THE OPERATION OF DIFFERENTIATION
Question 1
Evaluate the following.

a) \(\frac{d}{dx}(5x^6) = 30x^5 \)

b) \(\frac{d}{dx}(2x^{\frac{3}{2}}) = 3x^{\frac{1}{2}} \)

c) \(\frac{d}{dx}(6x^4 - x^3) = 24x^3 - 3x^2 \)

d) \(\frac{d}{dx}(3x^2 + 5x + 1) = 6x + 5 \)

e) \(\frac{d}{dx}(4x^{\frac{1}{2}} - 2x - 7) = 2x^{\frac{1}{2}} - 2 \)
Question 2
Evaluate the following.

a) \(\frac{d}{dx}(4x^3) \)

\[\frac{d}{dx}(4x^3) = 12x^2 \]

b) \(\frac{d}{dx}(7x^5) \)

\[\frac{d}{dx}(7x^5) = 35x^4 \]

c) \(\frac{d}{dx}(4x^2 + 3x^4) \)

\[\frac{d}{dx}(4x^2 + 3x^4) = 8x + 12x^3 \]

d) \(\frac{d}{dx}(x^2 + 7x + 5) \)

\[\frac{d}{dx}(x^2 + 7x + 5) = 2x + 7 \]

e) \(\frac{d}{dx}\left(8x^{\frac{1}{2}} + 2x^{-2}\right) \)

\[\frac{d}{dx}\left(8x^{\frac{1}{2}} + 2x^{-2}\right) = 4x^{-\frac{1}{2}} - 4x^{-3} \]
Question 3
Differentiate the following expressions with respect to x

a) $y = x^2 - 4x^6$
\[
\frac{dy}{dx} = 2x - 24x^5
\]

b) $y = 5x^3 - 6x^2$
\[
\frac{dy}{dx} = 15x^2 - 9x^2
\]

c) $y = 9x^{-3} + 7x^{-2}$
\[
\frac{dy}{dx} = -27x^{-4} - 14x^{-3}
\]

d) $y = 5 - 5x^{-1}$
\[
\frac{dy}{dx} = 5x^{-2}
\]

e) $y = 7x + \sqrt{x}$
\[
\frac{dy}{dx} = 7 + \frac{1}{2}x^{-\frac{1}{2}}
\]
Question 4
Differentiate the following expressions with respect to x

a) $y = x^6 - 7x^2$
\[
\frac{dy}{dx} = 6x^5 - 14x
\]

b) $y = 1 - 6x^2$
\[
\frac{dy}{dx} = -12x
\]

c) $y = 2x + 8x^{-2}$
\[
\frac{dy}{dx} = 2 + 16x^{-3}
\]

d) $y = (2x - 1)(4x + 3)$
\[
\frac{dy}{dx} = 16x + 2
\]

e) $y = 4x^3 (2 - 3x)$
\[
\frac{dy}{dx} = 24x^2 - 48x^3
\]
Question 5
Find \(f'(x) \) for each of the following functions.

a) \(f(x) = 4x^3 - 9x + 2 \)
\[f'(x) = 12x^2 - 9 \]

b) \(f(x) = 6x^{\frac{1}{2}} + 2x \)
\[f'(x) = -3x^{\frac{1}{2}} + 2 \]

c) \(f(x) = x^4 + 2x^\frac{3}{2} \)
\[f'(x) = 4x^3 + 5x^{\frac{3}{2}} \]

d) \(f(x) = \frac{1}{2}x^2 - 4x^{-\frac{3}{2}} \)
\[f'(x) = x + 6x^{-\frac{5}{2}} \]

e) \(f(x) = \frac{1}{2}x^3 + 5x \)
\[f'(x) = \frac{1}{6}x^\frac{5}{2} + 5 \]
Question 6
Differentiate each of the following functions with respect to x.

a) $f(x) = 6x^{-rac{3}{2}} + 4x + 1$

 $f'(x) = -9x^{-rac{5}{2}} + 4$

b) $g(x) = x^4 - x^{-1}$

 $g'(x) = 4x^3 + x^{-2}$

c) $h(x) = 9x^2 - rac{1}{2}x^4$

 $h'(x) = 18x - 2x^3$

d) $p(x) = 4x^{rac{1}{2}} - 6x^{rac{3}{4}} + rac{1}{2}x^{-rac{1}{4}}$

 $p'(x) = 2x^{-rac{1}{2}} - 2x^{-rac{2}{3}} - rac{1}{8}x^{-rac{5}{4}}$

e) $v(x) = (8x + rac{1}{2})^2$

 $v'(x) = 128x + 8$
Carry out the following differentiations.

a) \[\frac{d}{dt}(4t^2 - 7t + 5) = 8t - 7 \]

b) \[\frac{d}{dy}\left(\frac{1}{2}y - \frac{2}{3}y^{-\frac{1}{2}}\right) = \frac{1}{2}y + \frac{1}{3}y^{-\frac{3}{2}} \]

c) \[\frac{d}{dz}(2z^2 - 3z^{-1} + z) = 4z + 3z^{-2} + 1 \]

d) \[\frac{d}{dw}\left(w^2 - w^{-\frac{3}{2}}\right) = 2w + \frac{3}{2}w^{-\frac{5}{2}} \]

e) \[\frac{d}{dx}(ax^2 - 3x^2) = 2ax - 6x \]
Question 8

Carry out the following differentiations.

