DIFFERENTIATION

PRACTICE

THE OPERATION OF DIFFERENTIATION

Question 1
Evaluate the following.
a) $\frac{d}{d x}\left(5 x^{6}\right)$
$\frac{d}{d x}\left(5 x^{6}\right)=30 x^{5}$
b) $\frac{d}{d x}\left(2 x^{\frac{3}{2}}\right)$
$\frac{d}{d x}\left(2 x^{\frac{3}{2}}\right)=3 x^{\frac{1}{2}}$
c) $\frac{d}{d x}\left(6 x^{4}-x^{3}\right)$
$\frac{d}{d x}\left(6 x^{4}-x^{3}\right)=24 x^{3}-3 x^{2}$
d) $\frac{d}{d x}\left(3 x^{2}+5 x+1\right)$
$\frac{d}{d x}\left(3 x^{2}+5 x+1\right)=6 x+5$
e) $\frac{d}{d x}\left(4 x^{\frac{1}{2}}-2 x-7\right)$

$$
\frac{d}{d x}\left(4 x^{\frac{1}{2}}-2 x-7\right)=2 x^{-\frac{1}{2}}-2
$$

Question 2
Evaluate the following.
a) $\frac{d}{d x}\left(4 x^{3}\right)$
$\frac{d}{d x}\left(4 x^{3}\right)=12 x^{2}$
b) $\frac{d}{d x}\left(7 x^{5}\right)$
$\frac{d}{d x}\left(7 x^{5}\right)=35 x^{4}$
c) $\frac{d}{d x}\left(4 x^{2}+3 x^{4}\right)$
$\frac{d}{d x}\left(4 x^{2}+3 x^{4}\right)=8 x+12 x^{3}$
d) $\frac{d}{d x}\left(x^{2}+7 x+5\right)$
$\frac{d}{d x}\left(x^{2}+7 x+5\right)=2 x+7$
e) $\frac{d}{d x}\left(8 x^{\frac{1}{2}}+2 x^{-2}\right)$
$\frac{d}{d x}\left(8 x^{\frac{1}{2}}+2 x^{-2}\right)=4 x^{-\frac{1}{2}}-4 x^{-3}$

Question 3
Differentiate the following expressions with respect to x
a) $y=x^{2}-4 x^{6}$

b) $y=5 x^{3}-6 x^{\frac{3}{2}}$

$$
\frac{d y}{d x}=15 x^{2}-9 x^{\frac{1}{2}}
$$

$\frac{d y}{d x}=-27 x^{-4}-14 x^{-3}$
c) $y=9 x^{-3}+7 x^{-2}$
d) $y=5-5 x^{-1}$
$\frac{d y}{d x}=5 x^{-2}$
e) $y=7 x+\sqrt{x}$

$$
\frac{d y}{d x}=7+\frac{1}{2} x^{-\frac{1}{2}}
$$

Question 4
Differentiate the following expressions with respect to x
a) $y=x^{6}-7 x^{2}$

b) $y=1-6 x^{\frac{5}{2}}$

$$
\frac{d y}{d x}=15 x^{\frac{3}{2}}
$$

c) $y=2 x+8 x^{-2}$
$\frac{d y}{d x}=2+16 x^{-3}$
d) $y=(2 x-1)(4 x+3)$
$\frac{d y}{d x}=16 x+2$
e) $y=4 x^{3}(2-3 x)$
$\frac{d y}{d x}=24 x^{2}-48 x^{3}$

Question 5
Find $f^{\prime}(x)$ for each of the following functions.
a) $f(x)=4 x^{3}-9 x+2$

$$
f^{\prime}(x)=12 x^{2}-9
$$

b) $f(x)=6 x^{-\frac{1}{2}}+2 x$
$f^{\prime}(x)=-3 x^{-\frac{3}{2}}+2$
c) $f(x)=x^{4}+2 x^{\frac{5}{2}}$
$f^{\prime}(x)=4 x^{3}+5 x^{\frac{3}{2}}$
d) $f(x)=\frac{1}{2} x^{2}-4 x^{-\frac{3}{2}}$
$f^{\prime}(x)=x+6 x^{-\frac{5}{2}}$
$f^{\prime}(x)=\frac{1}{6} x^{-\frac{2}{3}}+5$
e) $f(x)=\frac{1}{2} x^{\frac{1}{3}}+5 x$
(a) $f(x)=2 x^{3}-9 x+2$
$\frac{d}{d x}\left(4 x^{3}-9 x+2\right)=\frac{d}{d x}(f(x))=f^{\prime}(x)=12 x^{2}-9$
(b) $f(x)=6 x^{-\frac{1}{2}}+2 x$
$\frac{d}{d x}\left(6 x^{-\frac{1}{2}}+2 x\right)=\frac{d}{d x}(f(x))=f(x)=-3 x^{-\frac{3}{2}}+2$
(c) $f(x)=x^{4}+2 x^{\frac{5}{2}}$
$\frac{d}{d x}\left(x^{4}+2 x^{\frac{3}{3}}\right)=\frac{d}{d}(f(x))-f^{\prime}(x)=4 x^{3}+5 x^{\frac{3}{2}}$
(d) $f(x)=\frac{1}{2} x^{2}-4 x^{-\frac{2}{2}}$
$\frac{d}{d x}\left(\frac{1}{2} x^{2}-4 x^{-\frac{3}{2}}\right)=\frac{d}{d x}(f(x))=x(x)=x+6 x^{\frac{5}{2}}$
(e) $f(x)=\frac{1}{2} 2^{\frac{1}{3}}+5 x$
$\frac{d}{d x}\left(\frac{1}{2} x^{\frac{1}{2}}+\frac{1}{2}\right)-\frac{d}{d x}(f(x))=f^{\prime}(x)=\frac{1}{6} x^{\frac{-}{2}}+5$

Created by T. Madas

Question 6

Differentiate each of the following functions with respect to x.
a) $f(x)=6 x^{-\frac{3}{2}}+4 x+1$
$f^{\prime}(x)=-9 x^{-\frac{5}{2}}+4$
b) $g(x)=x^{4}-x^{-1}$
c) $h(x)=9 x^{2}-\frac{1}{2} x^{4}$
d) $p(x)=4 x^{\frac{1}{2}}-6 x^{\frac{1}{3}}+\frac{1}{2} x^{-\frac{1}{4}}$
$p^{\prime}(x)=2 x^{-\frac{1}{2}}-2 x^{-\frac{2}{3}}-\frac{1}{8} x^{-\frac{5}{4}}$
e) $v(x)=\left(8 x+\frac{1}{2}\right)^{2}$
$g^{\prime}(x)=4 x^{3}+x^{-2}$
$h^{\prime}(x)=18 x-2 x^{3}$
$v^{\prime}(x)=128 x+8$

