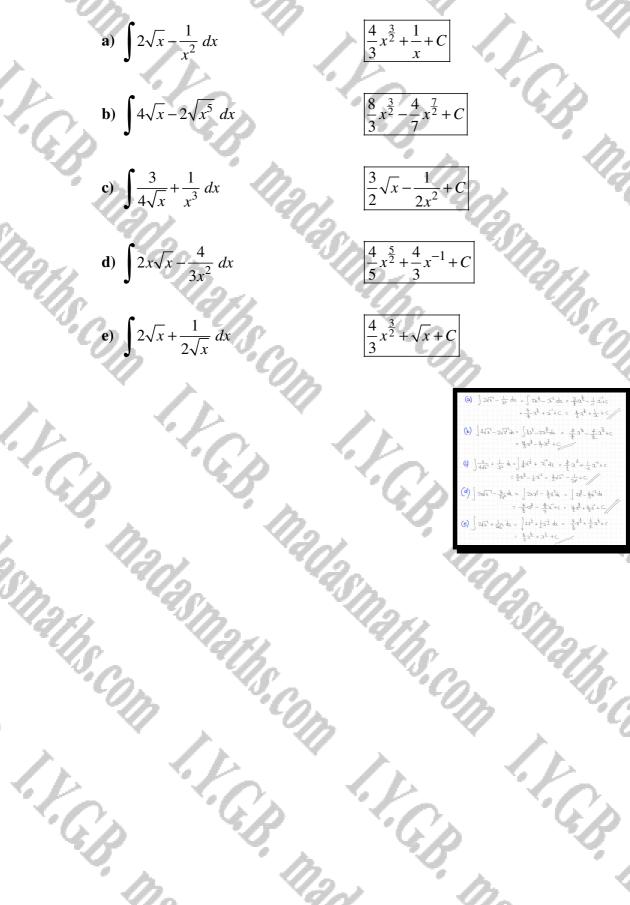
INTEGRATION CASINGUS COM LANCER INCOM LANCER INCOM LANCER INCOM

STANDARD INTEGRATION CTICE STA INTEGRA PRACTICE The comparison of the second s PRE-THE LANGER MARINESCOM LANGER MARINESCOM LANGER MARINESCOM LANGER MARINESCOM LANGER MARINESCOM LANGER MARINESCOM T. I.Y.C.B. Malasmalls.Com I.Y.C.B. Madace

20/20

Question 1

Integrate the following expressions with respect to x.



Question 2

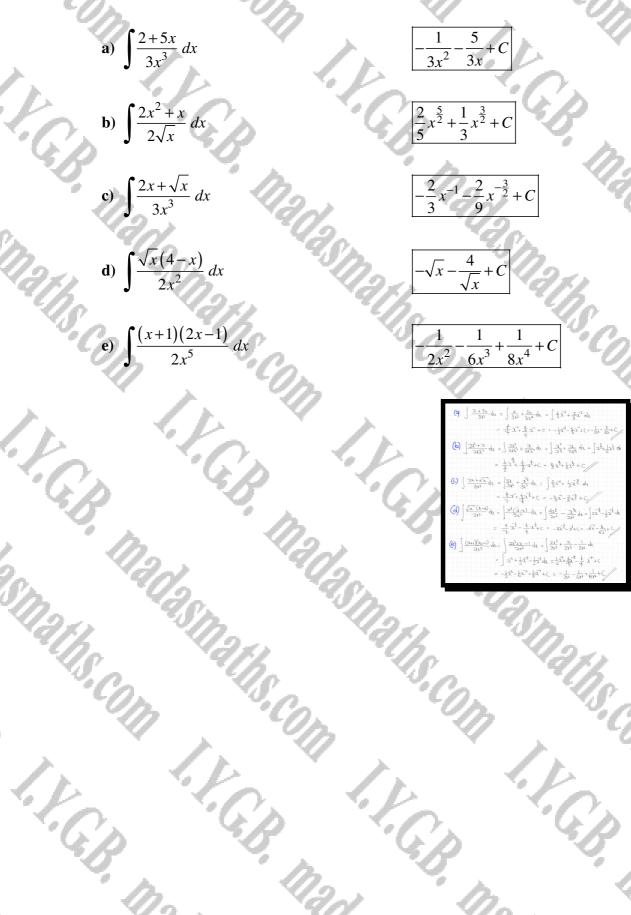
Integrate the following expressions with respect to x. JA.

11.4

 $=\frac{1}{2}\lambda^{2}+\frac{1}{2}\lambda^{-2}-\frac{1}{2}\lambda^{-1}+0$

Question 3

Integrate the following expressions with respect to x.



ż

Question 4

Integrate the following expressions with respect to x.

Question 5

Integrate the following expressions with respect to x.

estion 5
egrate the following expressions with respect to x:
a)
$$\int x(\sqrt{x} + x^{-4}) dx$$

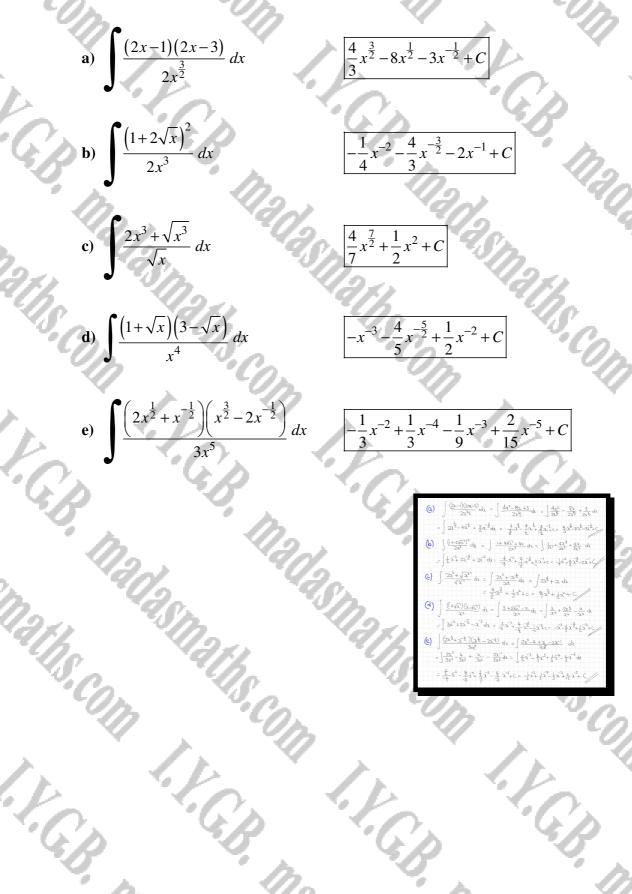
b) $\int \frac{1}{\sqrt{x}} \left(\frac{2}{x} - \frac{3}{4x^2}\right) dx$
c) $\int 4x^2 \left(\frac{6}{x^2} - \frac{5}{\sqrt{x}}\right) dx$
d) $\int 2\sqrt{x} \left(\frac{5}{x} + x^2\right) dx$
e) $\int \frac{2}{x^2} \left(\frac{7x^3 - 5x^2}{4x}\right) dx$
for $\frac{1}{3}x^{\frac{3}{2}} - 5x^{\frac{1}{2}} + C$
e) $\int \frac{2}{x^2} \left(\frac{7x^3 - 5x^2}{4x}\right) dx$
for $\frac{1}{3}x^{\frac{3}{2}} - 5x^{\frac{1}{2}} + C$
h) $\int (1 + 1) e^{-x^2 + x^2} + C$
h) $\int \frac{1}{\sqrt{x}} \left(\frac{1}{x} + x^2\right) dx$
for $\frac{1}{3}x^{\frac{3}{2}} - 5x^{\frac{1}{2}} + C$
h) $\int \frac{2}{\sqrt{x}} \left(\frac{7x^3 - 5x^2}{4x}\right) dx$
for $\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}} +$