a) \[\frac{d}{dy}(4y^3 + 6y + 2) \]
 \[\frac{d}{dy}(4y^3 + 6y + 2) = 12y^2 + 6 \]

b) \[\frac{d}{dt}(7t^2 - 4t^{1/2}) \]
 \[\frac{d}{dt}(7t^2 - 4t^{1/2}) = 14t - 2t^{-1/2} \]

c) \[\frac{d}{dx}(ax^2 + bx + c) \]
 \[\frac{d}{dx}(ax^2 + bx + c) = 2ax + b \]

d) \[\frac{d}{dz}\left(\frac{1}{4z^2} - \frac{1}{z}\right) \]
 \[\frac{d}{dz}\left(\frac{1}{4z^2} - \frac{1}{z}\right) = -\frac{1}{2z} + \frac{1}{z^2} \]

e) \[\frac{d}{dw}\left(\frac{1}{4w^3} + \frac{k}{w^2}\right) \]
 \[\frac{d}{dw}\left(\frac{1}{4w^3} + \frac{k}{w^2}\right) = \frac{1}{5w^{5/2}} - \frac{2k}{w^3} \]
Question 9

a) If \(A = \pi x^2 - 20x \), find the rate of change of \(A \) with respect to \(x \).

b) If \(V = x - 2\pi x^3 \), find the rate of change of \(V \) with respect to \(x \).

c) If \(P = at^2 - bt \), find the rate of change of \(P \) with respect to \(t \).

d) If \(W = 6kh^2 - h \), find the rate of change of \(W \) with respect to \(h \).

e) If \(N = (at + b)^2 \), find the rate of change of \(N \) with respect to \(t \).

\[
\begin{align*}
\frac{dA}{dx} &= 2\pi x - 20, \\
\frac{dV}{dx} &= 1 - 6\pi x^2, \\
\frac{dP}{dt} &= 2at - b, \\
\frac{dW}{dh} &= 3kh - \frac{1}{2} - 1, \\
\frac{dN}{dt} &= 2a^2t + 2ab
\end{align*}
\]
DIFFERENTIATING INDICES
Question 1

Differentiate the following expressions with respect to x.

a) $y = 4\sqrt{x} - 3\sqrt{x}$

$$\frac{dy}{dx} = 2x^{-\frac{1}{2}} - \frac{1}{3}x^{-\frac{3}{2}}$$

b) $y = 2\sqrt{x} - 4\sqrt{x^3}$

$$\frac{dy}{dx} = x^{-\frac{1}{2}} - 6x^{\frac{3}{2}}$$

c) $y = \frac{1}{2\sqrt{x}} + \frac{4}{x^2}$

$$\frac{dy}{dx} = -\frac{1}{4}x^{-\frac{3}{2}} - 8x^{-3}$$

d) $y = x\sqrt{x} - \frac{1}{x^2}$

$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} + 2x^{-3}$$

e) $y = 4\sqrt{x} + \frac{1}{4\sqrt{x}}$

$$\frac{dy}{dx} = 2x^{-\frac{1}{2}} - \frac{1}{8}x^{-\frac{3}{2}}$$
Question 2

Find $f'(x)$ for each of the following functions.

a) $f(x) = \frac{2}{x^3} + 5x^{\frac{2}{3}}$

\[f'(x) = -6x^{-4} + \frac{10}{3}x^{-\frac{1}{3}} \]

b) $f(x) = 8x^{\frac{3}{4}} - \frac{2}{x^4}$

\[f'(x) = 6x^{-\frac{1}{4}} + 8x^{-5} \]

c) $f(x) = 2x - \frac{3}{x^2} + 4\sqrt{x} + 2$

\[f'(x) = 2 + 6x^{-3} + 2x^{-\frac{1}{2}} \]

d) $f(x) = 3\sqrt{x}^2 - \frac{3}{2x^3}$

\[f'(x) = \frac{3}{2}x^\frac{1}{2} + \frac{9}{2}x^{-4} \]

e) $f(x) = \sqrt{x^2} - \frac{1}{2x^2}$

\[f'(x) = \frac{3}{2}x^2 + x^{-3} \]
Question 3
Differentiate the following expressions with respect to x

a) $\frac{dy}{dx} = \frac{8}{3}x^{-3} - 12x^{-4}$

\[y = \frac{4}{x^3} - \frac{4}{3x^2} \]

b) $\frac{dy}{dx} = 30\frac{x^{-2}}{2} - \frac{3}{2}x^{-3}$

\[y = -\frac{3}{4x^2} + \frac{12}{x^2\sqrt{x}} \]

c) $\frac{dy}{dx} = -\frac{1}{3}x^{-2} + \frac{5}{3}x^{-\frac{3}{2}} - \frac{1}{6}x^{-\frac{5}{2}}$

\[y = \frac{1}{3x} + \frac{2x^3 + 1}{3\sqrt{x}} \]

d) $\frac{dy}{dx} = 21x^\frac{1}{2} - 5x^\frac{3}{2}$

\[y = 2\sqrt{x}(7x - x^2) \]

e) $\frac{dy}{dx} = 6x^\frac{1}{3} + 4$

\[y = (3 + 2\sqrt{x})^2 \]
Question 4
Evaluate the following.