Question 7
Carry out the following differentiations.
a) $\frac{d}{d t}\left(4 t^{2}-7 t+5\right)$

$$
\begin{aligned}
& \frac{d}{d t}\left(4 t^{2}-7 t+5\right)=8 t-7 \\
& \frac{d}{d y}\left(y^{\frac{1}{2}}-\frac{2}{3} y^{-\frac{1}{2}}\right)=\frac{1}{2} y^{-\frac{1}{2}}+\frac{1}{3} y^{-\frac{3}{2}}
\end{aligned}
$$

b) $\frac{d}{d y}\left(y^{\frac{1}{2}}-\frac{2}{3} y^{-\frac{1}{2}}\right)$
c) $\frac{d}{d z}\left(2 z^{2}-3 z^{-1}+z\right)$
$\frac{d}{d z}\left(2 z^{2}-3 z^{-1}+z\right)=4 z+3 z^{-2}+1$
d) $\frac{d}{d w}\left(w^{2}-w^{-\frac{3}{2}}\right)$
$\frac{d}{d w}\left(w^{2}-w^{-\frac{3}{2}}\right)=2 w+\frac{3}{2} w^{-\frac{5}{2}}$
e) $\frac{d}{d x}\left(a x^{2}-3 x^{2}\right)$
$\frac{d}{d x}\left(a x^{2}-3 x^{2}\right)=2 a x-6 x$

Question 8
Carry out the following differentiations.
a) $\frac{d}{d y}\left(4 y^{3}+6 y+2\right)$
$\frac{d}{d y}\left(4 y^{3}+6 y+2\right)=12 y^{2}+6$
b) $\frac{d}{d t}\left(7 t^{2}-4 t^{\frac{1}{2}}\right)$
$\frac{d}{d t}\left(7 t^{2}-4 t^{\frac{1}{2}}\right)=14 t-2 t^{-\frac{1}{2}}$
c) $\frac{d}{d x}\left(a x^{2}+b x+c\right)$
$\frac{d}{d x}\left(a x^{2}+b x+c\right)=2 a x+b$
d) $\frac{d}{d z}\left(\frac{1}{4} z^{2}-\frac{1}{z}\right)$
$\frac{d}{d z}\left(\frac{1}{4} z^{2}-\frac{1}{z}\right)=\frac{1}{2} z+\frac{1}{z^{2}}$
e) $\frac{d}{d w}\left(\frac{1}{4} w^{\frac{4}{5}}+\frac{k}{w^{2}}\right)$
$\frac{d}{d w}\left(\frac{1}{4} w^{\frac{4}{5}}+\frac{k}{w^{2}}\right)=\frac{1}{5} w^{-\frac{1}{5}}-\frac{2 k}{w^{3}}$

Question 9
a) If $A=\pi x^{2}-20 x$, find the rate of change of A with respect to x.
b) If $V=x-2 \pi x^{3}$, find the rate of change of V with respect to x.
c) If $P=a t^{2}-b t$, find the rate of change of P with respect to t.
d) If $W=6 k h^{\frac{1}{2}}-h$, find the rate of change of W with respect to h.
e) If $N=(a t+b)^{2}$, find the rate of change of N with respect to t.

$$
\frac{d A}{d x}=2 \pi x-20, \frac{d V}{d x}=1-6 \pi x^{2}, \frac{d P}{d t}=2 a t-b, \frac{d W}{d h}=3 k h^{-\frac{1}{2}}-1 \text {, }
$$

$$
\frac{d N}{d t}=2 a^{2} t+2 a b
$$

\square

Created by T. Madas

DIFFERENTIATING

Question 1
Differentiate the following expressions with respect to x
a) $y=4 \sqrt{x}-\sqrt[3]{x}$

$$
\frac{d y}{d x}=2 x^{-\frac{1}{2}}-\frac{1}{3} x^{-\frac{2}{3}}
$$

b) $y=2 \sqrt{x}-4 \sqrt{x^{3}}$

$$
\frac{d y}{d x}=x^{-\frac{1}{2}}-6 x^{\frac{1}{2}}
$$

c) $y=\frac{1}{2 \sqrt{x}}+\frac{4}{x^{2}}$
$\frac{d y}{d x}=-\frac{1}{4} x^{-\frac{3}{2}}-8 x^{-3}$
d) $y=x \sqrt{x}-\frac{1}{x^{2}}$

$$
\frac{d y}{d x}=\frac{3}{2} x^{\frac{1}{2}}+2 x^{-3}
$$

e) $y=4 \sqrt{x}+\frac{1}{4 \sqrt{x}}$
$\frac{d y}{d x}=2 x^{-\frac{1}{2}}-\frac{1}{8} x^{-\frac{3}{2}}$
(b) $\frac{d}{d x}\left(2 \sqrt{x}-4 \sqrt{x^{3}}\right)=\frac{d}{d x}\left(x^{\frac{1}{2}}-4 x^{\frac{3}{2}}\right)=x^{-\frac{1}{2}}-6 x^{\frac{1}{2}}$
(c) $\frac{d}{d x}\left(\frac{1}{2 \sqrt{x}}+\frac{4}{x^{2}}\right)=\frac{d}{d x}\left(\frac{1}{2} x^{-\frac{1}{2}}+4 x^{-2}\right)=-\frac{1}{4} x^{-\frac{3}{2}}-8 x^{-3}$
(d) $\frac{d}{d x}\left(\sqrt{x}-\frac{1}{2 x}\right) \cdot=\frac{d}{d}\left(x^{\frac{1}{2}}-x^{2}\right)-\frac{d}{2}\left(x^{\frac{1}{2}}-x^{2}\right)-\frac{3}{2} x^{\frac{1}{2}}+2 x^{-3} /$
(e) $\frac{d}{d x}\left(4 \sqrt{x}+\frac{1}{4 \sqrt{x}}\right)=\frac{d}{d x}\left(4 x^{\frac{1}{2}}+\frac{1}{4} x^{-\frac{1}{2}}\right)=2 x^{-\frac{1}{2}}-\frac{1}{8} x^{-\frac{3}{2}}$

Question 2
Find $f^{\prime}(x)$ for each of the following functions.
a) $f(x)=\frac{2}{x^{3}}+5 x^{\frac{2}{3}}$

b) $f(x)=8 x^{\frac{3}{4}}-\frac{2}{x^{4}}$

$$
f^{\prime}(x)=6 x^{-\frac{1}{4}}+8 x^{-5}
$$

c) $f(x)=2 x-\frac{3}{x^{2}}+4 \sqrt{x}+2$
$f^{\prime}(x)=2+6 x^{-3}+2 x^{-\frac{1}{2}}$
d) $f(x)=\sqrt[3]{x^{2}}-\frac{3}{2 x^{3}}$
$f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}+\frac{9}{2} x^{-4}$
e) $f(x)=\sqrt{x^{3}}-\frac{1}{2 x^{2}}$
$f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}+x^{-3}$