- 202ª dz

 $\frac{5}{2}x^{\frac{1}{2}} + C$

Question 6

Integrate the following expressions with respect to x.



6

Question 7

I.C.B.

F.G.B.

Evaluate the following integrals.

 $\mathbf{a}) \int_{1}^{4} \frac{2}{\sqrt{x}} dx$ **b**) $\int_{1}^{2} 4x^3 + 5 + \frac{2}{x^2} dx$ c) $\int_{1}^{2} 3x^2 - 1 - \frac{4}{x^2} dx$ **d**) $\int_{1}^{3} \frac{x}{3} + \frac{1}{x^2} dx$

e)
$$\int_0^2 (2x-1)(3x-4) dx$$

 $\begin{array}{c} \boxed{2} \\ (a) \int_{1}^{4} \frac{2}{\sqrt{3x^{1}}} dx &= \int_{1}^{4} 3x^{3} dx = \left[\frac{2}{2}x^{4}\right]_{1}^{4} = \left[4x^{4}\right]_{1}^{4} \\ &= \left[4x + \frac{1}{2}\right] - \left(4x + \frac{1}{2}\right] = 8 - 4 = 4 \\ (b) \int_{1}^{4} \frac{1}{\sqrt{3x^{1}}} dx = \int_{1}^{5} \frac{4x^{3}}{\sqrt{3x^{1}}} dx + 2x^{2} dx = \left[x^{4} + 5x - 2x^{2}\right]_{1}^{2} \\ &= \left[\frac{x^{4}}{\sqrt{3x^{1}}} dx + \frac{1}{\sqrt{3x^{1}}} dx + 2x^{2} dx + 2x^{2} dx + 2x^{2} dx^{2}\right] \\ &= \left[\frac{x^{4}}{\sqrt{3x^{1}}} dx + \frac{1}{\sqrt{3x^{1}}} dx + \frac{1}{\sqrt{3x^{1}}} dx + 2x^{2} dx + 2x^{2} dx^{2}\right] \\ &= \left[x^{3} - x + \frac{4}{\sqrt{3x^{1}}}\right]_{1}^{2} = (16 + 10 - 1) - (16 - 2x) \\ &= 25 - 4 - 21 \\ \hline (c) \int_{1}^{3} \frac{3x^{2}}{\sqrt{3x^{1}}} - 1 - \frac{4x}{\sqrt{3x}} dx + \frac{1}{\sqrt{3x^{2}}} dx - \frac{1}{\sqrt{3x^{2}}} dx + 2x^{2} dx + 2x^{2} dx^{2}\right] \\ &= \left[x^{3} - x + \frac{4}{\sqrt{3x^{1}}}\right]_{1}^{2} = (8 - 2x + 2) - (7 - 14) \\ &= 8 - 4 = 44 \\ \hline (c) \int_{1}^{3} \frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3x^{2}}} dx = \int_{1}^{3} \frac{3}{\sqrt{3x^{2}}} + x^{2} dx + \left[\frac{1}{\sqrt{3x^{2}}} - 3x^{-1}\right]_{1}^{2} \\ &= \left[\frac{1}{6} dx^{2} - \frac{1}{\sqrt{3x^{1}}}\right]_{1}^{2} + \left[\frac{1}{6} (x^{3} - \frac{1}{3}) - (\frac{1}{6} - 1)\right] \\ &= \frac{3}{4} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + 1 \\ &= \frac{3}{4} - \frac{1}{2} - \frac{1}{4} + 1 \\ &= \frac{3}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4}$

Ĉ.p.

4

21

4

2

Created by T. Madas

P.C.

Question 8

Evaluate the following integrals.

- **a)** $\int_{1}^{3} x^2 + \frac{14}{x^2} dx$
- **b**) $\int_{1}^{2} x^4 + 3 \frac{2}{5x^2} dx$
- c) $\int_{1}^{5} 2x \frac{15}{x^2} dx$
- $\mathbf{d}) \quad \int_{1}^{4} \frac{x^3 + 2\sqrt{x}}{x} \, dx$

I.C.B.

F.G.B.