a) \(\frac{d}{dx} \left(6x^{\frac{4}{3}} - 2x^{\frac{5}{2}} \right) \)

b) \(\frac{d}{dx} \left(\frac{1}{x} - \frac{1}{\sqrt{x}} \right) \)

c) \(\frac{d}{dx} \left(\sqrt[3]{x} - \frac{27}{x} \right) \)

d) \(\frac{d}{dx} \left(\frac{3\sqrt{x} - 2}{x^{\frac{3}{2}}} \right) \)

e) \(\frac{d}{dx} \left[\frac{1}{3\sqrt{x}} \left(\frac{2}{x} - 3 \right) \right] \)
Question 5
Evaluate the following.

a) \[\frac{d}{dx} \left(\frac{x + x^2}{\sqrt{x}} \right) \]

\[\frac{1}{2} x^{-\frac{3}{2}} + \frac{3}{2} x^{\frac{1}{2}} \]

b) \[\frac{d}{dx} \left(\frac{4x + \sqrt{x}}{2x^2} \right) \]

\[-2x^{-2} - \frac{3}{4} x^{-\frac{3}{2}} \]

c) \[\frac{d}{dx} \left(\frac{x^2 + 2}{x^3} \right) \]

\[-x^{-2} - 6x^{-4} \]

d) \[\frac{d}{dx} \left(\frac{1 - \sqrt{x}}{4x^2} \right) \]

\[-\frac{3}{4} x^{-4} + \frac{5}{8} x^{-\frac{7}{2}} \]

e) \[\frac{d}{dx} \left[\frac{3\sqrt{x} - 2x\sqrt{x}}{3x} \right] \]

\[2x^{-\frac{1}{3}} - \frac{1}{3} x^{-\frac{1}{2}} \]
Question 6
Differentiate the following expressions with respect to x

a) $y = \frac{4+x}{2x^3}$

\[
\frac{dy}{dx} = -6x^{-4} - x^{-3}
\]

b) $y = \frac{x^2 + 3x}{2\sqrt{x}}$

\[
\frac{dy}{dx} = \frac{3}{4}x^{-\frac{1}{2}} + \frac{3}{4}x^{\frac{1}{2}}
\]

c) $y = \frac{x + 4\sqrt{x}}{2x^3}$

\[
\frac{dy}{dx} = -5x^{-\frac{5}{2}} - x^{-3}
\]

d) $y = \frac{\sqrt{x}(2x-4)}{3x^2}$

\[
\frac{dy}{dx} = -\frac{1}{3}x^{-\frac{5}{2}} + 2x^{-\frac{3}{2}}
\]

e) $y = \frac{(x+2)(2x-3)}{4x^5}$

\[
\frac{dy}{dx} = -\frac{3}{2}x^{-4} - x^{-5} + \frac{15}{2}x^{-6}
\]
Question 7

Find $f'(x)$ for each of the following functions.

a) $f(x) = x\left(\sqrt{x} + x^{-4}\right)$

$$f'(x) = \frac{3}{2}x^{\frac{1}{2}} - 3x^{-4}$$

b) $f(x) = \frac{1}{\sqrt{x}} \left(\frac{2}{x} - \frac{3}{4x^2} \right)$

$$f'(x) = -3x^{-\frac{3}{2}} + \frac{15}{8}x^{-\frac{7}{2}}$$

c) $f(x) = 4x^2 \left(\frac{6}{x^2} - \frac{5}{\sqrt{x}} \right)$

$$f'(x) = 36x^{\frac{1}{2}} - 60x^2$$

d) $f(x) = 2\sqrt{x} \left(\frac{5}{x} + x^2 \right)$

$$f'(x) = -5x^{\frac{3}{2}} + 5x^{\frac{5}{2}}$$

e) $f(x) = \frac{2}{x^2} \left(7x^3 - 5x^2 \right)$

$$f'(x) = \frac{7}{4}x^{-\frac{1}{2}} + \frac{5}{4}x^{-\frac{3}{2}}$$
Question 8

Differentiate the following expressions with respect to x

a) $y = \frac{(2x-1)(3x-2)}{2x^{\frac{1}{2}}}$

\[
\frac{dy}{dx} = \frac{\frac{3}{2}x^{-\frac{1}{2}} + \frac{7}{4}x^{-\frac{3}{2}} - \frac{3}{2}x^{-\frac{5}{2}}}{4x}
\]

b) $y = \frac{(3+2\sqrt{x})^2}{4x}$

\[
\frac{dy}{dx} = -\frac{3}{2}x^{-\frac{3}{2}} - \frac{9}{4}x^{-2}
\]

c) $y = \frac{4x^3 + \sqrt{x^3}}{4\sqrt{x}}$

\[
\frac{dy}{dx} = \frac{1}{2}x + \frac{5}{2}x^2
\]

d) $y = \frac{(4x + \sqrt{x})(x^2 - 3)}{3\sqrt{x}}$

\[
\frac{dy}{dx} = \frac{2}{3}x + \frac{10}{3}x^3 - 2x^{-\frac{1}{2}}
\]

e) $y = \frac{\left(2x^{\frac{1}{2}} + 6x^{-\frac{1}{2}}\right)\left(6x^{\frac{3}{2}} - 2x^{-\frac{1}{2}}\right)}{3x}$

\[
\frac{dy}{dx} = \frac{4}{3}x^{\frac{3}{2}} + 8x^{-3} + 4
\]
TANGENTS

&

NORMALS
Question 1 (non calculator)