Question 3
Differentiate the following expressions with respect to x
a) $y=\frac{4}{x^{3}}-\frac{4}{3 x^{2}}$

$$
\frac{d y}{d x}=\frac{8}{3} x^{-3}-12 x^{-4}
$$

b) $y=\frac{3}{4 x^{2}}-\frac{12}{x^{2} \sqrt{x}}$

$$
\frac{d y}{d x}=30 x^{-\frac{7}{2}}-\frac{3}{2} x^{-3}
$$

c) $y=\frac{1}{3 x}+\frac{2 x^{3}+1}{3 \sqrt{x}}$
$\frac{d y}{d x}=-\frac{1}{3} x^{-2}+\frac{5}{3} x^{\frac{3}{2}}-\frac{1}{6} x^{-\frac{3}{2}}$
d) $y=2 \sqrt{x}\left(7 x-x^{2}\right)$

$$
\frac{d y}{d x}=21 x^{\frac{1}{2}}-5 x^{\frac{3}{2}}
$$

e) $y=(3+2 \sqrt{x})^{2}$

$$
\frac{d y}{d x}=6 x^{-\frac{1}{2}}+4
$$

Question 4
Evaluate the following.
a) $\frac{d}{d x}\left(6 x^{\frac{4}{3}}-2 x^{\frac{5}{2}}\right)$
$8 x^{\frac{1}{3}}-5 x^{\frac{3}{2}}$
b) $\frac{d}{d x}\left(\frac{1}{x}-\frac{1}{\sqrt{x}}\right)$
$-x^{-2}+\frac{1}{2} x^{-\frac{3}{2}}$
c) $\frac{d}{d x}\left(\sqrt[3]{x}-\frac{27}{x}\right)$
$\frac{1}{3} x^{-\frac{2}{3}}+27 x^{-2}$
d) $\frac{d}{d x}\left(\frac{3 \sqrt{x}-2}{\left(x^{\frac{3}{2}}\right.}\right)$
e) $\frac{d}{d x}\left[\frac{1}{3 \sqrt{x}}\left(\frac{2}{x}-3\right)\right]$

Question 5
Evaluate the following.
a) $\frac{d}{d x}\left(\frac{x+x^{2}}{\sqrt{x}}\right)$
b) $\frac{d}{d x}\left(\frac{4 x+\sqrt{x}}{2 x^{2}}\right)$

$$
\frac{1}{2} x^{-\frac{1}{2}}+\frac{3}{2} x^{\frac{1}{2}}
$$

c) $\frac{d}{d x}\left(\frac{x^{2}+2}{x^{3}}\right)$
d) $\frac{d}{d x}\left(\frac{1-\sqrt{x}}{4 x^{3}}\right)$ $-x^{-2}-6 x^{-4}$
$-\frac{3}{4} x^{-4}+\frac{5}{8} x^{-\frac{7}{2}}$
e) $\frac{d}{d x}\left[\frac{\sqrt[3]{x^{5}}-2 x \sqrt{x}}{3 x}\right]$

$$
\frac{2}{9} x^{-\frac{1}{3}}-\frac{1}{3} x^{-\frac{1}{2}}
$$

Question 6
Differentiate the following expressions with respect to x
a) $y=\frac{4+x}{2 x^{3}}$

$$
\frac{d y}{d x}=-6 x^{-4}-x^{-3}
$$

b) $y=\frac{x^{2}+3 x}{2 \sqrt{x}}$

$$
\frac{d y}{d x}=\frac{3}{4} x^{-\frac{1}{2}}+\frac{3}{4} x^{\frac{1}{2}}
$$

c) $y=\frac{x+4 \sqrt{x}}{2 x^{3}}$
$\frac{d y}{d x}=-5 x^{-\frac{7}{2}}-x^{-3}$
d) $y=\frac{\sqrt{x}(2 x-4)}{3 x^{2}}$
$\frac{d y}{d x}=-\frac{1}{3} x^{-\frac{3}{2}}+2 x^{-\frac{5}{2}}$
e) $y=\frac{(x+2)(2 x-3)}{4 x^{5}}$

$$
\frac{d y}{d x}=-\frac{3}{2} x^{-4}-x^{-5}+\frac{15}{2} x^{-6}
$$

Question 7
Find $f^{\prime}(x)$ for each of the following functions.
a) $f(x)=x\left(\sqrt{x}+x^{-4}\right)$
$f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-3 x^{-4}$
b) $f(x)=\frac{1}{\sqrt{x}}\left(\frac{2}{x}-\frac{3}{4 x^{2}}\right)$
$f^{\prime}(x)=-3 x^{-\frac{5}{2}}+\frac{15}{8} x^{-\frac{7}{2}}$
c) $f(x)=4 x^{\frac{7}{2}}\left(\frac{6}{x^{2}}-\frac{5}{\sqrt{x}}\right)$
$f^{\prime}(x)=36 x^{\frac{1}{2}}-60 x^{2}$
d) $f(x)=2 \sqrt{x}\left(\frac{5}{x}+x^{2}\right)$
$f^{\prime}(x)=-5 x^{-\frac{3}{2}}+5 x^{\frac{3}{2}}$
e) $f(x)=\frac{2}{x^{\frac{3}{2}}}\left(\frac{7 x^{3}-5 x^{2}}{4 x}\right)$
$f^{\prime}(x)=\frac{7}{4} x^{-\frac{1}{2}}+\frac{5}{4} x^{-\frac{3}{2}}$

Question 8
Differentiate the following expressions with respect to x
a) $y=\frac{(2 x-1)(3 x-2)}{2 x^{\frac{3}{2}}}$
$\frac{d y}{d x}=\frac{3}{2} x^{-\frac{1}{2}}+\frac{7}{4} x^{-\frac{3}{2}}-\frac{3}{2} x^{-\frac{5}{2}}$
b) $y=\frac{(3+2 \sqrt{x})^{2}}{4 x}$
$\frac{d y}{d x}=-\frac{3}{2} x^{-\frac{3}{2}}-\frac{9}{4} x^{-2}$
c) $y=\frac{4 x^{3}+\sqrt{x^{5}}}{4 \sqrt{x}}$
$\frac{d y}{d x}=\frac{1}{2} x+\frac{5}{2} x^{\frac{3}{2}}$
d) $y=\frac{(4 x+\sqrt{x})\left(x^{2}-3\right)}{3 \sqrt{x}}$
$\frac{d y}{d x}=\frac{2}{3} x+\frac{10}{3} x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}$
e) $y=\frac{\left(2 x^{\frac{1}{2}}+6 x^{-\frac{1}{2}}\right)\left(6 x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}\right)}{3 x}$
$\frac{d y}{d x}=\frac{4}{3} x^{-2}+8 x^{-3}+4$

