}{-2} x^{-2}+\frac{6}{4} x^{4}+c$ $=\frac{2}{3} x^{3}+3 x^{-2}+2 x^{4}+C$

Question 2

Find an expression for

$$
y=3 x^{2}-6 \sqrt{x}-\frac{1}{x^{2}}+4, x>0
$$

$$
4 x+x^{3}-4 x^{\frac{3}{2}}+x^{-1}+C
$$

\square

Created by T. Madas

Created by T. Madas

Question 3

$$
f(x)=6 x+9 \sqrt{x}-\frac{4}{x^{2}}, x>0 .
$$

Find an expression for

$$
\int f(x) d x
$$

Question 4
The point $P(1,3)$ lies on the curve with equation $y=f(x)$, whose gradient function is given by

$$
f(x)=2 x^{3}-2 x^{2}+3
$$

Created by T. Madas

Question 5
The point $P(3,-1)$ lies on the curve with equation $y=f(x)$, whose gradient function is given by

$$
f^{\prime}(x)=1-x^{2}, x \in \mathbb{R}
$$

Find an equation for $f(x)$.

Question 6
By showing clear workings, find the value of

Question 7
The curve C with equation $y=f(x)$ has gradient function

$$
\frac{d y}{d x}=9 x^{2}+\frac{7}{x^{2}}, x \neq 0 .
$$

The point $A(-1,-1)$ lies on C.

Find an equation for C.

$$
y=3 x^{3}-\frac{7}{x}-5
$$

Question 8

$$
y=x(6 x-5 \sqrt{x}), x \geq 0
$$

By showing all steps in the workings, find an expression for

$$
0, \int y d x .
$$

$$
2 x^{3}-2 x^{\frac{5}{2}}+C
$$

Question 9
The point $P(4,9)$ lies on the curve with equation $y=f(x)$, whose gradient function is given by

$$
f^{\prime}(x)=1+\frac{2}{\sqrt{x}}, x>0 \text {. }
$$

Find an equation for $f(x)$.

Created by T. Madas

Question 11

$$
f^{\prime}(x)=(3 x-1)^{2}
$$

Given that $f(3)=56$, find an expression for $f(x)$.

Question 12

The point $P(8,18)$ lies on the curve C, whose gradient function is given by

$$
\frac{d y}{d x}=8 \sqrt[3]{x}-10, x \geq 0 .
$$

Find an equation for C.

Created by T. Madas

Created by T. Madas

Question 13

$$
f(x)=\frac{5 \sqrt{x}\left(3 x^{2}-2\right)}{x}, x>0
$$

Show clearly that

$$
\int f(x) d x=P \sqrt{x}+Q x^{\frac{5}{2}}+C
$$

where P and Q are integers to be found, and C is an arbitrary constant.

$$
P=-20, Q=6
$$

Created by T. Madas

The figure above shows the cubic curve C which meets the coordinates axes at the origin O and at the point P.

The gradient function of C is given by

$$
f^{\prime}(x)=3 x^{2}-8 x+4
$$

a) Find an equation for C.
b) Determine the coordinates of P.

Created by T. Madas

Question 15
The point $P(-1,-1)$ lies on the curve C, whose gradient function is given by

$$
\frac{d y}{d x}=\frac{5 x^{3}-6}{x^{3}}, x \neq 0
$$

Find an equation for C,

$$
y=5 x+\frac{3}{x^{2}}+1
$$

Question 16
Show clearly that

$$
\int_{3}^{4} 3 \sqrt{x}-\frac{4}{\sqrt{x}} d x=k \sqrt{3}
$$

where k is an integer to be found.

Created by T. Madas

Question 17
$f(x)=2 x^{2}+3 x+k$, where k is a constant.

Find the value of k, given that

Created by T. Madas

Question 18
The cubic equation C passes through the origin O and its gradient function is

$$
\frac{d y}{d x}=6 x^{2}-6 x-20 .
$$

a) Show clearly that the equation of C can be written as

$$
y=x(2 x+a)(x+b),
$$

where a and b are constants.
b) Sketch the graph of C, indicating clearly the coordinates of the points where the graph meets the coordinate axes.

Created by T. Madas

Question 19
The gradient of every point on the curve C, with equation $y=f(x)$, satisfies

$$
f^{\prime}(x)=3 x^{2}-4 x+k
$$

where k is a constant.

The points $P(0,-3)$ and $Q(2,7)$ both lie on C.

Find an equation for C.

Created by T. Madas

The figure above shows the curve C which meets the coordinates axes at the points P, Q and R.

Given the gradient function of C is given by

$$
f^{\prime}(x)=3-4 x
$$

and that $f(1)=2 f(2)$, determine the coordinates of P, Q and R.