For each of the following curves find an equation of the tangent to the curve at the point whose x coordinate is given.

a) $y = x^2 - 9x + 13$, where $x = 6$
 \[y = 3x - 23 \]

b) $y = x^4 + x + 1$, where $x = 1$
 \[y = 5x - 2 \]

c) $y = 2x^2 + 6x + 7$, where $x = -1$
 \[y = 2x + 5 \]

d) $y = 2x^3 - 4x + 5$, where $x = 1$
 \[y = 2x + 1 \]

e) $y = 2x^3 - 4x^2 - 3$, where $x = 2$
 \[y = 8x - 19 \]

f) $y = 3x^3 - 17x^2 + 24x - 9$, where $x = 2$
 \[y = -8x + 11 \]
For each of the following curves find an equation of the tangent to the curve at the point whose x coordinate is given.

a) $f(x) = x^3 - 4x^2 + 2x - 1$, where $x = 2$

\[y = -2x - 1 \]

b) $f(x) = 3x^3 + x^2 - 8x - 5$, where $x = 1$

\[y = 3x - 12 \]

c) $f(x) = 2x^3 - 5x^2 + 2x - 1$, where $x = 2$

\[y = 6x - 13 \]

d) $f(x) = x^3 - x^2 - 3x - 2$, where $x = 1$

\[y = -2x - 3 \]

e) $f(x) = 2x^3 + x^2 - 2x - 2$, where $x = 1$

\[y = 6x - 7 \]
Question 3 \hspace{1cm} \text{(non calculator)}

For each of the following curves find an equation of the tangent to the curve at the point whose \(x \) coordinate is given.

\begin{enumerate}
\item \(y = x^2 - \frac{3}{x} - \frac{1}{2} \), where \(x = -2 \) \hspace{1cm} 13x + 4y + 6 = 0
\item \(y = x^3 - 6x + \frac{8}{x} + 1 \), where \(x = 2 \) \hspace{1cm} y = 4x - 7
\item \(y = 4x^2 + \frac{5}{x} - 1 \), where \(x = 1 \) \hspace{1cm} y = 3x + 5
\item \(y = 2\sqrt{x} - \frac{6}{\sqrt{x}} \), where \(x = 4 \) \hspace{1cm} 7x - 8y - 20 = 0
\item \(y = 3x^\frac{3}{2} - \frac{32}{x} \), where \(x = 4 \) \hspace{1cm} y = 11x - 28
\end{enumerate}
Question 4 (non calculator)
For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.

a) \(f(x) = x^3 - 4x^2 + 1 \), where \(x = 2 \)
\[4y = x - 30 \]

b) \(f(x) = x^3 - 7x^2 + 11x \), where \(x = 3 \)
\[4y = x - 15 \]

c) \(f(x) = 3x^4 - 7x^3 + 5 \) where \(x = 2 \)
\[12y + x + 34 = 0 \]

d) \(f(x) = \frac{1}{4}x^5 - 18x + 11 \) where \(x = 2 \)
\[2y + x + 32 = 0 \]
Question 5 (non calculator)

For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.

a) \(f(x) = 2x^3 - 3x^2 - 10x + 18 \), where \(x = 2 \)

\[x + 2y = 6 \]

b) \(f(x) = x^3 - 4x^2 + 6x + 1 \), where \(x = 1 \)

\[x + y = 5 \]

c) \(f(x) = 4x^3 + 2x^2 - 18x - 10 \) where \(x = -2 \)

\[22y + x = 42 \]

d) \(f(x) = -2x^3 + 4x^2 - 1 \), where \(x = 2 \)

\[8y = x - 10 \]
Question 6 (non calculator)

For each of the following curves find an equation of the normal to the curve at the point whose x coordinate is given.

a) $y = x^2 (x - 6) + \frac{5}{x} - 1$, where $x = 1$

\[x - 14y - 15 = 0 \]

b) $y = 2x^{\frac{3}{2}} - \frac{16}{x}$, where $x = 4$

\[x + 7y = 88 \]

c) $y = 4x^2 + x^{-\frac{3}{2}}$, where $x = 1$

\[2x + 13y = 67 \]

d) $y = 2x^2 - 4x^{\frac{3}{2}} - \frac{8}{x} - 1$, where $x = 4$

\[2x + 9y + 19 = 0 \]
STATIONARY POINTS
Question 1 (non calculator)