TANGENTS

NORMALS

Question 1 (non calculator)
For each of the following curves find an equation of the tangent to the curve at the point whose x coordinate is given.
a) $y=x^{2}-9 x+13$, where $x=6$
$y=3 x-23$
b) $y=x^{4}+x+1$, where $x=1$
$y=5 x-2$
c) $y=2 x^{2}+6 x+7$, where $x=-1$

$$
y=2 x+5
$$

d) $y=2 x^{3}-4 x+5$, where $x=1$
$y=2 x+1$
e) $y=2 x^{3}-4 x^{2}-3$, where $x=2$
$y=8 x-19$
f) $y=3 x^{3}-17 x^{2}+24 x-9$, where $x=2$ $y=-8 x+11$

Question 2 (non calculator)
For each of the following curves find an equation of the tangent to the curve at the point whose x coordinate is given.
a) $f(x)=x^{3}-4 x^{2}+2 x-1$, where $x=2$

$$
y=-2 x-1
$$

b) $f(x)=3 x^{3}+x^{2}-8 x-5$, where $x=1$
$y=3 x-12$
c) $f(x)=2 x^{3}-5 x^{2}+2 x-1$, where $x=2$
$y=6 x-13$
d) $f(x)=x^{3}-x^{2}-3 x-2$, where $x=1$

$$
y=-2 x-3
$$

e) $f(x)=2 x^{3}+x^{2}-2 x-2$, where $x=1$

$$
y=6 x-7
$$

Question 3 (non calculator)
For each of the following curves find an equation of the tangent to the curve at the point whose x coordinate is given.
a) $y=x^{2}-\frac{3}{x}-\frac{1}{2}$, where $x=-2$

$$
13 x+4 y+6=0
$$

b) $y=x^{3}-6 x+\frac{8}{x}+1$, where $x=2$
$y=4 x-7$
c) $y=4 x^{2}+\frac{5}{x}-1$, where $x=1$
d) $y=2 \sqrt{x}-\frac{6}{\sqrt{x}}$, where $x=4$

$$
7 x-8 y-20=0
$$

e) $y=3 x^{\frac{3}{2}}-\frac{32}{x}$, where $x=4$

$$
y=11 x-28
$$

Question 4 (non calculator)
For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.
a) $f(x)=x^{3}-4 x^{2}+1$, where $x=2$

$$
4 y=x-30
$$

b) $f(x)=x^{3}-7 x^{2}+11 x$, where $x=3$ $4 y=x-15$
c) $f(x)=3 x^{4}-7 x^{3}+5$ where $x=2$ \square
$12 y+x+34=0$
d) $f(x)=\frac{1}{4} x^{5}-18 x+11$ where $x=2$

$$
2 y+x+32=0
$$

Question 5 (non calculator)
For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.
a) $f(x)=2 x^{3}-3 x^{2}-10 x+18$, where $x=2$

$$
x+2 y=6
$$

b) $f(x)=x^{3}-4 x^{2}+6 x+1$, where $x=1$

$$
x+y=5
$$

c) $f(x)=4 x^{3}+2 x^{2}-18 x-10$ where $x=-2$

$$
22 y+x=42
$$

d) $f(x)=-2 x^{3}+4 x^{2}-1$, where $x=2$

$$
8 y=x-10
$$

(a)$\begin{aligned} f(x) & =2 x^{3}-3 x^{2}-10 x+18 \\ f(x) & =6 x^{2}-6 x-10 \\ f(x) & =24-12-10=2 \\ f(x) & =16-12-20+18 \\ & =34-32 \\ & =2 \end{aligned}$	(c) $f(x)=4 x^{3}+2 x^{2}-18 x-10$
	$\left.f(-2)=4(-2)^{3}+2-2\right)^{2}-18(-2)+10$
	$\begin{aligned} & =-33+8+36-10 \\ & =-42+44\end{aligned}$
	$=-42+44$ $=2$
	$f^{\prime}(x)=12 x^{2}+4 x-18$
$y^{y-y_{0}=m\left(x-x_{0}\right)}$	$\begin{aligned} & f(-2)=48-8-18 \\ & f(-2)=22 \end{aligned}$
y-2 $=-\frac{1}{2}(2-2)$ $2 y-4=-x+2$	\cdots Neenut $m=-\frac{1}{2} \quad(-22)$
(b) $\begin{aligned} 2 y+x & =6\end{aligned}$	$\begin{aligned} & y-y_{1}=m_{2}(x-x) \\ & y-2=-\frac{1}{2}(x+2) \\ & y-2 x+2) \end{aligned}$
(b) $f(3)=x^{3}-4 x^{2}+a+1$	$22 y-44=-2-2$
$\begin{aligned} & f(x)=x^{2}-2 x+6 \\ & f(x)=3-8+6=1 \end{aligned}$	$22 y+x=42$ (d) $\mathrm{f}(\mathrm{D})=$
(1) $=3-8+6=1$	(l) $f(x)=-2 x^{3}+42^{2}-1$
$\begin{aligned} & f(a)=1-4+6+1 \\ & f(a)=4 \end{aligned}$	$f(9)=-6 x^{2}+8 x^{2}$ $f(2)=-6 x^{2}+8 x x^{2}$
	$f(2)=-24+6=-8$
$\begin{aligned} & y-y_{0}=m\left(1-x_{0}\right) \\ & y-4=-1(x-1) \end{aligned}$	$\begin{aligned} & f(2)=-2 \times x^{3}+4 \times x^{2}-1 \\ & (4)=x+3+16-1 \end{aligned}$
$y-4=-x+1$	Woum $m=\frac{1}{8} 1\left(z_{0}+1\right)$
$y+x=5$	$\begin{aligned} & y-y_{0}=m\left(x-x_{0}\right) \\ & \left.y+\frac{1}{x}(x)-2\right) \\ & 8 y+8=x-2 \\ & 8 y=x-10 \end{aligned}$

Question 6 (non calculator)
For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.
a) $y=x^{2}(x-6)+\frac{5}{x}-1$, where $x=1$
b) $y=2 x^{\frac{3}{2}}-\frac{16}{x}$, where $x=4$
c) $y=4 x^{2}+x^{-\frac{3}{2}}$, where $x=1$
d) $y=2 x^{2}-4 x^{\frac{3}{2}}-\frac{8}{x}-1$, where $x=4$

$$
x+7 y=88
$$

$2 x+13 y=67$

$$
2 x+9 y+19=0
$$

STATIONARY

POINTS

Question 1 (non calculator)
For each of the following cubic equations find the coordinates of their stationary points and determine their nature.
a) $y=x^{3}-3 x^{2}-9 x+3$
b) $y=x^{3}+12 x^{2}+45 x+50$
c) $y=2 x^{3}-6 x^{2}+12$
d) $y=25-24 x+9 x^{2}-x^{3}$
\square
\square

$$
\min (2,5), \max (4,9)
$$

Question 2
For each of the following equations find the coordinates of their stationary points and determine their nature.
a) $y=x+\frac{4}{x}, x \neq 0$
b) $y=x^{2}+\frac{16}{x}, \quad x \neq 0$
c) $y=x-4 \sqrt{x}, x>0$
d) $y=4 x^{2}+\frac{1}{x}, x \neq 0$