Created by T. Madas

Question 21

The curve C with equation $y=f(x)$ satisfies

$$
f^{\prime}(x)=-\frac{4}{x^{2}}, x \neq 0
$$

a) Given that $f(1)=2$, find an expression for $f(x)$.
b) Sketch the graph of $f(x)$, indicating clearly the asymptotes of the curve and the coordinates of any points where the curve crosses the coordinate axes.

$$
f(x)=\frac{4}{x}-2,(2,0)
$$

Question 22

$$
f(x)=\left(x^{\frac{1}{2}}-4\right)\left(x^{-\frac{1}{2}}-3\right), x>0
$$

Show clearly that

$$
\int f(x) d x=P \sqrt{x}+Q x+R x^{\frac{3}{2}}+C
$$

where P, Q and R are integers to be found, and C is an arbitrary constant.

$$
P=-8, Q=13, \quad R=-2
$$

Question 23

$$
f^{\prime}(x)=5-\frac{8}{x^{2}}, x \neq 0
$$

Find the value of $f(4)$, given that $2 f(1)=4+f(2)$.

$$
f(4)=14
$$

\square

$$
\begin{gathered}
f(x)=\frac{\left(3 x^{2}-2\right)^{2}}{x^{2}}, x \neq \\
\int_{1}^{2} f(x) d x=11
\end{gathered}
$$

\square

Created by T. Madas

Question 25

giving the answer in the form $p+q \sqrt{3}$, where p and q are integers.

$$
\int_{1}^{2}(3+2 \sqrt{x})^{2} d x
$$

giving the answer in the form $a+b \sqrt{2}$, where a and b are integers.

Question 28
A cubic curve passes through the points $P(-1,-9)$ and $Q(2,6)$ and its gradient function is given by

$$
\frac{d y}{d x}=3 x^{2}+k x+7, \text { where } k \text { is a constant. }
$$

Find an equation for this cubic curve.

Created by T. Madas

The figure above shows a curve with equation $y=f(x)$ which meets the x axis at the origin O and at the point P.

The gradient function of the curve is given by

$$
f^{\prime}(x)=\frac{12 x-1}{\sqrt{x}}, x>0
$$

a) Find an equation of the curve.
b) Determine the coordinates of P.

$$
f(x)=8 x^{\frac{3}{2}}-2 \sqrt{x}, P\left(\frac{1}{4}, 0\right)
$$

(a) $\begin{aligned} & \text { AT } P_{1} x=-1 \\ & f^{\prime}(-1)=\frac{8-1)^{3}-1}{(1)^{2}}=-\frac{-x-1}{1}=-9 \\ & \therefore T \pi n \in g)^{\prime} \\ & y-y_{0}=m\left(x-x_{0}\right) \\ & y-0=-9(x+1) \\ & y=-9 x-9 \end{aligned}$ (b) $\begin{aligned} & f^{\prime}(x)=\frac{8 x^{3}-1}{x^{2}} \\ & f^{\prime}(x)=\frac{8 x^{2}}{x^{2}}-\frac{1}{x^{2}} \\ & f^{\prime}(x)=8 x-x^{-2} \\ & \therefore f^{\prime \prime}(x)=8+2 x^{-3} \\ & a f^{\prime}(x)=8+\frac{2}{x^{3}} \end{aligned}$	(c) (I) If $f^{\prime}(x)=8 x-x^{-2}$ $\begin{aligned} & f(x)=\int 8 x-x^{-2} d x \\ & f(x)=4 x^{2}+x^{-1}+c \\ & f(x)=4 x^{2}+\frac{1}{x}+C \end{aligned}$ *FFYy Consinton) $(-1,0)$ $\begin{aligned} & 0=4(-1)^{2}+\frac{1}{2}+c \\ & 0=-4-1+c \\ & c=-3 \end{aligned}$ $\therefore f(x)=4 x^{2}+\frac{1}{x}-3$ (ㅍ) $y=0$ $\begin{aligned} 4 x^{2}+\frac{1}{x}-3 & =0 \\ 4 x^{3}+1-3 x & =0 \\ 4 x^{3}-3 x+1 & =0 \\ (x+1)\left(4 x^{2}+1 x+1\right) & =0 \end{aligned}$ $\text { Ponf } P$ $(x+1)\left(4 x^{2}-4 x+1\right)=0$ $(x+1)(2 x-1)^{2}=0 \quad \therefore Q\left(\frac{1}{4} 10\right)$

Created by T. Madas

Question 30

The figure above shows the graph of a cubic curve, which touches the x axis at the point $Q(1,0)$
a) Determine an equation for the cubic curve, given its gradient is given by

$$
\frac{d y}{d x}=3 x^{2}-12 x+9
$$

The cubic curve crosses the x axis and the y axis at the points R and P, respectively.
b) Determine the coordinates ...
i. \ldots of the point P.
ii. ... of the point R.

Created by T. Madas

Question 31

$$
\sqrt{y}=2 \sqrt[3]{x}-3, x>0
$$

Show clearly that

$$
\int_{1}^{8} y d x=\frac{12}{5}
$$

Created by T. Madas

Question 33

The figure above shows a curve with equation $y=f(x)$.

The curve meets the x axis at the points $P(-1,0)$ and Q, and its gradient function is given by

$$
f^{\prime}(x)=\frac{8 x^{3}-1}{x^{2}}, x \neq 0
$$

a) Find an equation of the tangent to the curve at P.
b) Find an expression for $f^{\prime \prime}(x)$.
c) Determine ...
i. ... an equation of the curve.
ii. ... the coordinates of Q.

$$
y=-9 x-9, f^{\prime \prime}(x)=8+2 x^{-3}, y=4 x^{2}+\frac{1}{x}-3, Q\left(\frac{1}{2}, 0\right)
$$

Created by T. Madas

Question 34

$$
y=\frac{1}{\sqrt{x}}+5 \sqrt{x}, x>0
$$

Created by T. Madas

Question 35

A quadratic curve C passes through the points $P(a, b)$ and $Q(2 a, 2 b)$, where a and b are constants.

The gradient at any given point on C is given by

$$
\frac{d y}{d x}=2 x-6
$$