For each of the following cubic equations find the coordinates of their stationary points and determine their nature.

a) \(y = x^3 - 3x^2 - 9x + 3 \)

b) \(y = x^3 + 12x^2 + 45x + 50 \)

c) \(y = 2x^3 - 6x^2 + 12 \)

d) \(y = 25 - 24x + 9x^2 - x^3 \)

\[
\begin{align*}
\text{min}(3,-24), \text{max}(-1,8), & \quad \text{min}(-3,-4), \text{max}(-5,0) \\
\text{min}(2,4), \text{max}(0,12), & \quad \text{min}(2,5), \text{max}(4,9)
\end{align*}
\]
Question 2
For each of the following equations find the coordinates of their stationary points and determine their nature.

a) \(y = x + \frac{4}{x}, \quad x \neq 0 \)

b) \(y = x^2 + \frac{16}{x}, \quad x \neq 0 \)

c) \(y = x - 4\sqrt{x}, \quad x > 0 \)

d) \(y = 4x^2 + \frac{1}{x}, \quad x \neq 0 \)

\[
\begin{align*}
\min (2, 4), & \max (-2, -4), & \min (2, 12), & \min (4, -4), & \min \left(\frac{1}{2}, 3\right)
\end{align*}
\]
Question 3
For each of the following equations find the coordinates of their stationary points and determine their nature.

a) \(y = 12\sqrt{x} - x^{\frac{3}{2}}, \quad x > 0 \)

b) \(y = x^{\frac{3}{2}} - 6x^{\frac{1}{2}}, \quad x > 0 \)

c) \(y = 6x^{\frac{1}{2}} - 4x - 2, \quad x > 0 \)

d) \(y = x^2 - 14x^2 + 100, \quad x > 0 \)

\[
\begin{align*}
\text{max} (4,16), & \quad \text{min} (2, -4\sqrt{2}), & \quad \text{max} \left(\frac{9}{16}, \frac{1}{4} \right), & \quad \text{min} (4,4)
\end{align*}
\]
Question 4

For each of the following equations find the coordinates of their stationary points and determine their nature.

a) \(y = x^3 - 16x^2 + 60, \ x > 0 \)

b) \(y = 5x^2 - 6x^{\frac{5}{3}} + 10, \ x > 0 \)

c) \(y = 6x^\frac{4}{3} - x^2 - 20, \ x > 0 \)

d) \(y = 5x^2 - 2x^{\frac{5}{3}} - 10, \ x > 0 \)

\[\min(4, -4), \min(1, 9), \max(8, 12), \max(4, 6) \]
Question 5

For each of the following equations find the coordinates of their stationary points and determine their nature.

a) \[y = \frac{1}{x} - \frac{1}{\sqrt{x}}, \quad x > 0 \]

b) \[y = \frac{3\sqrt{x} - 2}{x^2}, \quad x > 0 \]

c) \[y = \frac{3}{x^2} + \frac{27}{x}, \quad x > 0 \]

d) \[y = \frac{1}{3\sqrt{x}} \left(\frac{2}{x} - 3 \right), \quad x > 0 \]

\[\min \left(4, -\frac{1}{4} \right), \quad \max \left(1, 1 \right), \quad \min (27, 4), \quad \min \left(2, -\frac{\sqrt{2}}{3} \right) \]
INCREASING and DECREASING FUNCTIONS
Question 1
For each of the following equations find the range of the values of \(x \), for which \(y \) is increasing or decreasing.

a) \(y = 2x^3 - 3x^2 - 12x + 2 \), increasing

b) \(y = x^3 - 6x^2 + 12 \), decreasing

c) \(y = x^3 - 3x + 8 \), increasing

d) \(y = 1 - 3x^2 - x^3 \), decreasing

\[x < -1 \text{ or } x > 2, \quad 0 < x < 4, \quad x < -1 \text{ or } x > 1, \quad x < -2 \text{ or } x > 0 \]
Question 2

Find the range of the values of x, for which $f(x)$ is increasing or decreasing.

a) $f(x) = x^3 - 3x^2 - 9x + 10$, increasing

b) $f(x) = -x^3 + 9x^2 - 15x - 13$, increasing

c) $f(x) = 4x^3 - 3x^2 - 6x$, decreasing

d) $f(x) = 4x^3 - 3x$, decreasing

$x < -1$ or $x > 3$, $1 < x < 5$, $-\frac{1}{2} < x < \frac{1}{2}$
DIFFERENTIATION PRACTICE IN CONTEXT
Question 1

The curve C has equation

$$f(x) = 3x^2 - 8x + 2.$$

a) Find the gradient at the point on C, where $x = -1$.

The point A lies on C and the gradient at that point is 4.

b) Find the coordinates of A.

$(-14, A(2, -2))$
Question 2
The curve C has equation

$$y = x^3 - 11x + 1.$$

a) Find the gradient at the point on C, where $x = 3$.

The point P lies on C and the gradient at that point is 1.

b) Find the possible coordinates of P.

$$P(2,-13) \text{ or } P(-2,15)$$
Question 3

The curve C has equation

$$y = 2x^2 - 4x - 1.$$

a) Find the gradient at the point on C, where $x = 2$.