Question 3
For each of the following equations find the coordinates of their stationary points and determine their nature.
a) $y=12 \sqrt{x}-x^{\frac{3}{2}}, x>0$
b) $y=x^{\frac{3}{2}}-6 x^{\frac{1}{2}}, x>0$
c) $y=6 x^{\frac{1}{2}}-4 x-2, x>0$
d) $y=x^{\frac{7}{2}}-14 x^{2}+100, x>0$

$$
\max (4,16), \min (2,-4 \sqrt{2}), \max \left(\frac{9}{16}, \frac{1}{4}\right), \min (4,4)
$$

\square

$\text { (c) } \begin{aligned} & \left\{\begin{array}{l} y=6 x^{\frac{1}{2}}-4 x-2 \\ \left\{\begin{array}{l} d x \\ d x^{2} \end{array} 3^{-\frac{1}{2}}-4\right. \\ \frac{d^{2} y}{d x^{2}}=-\frac{3}{2}-x^{-\frac{3}{2}} \end{array}\right. \\ & \text { Gor S.T. P, } \frac{d y}{d x}=0 \\ & \Rightarrow 3 x^{-\frac{1}{2}}-4=0 \\ & \Rightarrow 3 x^{-\frac{1}{2}}=4 \\ & \Rightarrow \frac{3}{x^{\frac{1}{x}}=4} \\ & \Rightarrow 3=4 x^{\frac{1}{2}} \\ & \Rightarrow \frac{3}{4}=x^{\frac{1}{2}} \\ & \Rightarrow x=\frac{9}{16} \end{aligned}$	(c) Whan $x=\frac{9}{4}$ $\begin{aligned} & y=6 \times\left(\frac{9}{16}\right)^{\frac{1}{2}}-4\left(\frac{9}{16}\right)-2 \\ & y=6 \times \frac{3}{4}-\frac{9}{4}-2 \\ & y=\frac{9}{2}-\frac{9}{4}-2 \\ & y=\frac{9}{4}-2 \\ & y=\frac{1}{4} \end{aligned}$ $\begin{aligned} &-\left.\frac{d^{2}}{d x^{2}}\right\|_{2=\frac{9}{16}}=-\frac{3}{2}\left(\frac{9}{16}\right)^{-\frac{3}{2}} \\ &=-\frac{3}{2}\left(\frac{16}{4}\right)^{\frac{3}{2}} \\ &=-\frac{3}{2} \times \frac{\frac{24}{77}}{}=-\frac{32}{9}<0 \\ & \therefore\left(\frac{9}{16} 1 \frac{1}{4}\right) \text { is }+ \text { max } \end{aligned}$
(d) $\left\{\begin{array}{l} y=x^{\frac{7}{2}}-14 x^{2}+100 \\ \frac{d y}{d x}=\frac{7}{2} x^{\frac{7}{2}}-28 x \\ \frac{d^{2} y}{d x^{2}}=\frac{35}{4} x^{\frac{3}{2}}-28 \end{array}\right\}$	whan $x=4$ $\begin{aligned} & y=4^{\frac{1}{2}-4 \times 4^{2}+100} \\ & y=120-14 \times 16+100 \\ & y=228-724 \\ & y=4 \end{aligned}$
$\begin{aligned} & \text { (1) Fr ST.P } \frac{d y}{x}=0 \\ & \Rightarrow \frac{7}{2} x^{\frac{5}{2}}-28 x=0 \\ & \Rightarrow \frac{7}{2} x^{\frac{1}{2}}=20 x \\ & \Rightarrow 7 x^{\frac{1}{2}}=56 x \\ & \Rightarrow \frac{7 x^{\frac{3}{2}}}{x}=56 \\ & \Rightarrow 7 x^{\frac{3}{2}}=56 \\ & \Rightarrow x^{\frac{3}{2}}=8 \\ & \Rightarrow\left(x^{2}\right)^{\frac{2}{3}}=8^{\frac{2}{3}} \quad \therefore x=4 \end{aligned}$	$\begin{aligned} \left.\frac{d^{2} y}{a x^{2}}\right\|_{y=4} & =\frac{35}{4} \times 4^{\frac{3}{2}}-28 \\ & =\frac{35}{4} \times 8-28 \\ & =70-28=42>0 \\ & \therefore(4,4) 154 \mathrm{Nm} \end{aligned}$

Question 4
For each of the following equations find the coordinates of their stationary points and determine their nature.
a) $y=x^{3}-16 x^{\frac{3}{2}}+60, x>0$
b) $y=5 x^{2}-6 x^{\frac{5}{3}}+10, x>0$
c) $y=6 x^{\frac{4}{3}}-x^{2}-20, x>0$
d) $y=5 x^{2}-2 x^{\frac{5}{2}}-10, x>0$

$$
\min (4,-4), \min (1,9), \max (8,12), \max (4,6)
$$

\square

Question 5
For each of the following equations find the coordinates of their stationary points and determine their nature.
a) $y=\frac{1}{x}-\frac{1}{\sqrt{x}}, x>0$
b) $y=\frac{3 \sqrt{x}-2}{x^{\frac{3}{2}}}, x>0$
c) $y=\sqrt[3]{x}+\frac{27}{x}, x>0$
d) $y=\frac{1}{3 \sqrt{x}}\left[\frac{2}{x}-3\right], x>0$

$$
\min \left(4,-\frac{1}{4}\right), \max (1,1), \min (27,4), \min \left(2,-\frac{\sqrt{2}}{3}\right)
$$

INCREASING

 and
DECREASING

FUNCTIONS

Created by T. Madas

Question 1
For each of the following equations find the range of the values of x, for which y is increasing or decreasing.
a) $y=2 x^{3}-3 x^{2}-12 x+2$, increasing
b) $y=x^{3}-6 x^{2}+12$, decreasing
c) $y=x^{3}-3 x+8$, increasing
d) $y=1-3 x^{2}-x^{3}$, decreasing

$$
x<-1 \text { or } x>2,0<x<4, x<-1 \text { or } x>1, x<-2 \text { or } x>0
$$

Question 2
Find the range of the values of x, for which $f(x)$ is increasing or decreasing.
a) $f(x)=x^{3}-3 x^{2}-9 x+10$, increasing
b) $f(x)=-x^{3}+9 x^{2}-15 x-13$, increasing
c) $f(x)=4 x^{3}-3 x^{2}-6 x$, decreasing
d) $f(x)=4 x^{3}-3 x$, decreasing

$$
x<-1 \text { or } x>3,-1<x<5,-\frac{1}{2}<x<1,-\frac{1}{2}<x<\frac{1}{2}
$$

DIFFERENTIATION

PRACTICE
 IN CONTEXT

Created by T. Madas

Question 1
The curve C has equation

$$
f(x)=3 x^{2}-8 x+2
$$

a) Find the gradient at the point on C, where $x=-1$.