e) $\int_{1}^{4} \sqrt{x} (5x-3) dx$ I.G.B. 12 25

48

18

9

- $\int_{1}^{3} x^{2} + i4\tilde{x}^{2} dy = \left[\frac{1}{3}x^{3} i4g^{-1} \right]_{1}^{3} = \left[\frac{1}{3}y^{2} \frac{iy}{2} \right]_{1}^{3}$ $= \left(\frac{1}{3} \times 3^2 - \frac{101}{3}\right) - \left(\frac{1}{3} \times (\frac{3}{2} - \frac{101}{1}\right) = \left(9 - \frac{101}{3}\right) - \left(\frac{1}{3} - 14\right)$ $= \frac{1}{3} + \frac{1}{3} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{1}{5}$ **b)** $\int_{1}^{2} z^{4} + 3 - \frac{2}{5\chi^{2}} d\lambda = \int_{1}^{2} z^{4} + 3 - \frac{2}{5} z^{2} d\lambda = \left[\frac{1}{5} z^{4} + 3a + \frac{2}{5} z^{-1} \right]_{1}^{2}$ $= \underbrace{ \int_{-1}^{1} 2^{T} + 3\chi}_{-1} + \frac{2}{3\chi}_{-1} \int_{-1}^{1} = \underbrace{ \left(\frac{3\chi}{3} + 6 + \frac{1}{5} \right)_{-} \left(\frac{1}{5} + \frac{3}{5} + \frac{3}{5\pi} \right)_{-}$ 32+6+1/5-1/5=6+6-3= 9 $S_{L}^{-2}dk = \left[\left[2^{2} + \left[S_{L}^{-1} \right]_{1}^{2} + \left[2^{2} + \frac{S}{3L} \right]_{1}^{2} \right]$
 $$\begin{split} &\tilde{\boldsymbol{u}}_{i} \in \int_{1}^{1} \frac{\boldsymbol{\chi}_{i}^{2}}{\boldsymbol{\chi}_{i}} + \frac{\boldsymbol{\chi}_{i}^{2}}{\boldsymbol{\chi}_{i}} d\boldsymbol{u}_{i} = \int_{1}^{1} \boldsymbol{\chi}_{i}^{2} + 2\boldsymbol{\chi}_{i}^{2} d\boldsymbol{u}_{i} = \left[\frac{1}{2} \boldsymbol{\chi}_{i}^{2} + 4\boldsymbol{\chi}_{i}^{2} \right]_{i}^{2} \\ &= \left[\frac{1}{2} \boldsymbol{\chi}_{i}^{2} + 4\boldsymbol{\chi}_{i}^{2} \right]_{i}^{2} \left[\frac{\boldsymbol{\xi}_{i}}{\boldsymbol{\xi}_{i}} + \boldsymbol{s} \right] \sim \left(\frac{1}{2} + \boldsymbol{\xi}_{i} \right) - \left(\frac{1}{2} + \boldsymbol{\xi}_{i} \right) \\ &= \frac{\kappa_{i}}{2} + 4\boldsymbol{\xi}_{i} = \boldsymbol{z}_{i} + \boldsymbol{\xi}_{i} = \boldsymbol{z}_{i} \end{split}$$
 - $\int_{1}^{4} \sqrt{\lambda^{-1}} \left(S_{\lambda-3} \right) d_{\lambda} = \int_{1}^{4} \chi^{\frac{1}{2}} \left(S_{\lambda-3} \right) d_{\lambda} = \int_{1}^{4} S_{\lambda} \chi^{\frac{1}{2}} 3\chi^{\frac{1}{2}} d_{\lambda}.$ $= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ r \end{bmatrix} a^{\frac{1}{2}} - \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} a^{\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} 21^{\frac{1}{2}} \\ 21^{\frac{1}{2}} \\ \frac{1}{2} \end{bmatrix} a^{\frac{1}{2}} \end{bmatrix}$

F.G.B.

Created by T. Madas

C.A.

Question 9

Evaluate the following integrals.

- **a)** $\int_{1}^{2} \frac{2x^5 + 3}{x^2} dx$
- I.F.G.p **b**) $\int_{1}^{3} \frac{2x^5 - 21}{x^3} dx$
 - c) $\int_{1}^{9} (1+3\sqrt{x})^2 dx$
 - **d**) $\int_0^6 \left(x^{\frac{1}{2}} + x^{\frac{3}{2}}\right)^2 dx$

e)
$$\int_0^4 \left(x^{\frac{1}{2}} - 3\right)^2 dx$$

I.C.B.

I.C.B.

12

486

9

8

472

ŀ.G.B.

14.

112dası

- $\frac{23^2}{x^2} + \frac{3}{x^2} dx = \int_1^2 2x^4 + 3x^2 d\xi = \left[\frac{1}{2}\Omega^4 3\chi^2\right]_1^2 = \left[\frac{1}{2}\chi^4 \frac{3}{3\chi}\right]_1^2 = \left(g_- \frac{3}{2}\right) \left(\frac{1}{2}x^4 \frac{3}{3\chi}\right)_1^2$ $\frac{2\chi^{5}_{+,3}}{\chi^{2}} d\alpha =$
- (b) $\int_{-\frac{2n^2-2l}{2t^3}}^{3} dt =$ $\begin{bmatrix} J_{1}^{2} \frac{\pi d}{dt} - \frac{2}{dt} - \frac{1}{dt} \end{bmatrix} = \begin{bmatrix} J_{1}^{2} \frac{\pi d}{dt} - \frac{\pi d}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\pi}{d} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi}{d} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} (18 + \frac{\pi d}{18}) - (\frac{\pi}{dt} + \frac{\pi d}{28}) \\ \frac{\pi d}{dt} - \frac{\pi d}{dt} - \frac{\pi d}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} (18 + \frac{\pi d}{18}) - (\frac{\pi}{dt} + \frac{\pi d}{28}) \\ \frac{\pi d}{dt} - \frac{\pi d}{dt} - \frac{\pi d}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d}{dt} + \frac{\pi d}{dt} \end{bmatrix}_{1}^{2} = \begin{bmatrix} \frac{\pi d}{dt} \frac{\pi d$
- $\begin{aligned} & \textbf{(i)} \quad \int_{1}^{q} \left(\left(1 + 3\sqrt{\alpha_{1}} \right)^{2} dx_{n} + \int_{1}^{q} \left(1 + 6\sqrt{\alpha_{1}} + 9x_{n} dx_{n} + \int_{1}^{q} \left(1 + 6\sqrt{\alpha_{1}} + 9x_{n} dx_{n} + \int_{1}^{q} \left(1 + 6\sqrt{\alpha_{1}} + \frac{9}{2}x_{n}^{2} \frac{9}{2}x_{n}^{2} \right)^{q} + \left(1 + 6\sqrt{\alpha_{1}} + \frac{9}{2}x_{n}^{2} \frac{9}{2}x_{n}^{2} \right)^{q} \\ & = \left(q + 168 + \frac{7}{2}x_{n}^{2} \right) \left(1 + 4 + \frac{1}{2}x_{n}^{2} \right) = 117 + \frac{7}{2}x_{n}^{2} 5 \frac{9}{2}x_{n}^{2} = 112 + 300 = 472 \end{aligned}$
- (d) $\int_{0}^{b} \left(y^{\frac{1}{2}} + y^{\frac{1}{2}} \right)^{b} dx = \int_{0}^{b} \left(y^{\frac{1}{2}} \right)^{2} + 2(y^{\frac{1}{2}} |y^{\frac{1}{2}}|^{2} dx = \int_{0}^{b} x + 2x^{2} + x^{2} dx = \left[\frac{1}{2} y^{\frac{1}{2}} + \frac{1}{2} x^{\frac{1}{2}} + \frac{1}{2} x^{\frac{1}{2}} \right]_{0}^{b}$
- $(\alpha^{\frac{1}{2}})^2 2(\alpha^{\frac{1}{2}})_{xx} + 3^2 dx = \int_0^1 \alpha 6\alpha^{\frac{1}{2}} + 9 dx = \frac{1}{2} x^2 \frac{6}{2} x^{\frac{1}{2}}$

F.G.B.

Created by T. Madas

E.