The point P lies on C and the gradient at that point is 2.

b) Find the coordinates of P.

$$(4, P\left(\frac{3}{2}, -\frac{5}{2}\right))$$
Question 4

The curve C has equation

$$f(x) = x + \frac{1}{x}, \quad x \neq 0.$$

a) Find the gradient at the point on C, where $x = \frac{1}{2}$.

The point A lies on C and the gradient at that point is $\frac{3}{4}$.

b) Find the possible coordinates of A.

\(-3, \ A\left(2, \frac{5}{2}\right) \text{ or } A\left(-2, -\frac{5}{2}\right)\)
Question 5
The curve C has equation
\[y = x^3 - x^2 - 5x + 2. \]

Find the x coordinates of the points on C with gradient 3.

\[x = -\frac{4}{3}, 2 \]

Question 6
The curve C has equation
\[y = x^3 - 6x^2 - 3x + 25. \]

Find an equation of the tangent to C at the point where $x = 2$.

\[y = 5x - 7 \]
The curve C has equation

$$y = -x^2(x+1), \ x \in \mathbb{R}.$$

The curve meets the coordinate axes at the origin O and at the point A.

a) Sketch the graph of C, indicating clearly the coordinates of A.

b) Show that the straight line with equation

$$x + y + 1 = 0,$$

is a tangent to C at A.

$A(-1,0)$
Question 8

The curve \(C \) has equation

\[y = \frac{6}{x^2} + \frac{5x}{4} - 4, \quad x \neq 0. \]

\(dy \)

\(dx \)

a) Find an expression for \(\frac{dy}{dx} \).

b) Determine an equation of the normal to the curve at the point where \(x = 2 \).

\[\frac{dy}{dx} = \frac{5}{4x^3}, \quad y = 4x - 8 \]
Question 9

The curve \(C \) has equation

\[
f(x) = 4x\sqrt{x} - \frac{25x^2}{16}, \ x \geq 0.
\]

a) Find a simplified expression for \(f'(x) \).

b) Determine an equation of the tangent to \(C \) at the point where \(x = 4 \), giving the answer in the form \(ax + by = c \), where \(a \), \(b \) and \(c \) are integers.
Question 10

A curve has the following equation

\[f(x) = \frac{(2x-3)(x+2)}{\sqrt{x}}, \quad x > 0. \]

a) Express \(f(x) \) in the form \(Ax^\frac{3}{2} + Bx^{\frac{1}{2}} + Cx^{-\frac{1}{2}} \), where \(A \), \(B \) and \(C \) are constants to be found.

b) Show that the tangent to the curve at the point where \(x = 1 \) is parallel to the line with equation

\[2y = 13x + 2. \]

\[A = 2, \quad B = 1, \quad C = -6 \]
Question 11
A cubic curve has equation
\[f(x) = 2x^3 - 7x^2 + 6x + 1. \]

The point \(P(2,1) \) lies on the curve.

a) Find an equation of the tangent to the curve at \(P \).

The point \(Q \) lies on the curve so that the tangent to the curve at \(Q \) is parallel to the tangent to the curve at \(P \).

b) Determine the \(x \) coordinate of \(Q \).

\[y = 2x - 3, \quad x_Q = \frac{1}{3} \]
Question 12

The curve C has equation

$$y = 2x^3 - 9x^2 + 12x - 10.$$

a) Find the coordinates of the two points on the curve where the gradient is zero.

The point P lies on C and its x coordinate is -1.

b) Determine the gradient of C at the point P.

The point Q lies on C so that the gradient at Q is the same as the gradient at P.

c) Find the coordinates of Q.

$$(1, -5), (2, -6), \frac{36}{36}, Q(4, 22)$$
Question 13

The curve C has equation
\[y = ax^3 + bx^2 - 10, \]
where a and b are constants.

The point $A(2, 2)$ lies on C.

Given that the gradient at A is 4, determine the value of a and the value of b.

\[a = -2, \quad b = 7 \]
Question 14

The curve C has equation

$$y = x^3 - 4x^2 + 6x - 3.$$

The point $P(2,1)$ lies on C and the straight line L_1 is the tangent to C at P.

a) Find an equation of L_1.

The straight line L_2 is a tangent to C at the point Q.

b) Given that L_2 is parallel to L_1, determine …

i. … the exact coordinates of Q.

ii. … an equation of L_2.

$$27y = 54x - 49$$

Created by T. Madas
Question 15

A curve C and a straight line L have respective equations

\[y = 2x^2 - 6x + 5 \quad \text{and} \quad 2y + x = 4. \]

a) Find the coordinates of the points of intersection between C and L.

b) Show that L is normal to C.

The tangent to C at the point P is parallel to L.

c) Determine the x coordinate of P.

\[(2, 1), \left(\frac{3}{4}, \frac{13}{8}\right), \quad x_P = \frac{11}{8} \]
Question 16

The curve C has equation

$$y = 2x^3 - 6x^2 + 3x + 5.$$

The point $P(2,3)$ lies on C and the straight line L_1 is the tangent to C at P.

(a) Find an equation of L_1.