The point A lies on C and the gradient at that point is 4 .
b) Find the coordinates of A.

$$
y=x^{3}-11 x+1
$$

Created by T. Madas

Question 3
The curve C has equation

$$
y=2 x^{2}-4 x-1
$$

a) Find the gradient at the point on C, where $x=2$.

The point P lies on C and the gradient at that point is 2 .
b) Find the coordinates of P.

Created by T. Madas

Question 4
The curve C has equation

$$
f(x)=x+\frac{1}{x}, x \neq 0
$$

a) Find the gradient at the point on C, where $x=\frac{1}{2}$.

The point A lies on C and the gradient at that point is $\frac{3}{4}$.
b) Find the possible coordinates of A.

Question 5

The curve C has equation

$$
y=x^{3}-x^{2}-5 x+2
$$

Find the x coordinates of the points on C with gradient 3 .

Question 6

The curve C has equation

$$
y=x^{5}-6 x^{3}-3 x+25 .
$$

Find an equation of the tangent to C at the point where $x=2$.

Question 7
The curve C has equation

$$
y=-x^{2}(x+1), x \in \mathbb{R}
$$

The curve meets the coordinate axes at the origin O and at the point A.
a) Sketch the graph of C, indicating clearly the coordinates of A.
b) Show that the straight line with equation

$$
x+y+1=0
$$

is a tangent to C at A.

Question 8
The curve C has equation

$$
y=\frac{6}{x^{2}}+\frac{5 x}{4}-4, x \neq 0
$$

a) Find an expression for $\frac{d y}{d x}$.
b) Determine an equation of the normal to the curve at the point where $x=2$.

$$
\frac{d y}{d x}=\frac{5}{4}-\frac{12}{x^{3}}, y=4 x-8
$$

\square

Question 9
The curve C has equation

$$
f(x)=4 x \sqrt{x}-\frac{25 x^{2}}{16}, x \geq 0
$$

a) Find a simplified expression for $f^{\prime}(x)$.
b) Determine an equation of the tangent to C at the point where $x=4$, giving the answer in the form $a x+b y=c$, where a, b and c are integers.

Question 10
A curve has the following equation

$$
f(x)=\frac{(2 x-3)(x+2)}{\sqrt{x}}, x>0 .
$$

a) Express $f(x)$ in the form $A x^{\frac{3}{2}}+B x^{\frac{1}{2}}+C x^{-\frac{1}{2}}$, where A, B and C are constants to be found.
b) Show that the tangent to the curve at the point where $x=1$ is parallel to the line with equation

$$
2 y=13 x+2 .
$$

$$
A=2, B=1, \quad C=-6
$$

Created by T. Madas

Created by T. Madas

Question 11
A cubic curve has equation

$$
f(x)=2 x^{3}-7 x^{2}+6 x+1
$$

The point $P(2,1)$ lies on the curve.
a) Find an equation of the tangent to the curve at P.

The point Q lies on the curve so that the tangent to the curve at Q is parallel to the tangent to the curve at P.
b) Determine the x coordinate of Q.

Question 12
The curve C has equation

$$
y=2 x^{3}-9 x^{2}+12 x-10 .
$$

a) Find the coordinates of the two points on the curve where the gradient is zero.

The point P lies on C and its x coordinate is -1 .
b) Determine the gradient of C at the point P.

The point Q lies on C so that the gradient at Q is the same as the gradient at P.
c) Find the coordinates of Q.

Created by T. Madas

Question 13
The curve C has equation

$$
y=a x^{3}+b x^{2}-10,
$$

where a and b are constants.

The point $A(2,2)$ lies on C.

Given that the gradient at A is 4 , determine the value of a and the value of b.

$$
a=-2, b=7
$$

\square
$y=a x^{3}+b x^{2}-10 \Rightarrow \frac{d y}{d x}=3 a x^{2}+2 b x$ $2=B_{a}+1 b$ whe $4=12 a+4 b=4$ $1=3 a+b$ $3=2 a+b$
$\Rightarrow 3-2+1-3 n$

Question 14
The curve C has equation

$$
y=x^{3}-4 x^{2}+6 x-3
$$

The point $P(2,1)$ lies on C and the straight line L_{1} is the tangent to C at P.
a) Find an equation of L_{1}.

The straight line L_{2} is a tangent to C at the point Q.
b) Given that L_{2} is parallel to L_{1}, determine ...
i. $\quad .$. the exact coordinates of Q.
ii. ... an equation of L_{2}.

$$
y=2 x-3, Q\left(\frac{2}{3},-\frac{13}{27}\right), 27 y=54 x-49
$$

Question 15
A curve C and a straight line L have respective equations

$$
y=2 x^{2}-6 x+5 \quad \text { and } \quad 2 y+x=4
$$

a) Find the coordinates of the points of intersection between C and L.
b) Show that L is a normal to C.

The tangent to C at the point P is parallel to L.
c) Determine the x coordinate of P.

Question 16
The curve C has equation

$$
y=2 x^{3}-6 x^{2}+3 x+5
$$

The point $P(2,3)$ lies on C and the straight line L_{1} is the tangent to C at P.
a) Find an equation of L_{1}.

The straight lines L_{2} and L_{3} are parallel to L_{1}, and they are the respective normals to C at the points Q and R.
b) Determine the x coordinate of Q and the x coordinate of R.

The figure above shows the curve with equation

$$
y=\frac{1}{4}\left(x^{2}-12 x+35\right)
$$

The curve crosses the x axis at the points $P\left(x_{1}, 0\right)$ and $Q\left(x_{2}, 0\right)$, where $x_{2}>x_{1}$.
The tangent to the curve at Q is the straight line L_{1}.
a) Find an equation of L_{1}.

The tangent to the curve at the point R is denoted by L_{2}. It is further given that L_{2} meets L_{1} at right angles, at the point S.
b) Find an equation of L_{2}.
c) Determine the exact coordinates of S.
\square $y=\frac{1}{2} x-\frac{7}{2}, 4 y+8 x=31$,
$S\left(\frac{9}{2},-\frac{5}{4}\right)$

Question 18
The point $P(1,0)$ lies on the curve C with equation

$$
y=x^{3}-x, \quad x \in \mathbb{R} .
$$

a) Find an equation of the tangent to C at P, giving the answer in the form $y=m x+c$, where m and c are constants.