3

6

20/20

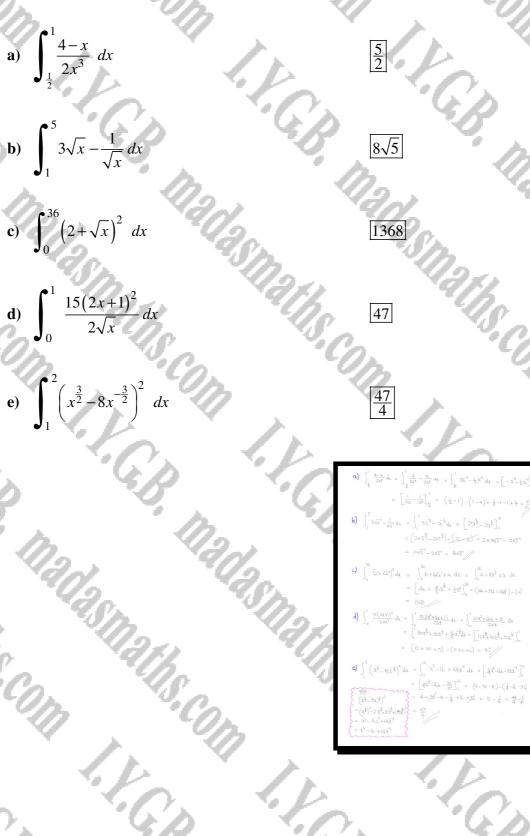
Question 10

b)

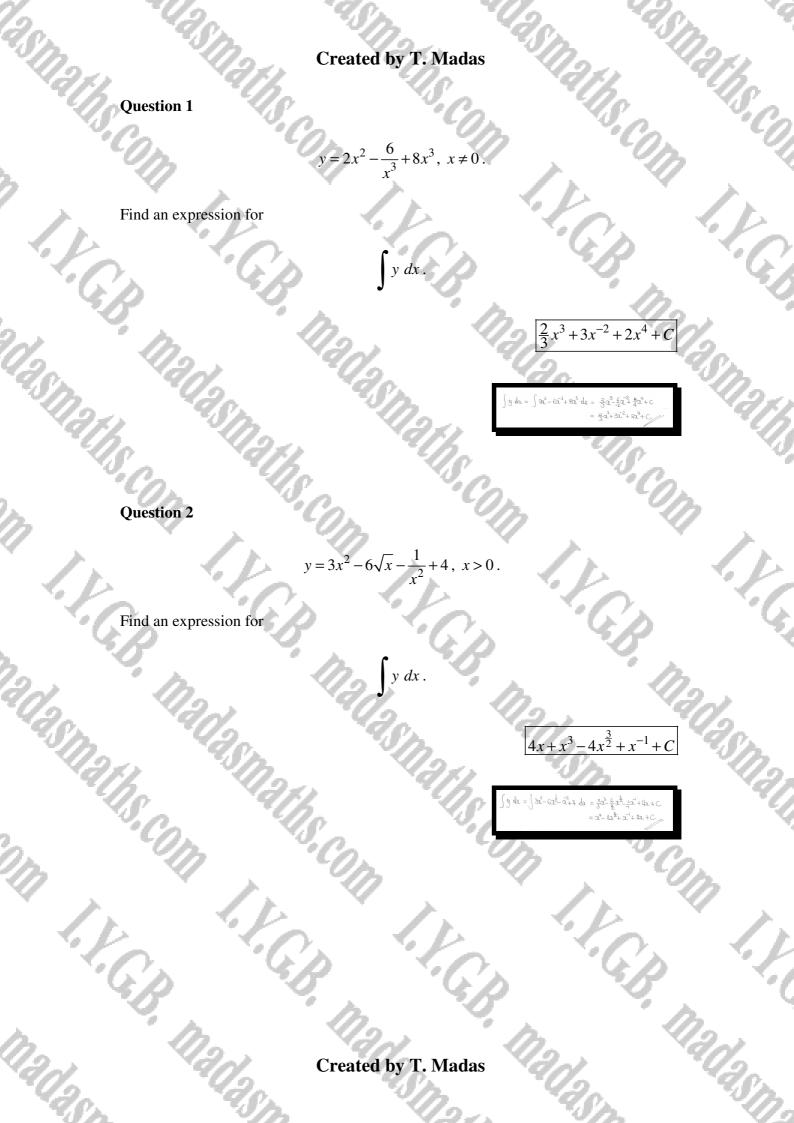
I.C.B.

Y.G.B.

Evaluate the following integrals.



VARIOUS INTEGRATION JUESTIONS ARIOUS NTEGRATIC QUESTIONS T. K.C.B. Malasmalls.Com I.Y.C.B. Madase



Question 3

$$f(x) = 6x + 9\sqrt{x} - \frac{4}{x^2}, \ x > 0$$

Find an expression for

 $\int f(x) dx.$

 $3x^2 + 6x^{\frac{3}{2}} + 4x^{-1} + C$

 $\int f(x) dx = \int 62 + 9a^{\frac{1}{2}} - 15i^{2} dx = \frac{5}{2}a^{\frac{1}{2}} + \frac{3}{2}a^{\frac{3}{2}} + \frac{1}{2}a^{\frac{3}{2}} + C$ $= 3a^{2} + cx^{\frac{3}{2}} + 5a^{\frac{1}{2}} + C$

Question 4

The point P(1,3) lies on the curve with equation y = f(x), whose gradient function is given by

 $f'(x) = 6x^2 - 4x, x \in \mathbb{R}.$

Find an equation for f(x).

 $f(x) = 2x^3 - 2x^2 + 3$

 $\begin{cases} f(x)_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx \\ f(x)_{2} = 2x^{2} + C \\ f(x)_{2} = 2$

Question 5

The point P(3,-1) lies on the curve with equation y = f(x), whose gradient function is given by

 $f'(x) = 1 - x^2, x \in \mathbb{R}.$

Find an equation for f(x)

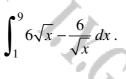
f(x) = 5 + x -

$$\begin{split} & \left\{ \begin{array}{l} \psi_{0} = \int_{0}^{1} (-\alpha^{2} d\alpha) \\ & \left\{ (\alpha) = \alpha - \frac{1}{2} \alpha^{2} + C \\ & \psi_{0}(\alpha) = \alpha - \frac{1}{2} \alpha^{2} + C \\ & -1 = 3 - \frac{1}{2} \alpha \alpha^{2} + C \\ & -1 = 3 - 9 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8 + C \\ & -1 = 3 - 8$$

Question 6

2

By showing clear workings, find the value of



 $\int_{1}^{q} \frac{G}{4x^{2}} dx = \int_{1}^{q} \frac{dx}{4x^{2}} - G_{1}^{-k} dx = \left[4x^{\frac{k}{2}} - 12x^{\frac{k}{2}}\right]_{1}^{q}$ $= \left(108 - 36\right) - \left(\frac{4}{4} - 12\right) = 72 + 8 = 60$

80

24

2

Question 7

The curve C with equation y = f(x) has gradient function

$$\frac{dy}{dx} = 9x^2 + \frac{7}{x^2}, \ x \neq 0.$$

The point A(-1,-1) lies on C.