The straight lines L_2 and L_3 are parallel to L_1, and they are the respective normals to C at the points Q and R.

(b) Determine the x coordinate of Q and the x coordinate of R.

$$y = 3x - 3, \quad x = \frac{1}{3}, \frac{5}{3}$$

\[\begin{array}{c}
\text{Diagram showing curves and tangent.}
\end{array} \]
Question 17

The figure above shows the curve with equation

\[y = \frac{1}{4}(x^2 - 12x + 35) \, . \]

The curve crosses the \(x \) axis at the points \(P(x_1, 0) \) and \(Q(x_2, 0) \), where \(x_2 > x_1 \).

The tangent to the curve at \(Q \) is the straight line \(L_1 \).

\[\text{a) Find an equation of } L_1. \]

The tangent to the curve at the point \(R \) is denoted by \(L_2 \). It is further given that \(L_2 \) meets \(L_1 \) at right angles, at the point \(S \).

\[\text{b) Find an equation of } L_2. \]

\[\text{c) Determine the exact coordinates of } S. \]
The point $P(1,0)$ lies on the curve C with equation

$$y = x^3 - x, \ x \in \mathbb{R}.$$

a) Find an equation of the tangent to C at P, giving the answer in the form $y = mx + c$, where m and c are constants.

The tangent to C at P meets C again at the point Q.

b) Determine the coordinates of Q.

$$y = 2x - 2, \ Q(-2,-6)$$
Question 19

A curve C with equation

$$y = 4x^3 + 7x^2 + x + 11, \quad x \in \mathbb{R}.$$

The point P lies on C, where $x = -1$.

a) Find an equation of the tangent to C at P.

b) Determine the x coordinate of Q.

\[
y = 12 - x, \quad x_Q = \frac{1}{4}
\]
The figure above shows the curve \(C \) with equation \(y = 2x^2 - x + 3 \).

\(C \) crosses the \(y \) axis at the point \(P \). The normal to \(C \) at \(P \) is the straight line \(L_1 \).

a) Find an equation of \(L_1 \).

\(L_1 \) meets the curve again at the point \(Q \).

b) Determine the coordinates of \(Q \).

The tangent to \(C \) at \(Q \) is the straight line \(L_2 \).

\(L_2 \) meets the \(y \) axis at the point \(R \).

c) Show that the area of the triangle \(PQR \) is one square unit.

\[y = x + 3, \quad Q(1,4) \]
The figure above shows the curve C with equation

$$y = 2x^3 + 3x^2 - 11x - 6.$$

The curve crosses the x axis at the points P, Q and $R(2,0)$.

The tangent to C at R is the straight line L_1.

a) Find an equation of L_1.

The normal to C at P is the straight line L_2.

The straight lines L_1 and L_2 meet at the point S.

b) Show that $\angle PSR = 90^\circ$.
Find the coordinates of the stationary point of the curve and determine whether it is a local maximum, a local minimum or a point of inflexion.

\[
y = 6\sqrt[3]{x^5} - 15\sqrt[3]{x^4} - 80x + 16, \quad x \in \mathbb{R}, \quad x \geq 0.
\]

\textbf{local minimum at } (16, -2800)
Question 23

A curve has equation

\[y = x^2 - 6x \sqrt[3]{x} + 2, \quad x \in \mathbb{R}, \quad x \geq 0. \]

Find the coordinates of the stationary points of the curve and classify them as local maxima, local minima or a points of inflexion.

- Local minimum at \((8, -30) \)
- Local maximum at \((0, 2) \)
Question 24

A curve has equation

\[y = x \left(x^2 - 128 \right), \quad x \in \mathbb{R}, \quad x > 0. \]

The curve has a single stationary point with coordinates \(\left(2^\alpha, -2^\beta \right) \), where \(\alpha \) and \(\beta \) are positive integers.

Find the value of \(\beta \) and justify that the stationary point is a local minimum.

\[\beta = 12 \]
Question 25

The point P, whose x coordinate is $\frac{1}{4}$, lies on the curve with equation

$$y = \frac{k + 4\sqrt{x}}{7x}, \ x \in \mathbb{R}, \ x > 0,$$

where k is a non-zero constant.

a) Determine, in terms of k, the gradient of the curve at P.

The tangent to the curve at P is parallel to the straight line with equation

$$44x + 7y - 5 = 0.$$

b) Find an equation of the tangent to the curve at P.

$$\frac{dy}{dx} \bigg|_{x=\frac{1}{4}} = \frac{4-16k}{7}, \quad 44x + 7y = 25$$
Question 26

The figure above shows the curve \(C \) with equation

\[
y = \frac{x^2}{2} - \frac{4}{x}, \quad x \neq 0.
\]

The curve crosses the \(x \) axis at the point \(P \).

The straight line \(L \) is the normal to \(C \) at \(P \).

a) Find …

i. … the coordinates of \(P \).

ii. … an equation of \(L \).

b) Show that \(L \) does not meet \(C \) again.

\[
P(2,0), \quad x + 3y = 2
\]
Question 27

The curve C has equation

$$y = (x-1)(x^2 + 4x + 5), \ x \in \mathbb{R}.$$

a) Show that C meets the x axis at only one point.