The tangent to C at P meets C again at the point Q.
b) Determine the coordinates of Q.

Created by T. Madas

Question 19
A curve C with equation

$$
y=4 x^{3}+7 x^{2}+x+11, \quad x \in \mathbb{R}
$$

The point P lies on C, where $x=-1$.
a) Find an equation of the tangent to C at P.

The tangent to C at P meets C again at the point Q.
b) Determine the x coordinate of Q.

Created by T. Madas

Question 20

The figure above shows the curve C with equation

$$
y=2 x^{2}-x+3
$$

C crosses the y axis at the point P. The normal to C at P is the straight line L_{1}.
a) Find an equation of L_{1}
L_{1} meets the curve again at the point Q.
b) Determine the coordinates of Q.

The tangent to C at Q is the straight line L_{2}.
L_{2} meets the y axis at the point R.
c) Show that the area of the triangle $P Q R$ is one square unit.

Question 21

The figure above shows the curve C with equation

$$
y=2 x^{3}+3 x^{2}-11 x-6
$$

The curve crosses the x axis at the points P, Q and $R(2,0)$.

The tangent to C at R is the straight line L_{1}.
a) Find an equation of L_{1}.

The normal to C at P is the straight line L_{2}.

The straight lines L_{1} and L_{2} meet at the point S.
b) Show that $\measuredangle P S R=90^{\circ}$.

Question 22
A curve has equation

$$
y=6 \sqrt[3]{x^{5}}-15 \sqrt[3]{x^{4}}-80 x+16, \quad x \in \mathbb{R}, \quad x \geq 0
$$

Find the coordinates of the stationary point of the curve and determine whether it is a local maximum, a local minimum or a point of inflexion.

Detiruminu The Naivaf By THe Stown Drewatiot TIST $\frac{d y}{d x}=10 x^{\frac{2}{3}}-20 x^{\frac{1}{3}}-80$
$\frac{d^{2} y}{d x^{2}}=\frac{x}{3} x^{-\frac{1}{3}}-\frac{20}{3} x^{-\frac{2}{3}}$
$\frac{d^{2} y}{d x^{2}}=\frac{x}{3}\left[\frac{1}{\sqrt[3]{2}}-\frac{1}{\sqrt[3]{x^{2}}}\right]$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=54}=\frac{20}{3}\left[\frac{1}{\sqrt[3]{44}}-\frac{1}{\sqrt[3]{64^{2}}}\right]=\frac{5}{4}>0$

Question 23
A curve has equation

$$
y=x^{2}-6 x \sqrt[3]{x}+2, \quad x \in \mathbb{R}, \quad x \geq 0
$$

Find the coordinates of the stationary points of the curve and classify them as local maxima, local minima or a points of inflexion.
local minimum at $(8,-30)$, local maximum at $(0,2)$

$\begin{aligned} & \Rightarrow y=x^{2}-6 x \sqrt[3]{x}+2 \\ & \Rightarrow y=x^{2}-6 x^{1} x^{\frac{1}{3}}+2 \\ & \Rightarrow y=x^{2}-6 x^{\frac{4}{3}}+2 \\ & \Rightarrow \frac{d y}{d x}=2 x-8 x^{\frac{1}{3}} \end{aligned}$ sownla for zeno, secting stationary panis $\begin{aligned} & \Rightarrow 2 x-8 x^{\frac{1}{3}}=0 \\ & \Rightarrow 2 x=8 x^{\frac{1}{3}} \\ & \Rightarrow x=4 x^{\frac{1}{3}} \end{aligned}$ Enitfer $x=0$ (by inspetion) of if we divine wt ofthin) $\begin{aligned} & \Rightarrow x^{\frac{2}{2}}=4 \\ & \Rightarrow(\sqrt[3]{x})^{2}=4 \\ & \Rightarrow \sqrt[3]{x}=<_{-2}^{-2} \\ & \Rightarrow x=<_{-i}^{8} \quad x \geqslant 0 \end{aligned}$ FiND FIRT THE CORESPONDING y co ORDNATIS $\begin{aligned} & x=0, y=2 \\ & x=8, \quad y=8^{2}-6 \times 8^{\frac{4}{3}}+2=64-6 \times 16+2=66-96=-30 \\ & \therefore(0,2) \& \quad(8,-30) \end{aligned}$

Created by T. Madas

Question 24
A curve has equation

$$
y=x\left(x^{2}-128 \sqrt{x}\right), \quad x \in \mathbb{R}, \quad x>0
$$

The curve has a single stationary point with coordinates $\left(2^{\alpha},-2^{\beta}\right)$, where α and β are positive integers.

Find the value of β and justify that the stationary point is a local minimum.

Created by T. Madas

Question 25
The point P, whose x coordinate is $\frac{1}{4}$, lies on the curve with equation

$$
y=\frac{k+4 x \sqrt{x}}{7 x}, x \in \mathbb{R}, x>0
$$

a) Determine, in terms of k, the gradient of the curve at P.

The tangent to the curve at P is parallel to the straight line with equation

$$
44 x+7 y-5=0
$$

b) Find an equation of the tangent to the curve at P.

0
where k is a non zero constant.

$$
\left.\frac{d y}{d x}\right|_{x=\frac{1}{4}}=\frac{4-16 k}{7}, 44 x+7 y=25
$$

a

- $y=\frac{4 x \sqrt{x}+k}{7 x}=\frac{4 x \sqrt{x}}{7 x}+\frac{k}{7 x}=\frac{4}{7} x^{\frac{1}{2}}+\frac{k}{7} x^{-1}$
- $\frac{d y}{d x}=\frac{2}{7} x^{-\frac{1}{2}}-\frac{b}{7} x^{-2}$
-

 $7 y+4 x-5=0$
$\Rightarrow 7 y=-4 x+5$
$\Rightarrow y=-\frac{4}{7} x+\frac{5}{7}$

$\Rightarrow \frac{4}{7}-\frac{16}{7} k=-\frac{44}{7}$
$\Rightarrow 4-16 k=$
$\Rightarrow 40=16 k$
$\Rightarrow k=3$
FIND THE y Co.odanaition P
$y=\frac{\Delta x \sqrt{x}+3}{7 x}=\frac{4 \times \frac{1}{4} \times \sqrt{\frac{1}{4}}+3}{7 \times \frac{1}{4}}=\frac{\left(\frac{1}{\frac{1}{2}}+3\right)^{\frac{14}{4}}}{\frac{7 \times 4}{7 \times 4}}=\frac{2+12}{2}=2$ $\frac{\text { GPuAtion of Thaxian AT } P(\neq 12)}{y-y_{0}=m_{1}\left(x-x_{0}\right)}$
$\begin{aligned} y-2 & =-\frac{44}{7}\left(x-\frac{1}{4}\right) \\ 7 y-14 & =-44 x+11\end{aligned}$

Created by T. Madas

Question 26

$$
\pi
$$

The figure above shows the curve C with equation

$$
y=\frac{x^{2}}{2}-\frac{4}{x}, x \neq 0 .
$$

The curve crosses the x axis at the point P.

