Question 1
A solid's base is bounded by the circle with equation

$$
x^{2}+y^{2}=9
$$

Determine the volume of the solid, given that every vertical cross-section of the solid, which is perpendicular to the x axis, is a square.

Question 2
A solid's base is bounded by the circle with equation

$$
x^{2}+y^{2}=1
$$

Every vertical cross-section of the solid, perpendicular to the x axis, is a right angled isosceles triangle, with one of its non hypotenuse sides on the base of the solid.

Determine the volume of the solid.

Created by T. Madas

Question 3

A solid's base is bounded by the right angled triangle in the $x-y$ plane whose vertices have coordinates $(0,0),(1,0)$ and $(0,4)$.

Every vertical cross-section of the solid, perpendicular to the y axis, is a semicircle with its diameter lying on the base of the solid.

Use calculus to determine the volume of the above described solid.

Question 4
The finite region R is bounded by the curve with equation
and the straight line with equation

$$
y=x+1
$$

A solid's base is bounded by R and every vertical cross-section of the solid, perpendicular to the x axis, is a square with one of sides on the base of the solid.

Determine the volume of the solid.

Question 5
A solid's base is bounded by the ellipse with equation

$$
\frac{1}{4} x^{2}+4 y^{2}=1
$$

Every vertical cross-section of the solid, perpendicular to the x axis, is an equilateral triangle, with one of its sides on the base of the solid.

Determine the volume of the solid.

Question 6
An ellipse E has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where a and b are positive constants.

Use integral calculus to show that the volume of a right elliptical cone with base E and height h, is given by

$$
\frac{1}{3} \pi a b h
$$

You may assume the standard result for the area of an ellipse without proof.
\square , proof

- bocling at The Difgann cpposite - THE Nfinitesume twmet Disc of $\delta V=\pi x y \delta z$ - by smune taimories loe hane $\Rightarrow \frac{x}{a}=\frac{h-z}{h} \quad \& \quad \frac{y}{b}=\frac{h-z}{h}$ $\Rightarrow x=\frac{a}{h}(h-z) \text { \& } y=\frac{b}{b}(h-z)$ O So Tif vowme is gria fy