The point A, where $x = -1$, lies on C.

b) Find an equation of the normal to C at A.

The normal to C at A meets the coordinate axes at the points P and Q.

c) Show further that the area of the triangle OPQ, where O is the origin, is $12\frac{1}{4}$ square units.

$$2y = x - 7$$
Question 28

A curve has equation

\[y = x - 8\sqrt{x}, \quad x \in \mathbb{R}, \quad x \geq 0. \]

The curve meets the coordinate axes at the origin and at the point \(P \).

a) Determine the coordinates of \(P \).

The point \(Q \), where \(x = 4 \), lies on the curve.

b) Find an equation of the normal to curve at \(Q \).

c) Show clearly that the normal to the curve at \(Q \) does not meet the curve again.

\[
P(64, 0), \quad y = x - 16
\]
Question 29

The curve C has equation

$$y = x^3 - 9x^2 + 24x - 19, \quad x \in \mathbb{R}.$$

a) Show that the tangent to C at the point P, where $x = 1$, has gradient 9.

b) Find the coordinates of another point Q on C at which the tangent also has gradient 9.

The normal to C at Q meets the coordinate axes at the points A and B.

c) Show further that the approximate area of the triangle OAB, where O is the origin, is 11 square units.
Question 30

The point $A(2,1)$ lies on the curve with equation

$$y = \frac{(x-1)(x+2)}{2x}, \quad x \in \mathbb{R}, \ x \neq 0.$$

a) Find the gradient of the curve at A.

b) Show that the tangent to the curve at A has equation

$$3x - 4y - 2 = 0.$$

The tangent to the curve at the point B is parallel to the tangent to the curve at A.

c) Determine the coordinates of B.

Gradient at $A = \frac{3}{4}, \quad B(-2,0)$
Question 31

The curve C has equation $y = f(x)$ given by

$$f(x) = 2(x - 2)^3, \ x \in \mathbb{R}.$$

a) Sketch the graph of $f(x)$.

b) Find an expression for $f'(x)$.

The point $P(3, 2)$ lies on C and the straight line l_1 is the tangent to C at P.

c) Find an equation of l_1.

The straight line l_2 is another tangent at a different point Q on C.

d) Given that l_1 is parallel to l_2 show that an equation of l_2 is

$$y = 6x - 8.$$

$$f'(x) = 6x^2 - 24x + 24, \ \ y = 6x - 16$$
Question 32

The point \(P(2,9) \) lies on the curve \(C \) with equation

\[
y = x^3 - 3x^2 + 2x + 9, \quad x \in \mathbb{R}, \quad x \geq 1.
\]

a) Find an equation of the tangent to \(C \) at \(P \), giving the answer in the form \(y = mx + c \), where \(m \) and \(c \) are constants.

The point \(Q \) also lies on \(C \) so that the tangent to \(C \) at \(Q \) is perpendicular to the tangent to \(C \) at \(P \).

b) Show that the \(x \) coordinate of \(Q \) is

\[
\frac{6 + \sqrt{6}}{6}.
\]

\[
y = 2x + 5
\]
Question 33

The volume, V cm3, of a soap bubble is modelled by the formula

$$V = (p - qt)^2, \quad t \geq 0,$$

where p and q are positive constants, and t is the time in seconds, measured after a certain instant.

When $t=1$ the volume of a soap bubble is 9 cm3 and at that instant its volume is decreasing at the rate of 6 cm3 per second.

Determine the value of p and the value of q.

$$p = 4, \quad q = 1$$
Question 34

A curve \(C \) has equation

\[
y = 2x^3 - 5x^2 + a, \quad x \in \mathbb{R},
\]

where \(a \) is a constant.

The tangent to \(C \) at the point where \(x = 2 \) and the normal to \(C \) at the point where \(x = 1 \), meet at the point \(Q \).

Given that \(Q \) lies on the \(x \) axis, determine in any order …

a) … the value of \(a \).

b) … the coordinates of \(Q \).

\[
a = \frac{8}{3}, \quad Q\left(\frac{2}{3}, 0\right)
\]
Question 35

The curve C has equation

$$y = \frac{x^3(5x\sqrt{x} - 128)}{\sqrt{x}}, \quad x \in \mathbb{R}, \quad x > 0.$$

a) Determine expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$.

b) Show that the y coordinate of the stationary point of C is $-k\sqrt[3]{4}$, where k is a positive integer.

c) Evaluate $\frac{d^2y}{dx^2}$ at the stationary point of C.

Give the answer in terms of $\sqrt[3]{2}$.

d) Find the value of $\frac{d^3y}{dx^3}$ at the point on C, where $\frac{d^2y}{dx^2} = 0$.

$$\frac{dy}{dx} = 20x^3 - 320x^{\frac{3}{2}}$$,
$$\frac{d^2y}{dx^2} = 60x^2 - 480x^{\frac{1}{2}}$$,
$$\frac{d^3y}{dx^3} = 120x - 240x^{\frac{1}{2}}$$.

$$k = 3072, \quad 960\sqrt[3]{2}, \quad 360$$