Find an equation for C.

	no.
ſ	$y = 3x^3 - \frac{7}{x} - 5$
) b	

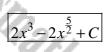
$g = \int qx^2 + \frac{7}{3^2} dx = \int qx^2 +$	-72 ² da
$y = 3x^{3} - 7x^{4} + c$ $y = 3x^{3} - \frac{7}{x} + c$	
• when a=-1	
-1 = 3(-1) ² - [] +C -1 = -3 + 7 + C C = -S	$\pi_{11}us = 3us^3 - \frac{7}{x} - 5$

Question 8

 $y = x \Big(6x - 5\sqrt{x} \Big), \ x \ge 0 \ .$

y dx.

By showing all steps in the workings, find an expression for



 $y dx = \int \alpha \left((\alpha - s_{0} \overline{z}) \right) dx = \int \alpha \left((\alpha - s_{0} \overline{z}) \right) dx$ $= \int (\alpha (\alpha - s_{0} \overline{z}) dx = \frac{\delta \alpha}{2} \alpha^{2} - \frac{\delta \alpha}{2} \alpha^{2} + C$ $= \alpha \partial^{3} - \alpha \partial^{\frac{\delta}{2}} + C$

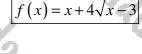
Question 9

The point P(4,9) lies on the curve with equation y = f(x), whose gradient function is given by

$$f'(x) = 1 + \frac{2}{\sqrt{x}}, x > 0.$$

λ.

Find an equation for f(x).



$ F = \frac{1}{\sqrt{\alpha}} = 1 + \frac{2}{\sqrt{\alpha}} = 1 + 2\chi^{\frac{1}{2}}$	who are y=9 < - fa
14m	-9 = 4 +4× 4 2 +C
$=f(a)=\int 1+2\lambda^2 da$	q = 4+8+C C = -3
$\Rightarrow f(a) = a + \frac{a}{4}a^{\frac{1}{2}} + C$ (: f6)=x+42=3
$=h(x) = x + 4x^{\frac{1}{2}} + C$	/

Question 10

$$\frac{dy}{dx} = 4 + \frac{1}{x^2}, \ x \neq 0.$$

Given that y = 5 when x = 1, express y in terms of x.

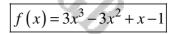
y = 4x

$l \in \frac{du}{d\lambda} = 4 + \frac{1}{\lambda^2} = 4 + \lambda^2$	5 Where =1, y=5
THE	$2 = 4xI - \frac{1}{2} + C$
$= y = \int 4 + x^2 dx$	S=4-1+C S=3+C
\Rightarrow y = 4x+ $\frac{1}{4}x^{-1}+C$) C=2'
⇒ y= -2 -2 +C	(: y=4a-1+2
→ y=4-±+C	

Question 11

 $f'(x) = (3x-1)^2.$

Given that f(3) = 56, find an expression for f(x).



4 + (a)= (32-1)2 THEW	S when 2=3 y=56 ← f(3)
	56 = 81-27+3+C
$\rightarrow f(x) = \int (2x-1)^2 dx$	(56= S7 + C
(2)= 922-62+1 de	Ca-1
$\Rightarrow f(x) = 3a^3 - 3a^2 + a + C$) : fo)= 32-32+2-1

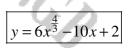
Question 12

The point P(8,18) lies on the curve C, whose gradient function is given by

2012

 $\frac{dy}{dx} = 8\sqrt[3]{x} - 10, \ x \ge 0.$

Find an equation for C.



1+

If dy = 8 1 2 -10 = 803-10	Within 2=8 y=18
746 y= (8x3-10 dx	(18 = 6×83-10×8 40
$\Rightarrow g = \frac{4}{4}a^{\frac{1}{2}}-ba + C$	18 = 6×16-80+C 16 = 96-80+C
→ 4= 623-102+C	2 = C
⇒ y= 62-lostc	1 : q=62 + 102+2
	1 y=62-102+2

Question 13

$$f(x) = \frac{5\sqrt{x}(3x^2 - 2)}{x}, \ x > 0$$

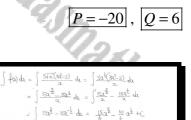
Show clearly that

G.B.

Ĉ.Ŗ

 $f(x) dx = P\sqrt{x} + Qx^{\frac{5}{2}} + C,$

where P and Q are integers to be found, and C is an arbitrary constant.



C.4.

Mada

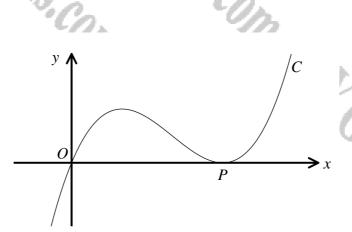
1+

622 - 202 + C

24

.C.

Question 14



The figure above shows the cubic curve C which meets the coordinates axes at the origin O and at the point P.

The gradient function of C is given by

$$f'(x) = 3x^2 - 8x + 4$$

- **a**) Find an equation for C.
- **b**) Determine the coordinates of P.

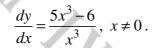
$f(x) = x^3 - 4x^2 + 4x$, P(2,0)

9)	$1 = \frac{1}{2} \left(\frac{1}{2} \right) = 3 \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}$	(b)	$f(x) = x^3 - 4x^2 + 4x$
	THW		$-f(a) = a(a^2-ba+4)$
	$-f(\alpha) = \int 3\alpha^2 - \theta x + 4 dx$		$-(3) = 3(3z-2)^2$
	$f(a) = \alpha^3 - 4\alpha^2 + 4\alpha + C$. why y=0
	BUT OUBLE GOES THROUGH (0,0)		a= <2
	0 = 0 - 0 + 0 + C		~2
	C= O		: P(2,0) /
	$\therefore = \sqrt{(a)} = \sqrt{a^3 - 4a^2 + 4a}$		

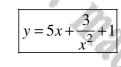
ng

Question 15

The point P(-1,-1) lies on the curve C, whose gradient function is given by



Find an equation for C.



1+

Question 16

Show clearly that

$$\int_{3}^{4} 3\sqrt{x} - \frac{4}{\sqrt{x}} dx = k\sqrt{3}$$

where k is an integer to be found.

 $\int_{-\frac{3}{2}}^{\frac{4}{2}} 3x^{\frac{1}{2}} - 4x^{\frac{1}{2}} dx = \left[-\frac{3}{2} x^{\frac{3}{2}} - \frac{4}{2} x^{\frac{1}{2}} \right]_{x}^{4}$ 3/x- 4/ dx : $\left[\Im x^{\frac{1}{2}} - B x^{\frac{1}{2}}\right]_{3}^{4} = \left(\Im x 4^{\frac{1}{2}} - 8 x 4^{\frac{1}{2}}\right) - \left(\Im x 3^{\frac{1}{2}} B x 5^{\frac{1}{2}}\right)$ $IG - IG = (2x(\sqrt{3})^3 - 8 \times \sqrt{3})$ 2× 313 - 813) = 813-613=21

k = 2

21/15.CO

4.60

6

11303SM31

The Com

k = -14

3+2+k)=4

I.F.G.B.