The straight line L is the normal to C at P.
a) Find ...
i. ... the coordinates of P.
ii. ... an equation of L.
b) Show that L does not meet C again.

Created by T. Madas

Question 27
The curve C has equation

$$
y=(x-1)\left(x^{2}+4 x+5\right), x \in \mathbb{R}
$$

a) Show that C meets the x axis at only one point.

The point A, where $x=-1$, lies on C.
b) Find an equation of the normal to C at A.

The normal to C at A meets the coordinate axes at the points P and Q.
c) Show further that the area of the triangle $O P Q$, where O is the origin, is $12 \frac{1}{4}$ square units.

$$
2 y=x-7
$$

Question 28
A curve has equation

$$
y=x-8 \sqrt{x}, x \in \mathbb{R}, x \geq 0
$$

The curve meets the coordinate axes at the origin and at the point P.
a) Determine the coordinates of P.

The point Q, where $x=4$, lies on the curve.
b) Find an equation of the normal to curve at Q.
c) Show clearly that the normal to the curve at Q does not meet the curve again.

Created by T. Madas

Question 29
The curve C has equation

$$
y=x^{3}-9 x^{2}+24 x-19, x \in \mathbb{R}
$$

a) Show that the tangent to C at the point P, where $x=1$, has gradient 9 .
b) Find the coordinates of another point Q on C at which the tangent also has gradient 9 .

The normal to C at Q meets the coordinate axes at the points A and B.
c) Show further that the approximate area of the triangle $O A B$, where O is the origin, is 11 square units.

Question 30
The point $A(2,1)$ lies on the curve with equation

$$
y=\frac{(x-1)(x+2)}{2 x}, x \in \mathbb{R}, x \neq 0 .
$$

a) Find the gradient of the curve at A.
b) Show that the tangent to the curve at A has equation

$$
3 x-4 y-2=0
$$

The tangent to the curve at the point B is parallel to the tangent to the curve at A.
c) Determine the coordinates of B.

Question 31
The curve C has equation $y=f(x)$ given by

$$
f(x)=2(x-2)^{3}, \quad x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.
b) Find an expression for $f^{\prime}(x)$.

The point $P(3,2)$ lies on C and the straight line l_{1} is the tangent to C at P.
c) Find an equation of l_{1}.

The straight line l_{2} is another tangent at a different point Q on C.
d) Given that l_{1} is parallel to l_{2} show that an equation of l_{2} is

$$
y=6 x-8
$$

$$
f^{\prime}(x)=6 x^{2}-24 x+24, y=6 x-16
$$

(b) $\begin{aligned} f(x) & =2(x-2)^{3} \\ f(x) & =2(x-2)(x-2)^{2}\end{aligned}$
$f(x)=2(x-2)(x-2)^{2}$
$f(x)=2(x-2)\left(x^{2}-4 x+4\right)$ $f(a)=(2 x-4)\left(x^{2}-4 x+4\right)$ $f(x)=\begin{aligned} & 2 x^{3}-8 x^{2}+6 x \\ &-4 x^{2}+6 x-16\end{aligned}$ $f(x)=2 x^{3}-12 x^{2}+24 x-16$ $\therefore f^{\prime}(x)=6 x^{2}-2 t_{2}+24$
$\left\{\begin{array}{l}\text { c. NGED DHe GRtant ti } P(3,2)\end{array}\right.$ $f(3)=5 \times 3^{2}-24 \times 3+24$
$f(3)=54$ $f(3)=54-72+24$
$f^{\prime}(3)=6$ $f^{\prime}(3)=6$
Tht 0 , $y-y_{0}=\ln \left(x-x_{0}\right)$ $y-2=6[x-3]$
$y-2=6 x-18$
$y=6 x-16$
 - Neta masiffir poinl on C urch geasingl if $f^{\prime}(x)=6$ $\begin{aligned} & 6 x^{2}-24 x+24 \\ \Rightarrow 6 x^{2}-24 x+18 & =6\end{aligned}$ $\Rightarrow x^{2}-4 x+3=0$

Question 32
The point $P(2,9)$ lies on the curve C with equation

$$
y=x^{3}-3 x^{2}+2 x+9, x \in \mathbb{R}, x \geq 1 .
$$

a) Find an equation of the tangent to C at P, giving the answer in the form $y=m x+c$, where m and c are constants.

The point Q also lies on C so that the tangent to C at Q is perpendicular to the tangent to C at P.
b) Show that the x coordinate of Q is

$$
\frac{6+\sqrt{6}}{6}
$$

$$
y=2 x+5
$$

Question 33
The volume, $V \mathrm{~cm}^{3}$, of a soap bubble is modelled by the formula

$$
V=(p-q t)^{2}, t \geq 0
$$

where p and q are positive constants, and t is the time in seconds, measured after a certain instant.

When $t=1$ the volume of a soap bubble is $9 \mathrm{~cm}^{3}$ and at that instant its volume is decreasing at the rate of $6 \mathrm{~cm}^{3}$ per second.

Determine the value of p and the value of q.

Question 34
Acurve C has equation

$$
y=2 x^{3}-5 x^{2}+a, x \in \mathbb{R}
$$

where a is a constant.

The tangent to C at the point where $x=2$ and the normal to C at the point where $x=1$, meet at the point Q.

Given that Q lies on the x axis, determine in any order ...
a) \ldots the value of a.
b) \ldots the coordinates of Q.

$$
a=\frac{8}{3}, Q\left(\frac{7}{3}, 0\right)
$$

\square

Created by T. Madas

Question 35
The curve C has equation

$$
y=\frac{x^{3}(5 x \sqrt{x}-128)}{\sqrt{x}}, x \in \mathbb{R}, x>0 .
$$

a) Determine expressions for $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$.
b) Show that the y coordinate of the stationary point of C is $-k \sqrt[3]{4}$, where k is a positive integer.
c) Evaluate $\frac{d^{2} y}{d x^{2}}$ at the stationary point of C. Give the answer in terms of $\sqrt[3]{2}$.
d) Find the value of $\frac{d^{3} y}{d x^{3}}$ at the point on C, where $\frac{d^{2} y}{d x^{2}}=0$.
\square

$$
\frac{d y}{d x}=20 x^{3}-320 x^{\frac{3}{2}}
$$

\square $\frac{d^{2} y}{d x^{2}}=60 x^{2}-480 x^{\frac{1}{2}}$ $\frac{d^{3} y}{d x^{3}}=120 x-240 x^{-\frac{1}{2}}$,

$$
1>
$$ $k=3072,960 \sqrt[3]{2}, 360$