The management of the second s

Question 17

alasmaths.com

I.V.C.B. Madasm

Smaths.com

I.F.G.B.

 $f(x) = 2x^2 + 3x + k$, where k is a constant.

 $\int_{1}^{3} f(x) \, dx = \frac{4}{3}.$

Madasn.

Find the value of k, given that I.V.G.B.

madasmaths.com

1.1.6.3

Created by T. Madas

The management of the second

Question 18

The cubic equation C passes through the origin O and its gradient function is

$$\frac{dy}{dx} = 6x^2 - 6x - 20.$$

a) Show clearly that the equation of C can be written as

$$y = x(2x+a)(x+b),$$

where a and b are constants.

b) Sketch the graph of *C*, indicating clearly the coordinates of the points where the graph meets the coordinate axes.

)	$ \begin{array}{ll} \text{If} & \frac{du}{dx} = G_{1}^{2} - G_{1} - 20 \\ \text{T} \text{Ho} & y_{2} = \int G_{2}^{2} - G_{3} - 20 \\ \text{J} = 2\lambda^{2} - 3\lambda^{2} - 20\lambda + \zeta \\ \text{Chef Hysser Heaves}(G_{1}) \\ \text{Chef Hysser Heaves}(G_{2}) \\ \text{C} = 0 - 0 - 0 + \zeta \\ \hline \hline C = 0 \\ \text{J} = 0 \\ \text{C} - 0 \\ \text{J} = 0 \\ \text{C} - 0 \\ \text{C} - 0 \\ \text{J} = 0 \\ \text{C} \\ \text{C} - 0 \\ \text{C} \\ \text{C} = 0 \\ \text{C} \\ \text{C}$		$\begin{array}{c c} \bullet + 2\lambda^3 = & & \\ \bullet & $	
	b = -f	· /		1

a = 5, b = -4

Question 19

The gradient of every point on the curve C, with equation y = f(x), satisfies

 $f'(x) = 3x^2 - 4x + k ,$

where k is a constant.

The points P(0,-3) and Q(2,7) both lie on C.

Find an equation for C.

. G.B.

y	$=x^{3}$	3-23	$x^{2} +$	5 <i>x</i> -	.3
2		5			

14	· · · · · · · · · · · · · · · · · · ·
$f(a) = 3a^2 - 4x + 2$	$(0_{1}-3) \longrightarrow -3 = 0 + C$
THEN.	=> C=-3
+(4)= [322-42+k dr (: +(0)= ===================================
In-Imericar (
+(4) = 23-222+ka+C	$(2,7) \Rightarrow 7 = 3 = 3 + 2k - 3$ 0 = 2k
	k=5
	· (m - 2 - 2
	$(-,+\alpha) = 2^3 - 2x^2 + 5x - 3$

Created by T. Madas

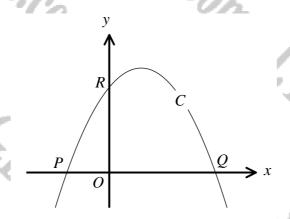
F.G.B.

3

i.C.B.

ma,

Question 20



The figure above shows the curve C which meets the coordinates axes at the points P, Q and R.

Given the gradient function of C is given by

f'(x) = 3 - 4x,

and that f(1) = 2f(2), determine the coordinates of P, Q and R.

P(-1,0),	$P\left(\frac{5}{2},0\right)$, R(0,5)
	the second se	

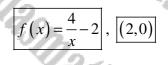
f(a) = 3-42	
$f(a) = \int 3 - 4a da = 3a - 2a^2 + k$	
$\therefore f(x) = -2x^2 + 3x + k$	
f(i) = 2f(z)	
-2+3+k = 2(-8+6+k)	
1+k=-4+ak S=k	
$e: f(x) = -2t^2 + 3x + 5$	
when a=0 f(0)=s :: R(015)	
why y=0 0=-22+32+5	P(-1,0)
(22-5)(2+1)=0	9(30)
χ	

Question 21

The curve C with equation y = f(x) satisfies

$$f'(x) = -\frac{4}{x^2}, \ x \neq 0.$$

- a) Given that f(1) = 2, find an expression for f(x).
- b) Sketch the graph of f(x), indicating clearly the asymptotes of the curve and the coordinates of any points where the curve crosses the coordinate axes.



(6)	94
	(2,0) 9= -2 > 2
	dz-5
(0=4-2)	Anumares
(a=2)	(4°-2)

Question 22

 $f(x) = \left(x^{\frac{1}{2}} - 4\right) \left(x^{-\frac{1}{2}} - 3\right), \ x > 0.$

Show clearly that

$$\int f(x) dx = P\sqrt{x} + Qx + Rx^{\frac{3}{2}} + C,$$

where P, Q and R are integers to be found, and C is an arbitrary constant.

P = -8, Q = 13, R = -2

 $\int \frac{1}{2} (x) dx = \int (x^{\frac{1}{2}} - t)(x^{\frac{1}{2}} - 3) dx = \int x^{-} - 3x^{\frac{1}{2}} - 4x^{\frac{1}{2}} + 12 dx$ $= \int 13 - 3x^{\frac{1}{2}} - 4x^{\frac{1}{2}} dx = 13x - \frac{3x^{\frac{1}{2}}}{2} - \frac{1}{2}x^{\frac{1}{2}} + C$ $= 13x - 2x^{\frac{1}{2}} - 8x^{\frac{1}{2}} + C \qquad \forall P = -8$ $\Rightarrow 13x - 2x^{\frac{1}{2}} - 8x^{\frac{1}{2}} + C \qquad \forall P = -8$ $\Rightarrow 0 = 13$

 $f'(x) = 5 - \frac{8}{x^2}, x \neq 0.$

Find the value of f(4), given that 2f(1) = 4 + f(2).

nada,

	- 12			100
		$f(y) = 2 - \frac{\pi_2}{6}$		
	- N	$-f(y) = \int z - \frac{\pi z}{B} dr =$	$\int z - 8\tilde{x}^2 dt = 3$	5a-=====+c
		$f(a) = 5a + \frac{8}{3a} + C$		
		z + f(i) = 4 + f(i)		
		$2\left[5+8+C\right] = q +$	[10+4+C]	
		26+2C = 18+C		
		$\therefore f(\alpha) = S_{x} + \frac{B}{x} - 8$		
16		50 + (4) = 20 + 2 - 8		
9		f(4) = 14		
Ω.	. 7		-	100
	<u>}</u>			1 - N
0.	10			0.00
- 0	('n			- C./
		A.,		- 6
	9	2		

f(4) = 14

Question 24

$$f(x) = \frac{(3x^2 - 2)^2}{x^2}, x \neq 0.$$

Show clearly that

I.C.B.

$$\int_{1}^{2} f(x) \, dx = 11.$$

proof

1+

6

$$\begin{split} & \int (0) = \frac{(3u^{2}-2)^{2}}{2t^{2}} = \frac{qu^{4}-(2u^{2}+4)}{3t^{2}} = \frac{q_{0}u^{4}}{2t^{2}} - \frac{q_{0}u^{4}}{2t^{2}} + \frac{q_{0}}{4t^{2}} = \\ & = q_{0}u^{2}-(2t+4)t^{2}u^{2} \\ & \quad \text{if } \int_{1}^{2} \int (0) dx = \int_{1}^{2} \frac{q_{0}u^{2}}{2t^{2}-(2t+4)t^{2}} dx = \int_{0}^{2} \int (2t^{2}-1)(2t-1)t^{2} \\ & \quad \text{if } \int_{1}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} + \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} + \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{1}^{2} \int \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} + \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} - \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if } \int_{0}^{2} \frac{q_{0}u^{2}}{2t^{2}} dx = \\ & \quad \text{if }$$

 $y = \frac{x^{\frac{1}{2}}(3x^2 + 1)}{x^2}, \ x > 0.$

Show clearly that

 $\int_{1}^{4} y \ dx = 15.$

proof

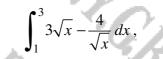
COM

$$\begin{split} \overset{(j)}{\stackrel{=}{\rightarrow}} & = \frac{\alpha^{j} (\underline{a} \underline{b}^{+}_{+})}{\alpha^{k}} = \frac{\alpha \underline{a}^{\frac{k}{2}} + \underline{a}^{\frac{k}{2}}}{\alpha^{k}} = 3\alpha^{\frac{k}{2}} + \alpha^{\frac{k}{2}} \\ \overset{(j)}{\stackrel{=}{\rightarrow}} & \overset{(j)}{\stackrel{=}{\rightarrow}} \frac{\alpha^{j}}{\alpha^{k}} + \overline{\alpha}^{\frac{k}{2}} \frac{d}{dx} = \left[2\alpha^{\frac{k}{2}} - 2\alpha^{\frac{k}{2}} \right]_{1}^{1} \\ & = \left(2\alpha \underline{a}^{\frac{k}{2}} - 2\alpha \underline{a}^{\frac{k}{2}} \right) - \left(2\alpha \underline{a}^{\frac{k}{2}} - \alpha \underline{a}^{\frac{k}{2}} \right) \\ & = \left(\underline{b}^{-1} \right) - \left(\underline{a}^{-1} - \underline{a}^{-1} \right) = 15 \end{split}$$

Question 26

ŀ.G.B.

Find the exact value of



giving the answer in the form $p+q\sqrt{3}$, where p and q are integers.

 $6 - 2\sqrt{3}$

è

$$\begin{split} & \frac{3}{3\sqrt{k^{-1}}} - \frac{4}{\sqrt{k^{2}}} d_{k,k} = \int_{1}^{3} 3t^{\frac{1}{2}} - 4t^{\frac{1}{2}} d_{k} = \int_{-\infty}^{1} 2t^{\frac{1}{2}} - 8t^{\frac{1}{2}} d_{k} \\ & = (2k)^{\frac{3}{2}} - 8t^{\frac{1}{2}} + (2k)^{\frac{1}{2}} - 8t^{\frac{1}{2}} + (2k)^{\frac{1}{2}} - 8t^{\frac{1}{2}} + (2k)^{\frac{1}{2}} - (2k)^{\frac{1}{2}} -$$

Question 27

Find the exact value of

 $\int_{1}^{2} \left(3 + 2\sqrt{x}\right)^2 dx,$

giving the answer in the form $a + b\sqrt{2}$, where a and b are integers.

$$\begin{split} \int_{1}^{2} & \left(3+2(\overline{\alpha})\right)^{2} d\alpha = s \int_{1}^{\frac{1}{2}} \frac{q+1_{2}(\overline{\alpha}^{2}+i)_{2}}{4} d\alpha = s \int_{1}^{2} \frac{q+1_{2}\alpha^{4}_{2}+i)_{2}}{4} d\alpha \\ & = \int_{1}^{2} \left(\frac{q}{2}x+i\partial_{2}\overline{x}^{4}+2\alpha^{2}_{1}\right)^{2} \\ & = \left(\frac{q}{2}y_{2}+i\partial_{2}\overline{x}^{4}+2\alpha^{2}_{1}\right)^{2} \\ & = \left(\frac{q}{2}y_{2}+i\partial_{2}\overline{x}^{4}+2\alpha^{2}_{1}\right)^{2} \\ & = \left(\frac{q}{2}y_{2}+i\partial_{2}\overline{x}^{4}+2\alpha^{2}_{1}\right)^{2} \\ & = \left(\frac{q}{2}x+i\partial_{2}\overline{x}^{2}-i\right) \\ & = 2\pi^{2}+i\partial_{1}\overline{x}^{2} \\ & = 7^{2}+i\partial_{1}\overline{x}^{2} \end{split}$$

 $7 + 16\sqrt{2}$

Question 28

A cubic curve passes through the points P(-1,-9) and Q(2,6) and its gradient function is given by

 $\frac{dy}{dx} = 3x^2 + kx + 7$, where k is a constant.

Find an equation for this cubic curve.

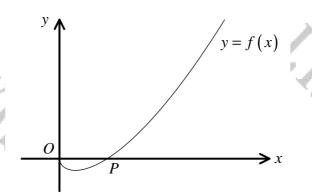
 $y = x^3 - 5x^2 + 7x + 4$

1F du = 322 + ka + 7

 $\begin{array}{l} \underbrace{y_{\pm} \int 3\lambda^{2}kx_{\pm} + 7 \ h}_{0} \\ \underbrace{y_{\pm} \int 3\lambda^{2}kx_{\pm} +$

 $\begin{array}{c} C = -\frac{1}{2} \frac{1}{2} \sum_{k=1}^{k} \sum_{k=1}^{k} -\frac{1}{4} \left(\frac{-2k}{k} - \frac{1}{4k} - \frac{1}{4k} - \frac{1}{4k} - \frac{1}{4k} \right) \\ = -\frac{1}{4} \sum_{k=1}^{k} \frac{1}{2k} + \frac{1}{2k} + \frac{1}{4k} + \frac{1}{4k} \\ = \frac{1}{2k} - \frac{3k}{2k} + \frac{1}{2k} + \frac{1}{4k} + \frac{1}{4k} \\ = \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} + \frac{1}{2k} \\ = \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} - \frac{1}{2k} + \frac{1}{2k} \\ = \frac{1}{2k} - \frac{1}{2k} -$

Question 29



The figure above shows a curve with equation y = f(x) which meets the x axis at the origin O and at the point P.

The gradient function of the curve is given by

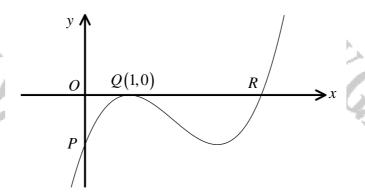
$$f'(x) = \frac{12x-1}{\sqrt{x}}, x > 0.$$

- **a**) Find an equation of the curve.
- **b**) Determine the coordinates of *P*.

$f(x) = 8x^{\frac{3}{2}} - 2\sqrt{x}, \quad P(\frac{1}{4}, 0)$ (a) AT P_1 ax-1 $f(x) = \frac{8c_1^{1}x^1}{6(x)^2} = \frac{-8-1}{1-x^3}$ (b) $= \frac{6c_1^{1}x^1}{6(x)^2} = \frac{-8-1}{1-x^3}$ (c) $= \frac{8c_1^{1}x^1}{6(x)^2} = \frac{-8-1}{1-x^3}$ (c) $= \frac{8c_1^{1}x^2}{1-x^3} = \frac{-8-1}{1-x^3}$ (c) $= \frac{6c_1^{1}x^2}{1-x^3} = \frac{-8-1}{1-x^3}$ (c) $=\frac{1}{1-x^3} = \frac{$

2

Question 30



The figure above shows the graph of a cubic curve, which touches the x axis at the point Q(1,0).

a) Determine an equation for the cubic curve, given its gradient is given by

$$\frac{dy}{dx} = 3x^2 - 12x + 9.$$

The cubic curve crosses the x axis and the y axis at the points R and P, respectively.

b) Determine the coordinates

i. ... of the point P.

ii. ... of the point R.

$y = x^3 - 6x^2 + 9x - 4$, P(0, -4), R(4, 0)

Question 31

 $\sqrt{y} = 2\sqrt[3]{x} - 3, \ x > 0.$

Show clearly that

$$\int_{1}^{8} y \, dx = \frac{12}{5} \, .$$

1 A. A.L.	
$M_{y}^{T} = 3Na_{-3}$ $N_{y}^{T} = 3x^{3} - 3$ $Y = (3x^{3} - 3)^{2}$ $Y = 4x^{3} - 12x^{3} - 9$	$\begin{array}{l} \text{Howe} \int_{1}^{8} g dx = \int_{1}^{8} 4x^{\frac{5}{2}} - 12x^{\frac{1}{2}} + g dx \\ = \left[\frac{12}{3}x^{\frac{5}{2}} - 9x^{\frac{5}{2}} + 9x^{\frac{5}{2}} \right]_{1}^{8} \\ - \left(\frac{32}{3} - 144 + 72 \right) - \left(\frac{12}{3} - 78 + 9 \right) \end{array}$
	$= \frac{24}{5} - \frac{12}{5}$ $= \frac{24}{5} - \frac{12}{5}$ $= \frac{12}{5}$

proof

Question 32

$$y = 6 + 6\sqrt{x} + 5x , \ x \ge 0$$

Show clearly that

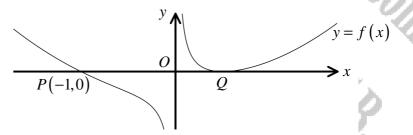
$$\int \left(y^2 - x^2\right) dx = 36x + Px^{\frac{3}{2}} + 48x^2\sqrt{x} + Qx^{\frac{5}{2}} + Rx^3 + C,$$

where P, Q and R are constants to be found, and C is an arbitrary constant.

P = 48, Q = 24, R = 8

$$\begin{split} \mathcal{Y}^{\frac{1}{2}} &= (6+64\overline{x}+50\overline{x})^{\frac{1}{2}}(6+64\overline{x}+51)\times(6+64\overline{x}+52)\\ &= 36+363\overline{x}+303\overline{x}\\ &= 36+363\overline{x}+303\overline{x}\\ &+303\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+231\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}+333\overline{x}\\ &+303\overline{x}+333\overline{x}\\ &+303$$

Question 33



The figure above shows a curve with equation y = f(x).

The curve meets the x axis at the points P(-1,0) and Q, and its gradient function is given by

$$f'(x) = \frac{8x^3 - 1}{x^2}, x \neq 0.$$

- **a**) Find an equation of the tangent to the curve at P.
- **b**) Find an expression for f''(x).
- c) Determine ...
 - **i.** ... an equation of the curve.
 - **ii.** ... the coordinates of Q.

y = -9x - 9,	$f''(x) = 8 + 2x^{-3},$	$y = 4x^2 + \frac{1}{x} - 3$	$, \left[Q\left(\frac{1}{2},0\right)\right]$
il a s		X	

		The second
٩)	$F = \int (x) = \frac{12x-1}{\sqrt{x^2}} \cdot \pi_{\frac{1}{2}} dx$ $f(x) = \int \frac{12x-1}{x \cdot \frac{1}{2}} dx$	 (b) y=0 > 0 - 81^k/₂ m^k
	$f(x) = \int \frac{x \pm}{x^{\pm}} dx$ $f(x) = \int \frac{yx}{x^{\pm}} - \frac{1}{x^{\pm}} dx$ $f(x) = \int (xx^{\pm} - \frac{1}{x^{\pm}} dx)$	$ = \circ = 2a^{\frac{1}{2}}(4a-1) $ $ = \frac{6\pi_{HR}}{\sqrt{2}}a^{\frac{1}{2}}=o or 4a-1=o$ $ = \sqrt{2a^{\frac{1}{2}}}o 7a-1$
	$\frac{1}{2}(x) = \frac{12}{2}x^{\frac{1}{2}} - 2x^{\frac{1}{2}} + c$ $f(y) = 8x^{\frac{1}{2}} - 3x^{\frac{1}{2}} + c$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	MHKU 2=0, 9=0 0=0−0+C ∴[<u>C=0]</u>	Z Z
	$\therefore f(x) = 8x^{\frac{1}{2}} - 3x^{\frac{1}{2}}$	5



Question 35

Ĉ.Ŗ

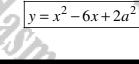
P.C.B.

A quadratic curve C passes through the points P(a,b) and Q(2a,2b), where a and b are constants.

The gradient at any given point on C is given by

F.G.B.

Find an equation for C, in terms of a.



Ý.G.B.

ma

ちょ

è

$\begin{array}{l} = 2n-6 \\ = \sqrt{2n-6} \\ = \sqrt{2n-6} \\ = \frac{n^2-6n+c}{(2n+2)} \\ (a_1,b_2) \Rightarrow 2b = 4n^2-6n+c \\ (a_2,b_2) \Rightarrow 2b = 4n^2-12n+c \\ b = 2n^2-12n+2c \\ = 2n^2-12n+2c \\ a_1 + a_2 + a_1 + c \\ \end{array}$	$ =9 2a^{2} - 2a + 2c = a^{2} - 2a + c = 2a^{2} $ $ = 2a^{2} - 6a + 2a^{2} $